WO2022113463A1 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
WO2022113463A1
WO2022113463A1 PCT/JP2021/032324 JP2021032324W WO2022113463A1 WO 2022113463 A1 WO2022113463 A1 WO 2022113463A1 JP 2021032324 W JP2021032324 W JP 2021032324W WO 2022113463 A1 WO2022113463 A1 WO 2022113463A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
magnet
rotation axis
optical reflection
optical
Prior art date
Application number
PCT/JP2021/032324
Other languages
French (fr)
Japanese (ja)
Inventor
大佐 中村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022113463A1 publication Critical patent/WO2022113463A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing

Definitions

  • the present invention relates to a position detection device.
  • Patent Document 1 is a prior document that discloses the configuration of the vibration isolation mechanism of the bending type image pickup device.
  • a voice coil motor is formed by a magnet fixed to a holder supporting a prism and a coil, and a position detection magnet fixed to the holder. The position of the holder is detected by detecting the strength of the magnetic field of the holder with a hall sensor.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a miniaturized position detection device with a simple configuration.
  • the position detection device based on the present invention includes an optical reflection element, a first voice coil motor, a second voice coil motor, a first magnetic sensor, and a second magnetic sensor.
  • the optical reflection element reflects the incident light in the optical axis direction when it is in the reference position, and is applied to the first rotation axis orthogonal to the optical axis direction, and to each of the optical axis direction and the first rotation axis.
  • the second rotating shafts orthogonal to each other are rotatably provided around each of them.
  • the first voice coil motor includes a first magnet fixed to the optical reflection element and a first coil fixedly arranged relative to the first magnet, and rotates the optical reflection element about a first rotation axis. ..
  • the second voice coil motor includes a second magnet fixed to the optical reflection element and a second coil fixedly arranged relative to the second magnet, and rotates the optical reflection element around the second rotation axis. ..
  • the first magnetic sensor is fixed in a region facing the first magnet, and receives a first magnetic field applied from the first magnet that moves when the optical reflecting element rotates about the second rotation axis. It is detectable.
  • the second magnetic sensor is fixed in a region facing the second magnet, and receives a second magnetic field applied from the second magnet that moves when the optical reflecting element rotates about the first rotation axis. It is detectable.
  • the position detection device can be miniaturized with a simple configuration.
  • FIG. 3 is a bottom view of the position detection device of FIG. 1 as viewed from the direction of arrow III. It is a figure which shows the phase with respect to the reference angle of the 1st magnetic field acting on the magnetic sensitive surface of the 1st magnetic sensor provided in the position detection apparatus which concerns on one Embodiment of this invention. It is a figure which shows the phase with respect to the reference angle of the 2nd magnetic field acting on the magnetic sensitive surface of the 2nd magnetic sensor provided in the position detection apparatus which concerns on one Embodiment of this invention.
  • FIG. 1 is a perspective view showing a configuration of a compact camera module including a position detection device according to an embodiment of the present invention.
  • FIG. 2 is a side view of the position detecting device of FIG. 1 as viewed from the direction of arrow II.
  • FIG. 3 is a bottom view of the position detection device of FIG. 1 as viewed from the direction of arrow III.
  • a compact camera module including a position detection device 1 includes an optical reflection element 2, an actuator unit 3 including a lens group, and an image sensor 4.
  • Each of the optical reflection element 2, the actuator unit 3 including the lens group, and the image sensor 4 is arranged along the main surface of a base (not shown).
  • the compact camera module is a periscope type camera module. The compact camera module realizes a so-called image stabilization function by rotating the optical reflection element 2 as described later.
  • the optical reflection element 2 reflects the incident light La when it is in the reference position in the optical axis direction C, and the first rotation axis A orthogonal to the optical axis direction C, and the optical axis direction C and the first.
  • the second rotation axis B which is orthogonal to each of the rotation axes A, is rotatably provided around each of them.
  • the optical reflection element 2 can rotate about each of the first rotation axis A and the second rotation axis B at the same time.
  • FIG. 1 shows a state in which the optical reflecting element 2 is located parallel to the main surface of the base in the X-axis direction and the Z-axis direction.
  • the first rotation axis A is parallel to the X-axis direction
  • the second rotation axis B is parallel to the Y-axis direction
  • the optical axis directions C and the Z-axis directions coincide with each other. ing.
  • the position of the optical reflection element 2 in this state is used as the reference position. Further, each of the rotation angle around the first rotation axis A and the rotation angle around the second rotation axis B when the optical reflection element 2 is in the reference position is set to 0 degrees.
  • the optical reflection element 2 is a prism mirror having a rectangular parallelepiped outer shape.
  • the shape of the optical reflecting element 2 is not limited to a rectangular parallelepiped shape, and may be a triangular columnar shape.
  • the optical reflecting element 2 has a reflecting surface 2r that reflects light La. The light La and the light Lb reflected by the reflecting surface 2r are transmitted through the portion of the optical reflecting element 2 located on the reflecting surface 2r.
  • light La taken in from the outside of the compact camera module is incident on the optical reflection element 2.
  • the light Lb in which the light La is reflected by the optical reflecting element 2 faces the actuator unit 3 including the lens group and passes through the lens group.
  • the light Lc that has passed through the lens group is incident on the image sensor 4.
  • the optical reflection element 2 is rotatably supported around each of the first rotation shaft A and the second rotation shaft B by a support mechanism (not shown).
  • the optical reflection element 2 rotates about the first rotation axis A by being driven by a drive mechanism (not shown).
  • the optical reflection element 2 rotates about the first rotation axis A, the position where the optical Lc is incident on the image sensor 4 is displaced in the Y-axis direction.
  • the optical reflection element 2 rotates about the second rotation axis B by being driven by a drive mechanism (not shown).
  • the optical reflection element 2 rotates about the second rotation axis B, the position where the optical Lc is incident on the image sensor 4 is displaced in the X-axis direction.
  • the position detection device 1 includes the optical reflection element 2, the first voice coil motors 10 and 20, the second voice coil motor 30, and the second voice coil motor 30. It includes one magnetic sensor 40 and a second magnetic sensor 50.
  • the first voice coil motor 10 and the first voice coil motor 20 are configured as a pair so as to sandwich the optical reflection element 2 between them.
  • the first voice coil motors 10 and 20 rotate the optical reflection element 2 about the first rotation axis A.
  • the first voice coil motor 20 does not necessarily have to be provided.
  • the first voice coil motor 10 includes a first magnet 11 fixed to the left side surface of the optical reflection element 2 and a first coil 12 fixedly arranged relative to the first magnet 11.
  • the first coil 12 is fixed to the left side wall (not shown) facing the left side surface of the optical reflection element 2 at intervals. A certain distance is provided between the first magnet 11 and the first coil 12 so that the optical reflection element 2 can rotate about the second rotation axis B.
  • the first magnet 11 is a quadrupole magnet, but it may be a two-pole magnet.
  • the first voice coil motor 20 includes a first magnet 21 fixed to the right side surface of the optical reflection element 2 and a first coil 22 fixedly arranged relative to the first magnet 21.
  • the first coil 22 is fixed to the right side wall (not shown) facing the right side surface of the optical reflection element 2 at intervals. A certain distance is provided between the first magnet 21 and the first coil 22 so that the optical reflection element 2 can rotate about the second rotation axis B.
  • the first magnet 21 is a quadrupole magnet, but it may be a two-pole magnet.
  • the second voice coil motor 30 rotates the optical reflection element 2 around the second rotation shaft B.
  • the second voice coil motor 30 has a second magnet 31 fixed to the bottom surface of the optical reflecting element 2 and a second coil fixedly arranged relative to the second magnet 31. 32 is included.
  • the second coil 32 is fixed to the main surface of the base. A certain distance is provided between the second magnet 31 and the second coil 32 so that the optical reflection element 2 can rotate about the first rotation axis A.
  • the second magnet 31 is a quadrupole magnet, but it may be a two-pole magnet.
  • the first magnetic sensor 40 is fixed in a region facing the first magnet 11. Specifically, the first magnetic sensor 40 is fixed to the left wall. In the present embodiment, the first magnetic sensor 40 is arranged inside the first coil 12. However, the first magnetic sensor 40 may be arranged outside the first coil 12 as long as it is in the region facing the first magnet 11. In the present embodiment, the first magnetic sensor 40 is arranged on the first rotation axis A when the optical reflection element 2 is in the reference position. The first magnetic sensor 40 detects the first magnetic field applied from the first magnet 11 that moves when the optical reflection element 2 rotates about the second rotation axis B.
  • the second magnetic sensor 50 is fixed in the region facing the second magnet 31. Specifically, the second magnetic sensor 50 is fixed to the right wall. In the present embodiment, the second magnetic sensor 50 is arranged inside the second coil 32. However, the second magnetic sensor 50 may be arranged outside the second coil 32 as long as it is in the region facing the second magnet 31. In the present embodiment, the second magnetic sensor 50 is arranged on the second rotation axis B when the optical reflection element 2 is in the reference position. The second magnetic sensor 50 detects a second magnetic field applied from the second magnet 31 that moves when the optical reflection element 2 rotates about the first rotation axis A.
