WO2022113539A1 - Retina scan-type projection device, retina scan-type projection method, and combiner - Google Patents

Retina scan-type projection device, retina scan-type projection method, and combiner Download PDF

Info

Publication number
WO2022113539A1
WO2022113539A1 PCT/JP2021/037351 JP2021037351W WO2022113539A1 WO 2022113539 A1 WO2022113539 A1 WO 2022113539A1 JP 2021037351 W JP2021037351 W JP 2021037351W WO 2022113539 A1 WO2022113539 A1 WO 2022113539A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
image light
emission
emitted
subject
Prior art date
Application number
PCT/JP2021/037351
Other languages
French (fr)
Japanese (ja)
Inventor
寛志 勝田
Original Assignee
カシオ計算機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カシオ計算機株式会社 filed Critical カシオ計算機株式会社
Publication of WO2022113539A1 publication Critical patent/WO2022113539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a retinal scanning projection device, a retinal scanning projection method, and a combiner.
  • Patent Document 1 As a display device using a diffractive optical element, a display device that reduces unevenness in brightness and hue has been proposed (for example, Patent Document 1).
  • Patent Document 1 is a retinal scanning type, and there is room for improvement in that the position needs to be adjusted or the eye box becomes narrow.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a retinal scanning projection device, a retinal scanning projection method, and a combiner capable of eliminating the drawbacks of the retinal scanning projection device.
  • the retinal scanning projection apparatus of the present invention is used.
  • a combiner including an incident portion to which the image light is incident and an exit portion to emit the image light guided from the incident portion is provided.
  • the emission unit includes a plurality of emission regions.
  • the image light emitted from the first emission region of the plurality of emission regions is incident on the center of the pupil of the subject when the subject's eyeball faces the front.
  • the image light is emitted from the first emission region, and the image light is emitted.
  • the subject when at least a part of the image light emitted from the second emission region different from the first emission region among the plurality of emission regions is directed to a direction other than the front of the subject's eyeball.
  • the image light is emitted from the second emission region so as to be incident on the center of the pupil. It is characterized by that.
  • the drawbacks of the retinal scanning type projection device can be eliminated.
  • FIG. 1 is a diagram showing an example of usage of the retinal scanning projection device 1 according to the embodiment of the present invention.
  • the retinal scanning type projection device 1 is a wearable terminal that can be worn on the head, and is a so-called smart glass such as a spectacle-type image pickup device.
  • the retinal scanning projection device 1 includes a combiner 10 as shown in the figure.
  • the combiner 10 is provided with an incident unit 3, a duplicating unit 4, and an emitting unit 5. Since the combiner 10 has transparency, the user can visually recognize the outside view through the combiner 10.
  • the retinal scanning projection device 1 has a communication unit, and information such as an image received from an external terminal such as a smartphone or a tablet can be superimposed on the outside view and visually recognized via the communication unit.
  • the incident portion 3, the duplicating portion 4, and the emitting portion 5 in this embodiment are provided in the combiner 10, they may be provided on the surface of the combiner 10.
  • the incident unit 3 is composed of, for example, a holographic optical element, and causes the image light incident on the incident unit 3 to change the traveling direction to the duplication unit 4 as shown in FIG.
  • the video light whose traveling direction is changed to the duplication unit 4 travels in the combiner 10 while being totally reflected at the boundary surface, and is guided to the duplication unit 4.
  • the duplication unit 4 is composed of, for example, a diffractive optical element, and as shown in FIG. 2, the image light guided from the incident unit 3 is duplicated for the number of emission regions 7A to 7I in the emission unit 5, and the duplicated image light is reproduced. Is totally reflected in the combiner 10 and led to the emission regions 7A to 7I.
  • the image light guided from the incident portion 3 is duplicated into three, and each of the duplicated image lights is further duplicated into three to emit the emission regions 7A to 7I.
  • An example of duplicating nine video lights corresponding to the above, that is, an example of stepwise duplication is shown, but the duplication method is not limited to this. It may be duplicated in the image light.
  • the emission unit 5 includes nine emission regions such as emission regions 7A to 7I.
  • the emission regions 7A to 7I are each composed of holographic optical elements (diffraction optical elements, half mirrors, etc.), and each of the video light incident on the emission regions 7A to 7I is guided toward the user's eyes.
  • the emission unit 5 in this embodiment includes nine emission regions, but the number of emission regions is not limited to nine, and if a plurality of emission regions are provided, the number of emission regions may be larger or smaller. As will be described later, the number of emission regions is odd so that the video light emitted from the centrally located emission region is vertically incident on the surface of the pupil 22 when the reference user looks at the front. It is desirable that it is an individual.
  • a user having a diameter of 4 mm, which is a general pupil 22, is used as a reference user (target person), and each of them is based on the position of the general pupil 22 of the reference user. The positional relationship of is determined.
  • the emission regions 7A to 7I are arranged at positions where they do not overlap, and as shown in FIG. 3, the diameter r of the emission region as the size of each emission region is the distance X from the combiner 10 to the user's pupil 22. , Field Of View (FOV) ⁇ , and is determined based on. Generally, the distance from the lens to the user's pupil when wearing eyeglasses is 11 mm. Therefore, in this embodiment, the distance X from the combiner 10 to the reference user's pupil 22 is set to 11 mm, and the field of view is set to 11 mm. Based on the value of the angle ⁇ , the diameter r of each emission region is determined based on a predetermined calculation method so that the emission regions do not overlap.
  • FOV Field Of View
  • the diameter r of the emission region in the center is 2 ⁇ (X + d) ⁇ tan ( ⁇ / 2) to about 5 mm.
  • the cross-sectional area of the emission region in the peripheral part if the rotation angle of the eyeball is ⁇ 'and the distance from the eyeball to the combiner is X', the cone with the apex angle ⁇ is tilted by the angle ⁇ / 2- ⁇ / 2- ⁇ '. It can be defined as the cross-sectional area of the elliptical diameter cut at a position away from the apex of the cone (X'+ d / cos ⁇ ').
  • the focal point of the video light is the incident portion of the video light emitted from each emission region on the pupil surface, the focal points of the respective video lights do not overlap with respect to the pupil diameter (4 mm described above). That is, the image light from each emission region is emitted so that the focal points of the two or more image lights are not located in the pupil 22.
  • the focal point 7B of the image light is the portion where the image light emitted from the emission regions 7B, 7E, and 7H is incident on the cross section YY'which is the pupil surface of the pupil 22. Assuming', video light focus 7E', and video light focus 7H', as shown in FIG.
  • the video light focus 7B', the video light focus 7E', and the video light focus 7H' are the pupil 22. Two or more do not overlap on top. As shown in the figure, the same applies to the focal point of the image light from other emission regions. As a result, it is possible to prevent the visibility from being deteriorated due to the double focus of the image light being located on the pupil 22 at two or more focal points.
  • the image light emitted from the central emission region is vertically incident on the surface of the pupil 22 when the front is viewed, and the image is emitted from the other emission regions.
  • the light is emitted so as to be tilted with respect to the rotation axis of the eyeball (the rotation axis T of the eyeball in FIG. 5). Therefore, as shown in FIG. 4, the center of the focal point 7E'of the image light emitted from the central emission region 7E overlaps with the center of the circle of the emission region 7E, but other emission regions (for example, 7A and 7B).
  • the center of the focal point of the image light emitted from (for example, 7A', 7B', etc.) is located at a position different from the center of the emission region.
  • the focal point of the video light is shown in the emission region (for example, 7A or 7B) for easy understanding, but the emission region other than the central emission region 7E (for example, 7A or 7B) is shown.
  • the focal point of the image light emitted from (eg, 7A', 7B', etc.) is not always located within the emission region (eg, 7A, 7B, etc.) (center position C'of 7B'shown in FIG. 7B. reference).
  • the eyeball since the image light 2 emitted from the central emission region 7E is vertically incident on the surface V (pupil surface V) of the pupil 22 when the reference user looks at the front, the eyeball. (It will be incident on the center of the pupil 22 of the subject).
  • the image light 1 and 3 emitted from the emission regions 7B and 7H, which are emission regions other than the central emission region 7E, are emitted so as to be inclined and incident on the rotation axis T of the eyeball.
  • the eyeball By rotating the eyeball around the center C of the rotation axis of the eyeball, the eyeball can be seen in the right direction or the left direction (upward or downward direction).
  • the image light 2 is incident on the pupil 22 of the reference user, and the image light 1 and the image light 3 are not incident on the pupil 22. Therefore, when the reference user is looking at the front, the image light 2 is visually recognized.
  • the image light emitted from the emission region other than the center is emitted so as to be inclined and incident on the rotation axis T of the eyeball. Therefore, when the reference user turns to the right, as shown in the figure.
  • the image light 1 emitted from the emission region 7B is incident on the pupil 22 (incident on the center of the pupil 22 of the subject), and the image lights 2 and 3 emitted from the emission regions 7E and 7H are It does not enter the pupil 22. Therefore, when the reference user is looking in the right direction, the image light 1 is visually recognized. In the case where the reference user is looking in the left direction, the image light 3 is visually recognized as opposed to the case where the reference user is looking in the right direction, and thus the description thereof will be omitted.
  • the image light is emitted from a plurality of emission regions such as the emission regions 7A to 7I, and the image light emitted from the central emission region 7E is a reference.
  • the image light is emitted so as to be perpendicularly incident on the surface of the pupil 22, and the image light emitted from the emission region other than the center is emitted so as to be tilted with respect to the rotation axis T of the eyeball.
  • the video light is emitted from the respective emission regions so that the respective emission regions do not overlap and the focal points of the two or more video lights are not located in the pupil 22.
  • the video light emitted from the central emission region the video light emitted so as to be perpendicular to the surface of the pupil 22 when the reference user looks at the front, and the video light emitted from the emission region other than the center. Is emitted so as to be tilted with respect to the rotation axis T of the eyeball, so that the image light can be visually recognized even when looking to the right or left, that is, when the rotation of the eyeball is performed.
  • the image light visually recognized by the user when the rotational motion is performed is distorted as compared with the case of looking at the front. Specifically, as shown in FIG.
  • FIG. 7A when the reference user is looking at the front, when the incident image light M is incident, the same image light as the incident image light M is visually recognized as the visible image light R. ..
  • FIG. 7B when the reference user is looking to the right, when the same incident video light M as when looking at the front is incident, the incident video light M is different from the incident video light M.
  • the image light distorted in the direction is visually recognized as the visual image light P. This is because the center of the focal point 7B'of the image light 1 emitted from the emission region 7B (the apex of the cone with the emission region 7B as the bottom surface) does not overlap with the center of the circle of the emission region 7B (the center of the bottom surface).
  • the center position C'of 7B' is shown. That is, the center of the focal point (the apex of the cone) of the conical image light emitted from the emission region 7B is not on the extension of the center of the circle of the emission region 7B.
  • the center of the focal point 7B'of the image light 1 (the apex of the cone with the emission area 7B-1 as the bottom surface) is shown in the figure. It becomes the center position C'-1 of 7B', and overlaps with the center of the circle of the emission region 7B-1.
  • the incident image light may be different depending on whether the incident image light is used or not.
  • the vertically long incident video light M'as shown in the figure is used as the corrected incident video light M'corrected for the incident video light M. It can be light.
  • the visible image light is a laterally distorted image light. Therefore, if the vertically long incident image light M'is incident as the corrected incident image light, it is the same as the incident image light M shown in FIG. 7B.
  • the image light R can be visually recognized. That is, it is possible to prevent a decrease in visibility caused by distortion of the visual image light when the rotational movement of the eyeball is performed.
  • the case where the reference user is looking at the front is the same as in FIG. 7A, and thus the description thereof will be omitted.
  • the presence or absence of rotational movement of the eyeball (the reference user is looking to the right or facing the front) may be determined, for example, by detecting the position of the pupil 22 using the corneal reflex. ..
  • the corrected incident image light (incident image light M') when the rotational movement of the eyeball is performed may be generated by correcting the incident image light M before it is incident on the incident portion 3. ..
  • the emission regions 7B, 7E, and 7H may be configured on an arc centered on the center C of the rotation axis of the eyeball, respectively.
  • the distance from the pupil 22 to the center of the axis of rotation of the eyeball is 12 mm
  • the distance X from the combiner 10 to the reference user's pupil 22 is 11 mm. Therefore, from the combiner 10 to the exit region 7E.
  • the emission regions 7B, 7E, and 7H may be configured on an arc having a radius of 24 mm about the center of the rotation axis of the distance (for example, 1 mm) eyeball, respectively.
  • the video light is provided so that the center of the focal point is the center of the circle of the emission regions 7B, 7E, and 7H.
  • the center of focal points 7B', 7E', and 7H' is on the extension of the centers C1 to C3 of the circles of emission regions 7B, 7E, and 7H.
  • the image light R can be visually recognized. That is, it is possible to eliminate the distortion of the visual image light when the rotational movement of the eyeball is performed.
  • the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications and applications are possible.
  • the retinal scanning projection device 1 does not have to have all the technical features shown in the above embodiment, and will be described in the above embodiment so as to solve at least one problem in the prior art. It may have a part of the configuration. Further, at least a part of each of the following modifications may be combined.
  • nine emission regions 7A to 7I are provided in a grid pattern, but this is an example.
  • the emission regions 7A to 7I may be provided radially with the central emission region 7E as the center, for example, as shown in FIG.
  • the image light emitted from the central emission region 7E is emitted so as to be perpendicular to the surface of the pupil 22 when the reference user looks at the front, and is emitted from other than the center.
  • the image light emitted from the emission region of the above may be emitted so as to be tilted with respect to the rotation axis of the eyeball.
  • the video light may be emitted from the respective emission regions so that the respective emission regions do not overlap and the focal points of the two or more video lights are not located in the pupil 22.
  • the number of emission regions is nine is shown, but for example, a plurality of emission regions are provided in a ring shape outside the emission region provided in a ring shape other than the central emission region 7E. May be good.
  • the image light is emitted from the emission region other than the center so that the image light emitted from the emission region other than the center is inclined and incident with respect to the rotation axis T of the eyeball.
  • An example of emitting light is shown, but this is just an example.
  • the image light emitted from an emission region other than the center is also formed on the surface V (pupil surface V) of the pupil 22 when the user looks at the front, similarly to the image light emitted from the central emission region 7E. It may be emitted so as to be vertically incident. Specifically, as shown in FIG.
  • the image light emitted from the emission regions 7B and 7H other than the central emission region 7E also has the surface V of the pupil 22 similarly to the image light emitted from the central emission region 7E. It may be emitted so as to be vertically incident on (pupil surface V). According to this, a user whose eye position is different from that of the reference user, or a user who is a reference user but whose pupil position shifts to the right from the state shown in FIG. 11A to the state shown in FIG. 11B due to an impact or the like (retina).
  • the center (conical apex) of the focal point 7B'of the conical image light 1 emitted from the emission region 7B is the emission region 7B. Since it overlaps with the center of the circle, the same image light as the incident image light M can be visually recognized as the visible image light R. Therefore, it is possible to eliminate the drawbacks due to the need for position adjustment when the pupil positions are different in the retinal scanning type projection device.
  • the center of the focal point 7H'of the conical image light 3 emitted from the emission region 7H overlaps with the center of the circle in the emission region 7H.
  • the same image light as the incident image light M can be visually recognized as the visually recognized image light R.
  • the image light emitted from the other emission regions may be emitted so as to be perpendicularly incident on the surface V (pupil surface V) of the pupil 22. Further, as shown in FIG.
  • each emission region is provided radially with the central emission region 7E as the center, each emission region is similarly incident on the surface V (pupil surface V) of the pupil 22 so as to be perpendicular to the surface V (pupil surface V).
  • the image light may be emitted from.
  • the present invention is applicable to a retinal scanning projection device, a retinal scanning projection method, and a combiner that can eliminate the drawbacks of the retinal scanning projection device.