  • FIG. 4 is a diagram showing the phase of the first magnetic field acting on the magnetically sensitive surface of the first magnetic sensor included in the position detection device according to the embodiment of the present invention with respect to the reference angle.
  • the magnetically sensitive surface of the first magnetic sensor 40 is along each of the Y-axis direction and the Z-axis direction.
  • the first magnetic sensor 40 detects the first magnetic field M1 applied from the first magnet 11.
  • the optical reflection element 2 rotates about the second rotation axis B and changes the relative position of the first magnet 11 with respect to the first magnetic sensor 40, thereby passing through the center Pc of the first magnetic sensor 40.
  • the phase ⁇ of the first magnetic field M1 is displaced with respect to the reference angle R.
  • FIG. 5 is a diagram showing the phase of the second magnetic field acting on the magnetically sensitive surface of the second magnetic sensor included in the position detection device according to the embodiment of the present invention with respect to the reference angle.
  • the magnetically sensitive surface of the second magnetic sensor 50 is along each of the X-axis direction and the Z-axis direction.
  • the second magnetic sensor 50 detects the second magnetic field M2 applied from the second magnet 31.
  • the optical reflection element 2 rotates about the first rotation axis A and changes the relative position of the second magnet 31 with respect to the second magnetic sensor 50, thereby passing through the center Pc of the second magnetic sensor 50.
  • the phase ⁇ of the second magnetic field M2 is displaced with respect to the reference angle R.
  • FIG. 6 is a graph showing the relationship between the phase of the magnetic field applied to the magnetic sensor with respect to the reference angle and the output of the magnetic sensor in the position detection device according to the embodiment of the present invention.
  • the vertical axis is the output (Vout) of each of the first magnetic sensor 40 and the second magnetic sensor 50
  • the horizontal axis is the magnetic field applied to each of the first magnetic sensor 40 and the second magnetic sensor 50.
  • the phase ⁇ (deg) with respect to the reference angle of M1 and M2 is shown.
  • the first case where the magnetic fields M1 and M2 equal to or higher than the saturated magnetic field are applied to the magnetoresistive effect element constituting the magnetic sensor.
  • the transition of each output (Vout) of the magnetic sensor 40 and the second magnetic sensor 50 is shown.
  • the output (Vout) of each of the first magnetic sensor 40 and the second magnetic sensor 50 is a reference of the magnetic fields M1 and M2 applied to each of the first magnetic sensor 40 and the second magnetic sensor 50.
  • the relationship of Vout sin ⁇ is satisfied with the phase ⁇ with respect to the angle R.
  • the first magnetic sensor 40 and the second magnetic sensor 50 It is possible to detect the phase ⁇ with respect to the reference angle R of the magnetic fields M1 and M2 by each of the two magnetic sensors 50. That is, the phase ⁇ with respect to the reference angle R of the magnetic fields M1 and M2 is detected by each of the first magnetic sensor 40 and the second magnetic sensor 50 in the range of the substantially linear inclined portion other than the curved apex portion in the sin curve. be able to.
  • the outputs (Vouts) of the first magnetic sensor 40 and the second magnetic sensor 50 are linear with respect to the phase ⁇ with respect to the reference angle R of the magnetic fields M1 and M2. Since it has no property, the phase ⁇ with respect to the reference angle R of the magnetic fields M1 and M2 cannot be detected by each of the first magnetic sensor 40 and the second magnetic sensor 50.
  • FIG. 7 is a diagram showing the configurations of each of the first magnetic sensor and the second magnetic sensor included in the position detection device according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing each circuit configuration of the first magnetic sensor and the second magnetic sensor included in the position detection device according to the embodiment of the present invention.
  • each of the first magnetic sensor 40 and the second magnetic sensor 50 has a plurality of magnetoresistive effect elements constituting the bridge circuit.
  • each of the first magnetic sensor 40 and the second magnetic sensor 50 is the first magnetoresistive sensor MR1, the second magnetoresistive sensor MR2, the third magnetoresistive element MR3, and the first. It has 4 magnetoresistive effect elements MR4.
  • the first magnetoresistive sensor MR1, the second magnetoresistive sensor MR2, and the third magnetoresistive element Each of MR3 and the fourth magnetoresistive sensor MR4 is provided on the upper surface of the sensor substrate Sb.
  • a power supply terminal Vcc, a ground terminal GND, a first output terminal V +, and a second output terminal V- are provided on the sensor board Sb.
  • the first magnetic field M1 is applied to the first magnetic sensor 40 in the direction along the magnetically sensitive surface located on the upper surface of the sensor substrate Sb.
  • the second magnetic field M2 is applied to the second magnetic sensor 50 in the direction along the magnetically sensitive surface located on the upper surface of the sensor substrate Sb.
  • the first magnetoresistive sensor MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 are electrically connected to each other to form a Wheatstone bridge type bridge circuit. There is.
  • Each of the first magnetic sensor 40 and the second magnetic sensor 50 may have a half-bridge circuit composed of the first magnetoresistive sensor MR1 and the second magnetoresistive element MR2.
  • the series connection of the first magnetoresistive element MR1 and the second magnetoresistive element MR2 and the series connection of the third magnetoresistive element MR3 and the fourth magnetoresistive element MR4 are the power supply terminal Vcc and the ground terminal GND. It is connected in parallel with.
  • the first output terminal V + is connected to the connection point between the first magnetoresistive sensor MR1 and the second magnetoresistive element MR2.
  • a second output terminal V- is connected to a connection point between the third magnetoresistive sensor MR3 and the fourth magnetoresistive sensor MR4.
  • Each of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 is a TMR (Tunnel Magneto Resistance) element.
  • each of the first magnetoresistive effect element MR1, the second magnetoresistive effect element MR2, the third magnetoresistive effect element MR3, and the fourth magnetoresistive effect element MR4 is substantially rectangular.
  • the first magnetoresistive effect element MR1, the second magnetoresistive effect element MR2, the third magnetoresistive effect element MR3, and the fourth magnetoresistive effect element MR4 have a substantially square shape as a whole. At the center of this square, the center Pc of each of the first magnetic sensor 40 and the second magnetic sensor 50 is located.
  • FIG. 9 is an enlarged perspective view showing the IX portion of FIG. 7.
  • FIG. 10 is a cross-sectional view taken from the direction of the XX line arrow of FIG.
  • each of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 has a plurality of TMR elements 100 in series. It is connected and configured. The plurality of TMR elements 100 are provided in a matrix.
  • the multilayer element 100b is composed of a plurality of TMR elements 100 that are laminated and connected in series with each other.
  • the element row 100c is composed of a plurality of multilayer elements 100b connected in series with each other.
  • the plurality of element trains 100c are alternately connected by leads 200 at one end and the other end.
  • a plurality of TMR elements 100 are electrically connected in series in each of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4. Has been done.
  • the upper electrode layer 180 of the TMR element 100 located on the lower side of the multilayer element 100b and the lower electrode layer 110 of the TMR element 100 located on the upper side are integrally configured as the intermediate electrode layer 190. ing. That is, the upper electrode layer 180 and the lower electrode layer 110 in the TMR element 100 adjacent to each other in the multilayer element 100b are integrally configured as the intermediate electrode layer 190.
  • each TMR element 100 of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 has a lower electrode layer 110.
  • a laminated structure including a antiferromagnetic layer 120, a first reference layer 130, a non-magnetic intermediate layer 140, a second reference layer 150, a tunnel barrier layer 160, a free layer 170, and an upper electrode layer 180.
  • the lower electrode layer 110 includes, for example, a metal layer containing Ta and Cu or a metal compound layer.
  • the antiferromagnetic layer 120 is provided on the lower electrode layer 110 and includes, for example, a metal compound layer such as IrMn, PtMn, FeMn, NiMn, RuRhMn or CrPtMn.
  • the first reference layer 130 is provided on the antiferromagnetic layer 120 and includes, for example, a ferromagnetic layer such as CoFe.
  • the non-magnetic intermediate layer 140 is provided on top of the first reference layer 130 and is selected from, for example, at least one of Ru, Cr, Rh, Ir and Re, or an alloy of two or more of these metals. Includes a layer of The second reference layer 150 is provided on the non-magnetic intermediate layer 140 and includes, for example, a ferromagnetic layer such as CoFe or CoFeB.
  • the tunnel barrier layer 160 is provided on the second reference layer 150 and is a layer made of an oxide containing at least one or two or more of Mg, Al, Ti, Zn, Hf, Ge and Si such as magnesium oxide. including.
  • the free layer 170 is provided on top of the tunnel barrier layer 160 and includes, for example, CoFeB or a layer made of at least one or more alloys such as Co, Fe and Ni.
  • the upper electrode layer 180 is provided on the free layer 170 and includes, for example, a metal layer such as Ta, Ru or Cu.
  • the magnetization direction of each pin layer of the first magnetoresistive sensor MR1 and the fourth magnetoresistive element MR4 and the magnetization direction of each pin layer of the second magnetoresistive element MR2 and the third magnetoresistive element MR3 are , 180 ° opposite to each other.
  • each of the first magnetic resistance effect element MR1, the second magnetic resistance effect element MR2, the third magnetic resistance effect element MR3, and the fourth magnetic resistance effect element MR4 replaces the TMR element with a GMR (Giant Magneto Resistance) element.
  • GMR Global Magneto Resistance
  • it may have a magnetoresistive effect element such as an AMR (Anisotropic Magneto Resistance) element.
  • the first voice coil motor 10 moves when the optical reflection element 2 is rotated about the second rotation axis B by the second voice coil motor 30.
  • the rotation angle of the optical reflecting element 2 around the second rotation axis B can be detected.
  • the second magnet 31 of the second voice coil motor 30 that moves when the optical reflection element 2 is rotated around the first rotation axis A by the first voice coil motors 10 and 20.
  • the rotation angle of the optical reflection element 2 around the first rotation axis A can be detected.
  • the position detection device 1 can be miniaturized with a simple configuration.
  • each of the first magnetic sensor 40 and the second magnetic sensor 50 has a plurality of magnetoresistive elements constituting the bridge circuit. This makes it possible to obtain an output value based on the direction of the magnetic field in the magnetic field. As a result, the detectable range of the rotation angle of the optical reflection element 2 in the position detection device 1 can be widened as compared with the case of using a magnetic sensor having a Hall element. As a result, the correctable range of the image stabilization function can be widened.
  • the first magnetic sensor 40 is arranged inside the first coil 12.
  • the second magnetic sensor 50 is arranged inside the second coil 32.
  • the first magnetic sensor 40 and the second magnetic sensor 50 can also be arranged in the space where the first coil 12 and the second coil 32 are arranged, so that the position detection device 1 can be miniaturized.
  • the first magnetic sensor 40 is arranged on the first rotation axis A when the optical reflection element 2 is in the reference position.
  • the second magnetic sensor 50 is arranged on the second rotation axis B when the optical reflection element 2 is in the reference position.
  • the first magnetic sensor 40 can detect the rotation angle of the optical reflection element 2 around the second rotation axis B within a range of good linearity shown in FIG. 6 centered on 0 degrees.
  • the detectable range of the rotation angle of the optical reflection element 2 around the second rotation axis B in the position detection device 1 can be widened.
  • the second magnetic sensor 50 can detect the rotation angle of the optical reflection element 2 around the first rotation axis A within a range of good linearity shown in FIG. 6 centered on 0 degrees, the position.
  • the detectable range of the rotation angle around the first rotation axis A of the optical reflection element 2 in the detection device 1 can be widened.
  • the first voice coil motors 10 and 20 are configured as a pair so as to sandwich the optical reflection element 2 between them.
  • the optical reflection element 2 can be stably and accurately rotated around the first rotation axis A.

Abstract

In the present invention, a first voice coil motor (10) comprises: a first magnet (11) fixed to an optical reflecting element (2); and a first coil (12) fixedly disposed so as to oppose the first magnet (11). The optical reflecting element (2) is rotated about a first axis of rotation (A). A second voice coil motor comprises: a second magnet fixed to the optical reflecting element (2); and a second coil fixedly disposed so as to oppose the second magnet. The optical reflecting element (2) is rotated about a second axis of rotation. A first magnetic sensor (40) is fixed within a region facing the first magnet (11), and can detect a first magnetic field applied from the first magnet (11) which moves when the optical reflecting element (2) rotates about the second axis of rotation (B). A second magnetic sensor is fixed within a region facing the second magnet, and can detect a second magnetic field applied from the second magnet which moves when the optical reflecting element (2) rotates about the first axis of rotation (A).

Description

位置検出装置Position detector
 本発明は、位置検出装置に関する。 The present invention relates to a position detection device.
 屈曲式撮像装置の防振機構の構成を開示した先行文献として、特許第6613005号公報(特許文献1)がある。特許文献1に記載された屈曲式撮像装置の防振機構においては、プリズムを支持するホルダーに固着された磁石と、コイルとによって、ボイスコイルモータを構成し、ホルダーに固着された位置検出用磁石の磁界の強度をホールセンサによって検出することによりホルダーの位置検出を行なっている。 Patent No. 6613005 (Patent Document 1) is a prior document that discloses the configuration of the vibration isolation mechanism of the bending type image pickup device. In the vibration isolation mechanism of the bending type image pickup apparatus described in Patent Document 1, a voice coil motor is formed by a magnet fixed to a holder supporting a prism and a coil, and a position detection magnet fixed to the holder. The position of the holder is detected by detecting the strength of the magnetic field of the holder with a hall sensor.
特許第6613005号公報Japanese Patent No. 6613005
 ボイスコイルモータを構成する磁石とは別の位置検出用磁石を用いる場合、構成が複雑となり、装置が大型化する。 If a position detection magnet different from the magnets that make up the voice coil motor is used, the configuration becomes complicated and the device becomes large.
 本発明は上記の問題点に鑑みてなされたものであって、簡易な構成で小型化された位置検出装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a miniaturized position detection device with a simple configuration.
 本発明に基づく位置検出装置は、光学反射素子と、第1ボイスコイルモータと、第2ボイスコイルモータと、第1磁気センサと、第2磁気センサとを備える。光学反射素子は、基準位置にあるときに入射した光を光軸方向に反射し、光軸方向に対して直交する第1回動軸、並びに、光軸方向および第1回動軸の各々に対して直交する第2回動軸の、各々を中心に回動可能に設けられている。第1ボイスコイルモータは、光学反射素子に固定された第1磁石および第1磁石と相対して固定配置された第1コイルを含み、第1回動軸を中心に光学反射素子を回動させる。第2ボイスコイルモータは、光学反射素子に固定された第2磁石および第2磁石と相対して固定配置された第2コイルを含み、第2回動軸を中心に光学反射素子を回動させる。第1磁気センサは、第1磁石と対向する領域内に固定されており、光学反射素子が第2回動軸を中心に回動する際に移動する第1磁石から印加される第1磁界を検出可能である。第2磁気センサは、第2磁石と対向する領域内に固定されており、光学反射素子が第1回動軸を中心に回動する際に移動する第2磁石から印加される第2磁界を検出可能である。 The position detection device based on the present invention includes an optical reflection element, a first voice coil motor, a second voice coil motor, a first magnetic sensor, and a second magnetic sensor. The optical reflection element reflects the incident light in the optical axis direction when it is in the reference position, and is applied to the first rotation axis orthogonal to the optical axis direction, and to each of the optical axis direction and the first rotation axis. The second rotating shafts orthogonal to each other are rotatably provided around each of them. The first voice coil motor includes a first magnet fixed to the optical reflection element and a first coil fixedly arranged relative to the first magnet, and rotates the optical reflection element about a first rotation axis. .. The second voice coil motor includes a second magnet fixed to the optical reflection element and a second coil fixedly arranged relative to the second magnet, and rotates the optical reflection element around the second rotation axis. .. The first magnetic sensor is fixed in a region facing the first magnet, and receives a first magnetic field applied from the first magnet that moves when the optical reflecting element rotates about the second rotation axis. It is detectable. The second magnetic sensor is fixed in a region facing the second magnet, and receives a second magnetic field applied from the second magnet that moves when the optical reflecting element rotates about the first rotation axis. It is detectable.
 本発明によれば、位置検出装置を簡易な構成にして小型化することができる。 According to the present invention, the position detection device can be miniaturized with a simple configuration.
本発明の一実施の形態に係る位置検出装置を含むコンパクトカメラモジュールの構成を示す斜視図である。It is a perspective view which shows the structure of the compact camera module which includes the position detection apparatus which concerns on one Embodiment of this invention. 図1の位置検出装置を矢印II方向から見た側面図である。It is a side view which looked at the position detection apparatus of FIG. 1 from the direction of arrow II. 図1の位置検出装置を矢印III方向から見た底面図である。FIG. 3 is a bottom view of the position detection device of FIG. 1 as viewed from the direction of arrow III. 本発明の一実施の形態に係る位置検出装置が備える第1磁気センサの感磁面に作用する第1磁界の基準角に対する位相を示す図である。It is a figure which shows the phase with respect to the reference angle of the 1st magnetic field acting on the magnetic sensitive surface of the 1st magnetic sensor provided in the position detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る位置検出装置が備える第2磁気センサの感磁面に作用する第2磁界の基準角に対する位相を示す図である。It is a figure which shows the phase with respect to the reference angle of the 2nd magnetic field acting on the magnetic sensitive surface of the 2nd magnetic sensor provided in the position detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る位置検出装置において、磁気センサに印加される磁界の基準角に対する位相と、磁気センサの出力との関係を示すグラフである。It is a graph which shows the relationship between the phase with respect to the reference angle of the magnetic field applied to a magnetic sensor, and the output of a magnetic sensor in the position detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る位置検出装置が備える第1磁気センサおよび第2磁気センサの各々の構成を示す図である。It is a figure which shows the structure of each of the 1st magnetic sensor and the 2nd magnetic sensor included in the position detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る位置検出装置が備える第1磁気センサおよび第2磁気センサの各々の回路構成を示す図である。It is a figure which shows the circuit structure of each of the 1st magnetic sensor and the 2nd magnetic sensor included in the position detection apparatus which concerns on one Embodiment of this invention. 図7のIX部を拡大して示す斜視図である。It is a perspective view which shows the IX part of FIG. 7 enlarged. 図9のX-X線矢印方向から見た断面図である。9 is a cross-sectional view taken from the direction of the XX line arrow in FIG. 9.