Abstract

This retina scan-type projection device comprises a combiner (10) that includes an incident unit to which projection light is incident, and an emission unit which emits image light guided by the incident unit, wherein: the image light is emitted from a first emission region (7E) so that at least a portion of image light (2) emitted from the first emission region (7E) among a plurality of emission regions is incident perpendicularly to the center of the pupil (22) of a subject when the eyeball of the subject sees a front surface; and the image light is emitted from second emission regions (7B, 7H) so that at least a portion of image light (1, 3) emitted from the second emission regions (7B, 7H) different from the first emission region (7E) is incident to the center of the pupil (22) of the subject when the eyeball of the subject sees something other than the front surface.

Description

網膜走査型投影装置、網膜走査投影方法およびコンバイナーRetinal scanning projection device, retinal scanning projection method and combiner
 本発明は、網膜走査型投影装置、網膜走査投影方法およびコンバイナーに関する。 The present invention relates to a retinal scanning projection device, a retinal scanning projection method, and a combiner.
 回折光学素子を用いた表示装置として、明るさや色相のムラを低減させるものが提案されている(例えば特許文献1)。 As a display device using a diffractive optical element, a display device that reduces unevenness in brightness and hue has been proposed (for example, Patent Document 1).
特開2020-160128号公報Japanese Unexamined Patent Publication No. 2020-160128
 しかしながら、特許文献1に記載されている表示装置は網膜走査型であり、位置の調整が必要であったり、あるいは、アイボックスが狭くなってしまうといった点で改善の余地があった。 However, the display device described in Patent Document 1 is a retinal scanning type, and there is room for improvement in that the position needs to be adjusted or the eye box becomes narrow.
 本発明は、上記実情に鑑みてなされたものであり、網膜走査型の投影装置における欠点を解消することができる網膜走査型投影装置、網膜走査投影方法およびコンバイナーを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a retinal scanning projection device, a retinal scanning projection method, and a combiner capable of eliminating the drawbacks of the retinal scanning projection device.
 上記目的を達成するため、本発明の網膜走査型投影装置は、
 映像光が入射される入射部と、前記入射部から導かれた前記映像光を出射する出射部と、を含むコンバイナーを備え、
 前記出射部は、複数の出射領域を含み、
 前記複数の出射領域のうち第1の出射領域から出射される前記映像光の少なくとも一部が、対象者の眼球が正面を向いた場合における前記対象者の瞳孔の中心に入射するように、前記第1の出射領域から前記映像光を出射し、
 前記複数の出射領域のうち前記第1の出射領域とは異なる第2の出射領域から出射される前記映像光の少なくとも一部が、前記対象者の眼球が正面以外を向いた場合における前記対象者の瞳孔の中心に入射するように、前記第2の出射領域から前記映像光を出射する、
 ことを特徴とする。
In order to achieve the above object, the retinal scanning projection apparatus of the present invention is used.
A combiner including an incident portion to which the image light is incident and an exit portion to emit the image light guided from the incident portion is provided.
The emission unit includes a plurality of emission regions.
The image light emitted from the first emission region of the plurality of emission regions is incident on the center of the pupil of the subject when the subject's eyeball faces the front. The image light is emitted from the first emission region, and the image light is emitted.
The subject when at least a part of the image light emitted from the second emission region different from the first emission region among the plurality of emission regions is directed to a direction other than the front of the subject's eyeball. The image light is emitted from the second emission region so as to be incident on the center of the pupil.
It is characterized by that.
 本発明によれば、網膜走査型の投影装置における欠点を解消することができる。 According to the present invention, the drawbacks of the retinal scanning type projection device can be eliminated.
本発明の実施の形態に係る網膜走査型投影装置の使用態様例を示す図である。It is a figure which shows the example of use of the retinal scanning type projection apparatus which concerns on embodiment of this invention. 映像光の進行方向の説明図である。It is explanatory drawing of the traveling direction of video light. 出射領域の説明図である。It is explanatory drawing of the emission area. 出射領域と映像光の焦点との説明図である。It is explanatory drawing of the emission area and the focal point of an image light. 出射映像光の説明図である。It is explanatory drawing of the emitted image light. 出射映像光の説明図である。It is explanatory drawing of the emitted image light. 正面を見ている場合の入射映像光と視認映像光の説明図である。It is explanatory drawing of the incident image light and the visual recognition image light when looking at the front. 右方向を見ている場合の入射映像光と視認映像光の説明図である。It is explanatory drawing of the incident image light and the visual recognition image light when looking at the right direction. 入射映像光と視認映像光の説明図である。It is explanatory drawing of the incident image light and the visible image light. 入射映像光と視認映像光の説明図である。It is explanatory drawing of the incident image light and the visible image light. 変形例における出射領域の一例を示す図である。It is a figure which shows an example of the emission area in the modification. 変形例における瞳孔位置が中心の場合の出射映像光の説明図である。It is explanatory drawing of the emitted image light when the pupil position is the center in the modification. 変形例における瞳孔位置が右側にずれた場合の出射映像光の説明図である。It is explanatory drawing of the emitted image light when the pupil position is shifted to the right side in the modification.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the figure are designated by the same reference numerals.
 図1は、本発明の実施の形態に係る網膜走査型投影装置1の使用態様例を示す図である。図1に示すように、網膜走査型投影装置1は、頭部に装着することのできるウェアラブル端末であり、眼鏡型撮像装置などといった所謂スマートグラスである。網膜走査型投影装置1は、図示するように、コンバイナー10を備えている。当該コンバイナー10には、入射部3と、複製部4と、出射部5と、が設けられている。なお、コンバイナー10は透過性を有しているため、ユーザは当該コンバイナー10を介して外景を視認可能である。また、網膜走査型投影装置1は、通信部を有しており、当該通信部を介してスマートフォンやタブレット等の外部端末から受信した画像等の情報を外景に重畳させて視認することができる。また、この実施の形態における入射部3、複製部4、および出射部5は、コンバイナー10内に設けられているが、コンバイナー10の表面に設けられていてもよい。 FIG. 1 is a diagram showing an example of usage of the retinal scanning projection device 1 according to the embodiment of the present invention. As shown in FIG. 1, the retinal scanning type projection device 1 is a wearable terminal that can be worn on the head, and is a so-called smart glass such as a spectacle-type image pickup device. The retinal scanning projection device 1 includes a combiner 10 as shown in the figure. The combiner 10 is provided with an incident unit 3, a duplicating unit 4, and an emitting unit 5. Since the combiner 10 has transparency, the user can visually recognize the outside view through the combiner 10. Further, the retinal scanning projection device 1 has a communication unit, and information such as an image received from an external terminal such as a smartphone or a tablet can be superimposed on the outside view and visually recognized via the communication unit. Further, although the incident portion 3, the duplicating portion 4, and the emitting portion 5 in this embodiment are provided in the combiner 10, they may be provided on the surface of the combiner 10.
 入射部3は、例えばホログラフィック光学素子から構成され、入射部3に入射した映像光を、図2に示すように複製部4へと進行方向を変更させる。複製部4へと進行方向を変更した映像光は、境界面にて全反射しながらコンバイナー10内を進行し、複製部4へと導かれる。 The incident unit 3 is composed of, for example, a holographic optical element, and causes the image light incident on the incident unit 3 to change the traveling direction to the duplication unit 4 as shown in FIG. The video light whose traveling direction is changed to the duplication unit 4 travels in the combiner 10 while being totally reflected at the boundary surface, and is guided to the duplication unit 4.
 複製部4は、例えば回折光学素子により構成され、図2に示すように、入射部3から導かれた映像光を、出射部5における出射領域7A~7Iの数分複製し、複製した映像光をコンバイナー10内で全反射させ出射領域7A~7Iへと導く。この実施の形態では、図2に示すように、入射部3から導かれた映像光を3つに複製し、複製されたそれぞれの映像光をさらに3つに複製することで出射領域7A~7Iに対応した9個の映像光を複製する例、すなわち段階的に複製する例を示しているが、複製手法はこれに限られず、例えば入射部3から導かれた映像光を一度に9個の映像光に複製するようにしてもよい。 The duplication unit 4 is composed of, for example, a diffractive optical element, and as shown in FIG. 2, the image light guided from the incident unit 3 is duplicated for the number of emission regions 7A to 7I in the emission unit 5, and the duplicated image light is reproduced. Is totally reflected in the combiner 10 and led to the emission regions 7A to 7I. In this embodiment, as shown in FIG. 2, the image light guided from the incident portion 3 is duplicated into three, and each of the duplicated image lights is further duplicated into three to emit the emission regions 7A to 7I. An example of duplicating nine video lights corresponding to the above, that is, an example of stepwise duplication is shown, but the duplication method is not limited to this. It may be duplicated in the image light.