 以下、本発明の一実施の形態に係る位置検出装置について図を参照して説明する。以下の実施の形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, the position detection device according to the embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiment, the same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 図1は、本発明の一実施の形態に係る位置検出装置を含むコンパクトカメラモジュールの構成を示す斜視図である。図2は、図1の位置検出装置を矢印II方向から見た側面図である。図3は、図1の位置検出装置を矢印III方向から見た底面図である。 FIG. 1 is a perspective view showing a configuration of a compact camera module including a position detection device according to an embodiment of the present invention. FIG. 2 is a side view of the position detecting device of FIG. 1 as viewed from the direction of arrow II. FIG. 3 is a bottom view of the position detection device of FIG. 1 as viewed from the direction of arrow III.
 図1に示すように、本発明の一実施の形態に係る位置検出装置1を含むコンパクトカメラモジュールは、光学反射素子2と、レンズ群を含むアクチュエータ部3と、イメージセンサ4とを備える。光学反射素子2、レンズ群を含むアクチュエータ部3およびイメージセンサ4の各々は、図示しないベースの主面に沿って配置されている。コンパクトカメラモジュールは、ペリスコープ型カメラモジュールである。コンパクトカメラモジュールは、後述するように光学反射素子2を回動させることにより、いわゆる手振れ補正機能を実現する。 As shown in FIG. 1, a compact camera module including a position detection device 1 according to an embodiment of the present invention includes an optical reflection element 2, an actuator unit 3 including a lens group, and an image sensor 4. Each of the optical reflection element 2, the actuator unit 3 including the lens group, and the image sensor 4 is arranged along the main surface of a base (not shown). The compact camera module is a periscope type camera module. The compact camera module realizes a so-called image stabilization function by rotating the optical reflection element 2 as described later.
 光学反射素子2は、基準位置にあるときに入射した光Laを光軸方向Cに反射し、光軸方向Cに対して直交する第1回動軸A、並びに、光軸方向Cおよび第1回動軸Aの各々に対して直交する第2回動軸Bの、各々を中心に回動可能に設けられている。光学反射素子2は、第1回動軸Aおよび第2回動軸Bの各々を中心に同時に回動可能である。 The optical reflection element 2 reflects the incident light La when it is in the reference position in the optical axis direction C, and the first rotation axis A orthogonal to the optical axis direction C, and the optical axis direction C and the first. The second rotation axis B, which is orthogonal to each of the rotation axes A, is rotatably provided around each of them. The optical reflection element 2 can rotate about each of the first rotation axis A and the second rotation axis B at the same time.
 図面においては、ベースの主面に垂直な方向をY軸方向、Y軸方向と直交する2つの方向をX軸方向およびZ軸方向として示している。光軸に振れがない状態では、光軸方向CとZ軸方向とは一致する。図1では、光学反射素子2がベースの主面に対してX軸方向およびZ軸方向に平行に位置している状態を示している。 In the drawings, the direction perpendicular to the main surface of the base is shown as the Y-axis direction, and the two directions orthogonal to the Y-axis direction are shown as the X-axis direction and the Z-axis direction. When there is no vibration in the optical axis, the optical axis direction C and the Z axis direction coincide with each other. FIG. 1 shows a state in which the optical reflecting element 2 is located parallel to the main surface of the base in the X-axis direction and the Z-axis direction.
 図1に示す状態においては、第1回動軸AはX軸方向と平行であり、第2回動軸BはY軸方向と平行であり、光軸方向CとZ軸方向とは一致している。この状態にあるときの光学反射素子2の位置を基準位置とする。また、基準位置にあるときの光学反射素子2の第1回動軸A周りの回動角度および第2回動軸B周りの回動角度の各々を0度とする。 In the state shown in FIG. 1, the first rotation axis A is parallel to the X-axis direction, the second rotation axis B is parallel to the Y-axis direction, and the optical axis directions C and the Z-axis directions coincide with each other. ing. The position of the optical reflection element 2 in this state is used as the reference position. Further, each of the rotation angle around the first rotation axis A and the rotation angle around the second rotation axis B when the optical reflection element 2 is in the reference position is set to 0 degrees.
 本実施の形態においては、光学反射素子2は、直方体状の外形を有するプリズムミラーである。光学反射素子2の形状は、直方体状に限られず、三角柱状であってもよい。光学反射素子2は、光Laを反射する反射面2rを有している。光学反射素子2において反射面2r上に位置する部分を、光Laおよび反射面2rで反射された光Lbが透過する。 In the present embodiment, the optical reflection element 2 is a prism mirror having a rectangular parallelepiped outer shape. The shape of the optical reflecting element 2 is not limited to a rectangular parallelepiped shape, and may be a triangular columnar shape. The optical reflecting element 2 has a reflecting surface 2r that reflects light La. The light La and the light Lb reflected by the reflecting surface 2r are transmitted through the portion of the optical reflecting element 2 located on the reflecting surface 2r.
 図1に示すように、コンパクトカメラモジュールの外部から取り込まれた光Laが光学反射素子2に入射する。光Laが光学反射素子2にて反射された光Lbは、レンズ群を含むアクチュエータ部3に向かい、レンズ群を通過する。レンズ群を通過した光Lcは、イメージセンサ4に入射する。 As shown in FIG. 1, light La taken in from the outside of the compact camera module is incident on the optical reflection element 2. The light Lb in which the light La is reflected by the optical reflecting element 2 faces the actuator unit 3 including the lens group and passes through the lens group. The light Lc that has passed through the lens group is incident on the image sensor 4.
 光学反射素子2は、図示しない支持機構によって第1回動軸Aおよび第2回動軸Bの各々を中心に回動可能に支持されている。光学反射素子2は、図示しない駆動機構によって駆動されることにより第1回動軸Aを中心に回動する。光学反射素子2が第1回動軸Aを中心に回動することにより、光Lcがイメージセンサ4に入射する位置は、Y軸方向に変位する。また、光学反射素子2は、図示しない駆動機構によって駆動されることにより第2回動軸Bを中心に回動する。光学反射素子2が第2回動軸Bを中心に回動することにより、光Lcがイメージセンサ4に入射する位置は、X軸方向に変位する。 The optical reflection element 2 is rotatably supported around each of the first rotation shaft A and the second rotation shaft B by a support mechanism (not shown). The optical reflection element 2 rotates about the first rotation axis A by being driven by a drive mechanism (not shown). As the optical reflection element 2 rotates about the first rotation axis A, the position where the optical Lc is incident on the image sensor 4 is displaced in the Y-axis direction. Further, the optical reflection element 2 rotates about the second rotation axis B by being driven by a drive mechanism (not shown). As the optical reflection element 2 rotates about the second rotation axis B, the position where the optical Lc is incident on the image sensor 4 is displaced in the X-axis direction.
 図1から図3に示すように、本発明の一実施の形態に係る位置検出装置1は、光学反射素子2と、第1ボイスコイルモータ10,20と、第2ボイスコイルモータ30と、第1磁気センサ40と、第2磁気センサ50とを備える。 As shown in FIGS. 1 to 3, the position detection device 1 according to the embodiment of the present invention includes the optical reflection element 2, the first voice coil motors 10 and 20, the second voice coil motor 30, and the second voice coil motor 30. It includes one magnetic sensor 40 and a second magnetic sensor 50.
 本実施の形態においては、第1ボイスコイルモータ10と第1ボイスコイルモータ20とが、光学反射素子2を互いの間に挟むように1対で構成されている。第1ボイスコイルモータ10,20は、第1回動軸Aを中心に光学反射素子2を回動させる。ただし、第1ボイスコイルモータ20は、必ずしも設けられていなくてもよい。 In the present embodiment, the first voice coil motor 10 and the first voice coil motor 20 are configured as a pair so as to sandwich the optical reflection element 2 between them. The first voice coil motors 10 and 20 rotate the optical reflection element 2 about the first rotation axis A. However, the first voice coil motor 20 does not necessarily have to be provided.
 第1ボイスコイルモータ10は、光学反射素子2の左側面に固定された第1磁石11、および、第1磁石11と相対して固定配置された第1コイル12を含む。第1コイル12は、光学反射素子2の左側面に間隔をあけて対向する図示しない左側壁に固定されている。第1磁石11と第1コイル12との間には、光学反射素子2が第2回動軸Bを中心に回動可能とするために、一定の間隔が設けられている。本実施の形態においては、第1磁石11は、4極磁石であるが、2極磁石であってもよい。 The first voice coil motor 10 includes a first magnet 11 fixed to the left side surface of the optical reflection element 2 and a first coil 12 fixedly arranged relative to the first magnet 11. The first coil 12 is fixed to the left side wall (not shown) facing the left side surface of the optical reflection element 2 at intervals. A certain distance is provided between the first magnet 11 and the first coil 12 so that the optical reflection element 2 can rotate about the second rotation axis B. In the present embodiment, the first magnet 11 is a quadrupole magnet, but it may be a two-pole magnet.
 第1ボイスコイルモータ20は、光学反射素子2の右側面に固定された第1磁石21、および、第1磁石21と相対して固定配置された第1コイル22を含む。第1コイル22は、光学反射素子2の右側面に間隔をあけて対向する図示しない右側壁に固定されている。第1磁石21と第1コイル22との間には、光学反射素子2が第2回動軸Bを中心に回動可能とするために、一定の間隔が設けられている。本実施の形態においては、第1磁石21は、4極磁石であるが、2極磁石であってもよい。 The first voice coil motor 20 includes a first magnet 21 fixed to the right side surface of the optical reflection element 2 and a first coil 22 fixedly arranged relative to the first magnet 21. The first coil 22 is fixed to the right side wall (not shown) facing the right side surface of the optical reflection element 2 at intervals. A certain distance is provided between the first magnet 21 and the first coil 22 so that the optical reflection element 2 can rotate about the second rotation axis B. In the present embodiment, the first magnet 21 is a quadrupole magnet, but it may be a two-pole magnet.
 第2ボイスコイルモータ30は、第2回動軸Bを中心に光学反射素子2を回動させる。図2および図3に示すように、第2ボイスコイルモータ30は、光学反射素子2の底面に固定された第2磁石31、および、第2磁石31と相対して固定配置された第2コイル32を含む。第2コイル32は、ベースの主面に固定されている。第2磁石31と第2コイル32との間には、光学反射素子2が第1回動軸Aを中心に回動可能とするために、一定の間隔が設けられている。本実施の形態においては、第2磁石31は、4極磁石であるが、2極磁石であってもよい。 The second voice coil motor 30 rotates the optical reflection element 2 around the second rotation shaft B. As shown in FIGS. 2 and 3, the second voice coil motor 30 has a second magnet 31 fixed to the bottom surface of the optical reflecting element 2 and a second coil fixedly arranged relative to the second magnet 31. 32 is included. The second coil 32 is fixed to the main surface of the base. A certain distance is provided between the second magnet 31 and the second coil 32 so that the optical reflection element 2 can rotate about the first rotation axis A. In the present embodiment, the second magnet 31 is a quadrupole magnet, but it may be a two-pole magnet.
 図1および図2に示すように、第1磁気センサ40は、第1磁石11と対向する領域内に固定されている。具体的には、第1磁気センサ40は、左側壁に固定されている。本実施の形態においては、第1磁気センサ40は、第1コイル12の内側に配置されている。ただし、第1磁気センサ40は、第1磁石11と対向する領域内であれば、第1コイル12の外側に配置されていてもよい。本実施の形態においては、第1磁気センサ40は、光学反射素子2が基準位置にあるときの第1回動軸A上に配置されている。第1磁気センサ40は、光学反射素子2が第2回動軸Bを中心に回動する際に移動する第1磁石11から印加される第1磁界を検出する。 As shown in FIGS. 1 and 2, the first magnetic sensor 40 is fixed in a region facing the first magnet 11. Specifically, the first magnetic sensor 40 is fixed to the left wall. In the present embodiment, the first magnetic sensor 40 is arranged inside the first coil 12. However, the first magnetic sensor 40 may be arranged outside the first coil 12 as long as it is in the region facing the first magnet 11. In the present embodiment, the first magnetic sensor 40 is arranged on the first rotation axis A when the optical reflection element 2 is in the reference position. The first magnetic sensor 40 detects the first magnetic field applied from the first magnet 11 that moves when the optical reflection element 2 rotates about the second rotation axis B.
 図2および図3に示すように、第2磁気センサ50は、第2磁石31と対向する領域内に固定されている。具体的には、第2磁気センサ50は、右側壁に固定されている。本実施の形態においては、第2磁気センサ50は、第2コイル32の内側に配置されている。ただし、第2磁気センサ50は、第2磁石31と対向する領域内であれば、第2コイル32の外側に配置されていてもよい。本実施の形態においては、第2磁気センサ50は、光学反射素子2が基準位置にあるときの第2回動軸B上に配置されている。第2磁気センサ50は、光学反射素子2が第1回動軸Aを中心に回動する際に移動する第2磁石31から印加される第2磁界を検出する。 As shown in FIGS. 2 and 3, the second magnetic sensor 50 is fixed in the region facing the second magnet 31. Specifically, the second magnetic sensor 50 is fixed to the right wall. In the present embodiment, the second magnetic sensor 50 is arranged inside the second coil 32. However, the second magnetic sensor 50 may be arranged outside the second coil 32 as long as it is in the region facing the second magnet 31. In the present embodiment, the second magnetic sensor 50 is arranged on the second rotation axis B when the optical reflection element 2 is in the reference position. The second magnetic sensor 50 detects a second magnetic field applied from the second magnet 31 that moves when the optical reflection element 2 rotates about the first rotation axis A.
 図4は、本発明の一実施の形態に係る位置検出装置が備える第1磁気センサの感磁面に作用する第1磁界の基準角に対する位相を示す図である。図4に示すように、第1磁気センサ40の感磁面は、Y軸方向およびZ軸方向の各々に沿っている。第1磁気センサ40は、第1磁石11から印加される第1磁界M1を検出する。光学反射素子2が第2回動軸Bを中心に回動して、第1磁気センサ40に対する第1磁石11の相対的な位置が変化することによって、第1磁気センサ40の中心Pcを通過する基準角Rに対する第1磁界M1の位相θが変位する。 FIG. 4 is a diagram showing the phase of the first magnetic field acting on the magnetically sensitive surface of the first magnetic sensor included in the position detection device according to the embodiment of the present invention with respect to the reference angle. As shown in FIG. 4, the magnetically sensitive surface of the first magnetic sensor 40 is along each of the Y-axis direction and the Z-axis direction. The first magnetic sensor 40 detects the first magnetic field M1 applied from the first magnet 11. The optical reflection element 2 rotates about the second rotation axis B and changes the relative position of the first magnet 11 with respect to the first magnetic sensor 40, thereby passing through the center Pc of the first magnetic sensor 40. The phase θ of the first magnetic field M1 is displaced with respect to the reference angle R.
 図5は、本発明の一実施の形態に係る位置検出装置が備える第2磁気センサの感磁面に作用する第2磁界の基準角に対する位相を示す図である。図5に示すように、第2磁気センサ50の感磁面は、X軸方向およびZ軸方向の各々に沿っている。第2磁気センサ50は、第2磁石31から印加される第2磁界M2を検出する。光学反射素子2が第1回動軸Aを中心に回動して、第2磁気センサ50に対する第2磁石31の相対的な位置が変化することによって、第2磁気センサ50の中心Pcを通過する基準角Rに対する第2磁界M2の位相θが変位する。 FIG. 5 is a diagram showing the phase of the second magnetic field acting on the magnetically sensitive surface of the second magnetic sensor included in the position detection device according to the embodiment of the present invention with respect to the reference angle. As shown in FIG. 5, the magnetically sensitive surface of the second magnetic sensor 50 is along each of the X-axis direction and the Z-axis direction. The second magnetic sensor 50 detects the second magnetic field M2 applied from the second magnet 31. The optical reflection element 2 rotates about the first rotation axis A and changes the relative position of the second magnet 31 with respect to the second magnetic sensor 50, thereby passing through the center Pc of the second magnetic sensor 50. The phase θ of the second magnetic field M2 is displaced with respect to the reference angle R.
 図6は、本発明の一実施の形態に係る位置検出装置において、磁気センサに印加される磁界の基準角に対する位相と、磁気センサの出力との関係を示すグラフである。図6においては、縦軸に、第1磁気センサ40および第2磁気センサ50の各々の出力(Vout)、横軸に、第1磁気センサ40および第2磁気センサ50の各々に印加される磁界M1,M2の基準角に対する位相θ(deg)を示している。なお、図6においては、磁界M1,M2の基準角Rに対する位相θに関わらず、磁気センサを構成する磁気抵抗効果素子に飽和磁界以上の磁界M1,M2が印加されている場合の、第1磁気センサ40および第2磁気センサ50の各々の出力(Vout)の推移を示している。 FIG. 6 is a graph showing the relationship between the phase of the magnetic field applied to the magnetic sensor with respect to the reference angle and the output of the magnetic sensor in the position detection device according to the embodiment of the present invention. In FIG. 6, the vertical axis is the output (Vout) of each of the first magnetic sensor 40 and the second magnetic sensor 50, and the horizontal axis is the magnetic field applied to each of the first magnetic sensor 40 and the second magnetic sensor 50. The phase θ (deg) with respect to the reference angle of M1 and M2 is shown. In FIG. 6, regardless of the phase θ with respect to the reference angle R of the magnetic fields M1 and M2, the first case where the magnetic fields M1 and M2 equal to or higher than the saturated magnetic field are applied to the magnetoresistive effect element constituting the magnetic sensor. The transition of each output (Vout) of the magnetic sensor 40 and the second magnetic sensor 50 is shown.
 図6に示すように、第1磁気センサ40および第2磁気センサ50の各々の出力(Vout)は、第1磁気センサ40および第2磁気センサ50の各々に印加される磁界M1,M2の基準角Rに対する位相θとの間において、Vout=sinθの関係を満たす。 As shown in FIG. 6, the output (Vout) of each of the first magnetic sensor 40 and the second magnetic sensor 50 is a reference of the magnetic fields M1 and M2 applied to each of the first magnetic sensor 40 and the second magnetic sensor 50. The relationship of Vout = sin θ is satisfied with the phase θ with respect to the angle R.