 出射部5は、出射領域7A~7Iといった9個の出射領域を備える。出射領域7A~7Iは、それぞれホログラフィック光学素子(回折光学素子、ハーフミラー等)から構成され、出射領域7A~7Iに入射したそれぞれの映像光をユーザの眼方向へと導く。この実施の形態における出射部5は、9個の出射領域を備えているが、出射領域の数は9個に限られず、複数備えていれば、これより多くても少なくてもよい。なお、出射領域は、後述するように中央に位置する出射領域から出射される映像光が、基準ユーザが正面を見た場合における瞳孔22の面に垂直に入射するよう、出射領域の数は奇数個であることが望ましい。なお、出射部5における出射領域7A~7Iは、一般的な瞳孔22の径である4ミリメートルのユーザを基準ユーザ(対象者)とし、基準ユーザの一般的な瞳孔22の位置を基準に、それぞれの位置関係が決定されている。 The emission unit 5 includes nine emission regions such as emission regions 7A to 7I. The emission regions 7A to 7I are each composed of holographic optical elements (diffraction optical elements, half mirrors, etc.), and each of the video light incident on the emission regions 7A to 7I is guided toward the user's eyes. The emission unit 5 in this embodiment includes nine emission regions, but the number of emission regions is not limited to nine, and if a plurality of emission regions are provided, the number of emission regions may be larger or smaller. As will be described later, the number of emission regions is odd so that the video light emitted from the centrally located emission region is vertically incident on the surface of the pupil 22 when the reference user looks at the front. It is desirable that it is an individual. In the emission regions 7A to 7I of the emission unit 5, a user having a diameter of 4 mm, which is a general pupil 22, is used as a reference user (target person), and each of them is based on the position of the general pupil 22 of the reference user. The positional relationship of is determined.
 出射領域7A~7Iは、それぞれが重ならない位置に配置され、図3に示すように、各出射領域の大きさとしての出射領域の径rは、コンバイナー10からユーザの瞳孔22までの距離Xと、視野角(Field Of View;FOV)θと、に基づいて決定される。一般的に、眼鏡を装着した場合におけるレンズからユーザの瞳孔までの距離が11ミリメートルであることから、この実施の形態では、コンバイナー10から基準ユーザの瞳孔22までの距離Xを11ミリメートルとし、視野角θの値に基づき、各出射領域が重ならないよう、予め定められた算出方式に基づいて各出射領域の径rが決定されている。例えば、コンバイナー表面から出射領域までの深さdを1ミリメートル、θを26度と置くと、中心部の出射領域の径rは2×(X+d)×tan(θ/2)からおよそ5ミリメートルとなる。また、周辺部の出射領域の断面積は眼球の回転角度をθ’、眼球からコンバイナーまでの距離をX’と置くと、頂角θの円錐を角度π/2-θ/2-θ’傾けた状態で円錐頂点から(X’+d/cosθ’)離れた位置で切断した楕円径の断面積と定義できる。 The emission regions 7A to 7I are arranged at positions where they do not overlap, and as shown in FIG. 3, the diameter r of the emission region as the size of each emission region is the distance X from the combiner 10 to the user's pupil 22. , Field Of View (FOV) θ, and is determined based on. Generally, the distance from the lens to the user's pupil when wearing eyeglasses is 11 mm. Therefore, in this embodiment, the distance X from the combiner 10 to the reference user's pupil 22 is set to 11 mm, and the field of view is set to 11 mm. Based on the value of the angle θ, the diameter r of each emission region is determined based on a predetermined calculation method so that the emission regions do not overlap. For example, if the depth d from the combiner surface to the emission region is 1 mm and θ is 26 degrees, the diameter r of the emission region in the center is 2 × (X + d) × tan (θ / 2) to about 5 mm. Become. As for the cross-sectional area of the emission region in the peripheral part, if the rotation angle of the eyeball is θ'and the distance from the eyeball to the combiner is X', the cone with the apex angle θ is tilted by the angle π / 2-θ / 2-θ'. It can be defined as the cross-sectional area of the elliptical diameter cut at a position away from the apex of the cone (X'+ d / cosθ').
 また、各出射領域から出射された映像光の瞳孔面への入射部分を映像光の焦点とした場合に、それぞれの映像光の焦点が瞳孔の径(上述した4ミリメートル)を基準として重ならないよう、すなわち、瞳孔22に2つ以上の映像光の焦点が位置しないよう、各出射領域からの映像光が出射される。具体的に、図3に示すように、出射領域7B、7E、および7Hから出射された映像光が、瞳孔22の瞳孔面である断面Y-Y’に入射した部分をそれぞれ映像光の焦点7B’、映像光の焦点7E’、および映像光の焦点7H’とすると、図4に示すように、映像光の焦点7B’、映像光の焦点7E’、および映像光の焦点7H’が瞳孔22上に2つ以上重ならないようになっている。なお、図示するように、その他の出射領域からの映像光の焦点についても同様である。これにより、瞳孔22上に映像光の焦点が2つ以上位置することで二重に見えてしまい視認性が悪化することを防止することができる。 Further, when the focal point of the video light is the incident portion of the video light emitted from each emission region on the pupil surface, the focal points of the respective video lights do not overlap with respect to the pupil diameter (4 mm described above). That is, the image light from each emission region is emitted so that the focal points of the two or more image lights are not located in the pupil 22. Specifically, as shown in FIG. 3, the focal point 7B of the image light is the portion where the image light emitted from the emission regions 7B, 7E, and 7H is incident on the cross section YY'which is the pupil surface of the pupil 22. Assuming', video light focus 7E', and video light focus 7H', as shown in FIG. 4, the video light focus 7B', the video light focus 7E', and the video light focus 7H'are the pupil 22. Two or more do not overlap on top. As shown in the figure, the same applies to the focal point of the image light from other emission regions. As a result, it is possible to prevent the visibility from being deteriorated due to the double focus of the image light being located on the pupil 22 at two or more focal points.
 なお、この実施の形態では、後述するように、中央の出射領域から出射される映像光が、正面を見た場合における瞳孔22の面に垂直に入射し、その他の出射領域から出射される映像光は、眼球の回転軸(図5における眼球の回転軸T)に対し傾くよう出射される。そのため、図4に示すように、中央の出射領域7Eから出射される映像光の焦点7E’の中心は、出射領域7Eの円の中心と重なるものの、その他の出射領域(例えば7Aや7Bなど)から出射される映像光の焦点(例えば7A’や7B’など)の中心は、出射領域の中心とは異なる位置に位置することとなっている。なお、図示する例では、理解を容易にするため、映像光の焦点を出射領域(例えば7Aや7Bなど)内に図示しているが、中央の出射領域7E以外の出射領域(例えば7Aや7Bなど)から出射される映像光の焦点(例えば7A’や7B’など)は、出射領域(例えば7Aや7Bなど)内に必ずしも位置するとは限らない(図7Bに示す7B’の中心位置C’参照)。 In this embodiment, as will be described later, the image light emitted from the central emission region is vertically incident on the surface of the pupil 22 when the front is viewed, and the image is emitted from the other emission regions. The light is emitted so as to be tilted with respect to the rotation axis of the eyeball (the rotation axis T of the eyeball in FIG. 5). Therefore, as shown in FIG. 4, the center of the focal point 7E'of the image light emitted from the central emission region 7E overlaps with the center of the circle of the emission region 7E, but other emission regions (for example, 7A and 7B). The center of the focal point of the image light emitted from (for example, 7A', 7B', etc.) is located at a position different from the center of the emission region. In the illustrated example, the focal point of the video light is shown in the emission region (for example, 7A or 7B) for easy understanding, but the emission region other than the central emission region 7E (for example, 7A or 7B) is shown. The focal point of the image light emitted from (eg, 7A', 7B', etc.) is not always located within the emission region (eg, 7A, 7B, etc.) (center position C'of 7B'shown in FIG. 7B. reference).
 また、図5に示すように、中央の出射領域7Eから出射される映像光2は、基準ユーザが正面を見た場合における瞳孔22の面V(瞳孔面V)に垂直に入射するため、眼球の回転軸Tと重なることとなる(対象者の瞳孔22の中心に入射することとなる)。一方で、中央の出射領域7E以外の出射領域である出射領域7Bや7Hから出射される映像光1や3は、眼球の回転軸Tに対し傾いて入射するように出射される。なお、眼球は、眼球の回転軸の中心Cを中心に回転することで、右方向や左方向(上方向や下方向)を見ることとなる。図示する例では、基準ユーザが正面を見ているため、当該基準ユーザの瞳孔22に映像光2が入射し、映像光1や映像光3は瞳孔22に入射しない。したがって、基準ユーザが正面を見ている場合には、映像光2を視認することとなる。 Further, as shown in FIG. 5, since the image light 2 emitted from the central emission region 7E is vertically incident on the surface V (pupil surface V) of the pupil 22 when the reference user looks at the front, the eyeball. (It will be incident on the center of the pupil 22 of the subject). On the other hand, the image light 1 and 3 emitted from the emission regions 7B and 7H, which are emission regions other than the central emission region 7E, are emitted so as to be inclined and incident on the rotation axis T of the eyeball. By rotating the eyeball around the center C of the rotation axis of the eyeball, the eyeball can be seen in the right direction or the left direction (upward or downward direction). In the illustrated example, since the reference user is looking at the front, the image light 2 is incident on the pupil 22 of the reference user, and the image light 1 and the image light 3 are not incident on the pupil 22. Therefore, when the reference user is looking at the front, the image light 2 is visually recognized.
 次に、基準ユーザが右方向を見た場合について、図6を参照して説明する。上述したように、中央以外の出射領域から出射される映像光は、眼球の回転軸Tに対し傾いて入射するように出射されるため、基準ユーザが右方向を向いた場合、図示するように、出射領域7Bから出射される映像光1が、瞳孔22に入射することとなり(対象者の瞳孔22の中心に入射することとなり)、出射領域7Eや7Hから出射される映像光2や3は瞳孔22に入射しない。したがって、基準ユーザが右方向を見ている場合には、映像光1を視認することとなる。なお、基準ユーザが左方向を見ている場合については、右方向を向いている場合と反対に、映像光3を視認することとなるため、説明を省略する。 Next, the case where the reference user looks to the right will be described with reference to FIG. As described above, the image light emitted from the emission region other than the center is emitted so as to be inclined and incident on the rotation axis T of the eyeball. Therefore, when the reference user turns to the right, as shown in the figure. The image light 1 emitted from the emission region 7B is incident on the pupil 22 (incident on the center of the pupil 22 of the subject), and the image lights 2 and 3 emitted from the emission regions 7E and 7H are It does not enter the pupil 22. Therefore, when the reference user is looking in the right direction, the image light 1 is visually recognized. In the case where the reference user is looking in the left direction, the image light 3 is visually recognized as opposed to the case where the reference user is looking in the right direction, and thus the description thereof will be omitted.
 このように、この実施の形態に係る網膜走査型投影装置1では、出射領域7A~7Iといった複数の出射領域から映像光を出射するとともに、中央の出射領域7Eから出射する映像光については、基準ユーザが正面を見た場合における瞳孔22の面に垂直に入射するよう出射し、中央以外の出射領域から出射する映像光については、眼球の回転軸Tに対し傾くよう出射する。そして、それぞれの出射領域が重ならず、かつ瞳孔22に2つ以上の映像光の焦点が位置しないように、それぞれの出射領域から映像光を出射する。したがって、正面だけでなく、右方向や左方向などを見た場合、すなわち眼球の回転運動が行われた場合においても映像光を視認可能となり、網膜走査型の投影装置におけるアイボックスの狭さといった欠点を解消することができる。 As described above, in the retinal scanning projection device 1 according to this embodiment, the image light is emitted from a plurality of emission regions such as the emission regions 7A to 7I, and the image light emitted from the central emission region 7E is a reference. When the user looks at the front, the image light is emitted so as to be perpendicularly incident on the surface of the pupil 22, and the image light emitted from the emission region other than the center is emitted so as to be tilted with respect to the rotation axis T of the eyeball. Then, the video light is emitted from the respective emission regions so that the respective emission regions do not overlap and the focal points of the two or more video lights are not located in the pupil 22. Therefore, when looking not only in the front but also in the right or left direction, that is, when the eyeball is rotated, the image light can be visually recognized, and the narrowness of the eyebox in the retinal scanning type projection device can be seen. The drawbacks can be eliminated.
 上述したように、中央の出射領域から出射する映像光については、基準ユーザが正面を見た場合における瞳孔22の面に垂直に入射するよう出射し、中央以外の出射領域から出射する映像光については、眼球の回転軸Tに対し傾くよう出射することにより、右方向や左方向などを見た場合、すなわち眼球の回転運動が行われた場合においても映像光を視認可能となるものの、眼球の回転運動が行われた場合におけるユーザが視認する映像光は、正面を見ている場合と比べて、歪んでしまう。具体的に、図7Aに示すように、基準ユーザが正面を見ている場合には、入射映像光Mを入射させたとき、当該入射映像光Mと同じ映像光を視認映像光Rとして視認する。一方で、図7Bに示すように、基準ユーザが右方向を見ている場合には、正面を見ている場合と同じ入射映像光Mを入射させると、当該入射映像光Mとは異なる、横方向に歪んだ映像光を視認映像光Pとして視認することとなる。これは、出射領域7Bから出射された映像光1の焦点7B’の中心(出射領域7Bを底面とした円錐の頂点)が出射領域7Bの円の中心(底面の中心)と重ならならず、図示する7B’の中心位置C’となることによる。すなわち、出射領域7Bから出射される円錐状の映像光の焦点の中心(円錐の頂点)が、出射領域7Bの円の中心の延長線上にないことによる。なお、出射領域7Bを、図示する7B-1として映像光1を出射させた場合には、映像光1の焦点7B’の中心(出射領域7B-1を底面とした円錐の頂点)は、図示する7B’の中心位置C’-1となり、出射領域7B-1の円の中心と重なることとなる。 As described above, regarding the video light emitted from the central emission region, the video light emitted so as to be perpendicular to the surface of the pupil 22 when the reference user looks at the front, and the video light emitted from the emission region other than the center. Is emitted so as to be tilted with respect to the rotation axis T of the eyeball, so that the image light can be visually recognized even when looking to the right or left, that is, when the rotation of the eyeball is performed. The image light visually recognized by the user when the rotational motion is performed is distorted as compared with the case of looking at the front. Specifically, as shown in FIG. 7A, when the reference user is looking at the front, when the incident image light M is incident, the same image light as the incident image light M is visually recognized as the visible image light R. .. On the other hand, as shown in FIG. 7B, when the reference user is looking to the right, when the same incident video light M as when looking at the front is incident, the incident video light M is different from the incident video light M. The image light distorted in the direction is visually recognized as the visual image light P. This is because the center of the focal point 7B'of the image light 1 emitted from the emission region 7B (the apex of the cone with the emission region 7B as the bottom surface) does not overlap with the center of the circle of the emission region 7B (the center of the bottom surface). This is due to the fact that the center position C'of 7B' is shown. That is, the center of the focal point (the apex of the cone) of the conical image light emitted from the emission region 7B is not on the extension of the center of the circle of the emission region 7B. When the image light 1 is emitted with the emission area 7B as the illustrated 7B-1, the center of the focal point 7B'of the image light 1 (the apex of the cone with the emission area 7B-1 as the bottom surface) is shown in the figure. It becomes the center position C'-1 of 7B', and overlaps with the center of the circle of the emission region 7B-1.
 そのため、例えば、基準ユーザが右方向を見ている場合や左方向を見ている場合など、眼球の回転運動が行われているか否かを検出し、当該眼球の回転運動が行われている場合とそうでない場合とで入射映像光を異なる態様としてもよい。具体的には、図8に示すように、基準ユーザが右方向を見ている場合、入射映像光Mを補正した補正入射映像光として、図示するような縦長の入射映像光M’を入射映像光とすればよい。上述したように、視認映像光は横方向に歪んだ映像光となるため、このように縦長の入射映像光M’を補正入射映像光として入射すれば、図7Bに示す入射映像光Mと同じ映像光の視認映像光Rを視認することができる。すなわち、眼球の回転運動が行われている場合における視認映像光の歪みにより生じる視認性の低下を防止することができる。なお、基準ユーザが正面を見ている場合については、図7Aと同様であるため説明を省略する。また、眼球の回転運動の有無(基準ユーザが右方向を見ていることや正面を向いていること)については、例えば、角膜反射を利用して瞳孔22の位置を検出することにより行えばよい。また、眼球の回転運動が行われている場合における補正入射映像光(入射映像光M’)については、入射部3へ入射する手前で、入射映像光Mを補正することで生成してもよい。また、これとは異なり、眼球の回転運動が行われている場合、当該網膜走査型投影装置1が備える通信部を介して通信を行い、入射映像光Mを補正した補正入射映像光(入射映像光M’)を受信し、当該受信した補正入射映像光(入射映像光M’)を入射部3へ入射してもよい。 Therefore, for example, when the reference user is looking to the right or to the left, it is detected whether or not the rotational movement of the eyeball is being performed, and the rotational movement of the eyeball is being performed. The incident image light may be different depending on whether the incident image light is used or not. Specifically, as shown in FIG. 8, when the reference user is looking to the right, the vertically long incident video light M'as shown in the figure is used as the corrected incident video light M'corrected for the incident video light M. It can be light. As described above, the visible image light is a laterally distorted image light. Therefore, if the vertically long incident image light M'is incident as the corrected incident image light, it is the same as the incident image light M shown in FIG. 7B. Visual recognition of image light The image light R can be visually recognized. That is, it is possible to prevent a decrease in visibility caused by distortion of the visual image light when the rotational movement of the eyeball is performed. The case where the reference user is looking at the front is the same as in FIG. 7A, and thus the description thereof will be omitted. The presence or absence of rotational movement of the eyeball (the reference user is looking to the right or facing the front) may be determined, for example, by detecting the position of the pupil 22 using the corneal reflex. .. Further, the corrected incident image light (incident image light M') when the rotational movement of the eyeball is performed may be generated by correcting the incident image light M before it is incident on the incident portion 3. .. Further, unlike this, when the rotational movement of the eyeball is performed, communication is performed via the communication unit included in the retinal scanning projection device 1, and the corrected incident image light (incident image) corrected by the incident image light M is performed. The light M') may be received and the received corrected incident image light (incident image light M') may be incident on the incident portion 3.