 第1磁気センサ40および第2磁気センサ50の各々の出力(Vout)が磁界M1,M2の基準角Rに対する位相θに対して線形性を有している範囲において、第1磁気センサ40および第2磁気センサ50の各々によって磁界M1,M2の基準角Rに対する位相θを検出することが可能である。すなわち、sin曲線において湾曲している頂点部以外の略直線状傾斜部の範囲において、第1磁気センサ40および第2磁気センサ50の各々によって磁界M1,M2の基準角Rに対する位相θを検出することができる。 To the extent that the outputs (Vouts) of the first magnetic sensor 40 and the second magnetic sensor 50 are linear with respect to the phase θ with respect to the reference angle R of the magnetic fields M1 and M2, the first magnetic sensor 40 and the second magnetic sensor 50 It is possible to detect the phase θ with respect to the reference angle R of the magnetic fields M1 and M2 by each of the two magnetic sensors 50. That is, the phase θ with respect to the reference angle R of the magnetic fields M1 and M2 is detected by each of the first magnetic sensor 40 and the second magnetic sensor 50 in the range of the substantially linear inclined portion other than the curved apex portion in the sin curve. be able to.
 一方、θ=90°またはθ=-90°のときは、第1磁気センサ40および第2磁気センサ50の各々の出力(Vout)が磁界M1,M2の基準角Rに対する位相θに対して線形性を有さないため、第1磁気センサ40および第2磁気センサ50の各々によって磁界M1,M2の基準角Rに対する位相θを検出することができない。 On the other hand, when θ = 90 ° or θ = −90 °, the outputs (Vouts) of the first magnetic sensor 40 and the second magnetic sensor 50 are linear with respect to the phase θ with respect to the reference angle R of the magnetic fields M1 and M2. Since it has no property, the phase θ with respect to the reference angle R of the magnetic fields M1 and M2 cannot be detected by each of the first magnetic sensor 40 and the second magnetic sensor 50.
 図7は、本発明の一実施の形態に係る位置検出装置が備える第1磁気センサおよび第2磁気センサの各々の構成を示す図である。図8は、本発明の一実施の形態に係る位置検出装置が備える第1磁気センサおよび第2磁気センサの各々の回路構成を示す図である。 FIG. 7 is a diagram showing the configurations of each of the first magnetic sensor and the second magnetic sensor included in the position detection device according to the embodiment of the present invention. FIG. 8 is a diagram showing each circuit configuration of the first magnetic sensor and the second magnetic sensor included in the position detection device according to the embodiment of the present invention.
 図7および図8に示すように、第1磁気センサ40および第2磁気センサ50の各々は、ブリッジ回路を構成する複数の磁気抵抗効果素子を有している。本発明の一実施の形態においては、第1磁気センサ40および第2磁気センサ50の各々は、第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4を有している。 As shown in FIGS. 7 and 8, each of the first magnetic sensor 40 and the second magnetic sensor 50 has a plurality of magnetoresistive effect elements constituting the bridge circuit. In one embodiment of the present invention, each of the first magnetic sensor 40 and the second magnetic sensor 50 is the first magnetoresistive sensor MR1, the second magnetoresistive sensor MR2, the third magnetoresistive element MR3, and the first. It has 4 magnetoresistive effect elements MR4.
 具体的には、図7に示すように、第1磁気センサ40および第2磁気センサ50の各々においては、第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の各々が、センサ基板Sbの上面に設けられている。センサ基板Sb上には、電源端子Vcc、接地端子GND、第1出力端子V+および第2出力端子V-が設けられている。第1磁界M1は、第1磁気センサ40に対して、センサ基板Sbの上面に位置する感磁面に沿う方向に印加される。第2磁界M2は、第2磁気センサ50に対して、センサ基板Sbの上面に位置する感磁面に沿う方向に印加される。 Specifically, as shown in FIG. 7, in each of the first magnetic sensor 40 and the second magnetic sensor 50, the first magnetoresistive sensor MR1, the second magnetoresistive sensor MR2, and the third magnetoresistive element Each of MR3 and the fourth magnetoresistive sensor MR4 is provided on the upper surface of the sensor substrate Sb. A power supply terminal Vcc, a ground terminal GND, a first output terminal V +, and a second output terminal V- are provided on the sensor board Sb. The first magnetic field M1 is applied to the first magnetic sensor 40 in the direction along the magnetically sensitive surface located on the upper surface of the sensor substrate Sb. The second magnetic field M2 is applied to the second magnetic sensor 50 in the direction along the magnetically sensitive surface located on the upper surface of the sensor substrate Sb.
 第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4は、互いに電気的に接続されてホイートストンブリッジ型のブリッジ回路を構成している。なお、第1磁気センサ40および第2磁気センサ50の各々は、第1磁気抵抗効果素子MR1および第2磁気抵抗効果素子MR2で構成されるハーフブリッジ回路を有していてもよい。 The first magnetoresistive sensor MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 are electrically connected to each other to form a Wheatstone bridge type bridge circuit. There is. Each of the first magnetic sensor 40 and the second magnetic sensor 50 may have a half-bridge circuit composed of the first magnetoresistive sensor MR1 and the second magnetoresistive element MR2.
 第1磁気抵抗効果素子MR1および第2磁気抵抗効果素子MR2の直列接続体と、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の直列接続体とが、電源端子Vccと接地端子GNDとの間に並列接続されている。第1磁気抵抗効果素子MR1と第2磁気抵抗効果素子MR2との接続点には、第1出力端子V+が接続されている。第3磁気抵抗効果素子MR3と第4磁気抵抗効果素子MR4との接続点には、第2出力端子V-が接続されている。 The series connection of the first magnetoresistive element MR1 and the second magnetoresistive element MR2 and the series connection of the third magnetoresistive element MR3 and the fourth magnetoresistive element MR4 are the power supply terminal Vcc and the ground terminal GND. It is connected in parallel with. The first output terminal V + is connected to the connection point between the first magnetoresistive sensor MR1 and the second magnetoresistive element MR2. A second output terminal V-is connected to a connection point between the third magnetoresistive sensor MR3 and the fourth magnetoresistive sensor MR4.
 第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の各々は、TMR(Tunnel Magneto Resistance)素子である。 Each of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 is a TMR (Tunnel Magneto Resistance) element.
 第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の各々の外形は略矩形状である。第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4は、全体として略正方形状である。この正方形の中心に、第1磁気センサ40および第2磁気センサ50の各々の中心Pcが位置している。 The outer shape of each of the first magnetoresistive effect element MR1, the second magnetoresistive effect element MR2, the third magnetoresistive effect element MR3, and the fourth magnetoresistive effect element MR4 is substantially rectangular. The first magnetoresistive effect element MR1, the second magnetoresistive effect element MR2, the third magnetoresistive effect element MR3, and the fourth magnetoresistive effect element MR4 have a substantially square shape as a whole. At the center of this square, the center Pc of each of the first magnetic sensor 40 and the second magnetic sensor 50 is located.
 図9は、図7のIX部を拡大して示す斜視図である。図10は、図9のX-X線矢印方向から見た断面図である。図9に示すように、第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の各々は、複数のTMR素子100が直列に接続されて構成されている。複数のTMR素子100は、マトリックス状に設けられている。 FIG. 9 is an enlarged perspective view showing the IX portion of FIG. 7. FIG. 10 is a cross-sectional view taken from the direction of the XX line arrow of FIG. As shown in FIG. 9, each of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 has a plurality of TMR elements 100 in series. It is connected and configured. The plurality of TMR elements 100 are provided in a matrix.
 具体的には、積層されて互いに直列に接続された複数のTMR素子100によって、多層素子100bが構成されている。互いに直列に接続された複数の多層素子100bによって、素子列100cが構成されている。複数の素子列100cは、一端と他端とで交互にリード200によって接続されている。これにより、第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の各々において、複数のTMR素子100が電気的に直列に接続されている。 Specifically, the multilayer element 100b is composed of a plurality of TMR elements 100 that are laminated and connected in series with each other. The element row 100c is composed of a plurality of multilayer elements 100b connected in series with each other. The plurality of element trains 100c are alternately connected by leads 200 at one end and the other end. As a result, a plurality of TMR elements 100 are electrically connected in series in each of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4. Has been done.
 図9に示すように、多層素子100bにおいて下側に位置するTMR素子100の上部電極層180と、上側に位置するTMR素子100の下部電極層110とが、中間電極層190として一体で構成されている。すなわち、多層素子100b内において互いに隣接するTMR素子100における上部電極層180と下部電極層110とは、中間電極層190として一体で構成されている。 As shown in FIG. 9, the upper electrode layer 180 of the TMR element 100 located on the lower side of the multilayer element 100b and the lower electrode layer 110 of the TMR element 100 located on the upper side are integrally configured as the intermediate electrode layer 190. ing. That is, the upper electrode layer 180 and the lower electrode layer 110 in the TMR element 100 adjacent to each other in the multilayer element 100b are integrally configured as the intermediate electrode layer 190.