 また、図9に示すように、出射領域7B、7E、および7Hがそれぞれ、眼球の回転軸の中心Cを中心とした円弧上に構成されるようにしてもよい。一般的に、瞳孔22から眼球の回転軸の中心までの距離は12ミリメートルであり、コンバイナー10から基準ユーザの瞳孔22までの距離Xが11ミリメートルであることから、コンバイナー10から出射領域7Eまでの距離(例えば1ミリメートル)眼球の回転軸の中心とした24ミリメートルの半径の円弧上に、出射領域7B、7E、および7Hがそれぞれ構成されればよい。これによれば、出射領域7B、7E、および7Hから出射された映像光1~3の全てについて、その焦点の中心が当該出射領域7B、7E、および7Hの円の中心となるよう映像光が出射されるため(焦点7B’、7E’、および7H’の中心が出射領域7B、7E、および7Hの円の中心C1~C3の延長線上に存在することになるため)、図7Bに示す入射映像光Mと同じ映像光の視認映像光Rを視認することができる。すなわち、眼球の回転運動が行われている場合における視認映像光の歪みを解消することができる。 Further, as shown in FIG. 9, the emission regions 7B, 7E, and 7H may be configured on an arc centered on the center C of the rotation axis of the eyeball, respectively. Generally, the distance from the pupil 22 to the center of the axis of rotation of the eyeball is 12 mm, and the distance X from the combiner 10 to the reference user's pupil 22 is 11 mm. Therefore, from the combiner 10 to the exit region 7E. The emission regions 7B, 7E, and 7H may be configured on an arc having a radius of 24 mm about the center of the rotation axis of the distance (for example, 1 mm) eyeball, respectively. According to this, for all of the video light 1 to 3 emitted from the emission regions 7B, 7E, and 7H, the video light is provided so that the center of the focal point is the center of the circle of the emission regions 7B, 7E, and 7H. Incident shown in FIG. 7B because it is emitted (because the center of focal points 7B', 7E', and 7H'is on the extension of the centers C1 to C3 of the circles of emission regions 7B, 7E, and 7H). Visual recognition of the same image light as the image light M The image light R can be visually recognized. That is, it is possible to eliminate the distortion of the visual image light when the rotational movement of the eyeball is performed.
 (変形例)
 以上、本発明の実施の形態を説明したが、本発明は、上記の実施の形態に限定されず、様々な変形及び応用が可能である。例えば、網膜走査型投影装置1は、上記実施の形態で示した全ての技術的特徴を備えるものでなくてもよく、従来技術における少なくとも1つの課題を解決できるように、上記実施の形態で説明した一部の構成を備えたものであってもよい。また、下記の変形例それぞれについて、少なくとも一部を組み合わせてもよい。
(Modification example)
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications and applications are possible. For example, the retinal scanning projection device 1 does not have to have all the technical features shown in the above embodiment, and will be described in the above embodiment so as to solve at least one problem in the prior art. It may have a part of the configuration. Further, at least a part of each of the following modifications may be combined.
 上記実施の形態では、図2および図4に示すように、9個の出射領域7A~7Iが格子状に設けられている例を示したが、これは一例である。出射領域7A~7Iは、例えば、図10に示すように、中央の出射領域7Eを中心として放射状に設けられていてもよい。この場合においても、上記実施の形態と同様に、中央の出射領域7Eから出射する映像光については、基準ユーザが正面を見た場合における瞳孔22の面に垂直に入射するよう出射し、中央以外の出射領域から出射する映像光については、眼球の回転軸に対し傾くよう出射すればよい。また、それぞれの出射領域が重ならず、かつ瞳孔22に2つ以上の映像光の焦点が位置しないように、それぞれの出射領域から映像光を出射すればよい。なお、図示する例では出射領域が9個である例を示しているが、例えば、中央の出射領域7E以外の環状に設けられた出射領域の外側に、さらに複数の出射領域を環状に設けてもよい。 In the above embodiment, as shown in FIGS. 2 and 4, nine emission regions 7A to 7I are provided in a grid pattern, but this is an example. The emission regions 7A to 7I may be provided radially with the central emission region 7E as the center, for example, as shown in FIG. Also in this case, as in the above embodiment, the image light emitted from the central emission region 7E is emitted so as to be perpendicular to the surface of the pupil 22 when the reference user looks at the front, and is emitted from other than the center. The image light emitted from the emission region of the above may be emitted so as to be tilted with respect to the rotation axis of the eyeball. Further, the video light may be emitted from the respective emission regions so that the respective emission regions do not overlap and the focal points of the two or more video lights are not located in the pupil 22. In the illustrated example, an example in which the number of emission regions is nine is shown, but for example, a plurality of emission regions are provided in a ring shape outside the emission region provided in a ring shape other than the central emission region 7E. May be good.
 また、上記実施の形態では、図6に示すように、中央以外の出射領域から出射される映像光が、眼球の回転軸Tに対し傾いて入射するよう、中央以外の出射領域から映像光を出射する例を示したが、これは一例である。例えば、中央以外の出射領域から出射される映像光についても、中央の出射領域7Eから出射される映像光と同様に、ユーザが正面を見た場合における瞳孔22の面V(瞳孔面V)に垂直に入射するよう出射してもよい。具体的に、図11に示すように、中央の出射領域7E以外の出射領域7Bや7Hから出射する映像光についても、中央の出射領域7Eから出射する映像光と同様に、瞳孔22の面V(瞳孔面V)に垂直に入射するよう出射してもよい。これによれば、基準ユーザとは眼の位置が異なるユーザや、基準ユーザではあるものの、衝撃等により図11Aに示す状態から図11Bに示す状態へと瞳孔の位置が右側にずれた場合(網膜走査型投影装置1の装着位置がユーザ側から見て左側にずれた場合)においても、出射領域7Bから出射する円錐状の映像光1の焦点7B’の中心(円錐の頂点)が出射領域7Bの円の中心と重なるため、入射映像光Mと同じ映像光を視認映像光Rとして視認することができる。したがって、網膜走査型の投影装置における瞳孔位置が異なる場合における位置調整の必要性による欠点を解消することができる。なお、瞳孔の位置が左側にずれた場合においても、出射領域7Hから出射する円錐状の映像光3の焦点7H’の中心(円錐の頂点)が、出射領域7Hの円の中心と重なるため、入射映像光Mと同じ映像光を視認映像光Rとして視認することができる。また、その他の出射領域から出射される映像光についても同様に、瞳孔22の面V(瞳孔面V)に垂直に入射するよう出射すればよい。また、図10に示すように、各出射領域を中央の出射領域7Eを中心として放射状に設けた場合についても同様に、瞳孔22の面V(瞳孔面V)に垂直に入射するよう各出射領域から映像光を出射すればよい。 Further, in the above embodiment, as shown in FIG. 6, the image light is emitted from the emission region other than the center so that the image light emitted from the emission region other than the center is inclined and incident with respect to the rotation axis T of the eyeball. An example of emitting light is shown, but this is just an example. For example, the image light emitted from an emission region other than the center is also formed on the surface V (pupil surface V) of the pupil 22 when the user looks at the front, similarly to the image light emitted from the central emission region 7E. It may be emitted so as to be vertically incident. Specifically, as shown in FIG. 11, the image light emitted from the emission regions 7B and 7H other than the central emission region 7E also has the surface V of the pupil 22 similarly to the image light emitted from the central emission region 7E. It may be emitted so as to be vertically incident on (pupil surface V). According to this, a user whose eye position is different from that of the reference user, or a user who is a reference user but whose pupil position shifts to the right from the state shown in FIG. 11A to the state shown in FIG. 11B due to an impact or the like (retina). Even when the mounting position of the scanning projection device 1 is shifted to the left side when viewed from the user side), the center (conical apex) of the focal point 7B'of the conical image light 1 emitted from the emission region 7B is the emission region 7B. Since it overlaps with the center of the circle, the same image light as the incident image light M can be visually recognized as the visible image light R. Therefore, it is possible to eliminate the drawbacks due to the need for position adjustment when the pupil positions are different in the retinal scanning type projection device. Even when the position of the pupil is shifted to the left, the center of the focal point 7H'of the conical image light 3 emitted from the emission region 7H (the apex of the cone) overlaps with the center of the circle in the emission region 7H. The same image light as the incident image light M can be visually recognized as the visually recognized image light R. Similarly, the image light emitted from the other emission regions may be emitted so as to be perpendicularly incident on the surface V (pupil surface V) of the pupil 22. Further, as shown in FIG. 10, in the case where each emission region is provided radially with the central emission region 7E as the center, each emission region is similarly incident on the surface V (pupil surface V) of the pupil 22 so as to be perpendicular to the surface V (pupil surface V). The image light may be emitted from.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態および変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiment but by the claims. And various modifications made within the scope of the claims and within the equivalent meaning of the invention are considered to be within the scope of the present invention.
 本出願は、2020年11月27日に出願された日本国特許出願特願2020-196947号に基づく。本明細書中に日本国特許出願特願2020-196947号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2020-196947 filed on November 27, 2020. The specification, claims, and the entire drawing of Japanese Patent Application No. 2020-196947 shall be incorporated into this specification as a reference.
 本発明は、網膜走査型の投影装置における欠点を解消することができる網膜走査型投影装置、網膜走査投影方法およびコンバイナーに適用可能である。 The present invention is applicable to a retinal scanning projection device, a retinal scanning projection method, and a combiner that can eliminate the drawbacks of the retinal scanning projection device.
1…網膜走査型投影装置、3…入射部、4…複製部、5…出射部、7A~7I、7B-1…出射領域、7A’~7I’…映像光の焦点、10…コンバイナー、22…瞳孔、C…眼球の回転軸の中心、C’、C’-1…焦点7B’の中心位置、C1~C3…出射領域7B、7E、および7Hの円の中心、r…出射領域の径、T…眼球の回転軸、V…瞳孔面 1 ... Retina scanning projection device, 3 ... Incident part, 4 ... Replica part, 5 ... Emission part, 7A-7I, 7B-1 ... Emission area, 7A'-7I' ... Focus of image light, 10 ... Combiner, 22 ... Pupil, C ... Center of rotation axis of eyeball, C', C'-1 ... Center position of focal point 7B', C1 to C3 ... Center of circles of exit regions 7B, 7E, and 7H, r ... Diameter of exit region , T ... axis of rotation of the eyeball, V ... pupil surface