 図10に示すように、第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の各々のTMR素子100は、下部電極層110と、反強磁性層120と、第1リファレンス層130と、非磁性中間層140と、第2リファレンス層150と、トンネルバリア層160と、フリー層170と、上部電極層180とからなる積層構造を有する。 As shown in FIG. 10, each TMR element 100 of the first magnetoresistive element MR1, the second magnetoresistive element MR2, the third magnetoresistive element MR3, and the fourth magnetoresistive element MR4 has a lower electrode layer 110. , A laminated structure including a antiferromagnetic layer 120, a first reference layer 130, a non-magnetic intermediate layer 140, a second reference layer 150, a tunnel barrier layer 160, a free layer 170, and an upper electrode layer 180. Has.
 下部電極層110は、たとえば、TaとCuとを含む金属層または金属化合物層を含む。反強磁性層120は、下部電極層110の上に設けられ、たとえば、IrMn、PtMn、FeMn、NiMn、RuRhMnまたはCrPtMnなどの金属化合物層を含む。第1リファレンス層130は、反強磁性層120の上に設けられ、たとえば、CoFeなどの強磁性層を含む。 The lower electrode layer 110 includes, for example, a metal layer containing Ta and Cu or a metal compound layer. The antiferromagnetic layer 120 is provided on the lower electrode layer 110 and includes, for example, a metal compound layer such as IrMn, PtMn, FeMn, NiMn, RuRhMn or CrPtMn. The first reference layer 130 is provided on the antiferromagnetic layer 120 and includes, for example, a ferromagnetic layer such as CoFe.
 非磁性中間層140は、第1リファレンス層130の上に設けられ、たとえば、Ru、Cr、Rh、IrおよびReのうち少なくとも1つから選ばれる、またはこれらの金属のうち2つ以上の合金からなる層を含む。第2リファレンス層150は、非磁性中間層140の上に設けられ、たとえば、CoFeまたはCoFeBなどの強磁性層を含む。 The non-magnetic intermediate layer 140 is provided on top of the first reference layer 130 and is selected from, for example, at least one of Ru, Cr, Rh, Ir and Re, or an alloy of two or more of these metals. Includes a layer of The second reference layer 150 is provided on the non-magnetic intermediate layer 140 and includes, for example, a ferromagnetic layer such as CoFe or CoFeB.
 トンネルバリア層160は、第2リファレンス層150の上に設けられ、酸化マグネシウムなど、Mg、Al、Ti、Zn、Hf、GeおよびSiの少なくとも1つまたは2つ以上を含有する酸化物からなる層を含む。フリー層170は、トンネルバリア層160の上に設けられ、たとえば、CoFeB、もしくは、Co、FeおよびNiなどの少なくとも1つまたは2つ以上の合金からなる層を含む。上部電極層180は、フリー層170の上に設けられ、たとえば、Ta、RuまたはCuなどの金属層を含む。 The tunnel barrier layer 160 is provided on the second reference layer 150 and is a layer made of an oxide containing at least one or two or more of Mg, Al, Ti, Zn, Hf, Ge and Si such as magnesium oxide. including. The free layer 170 is provided on top of the tunnel barrier layer 160 and includes, for example, CoFeB or a layer made of at least one or more alloys such as Co, Fe and Ni. The upper electrode layer 180 is provided on the free layer 170 and includes, for example, a metal layer such as Ta, Ru or Cu.
 第1磁気抵抗効果素子MR1および第4磁気抵抗効果素子MR4の各々のピン層の磁化方向と、第2磁気抵抗効果素子MR2および第3磁気抵抗効果素子MR3の各々のピン層の磁化方向とが、互いに180°反対になっている。 The magnetization direction of each pin layer of the first magnetoresistive sensor MR1 and the fourth magnetoresistive element MR4 and the magnetization direction of each pin layer of the second magnetoresistive element MR2 and the third magnetoresistive element MR3 are , 180 ° opposite to each other.
 なお、第1磁気抵抗効果素子MR1、第2磁気抵抗効果素子MR2、第3磁気抵抗効果素子MR3および第4磁気抵抗効果素子MR4の各々は、TMR素子に代えて、GMR(Giant Magneto Resistance)素子またはAMR(Anisotropic Magneto Resistance)素子などの磁気抵抗効果素子を有していてもよい。 In addition, each of the first magnetic resistance effect element MR1, the second magnetic resistance effect element MR2, the third magnetic resistance effect element MR3, and the fourth magnetic resistance effect element MR4 replaces the TMR element with a GMR (Giant Magneto Resistance) element. Alternatively, it may have a magnetoresistive effect element such as an AMR (Anisotropic Magneto Resistance) element.
 本発明の一実施の形態に係る位置検出装置1においては、第2ボイスコイルモータ30によって光学反射素子2が第2回動軸Bを中心に回動する際に移動する第1ボイスコイルモータ10の第1磁石11から印加される第1磁界を第1磁気センサ40によって検出することにより、光学反射素子2の第2回動軸B周りの回動角度を検出することができる。また、位置検出装置1においては、第1ボイスコイルモータ10,20によって光学反射素子2が第1回動軸Aを中心に回動する際に移動する第2ボイスコイルモータ30の第2磁石31から印加される第2磁界を第2磁気センサ50によって検出することにより、光学反射素子2の第1回動軸A周りの回動角度を検出することができる。 In the position detection device 1 according to the embodiment of the present invention, the first voice coil motor 10 moves when the optical reflection element 2 is rotated about the second rotation axis B by the second voice coil motor 30. By detecting the first magnetic field applied from the first magnet 11 of the above by the first magnetic sensor 40, the rotation angle of the optical reflecting element 2 around the second rotation axis B can be detected. Further, in the position detection device 1, the second magnet 31 of the second voice coil motor 30 that moves when the optical reflection element 2 is rotated around the first rotation axis A by the first voice coil motors 10 and 20. By detecting the second magnetic field applied from the above by the second magnetic sensor 50, the rotation angle of the optical reflection element 2 around the first rotation axis A can be detected.
 これにより、ボイスコイルモータを構成する磁石とは別の位置検出用磁石を用いる必要がなく、位置検出装置1を簡易な構成にして小型化することができる。 As a result, it is not necessary to use a magnet for position detection different from the magnet constituting the voice coil motor, and the position detection device 1 can be miniaturized with a simple configuration.
 本実施の形態においては、第1磁気センサ40および第2磁気センサ50の各々は、ブリッジ回路を構成する複数の磁気抵抗素子を有している。これにより、感磁面内の磁界の方向に基づいた出力値を得ることができる。その結果、ホール素子を有する磁気センサを用いた場合に比較して、位置検出装置1における光学反射素子2の回動角度の検出可能範囲を広くすることができる。ひいては、手振れ補正機能における補正可能範囲を広くすることができる。 In the present embodiment, each of the first magnetic sensor 40 and the second magnetic sensor 50 has a plurality of magnetoresistive elements constituting the bridge circuit. This makes it possible to obtain an output value based on the direction of the magnetic field in the magnetic field. As a result, the detectable range of the rotation angle of the optical reflection element 2 in the position detection device 1 can be widened as compared with the case of using a magnetic sensor having a Hall element. As a result, the correctable range of the image stabilization function can be widened.
 本実施の形態においては、第1磁気センサ40は、第1コイル12の内側に配置されている。第2磁気センサ50は、第2コイル32の内側に配置されている。これにより、第1コイル12および第2コイル32を配置するスペースに、第1磁気センサ40および第2磁気センサ50も配置することができるため、位置検出装置1を小型化することができる。 In the present embodiment, the first magnetic sensor 40 is arranged inside the first coil 12. The second magnetic sensor 50 is arranged inside the second coil 32. As a result, the first magnetic sensor 40 and the second magnetic sensor 50 can also be arranged in the space where the first coil 12 and the second coil 32 are arranged, so that the position detection device 1 can be miniaturized.
 本実施の形態においては、第1磁気センサ40は、光学反射素子2が基準位置にあるときの第1回動軸A上に配置されている。第2磁気センサ50は、光学反射素子2が基準位置にあるときの第2回動軸B上に配置されている。これにより、第1磁気センサ40によって光学反射素子2の第2回動軸B周りの回動角度を0度を中心とした図6に示す線形性の良好な範囲で検出することができるため、位置検出装置1における光学反射素子2の第2回動軸B周りの回動角度の検出可能範囲を広くすることができる。また、第2磁気センサ50によって光学反射素子2の第1回動軸A周りの回動角度を0度を中心とした図6に示す線形性の良好な範囲で検出することができるため、位置検出装置1における光学反射素子2の第1回動軸A周りの回動角度の検出可能範囲を広くすることができる。 In the present embodiment, the first magnetic sensor 40 is arranged on the first rotation axis A when the optical reflection element 2 is in the reference position. The second magnetic sensor 50 is arranged on the second rotation axis B when the optical reflection element 2 is in the reference position. As a result, the first magnetic sensor 40 can detect the rotation angle of the optical reflection element 2 around the second rotation axis B within a range of good linearity shown in FIG. 6 centered on 0 degrees. The detectable range of the rotation angle of the optical reflection element 2 around the second rotation axis B in the position detection device 1 can be widened. Further, since the second magnetic sensor 50 can detect the rotation angle of the optical reflection element 2 around the first rotation axis A within a range of good linearity shown in FIG. 6 centered on 0 degrees, the position. The detectable range of the rotation angle around the first rotation axis A of the optical reflection element 2 in the detection device 1 can be widened.