Claims (6)

  1.  映像光が入射される入射部と、前記入射部から導かれた前記映像光を出射する出射部と、を含むコンバイナーを備え、
     前記出射部は、複数の出射領域を含み、
     前記複数の出射領域のうち第1の出射領域から出射される前記映像光の少なくとも一部が、対象者の眼球が正面を向いた場合における前記対象者の瞳孔の中心に入射するように、前記第1の出射領域から前記映像光を出射し、
     前記複数の出射領域のうち前記第1の出射領域とは異なる第2の出射領域から出射される前記映像光の少なくとも一部が、前記対象者の眼球が正面以外を向いた場合における前記対象者の瞳孔の中心に入射するように、前記第2の出射領域から前記映像光を出射する、
     ことを特徴とする網膜走査型投影装置。
    A combiner including an incident portion to which the image light is incident and an exit portion to emit the image light guided from the incident portion is provided.
    The emission unit includes a plurality of emission regions.
    The image light emitted from the first emission region of the plurality of emission regions is incident on the center of the pupil of the subject when the subject's eyeball faces the front. The image light is emitted from the first emission region, and the image light is emitted.
    The subject when at least a part of the image light emitted from the second emission region different from the first emission region among the plurality of emission regions is directed to a direction other than the front of the subject's eyeball. The image light is emitted from the second emission region so as to be incident on the center of the pupil.
    A retinal scanning projection device characterized by this.
  2.  前記複数の出射領域は、それぞれが重ならない位置に配置され、
     前記出射部は、前記複数の出射領域から出射された前記映像光が、前記対象者の瞳孔に複数入射することのないよう、前記複数の出射領域から前記映像光を出射する、
     請求項1に記載の網膜走査型投影装置。
    The plurality of emission regions are arranged at positions where they do not overlap with each other.
    The emitting unit emits the video light from the plurality of emitting regions so that the video light emitted from the plurality of emitting regions does not enter a plurality of pupils of the subject.
    The retinal scanning projection device according to claim 1.
  3.  前記対象者の眼球の回転運動が行われているか否かを検出する検出部をさらに備え、
     前記検出部において前記回転運動が行われていることを検出した場合、前記入射映像光を補正した補正入射映像光を前記入射部へ入射させる、
     請求項1または2に記載の網膜走査型投影装置。
    Further, a detection unit for detecting whether or not the subject's eyeball is rotating is further provided.
    When it is detected that the rotational motion is being performed in the detection unit, the corrected incident video light corrected for the incident video light is incident on the incident portion.
    The retinal scanning projection apparatus according to claim 1 or 2.
  4.  映像光が入射される入射部と、前記入射部から導かれた前記映像光を出射する出射部と、を含むコンバイナーを備え、
     前記出射部は、複数の出射領域を含み、
     前記複数の出射領域から出射される前記映像光が対象者の眼球が正面を向いた場合における前記対象者の瞳孔の中心に入射するよう、前記複数の出射領域から前記映像光を出射し、
     前記複数の出射領域から出射された前記映像光が前記対象者の瞳孔に複数入射することのないよう、前記複数の出射領域から前記映像光を出射する、
     ことを特徴とする網膜走査型投影装置。
    A combiner including an incident portion to which the image light is incident and an exit portion to emit the image light guided from the incident portion is provided.
    The emission unit includes a plurality of emission regions.
    The video light is emitted from the plurality of emission regions so that the video light emitted from the plurality of emission regions is incident on the center of the pupil of the subject when the subject's eyeball faces the front.
    The video light is emitted from the plurality of emission regions so that the video light emitted from the plurality of emission regions does not enter a plurality of pupils of the subject.
    A retinal scanning projection device characterized by this.
  5.  映像光を入射し、
     複数の出射領域のうち第1の出射領域から出射される前記映像光の少なくとも一部が、対象者の眼球が正面を向いた場合における前記対象者の瞳孔の中心に入射するよう、前記第1の出射領域から前記映像光を出射し、
     前記複数の出射領域のうち前記第1の出射領域とは異なる第2の出射領域から出射される前記映像光の少なくとも一部が、前記対象者の眼球が正面以外を向いた場合における前記対象者の瞳孔の中心に入射するよう、前記第2の出射領域から前記映像光を出射する、
     ことを特徴とする網膜走査投影方法。
    Incident video light,
    The first such that at least a part of the image light emitted from the first emission region among the plurality of emission regions is incident on the center of the pupil of the subject when the subject's eyeball faces the front. The image light is emitted from the emission area of
    The subject when at least a part of the image light emitted from the second emission region different from the first emission region among the plurality of emission regions is directed to a direction other than the front of the subject's eyeball. The image light is emitted from the second emission region so as to be incident on the center of the pupil.
    A retinal scanning projection method characterized by this.
  6.  映像光が入射される入射領域と、前記映像光を出射する第1の出射領域及び第2の出射領域を含む複数の出射領域と、を備え、
     前記第1の出射領域は、対象者の眼球が正面を向いた場合における前記対象者の瞳孔の中心に入射するよう、前記映像光を出射するための領域を含み、
     前記第2の出射領域は、前記第1の出射領域とは異なる領域であって、前記対象者の眼球が正面以外を向いた場合における前記対象者の瞳孔の中心に入射するよう、前記映像光を出射するための領域を含む、
     ことを特徴とするコンバイナー。
    It includes an incident region in which the image light is incident, and a plurality of emission regions including a first emission region and a second emission region for emitting the video light.
    The first emission region includes a region for emitting the image light so as to be incident on the center of the pupil of the subject when the subject's eyeball faces the front.
    The second emission region is a region different from the first emission region, and the image light so as to be incident on the center of the pupil of the subject when the subject's eyeball faces other than the front. Including the area for emitting
    A combiner that features that.
PCT/JP2021/037351 2020-11-27 2021-10-08 Retina scan-type projection device, retina scan-type projection method, and combiner WO2022113539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-196947 2020-11-27
JP2020196947A JP7163950B2 (en) 2020-11-27 2020-11-27 Retinal scanning projection device, image light emitting method and combiner

Publications (1)

Publication Number Publication Date
WO2022113539A1 true WO2022113539A1 (en) 2022-06-02

Family

ID=81755772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037351 WO2022113539A1 (en) 2020-11-27 2021-10-08 Retina scan-type projection device, retina scan-type projection method, and combiner

Country Status (2)

Country Link
JP (2) JP7163950B2 (en)
WO (1) WO2022113539A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277822A (en) * 2001-03-21 2002-09-25 Japan Science & Technology Corp Retina projection display method and device for the method
WO2009066475A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Display
JP2014056017A (en) * 2012-09-11 2014-03-27 Pioneer Electronic Corp Image display device, image display method, image display control device, computer program, and recording medium
JP2014102394A (en) * 2012-11-20 2014-06-05 Toshiba Corp Display device
WO2018186046A1 (en) * 2017-04-04 2018-10-11 国立大学法人福井大学 Image generating device and image generating method
JP2020013041A (en) * 2018-07-20 2020-01-23 株式会社日立製作所 Video display device and video display system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396062B2 (en) * 1993-08-26 2003-04-14 オリンパス光学工業株式会社 Image display device
JP2001272941A (en) 2000-03-23 2001-10-05 Olympus Optical Co Ltd Video display device
JP4829765B2 (en) 2006-12-08 2011-12-07 キヤノン株式会社 Image display device and image display system
EP3766039A4 (en) 2018-03-15 2021-04-07 Magic Leap, Inc. Image correction due to deformation of components of a viewing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277822A (en) * 2001-03-21 2002-09-25 Japan Science & Technology Corp Retina projection display method and device for the method
WO2009066475A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Display
JP2014056017A (en) * 2012-09-11 2014-03-27 Pioneer Electronic Corp Image display device, image display method, image display control device, computer program, and recording medium
JP2014102394A (en) * 2012-11-20 2014-06-05 Toshiba Corp Display device
WO2018186046A1 (en) * 2017-04-04 2018-10-11 国立大学法人福井大学 Image generating device and image generating method
JP2020013041A (en) * 2018-07-20 2020-01-23 株式会社日立製作所 Video display device and video display system

Also Published As

Publication number Publication date
JP7163950B2 (en) 2022-11-01
JP2023001131A (en) 2023-01-04
JP2022085325A (en) 2022-06-08

Similar Documents

Publication Publication Date Title
JP5417660B2 (en) 3D projection system
US20150015814A1 (en) Spatial focal field type glasses display
US20180157908A1 (en) Gaze-tracking system and method of tracking user's gaze
JP6748855B2 (en) Head-mounted display device
US4923297A (en) Optical alignment system
JPWO2006038662A1 (en) Image display device and electronic glasses
CN112888988B (en) Optical device for augmented reality
EP3746838A1 (en) Gaze-tracking system and aperture device
JP3785539B2 (en) Wide viewing area retinal projection display system
WO2022113539A1 (en) Retina scan-type projection device, retina scan-type projection method, and combiner
US20230314805A1 (en) Optic system for head wearable devices
US20230049899A1 (en) System and method for enhancing visual acuity
KR20090038843A (en) A stereo projection system
JPWO2019045094A1 (en) Scanning fundus photography device
WO2020196637A1 (en) Image relay device and image projection system
CN112955807B (en) Optical device for augmented reality
JP7163230B2 (en) Line-of-sight detection device, line-of-sight detection method, and display device
WO2019088070A1 (en) Scan type eyeground imaging device
JP4102410B2 (en) 3D image display device
JP3709921B2 (en) Image providing method and image providing apparatus for patients with eye diseases
CN112969956B (en) Optical device for augmented reality
US20230409109A1 (en) Vision correction display device, eye-tracking system and method to compensate for visual impairments
WO2023157481A1 (en) Display device and display system
KR102216588B1 (en) Optical device for augmented reality
WO2023090173A1 (en) Image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897517

Country of ref document: EP

Kind code of ref document: A1