 本実施の形態においては、第1ボイスコイルモータ10,20は、光学反射素子2を互いの間に挟むように1対で構成されている。これにより、光学反射素子2を第1回動軸A周りに安定して精度よく回動させることが可能である。 In the present embodiment, the first voice coil motors 10 and 20 are configured as a pair so as to sandwich the optical reflection element 2 between them. As a result, the optical reflection element 2 can be stably and accurately rotated around the first rotation axis A.
 上述した実施の形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。 In the description of the above-described embodiment, the configurations that can be combined may be combined with each other.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 位置検出装置、2 光学反射素子、2r 反射面、3 アクチュエータ部、4 イメージセンサ、10,20 第1ボイスコイルモータ、11,21 第1磁石、12,22 第1コイル、30 第2ボイスコイルモータ、31 第2磁石、32 第2コイル、40 第1磁気センサ、50 第2磁気センサ、100 TMR素子、100b 多層素子、100c 素子列、110 下部電極層、120 反強磁性層、130 第1リファレンス層、140 非磁性中間層、150 第2リファレンス層、160 トンネルバリア層、170 フリー層、180 上部電極層、190 中間電極層、200 リード、A 第1回動軸、B 第2回動軸、C 光軸方向、GND 接地端子、La,Lb,Lc 光、M1 第1磁界、M2 第2磁界、MR1 第1磁気抵抗効果素子、MR2 第2磁気抵抗効果素子、MR3 第3磁気抵抗効果素子、MR4 第4磁気抵抗効果素子、Pc 中心、R 基準角、Sb センサ基板、V+ 第1出力端子、V- 第2出力端子、Vcc 電源端子。 1 position detector, 2 optical reflective element, 2r reflective surface, 3 actuator section, 4 image sensor, 10,20 first voice coil motor, 11 and 21 first magnet, 12, 22 first coil, 30 second voice coil Motor, 31 2nd magnet, 32 2nd coil, 40 1st magnetic sensor, 50 2nd magnetic sensor, 100 TMR element, 100b multi-layer element, 100c element row, 110 lower electrode layer, 120 anti-ferrometric layer, 130 1st Reference layer, 140 non-magnetic intermediate layer, 150 second reference layer, 160 tunnel barrier layer, 170 free layer, 180 upper electrode layer, 190 intermediate electrode layer, 200 leads, A first rotation axis, B second rotation axis , C optical axis direction, GND ground terminal, La, Lb, Lc optical, M1 first magnetic field, M2 second magnetic field, MR1 first magnetic resistance effect element, MR2 second magnetic resistance effect element, MR3 third magnetic resistance effect element , MR4 4th magnetic resistance effect element, Pc center, R reference angle, Sb sensor board, V + 1st output terminal, V-2nd output terminal, Vcc power supply terminal.

Claims (5)

  1.  基準位置にあるときに入射した光を光軸方向に反射し、前記光軸方向に対して直交する第1回動軸、並びに、前記光軸方向および前記第1回動軸の各々に対して直交する第2回動軸の、各々を中心に回動可能に設けられた光学反射素子と、
     前記光学反射素子に固定された第1磁石および該第1磁石と相対して固定配置された第1コイルを含み、前記第1回動軸を中心に前記光学反射素子を回動させる第1ボイスコイルモータと、
     前記光学反射素子に固定された第2磁石および該第2磁石と相対して固定配置された第2コイルを含み、前記第2回動軸を中心に前記光学反射素子を回動させる第2ボイスコイルモータと、
     前記第1磁石と対向する領域内に固定されており、前記光学反射素子が前記第2回動軸を中心に回動する際に移動する前記第1磁石から印加される第1磁界を検出可能な第1磁気センサと、
     前記第2磁石と対向する領域内に固定されており、前記光学反射素子が前記第1回動軸を中心に回動する際に移動する前記第2磁石から印加される第2磁界を検出可能な第2磁気センサとを備える、位置検出装置。
    The light incident on the reference position is reflected in the optical axis direction, and the first rotation axis orthogonal to the optical axis direction, and each of the optical axis direction and the first rotation axis. An optical reflection element rotatably provided around each of the orthogonal second rotation axes, and
    A first voice that includes a first magnet fixed to the optical reflection element and a first coil fixedly arranged relative to the first magnet, and rotates the optical reflection element around the first rotation axis. With a coil motor
    A second voice that includes a second magnet fixed to the optical reflection element and a second coil fixedly arranged relative to the second magnet, and rotates the optical reflection element around the second rotation axis. With a coil motor
    It is fixed in the region facing the first magnet, and can detect the first magnetic field applied from the first magnet that moves when the optical reflecting element rotates about the second rotation axis. 1st magnetic sensor and
    It is fixed in the region facing the second magnet, and can detect the second magnetic field applied from the second magnet that moves when the optical reflecting element rotates about the first rotation axis. A position detection device including a second magnetic sensor.
  2.  前記第1磁気センサおよび前記第2磁気センサの各々は、ブリッジ回路を構成する複数の磁気抵抗効果素子を有している、請求項1に記載の位置検出装置。 The position detection device according to claim 1, wherein each of the first magnetic sensor and the second magnetic sensor has a plurality of magnetoresistive effect elements constituting a bridge circuit.
  3.  前記第1磁気センサは、前記第1コイルの内側に配置されており、
     前記第2磁気センサは、前記第2コイルの内側に配置されている、請求項1または請求項2に記載の位置検出装置。
    The first magnetic sensor is arranged inside the first coil.
    The position detection device according to claim 1 or 2, wherein the second magnetic sensor is arranged inside the second coil.
  4.  前記第1磁気センサは、前記光学反射素子が前記基準位置にあるときの前記第1回動軸上に配置されており、
     前記第2磁気センサは、前記光学反射素子が前記基準位置にあるときの前記第2回動軸上に配置されている、請求項3に記載の位置検出装置。
    The first magnetic sensor is arranged on the first rotation axis when the optical reflection element is in the reference position.
    The position detection device according to claim 3, wherein the second magnetic sensor is arranged on the second rotation axis when the optical reflection element is in the reference position.
  5.  前記第1ボイスコイルモータは、前記光学反射素子を互いの間に挟むように1対で構成されている、請求項1から請求項4のいずれか1項に記載の位置検出装置。 The position detection device according to any one of claims 1 to 4, wherein the first voice coil motor is configured as a pair so as to sandwich the optical reflection element between them.
PCT/JP2021/032324 2020-11-27 2021-09-02 Position detection device WO2022113463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-196562 2020-11-27
JP2020196562 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113463A1 true WO2022113463A1 (en) 2022-06-02

Family

ID=81754474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032324 WO2022113463A1 (en) 2020-11-27 2021-09-02 Position detection device

Country Status (1)

Country Link
WO (1) WO2022113463A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174605A (en) * 2010-03-12 2013-09-05 Alps Electric Co Ltd Brushless motor
JP2015011353A (en) * 2013-07-01 2015-01-19 台湾東電化股▲ふん▼有限公司 Optical anti-shake mechanism with switchable light path
WO2017110341A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Vibration-proofing device and binoculars
US20200218082A1 (en) * 2019-01-09 2020-07-09 Samsung Electro-Mechanics Co., Ltd. Camera module
CN111698408A (en) * 2020-06-22 2020-09-22 南昌欧菲光电技术有限公司 Camera module and vehicle-mounted equipment and electronic equipment with same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174605A (en) * 2010-03-12 2013-09-05 Alps Electric Co Ltd Brushless motor
JP2015011353A (en) * 2013-07-01 2015-01-19 台湾東電化股▲ふん▼有限公司 Optical anti-shake mechanism with switchable light path
WO2017110341A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Vibration-proofing device and binoculars
US20200218082A1 (en) * 2019-01-09 2020-07-09 Samsung Electro-Mechanics Co., Ltd. Camera module
CN111698408A (en) * 2020-06-22 2020-09-22 南昌欧菲光电技术有限公司 Camera module and vehicle-mounted equipment and electronic equipment with same

Similar Documents

Publication Publication Date Title
JP5267652B2 (en) Angle detection device and position detection device
JP6661215B2 (en) Position detection device and camera module
US7193411B2 (en) Angle sensor having low waveform distortion
JP6517302B1 (en) Position detection device
US20060261802A1 (en) Magnetic sensor for pointing device
US20230118423A1 (en) Position detector
JP2018179776A (en) Thin film magnetic sensor
WO2022113463A1 (en) Position detection device
JP4229877B2 (en) Magnetic detector
JP7058630B2 (en) Magnetic sensor device
WO2022004227A1 (en) Position detecting device
JP4331630B2 (en) Magnetic sensor
US20150198430A1 (en) Magnetism detection element and rotation detector
WO2022070626A1 (en) Position detection device
JP2019117184A (en) Magnetic sensor
WO2021044769A1 (en) Lens-driving device
WO2022004428A1 (en) Position detector
WO2009147988A1 (en) Position detecting device and lens device using the same
WO2022004427A1 (en) Position detection device
JP7088222B2 (en) Position detector, camera module and rotary actuator
JP6848943B2 (en) Rotation detection system
WO2009147987A1 (en) Position detecting device and lens device using the same
JP2009281938A (en) Magnetic sensor and magnetic encoder
JP2009258042A (en) Rotation detecting device
JP2009041949A (en) Magnetic acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP