WO2022113417A1 - Generator - Google Patents

Generator Download PDF

Info

Publication number
WO2022113417A1
WO2022113417A1 PCT/JP2021/026181 JP2021026181W WO2022113417A1 WO 2022113417 A1 WO2022113417 A1 WO 2022113417A1 JP 2021026181 W JP2021026181 W JP 2021026181W WO 2022113417 A1 WO2022113417 A1 WO 2022113417A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
tubular member
rotating
generator
holder
Prior art date
Application number
PCT/JP2021/026181
Other languages
French (fr)
Japanese (ja)
Inventor
高良 林
Original Assignee
ヤマウチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020194452A external-priority patent/JP6868926B1/en
Priority claimed from JP2021064245A external-priority patent/JP2022159821A/en
Application filed by ヤマウチ株式会社 filed Critical ヤマウチ株式会社
Publication of WO2022113417A1 publication Critical patent/WO2022113417A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems

Definitions

  • the present invention relates to a generator.
  • Patent Document 1 discloses a vibration dynamo power generation device including an external magnet fixed to a pedal portion of a bicycle and a current generator fixed to a body portion of the bicycle and accommodating a spherical magnet inside.
  • the vibration dynamo device of Patent Document 1 since the current generator is arranged on the rotation trajectory of the external magnet, the spherical magnet inside the current generator vibrates and generates electricity just by rotating the pedal portion.
  • the vibration dynamo device disclosed in Patent Document 1 generates electricity by vibrating the spherical magnet inside the current generator due to the orbital motion of the external magnet around the rotation axis of the pedal portion. Therefore, the electric power obtained for the labor required for the rotation of the pedal portion is relatively small, and improvement in power generation efficiency is desired.
  • An object of the present invention is to provide a generator with high power generation efficiency.
  • the generator includes a holder having a storage space, a rotating shaft rotatably supported by the holder, a rotating magnet arranged in the storage space of the holder and fixed to the rotating shaft, and a holder.
  • the tubular member is provided close to the rotating magnet, and the magnetic material is a spherical magnet that rotates on its axis in response to the magnetic force from the rotating magnet.
  • the axis of rotation of the spherical magnet is parallel to the axis of rotation.
  • the rotation axis of the spherical magnet intersects the circumferential orbital plane of the coil.
  • the rotating magnet is a cylindrical magnet.
  • one end surface of the tubular member is close to the rotating magnet, and the central axis of the tubular member is orthogonal to the axis of rotation.
  • a spacer made of a non-magnetic material for locating the spherical magnet at the center of the tubular member is arranged in the tubular member.
  • the outer peripheral surface of the coil wound around the tubular member is close to the axis of rotation, and the central axis of the tubular member extends in a direction perpendicular to the axis of rotation at a position that does not intersect the axis of rotation.
  • the central axis of the tubular member extends in a direction perpendicular to the axis of rotation at a position that does not intersect the axis of rotation.
  • the current generating portion including the tubular member, the coil, and the spherical magnet includes a first current generating portion and a second current generating portion provided at rotationally symmetric positions about the rotation axis.
  • the spherical magnet includes a first spherical magnet arranged in the tubular member of the first current generating portion and a second spherical magnet arranged in the tubular member of the second current generating portion.
  • the cylindrical rotating magnet is magnetized in two poles in the circumferential direction
  • the spherical magnet is magnetized in two poles with a plane including the rotation axis of the spherical magnet as a boundary.
  • the tubular member is arranged such that one end is close to the rotating magnet and the other end is away from the rotating magnet, so that the magnetic body receives the magnetic force from the rotating magnet and reverses the direction of magnetism.
  • It is a magnetic core of a soft magnetic material that repeats.
  • it further comprises a yoke of soft magnetic material that abuts on at least one end or the other end of the magnetic core and is held in the holder.
  • the current generating portion including the cylindrical member, the coil, and the magnetic core includes a first current generating portion and a second current generating portion provided at rotationally symmetric positions about the rotation axis.
  • the tubular member has one end and the other end, the outer peripheral surface thereof is arranged close to the rotating magnet, and the magnetic body receives the magnetic force from the rotating magnet and reverses the direction of magnetism.
  • a magnetic core of a soft magnetic material that repeats the above steps, and the generator further comprises a yoke of the soft magnetic material that abuts on one end and the other end of the magnetic core and is held in a holder.
  • the outer peripheral surface of the coil wound around the tubular member is close to the axis of rotation, and the central axis of the tubular member extends in a direction perpendicular to the axis of rotation at a position that does not intersect the axis of rotation.
  • the central axis of the tubular member extends in a direction perpendicular to the axis of rotation at a position that does not intersect the axis of rotation.
  • the current generating portion including the cylindrical member, the coil, the magnetic core, and the yoke has a first current generating portion and a second current generating portion provided at rotationally symmetric positions about the rotation axis. include.
  • the rotating magnet is a cylindrical magnet and is magnetized in two poles in the circumferential direction.
  • the rotating shaft has at least one end exposed to the outside of the holder and a pinion at one end exposed from the holder.
  • the power generation efficiency can be improved by using a rotating magnet that rotates around a rotating shaft and a spherical magnet that rotates by receiving a magnetic force from the rotating magnet.
  • a rotating magnet that rotates about a rotation axis and a magnetic core of a soft magnetic material that repeatedly reverses the direction of magnetism by receiving a magnetic force from the rotating magnet are used. Therefore, the power generation efficiency can be improved.
  • Embodiment 1 of this invention It is a perspective view of the generator in Embodiment 1 of this invention. It is sectional drawing of the generator in Embodiment 1 of this invention, (a) is the front vertical sectional view, (b) is the sectional view along line IIb-IIb in FIG. 2 (a). It is a perspective view of the generator in Embodiment 2 of this invention. 2 is a cross-sectional view of the generator according to the second embodiment of the present invention, (a) is a vertical cross-sectional view, and (b) is a cross-sectional view taken along the line IVb-IVb in FIG. 4 (a). It is a perspective view of the generator in Embodiment 3 of this invention. It is sectional drawing of the generator in Embodiment 3 of this invention.
  • the generator 1 is arranged in a holder 2 having a storage space, a rotating shaft 3 rotatably supported by the holder 2, and a storage space of the holder 2.
  • a rotating magnet 4 fixed to the rotating shaft 3, a non-magnetic tubular member 7 held in the holder 2, a coil 8 arranged on the outer periphery of the tubular member 7, and arranged in the tubular member 7.
  • a magnetic body 6 that changes the direction of a magnetic field that affects the coil 8 by receiving a magnetic force from the rotating magnet 4 is provided.
  • the magnetic body 6 is a spherical magnet 6 that rotates on its axis in response to a magnetic force from the rotating magnet 4.
  • the magnetic body 6 is a magnetic core 106 made of a soft magnetic material that repeatedly inverts the direction of magnetism by receiving a magnetic force from a rotating magnet 104.
  • the generator 1 according to the present invention can generate power only by changing the direction of the magnetic field in which the magnetic body 6 affects the coil 8, and can be a generator having high power generation efficiency with respect to movement. ..
  • FIG. 2A the direction indicated by the arrow A1 is referred to as a left-right direction
  • the direction indicated by the arrow A2 is referred to as a vertical direction
  • the direction indicated by the arrow A3 in FIG. 2B is referred to as a front-back direction.
  • the generator 1 is rotatably supported by a holder 2 having a storage space 21, a rotating shaft 3 whose at least one end is exposed to the outside of the holder 2, and a storage space 21 of the holder 2.
  • a rotating magnet 4 arranged and fixed to the rotating shaft 3, a non-magnetic tubular member 7 provided close to the rotating magnet 4 and held in the holder 2, and arranged on the outer periphery of the tubular member 7.
  • the coil 8 is provided with a spherical magnet 6 which is arranged in the tubular member 7 and rotates by receiving a magnetic force from the rotating magnet 4.
  • the holder 2 has a storage space 21 for accommodating the rotating magnet 4 and a through hole 22 for inserting the rotating shaft 3 in the vertical direction.
  • the groove 23 for accommodating the tubular member 7 is further provided on the left and right sides of the storage space 21.
  • the holder 2 is made of a non-magnetic material.
  • the non-magnetic material include metals such as aluminum and synthetic resins such as plastics.
  • the holder 2 is preferably formed of a synthetic resin.
  • the rotating shaft 3 is rotatably supported by the through hole 22 of the holder 2.
  • the rotation axis 3 is provided so as to be rotatable about the rotation axis O along the extending direction thereof.
  • the rotation shaft 3 extends through the through hole 22 of the holder 2 and the entire inside of the storage space 21.
  • the rotating shaft 3 has a pinion 31 attached to one end portion exposed from the holder 2.
  • the rotating magnet 4 is fixed to the portion located in the storage space 21.
  • the rotating magnet 4 is fixed to the rotating shaft 3 by a method such as adhesion or pressure fitting, and rotates together with the rotating shaft 3 about the rotating axis O.
  • the rotating magnet 4 is a cylindrical magnet.
  • the magnet used as the rotating magnet 4 is a permanent magnet.
  • the rotating magnet 4 of the present embodiment is magnetized to two poles in the circumferential direction, but the number of poles of the rotating magnet 4 is not particularly limited as long as it has two or more poles.
  • the "circumferential direction" is a circumferential direction extending along the outer circumference of the rotating magnet 4.
  • the rotating magnet 4 of the present embodiment is a cylindrical magnet having a ring shape in a plan view, but the shape or number thereof is not limited.
  • two or more permanent magnets may be fixed to the rotating shaft 3 so that the polarities in the circumferential direction change alternately. Since the rotating magnet 4 may be magnetized on at least the outer peripheral surface thereof, it may be magnetized on one side or on both sides.
  • the material of the rotating magnet 4 is not particularly limited, but it is preferable to use an Nd-Fe-B sintered magnet (neodymium magnet) from the viewpoint of exhibiting a high magnetic force.
  • the washer 32 is arranged so as to face both upper and lower end surfaces of the rotating magnet 4.
  • the washer 32 is a ring-shaped plate material, and a rotating shaft 3 is inserted through a central portion thereof. That is, the washer 32 is rotatably arranged about the rotation axis O.
  • the washer 32 is a flat washer made of a non-magnetic material such as stainless steel. This makes it possible to prevent or suppress wear of the holder 2 and the rotating magnet 4 due to the rotation of the rotating shaft 3.
  • the configuration including the tubular member 7, the coil 8, and the spherical magnet 6 generates an electric current by electromagnetic induction. Therefore, these configurations can be collectively regarded as the "current generating unit 5".
  • the current generation unit 5 includes a first current generation unit 51 provided at a rotationally symmetric position about the rotation axis 3 and a second current generation unit 52.
  • the first current generating portion 51 is arranged in the first cylindrical member 71, the first coil 81 arranged on the outer periphery of the first tubular member 71, and the tubular member 71 of the first current generating portion 51. Includes a first spherical magnet 61.
  • the second current generating portion 52 is arranged in the second tubular member 72, the second coil 82 arranged on the outer periphery of the second tubular member 72, and the tubular member 72 of the second current generating portion 52.
  • the first spherical magnet 61 and the second spherical magnet 62 are expressed as "spherical magnet 6"
  • the first tubular member 71 and the second tubular member 72 are expressed as "cylindrical member 7".
  • the coil 81 and the second coil 82 are referred to as "coil 8".
  • the cylindrical member 7 has a hollow rod shape inside, and both ends thereof are fixed so as to fit into the holder 2. As shown in FIG. 2B, the tubular member 7 of the present embodiment extends in the front-rear direction (direction of arrow A3).
  • the tubular member 7 of the present embodiment is formed of a cylindrical member from the viewpoint of facilitating the rotation of the spherical magnet 6, and its outer shape and inner shape are cylindrical in cross-sectional view.
  • the cylindrical member 7 may have a shape in which the spherical magnet 6 can rotate on its axis, and the outer shape is not particularly limited.
  • the tubular member 7 is made of a non-magnetic material.
  • it is made of a synthetic resin such as plastic from the viewpoint of easy formation and reduction of frictional resistance generated when the spherical magnet 6 is rotated.
  • a coil 8 is wound around the outer circumference of the tubular member 7. Therefore, the tubular member 7 also plays the role of a bobbin of the coil 8.
  • the coil 8 of the present embodiment is provided on a part of the outer periphery of the tubular member 7, it may be provided on the entire circumference of the tubular member 7.
  • the coil 8 is, for example, a solenoid coil.
  • first and second spherical magnets 61 and 62 are provided inside the first and second cylindrical members 71 and 72.
  • the first and second spherical magnets 61 and 62 receive a magnetic force from the rotating magnet 4 and rotate around the rotation axes P1 and P2.
  • the first and second spherical magnets 61 and 62 are magnetized to two poles with a plane including the rotation axes P1 and P2 as a boundary. That is, the first and second spherical magnets 61 and 62 are permanent magnets in which the N pole and the S pole are polarized and magnetized by hemispheres.
  • the first and second spherical magnets 61 and 62 of the present embodiment are each composed of one spherical magnet. As a result, the first and second spherical magnets 61 and 62 make point contact with the support surface, so that the frictional resistance becomes small, and the first and second spherical magnets 61 and 62 rotate on their axis only by the magnetic force from the rotating magnet 4 rotating around the rotating shaft 3. can.
  • the first and second tubular members 71 and 72 extend in the front-rear direction, and the first and second tubular members 71 and 72 and the first and second coils 81,
  • the center position of 82 in the front-rear direction is substantially the same as that of the rotating magnet 4.
  • the first and second spherical magnets 61 and 62 arranged inside the first and second tubular members 71 and 72 are attracted by the attractive force from the rotating magnet 4, and are before and after the first and second coils 81 and 82. It is maintained to be placed inside the directional center position. As a result, the generator 1 can efficiently generate an induced current.
  • the outer diameters of the first and second spherical magnets 61 and 62 are slightly smaller than the inner diameters (hollow diameters) of the first and second tubular members 71 and 72.
  • the first and second spherical magnets 61 and 62 rotate around the rotation axes P1 and P2 to generate an electric current in the first and second coils 81 and 82. That is, the lines of magnetic force generated from the first and second spherical magnets 61 and 62 intersect (orthogonally) with the first and second coils 81 and 82, so that an alternating current is generated in the first and second coils 81 and 82. ..
  • One end of the coil 8 of the current generating unit 5 is connected to a rectifying unit (not shown), and the current rectified by the rectifying unit (not shown) is transmitted to an external member (not shown).
  • the external member can be activated by the current generated by the current generating unit 5.
  • the alternating current generated in the coil 8 may be transmitted to the external member without being rectified.
  • the rotation shaft 3 rotates by transmitting the motion of a drive member (not shown) such as a rack or a gear to the pinion 31.
  • the drive member is, for example, a member such as a rotating shaft of a door.
  • the rotating magnet 4 fixed to the rotating shaft 3 rotates around the rotating axis O. Since the cylindrical member 7 and the coil 8 of the current generating portion 5 are fixed to the holder 2, they do not rotate with the rotation of the rotating shaft 3. Therefore, among the current generating portions 5, only the spherical magnet 6 rotates on the rotation axes P1 and P2 due to the magnetic force of the rotating magnet 4 received on the spot.
  • the vibration dynamo device of Patent Document 1 generates electricity by sliding the spherical magnet inside the tubular member. Therefore, members for repelling the spherical magnet are required at both ends of the tubular member.
  • the relative positional relationship between the rotating magnet 4, the first spherical magnet 61, and the second spherical magnet 62 does not change even during motion (during power generation), and the spherical member is repelled. No member is required. Therefore, the size of the generator 1 can be reduced.
  • the generator 1 of the present embodiment since the rotating magnet 4 and the spherical magnet 6 are always in close proximity to each other, the leakage flux can be reduced. That is, because the generator 1 can effectively utilize the magnetic force generated from both the rotating magnet 4 and the spherical magnet 6, it is possible to secure a sufficient amount of power generation even with a small movement.
  • the generator 1 of the present embodiment is a generator having a feature of high power generation efficiency with respect to movement.
  • the outer peripheral surface 83 of the coil 8 wound around the tubular member 7 is close to the rotating shaft 3, and the tubular member 7 has a peripheral surface 83.
  • the central axes R 1 and R 2 are positioned so as to extend in a direction perpendicular to the rotation axis 3 at a position where they do not intersect the rotation axis 3.
  • the rotation axes P1 and P2 of the spherical magnet 6 of the present embodiment are parallel to the rotation axis 3 .
  • the generator 1 itself can be made into a compact structure.
  • the rotation axes P1 and P2 of the spherical magnet 6 intersect the circumferential orbital plane 83 of the coil 8 .
  • the rotation direction of the spherical magnet 6 during the rotation motion and the winding direction of the coil 8 do not become the same direction, so that electromagnetic induction can be efficiently generated.
  • the present embodiment it is possible to efficiently generate an electric current while having a low torque. That is, the power generation efficiency of the current generating unit 5 can be improved. Further, unlike Patent Document 1, the spherical magnet does not need to vibrate inside the tubular member, and the member for vibrating the spherical magnet is not required, so that the generator 1 can be made into a simple and compact structure. ..
  • the generator 1 of the present embodiment is designed so that, for example, the rotating body can generate enough power for the operation of the wireless remote control only by rotating 180 °
  • the pinion 31 and the input unit of the wireless remote control are used. If they are connected and the outer periphery of the rotating magnet 4 is magnetized with two poles, the rotating magnet 4 and the spherical magnet 6 are attracted to each other, repelled, and attracted while the rotating body rotates by 180 °. That is, by pressing the input unit of the wireless remote controller once, it is possible to obtain a moderate click feeling due to the attraction / repulsion operation between the magnets.
  • the "click feeling" is the sound or response felt when the switch is pressed. That is, the generator 1 of the present embodiment can be suitably used as a generator for small equipment such as a wireless remote controller.
  • FIGS. 3 and 4 are perspective views of the generator 1A according to the present embodiment
  • FIG. 4 is a sectional view of the generator 1A according to the present embodiment
  • FIG. 3A is a vertical sectional view
  • FIG. 4B is a vertical sectional view
  • 4 is a cross-sectional view taken along the line IVb-IVb in FIG. 4A.
  • the generator 1A of the second embodiment basically has the same configuration as the generator 1 of the first embodiment, but as shown in FIG. 3, mainly the current generating unit 5A with respect to the rotating shaft 3 Different about relative positional relationship.
  • the generator 1A in the present embodiment includes a first current generation unit 51A and a second current generation unit 52A provided at rotationally symmetric positions about the rotation axis 3. ..
  • first and second current generation portions 51A and 52A one end surface of the first and second tubular members 71A and 72A is close to the rotating magnet 4, and the center of the first and second tubular members 71A and 72A.
  • the axes S 1 and S 2 are orthogonal to the axis of rotation 3. As a result, the generator 1A can be miniaturized.
  • the tubular member 7A is fixed to the holder 2A so that one end face is close to the rotating magnet 4, and the other end face is open.
  • the spherical magnet 6A of the present embodiment is supported so as to be attracted in the rotation axis O direction by the magnetic force of the rotating magnet 4, and rotates on the spot due to the rotation of the rotating magnet 4, so that it does not necessarily cover the other end face. No need.
  • a cap member (not shown) may be provided on the other end surface.
  • a spacer 9 made of a non-magnetic material for locating the spherical magnet 6A at the center of the tubular member 7A is arranged in the tubular member 7A.
  • the spacer 9 may be any as long as it can support the spherical magnet 6A so as to be located at the center of the coil 8A, and its shape is not particularly limited.
  • the coil 8A can generate electromagnetic induction by the magnetic force from the spherical magnet 6A at the center position in the left-right direction, and has a larger electromotive force than the electromagnetic induction at the position of the end portion in the left-right direction of the coil 8A. can do. That is, the generator 1A provided with the spacer 9 can efficiently generate power.
  • the spacer 9 is preferably formed of a hard and smooth material, for example, of a resin, from the viewpoint of reducing the contact resistance with the spherical magnet 6A.
  • the generator 1A does not require the spherical magnet arranged inside the tubular member to vibrate, and does not require a member for vibration. That is, the relative positional relationship between the rotating magnet 4 of the generator 1A, the first spherical magnet 61A, and the second spherical magnet 62A does not change even during motion (during power generation). Therefore, the size of the generator 1A can be reduced.
  • the rotation axes Q1 and Q2 of the first and second spherical magnets 61A and 62A of the present embodiment are parallel to the rotation axis O of the rotation axis 3.
  • the generator 1A itself can have a compact structure.
  • the rotation axes Q1 and Q2 of the first and second spherical magnets 61A and 62A intersect the circumferential orbital plane 83A of the first and second coils 81A and 82A.
  • the rotation direction of the spherical magnet 6A during the rotation motion and the winding direction of the coil 8 do not become the same direction, so that electromagnetic induction can be efficiently generated.
  • first current generating units 51, 51A and the second current generating units 52, 52A of the first and second embodiments are configured to be provided at two rotationally symmetric positions about the rotation axis 3. If a sufficient amount of power generation can be secured to operate the external member, only one current generating unit 5, 5A may be provided.
  • the generator 100 is rotatably supported by a holder 102 having a storage space 121, a rotating shaft 103 whose at least one end is exposed to the outside of the holder 102, and a storage space 121 of the holder 102.
  • a magnetic core of a soft magnetic material that is arranged inside a tubular member 107, a coil 108 arranged on the outer periphery of the tubular member 107, and repeatedly reverses the direction of magnetism by receiving a magnetic force from a rotating magnet 104. It is equipped with 106.
  • the holder 102 has a storage space 121 for accommodating the rotating magnet 104 and a through hole 122 for inserting the rotating shaft 103 in the vertical direction.
  • the groove portions 123 for accommodating the tubular member 107 are further provided on the left and right sides of the storage space 121.
  • the holder 102 is made of a non-magnetic material.
  • the non-magnetic material include metals such as aluminum and synthetic resins such as plastics.
  • the holder 102 is preferably made of a synthetic resin.
  • the rotating shaft 103 is rotatably supported by the through hole 122 of the holder 102.
  • the rotation axis 103 is provided so as to be rotatable about the rotation axis O along the extending direction thereof.
  • the rotation shaft 103 extends through the through hole 122 of the holder 102 and the entire storage space 121.
  • the rotating shaft 103 has a pinion 131 at one end portion exposed from the holder 102.
  • the rotating magnet 104 is fixed to the portion located in the storage space 121.
  • the rotating magnet 104 is fixed to the rotating shaft 103 by a method such as adhesion or pressure fitting, and rotates together with the rotating shaft 103 about the rotating axis O.
  • the rotating magnet 104 is a cylindrical magnet.
  • the magnet used as the rotating magnet 104 is a permanent magnet.
  • the rotating magnet 104 of the present embodiment is magnetized to two poles in the circumferential direction, but the number of poles of the rotating magnet 104 is not particularly limited as long as it has two or more poles.
  • the "circumferential direction" is a circumferential direction extending along the outer circumference of the rotating magnet 104.
  • the rotating magnet 104 of the present embodiment is a cylindrical magnet having a ring shape in a plan view, but the shape or number thereof is not limited.
  • two or more permanent magnets may be fixed to the rotating shaft 103 so that the polarities in the circumferential direction change alternately.
  • the rotating magnet 104 may be magnetized on at least the outer peripheral surface thereof, it may be magnetized on one side or on both sides.
  • the material of the rotating magnet 104 is not particularly limited, but it is preferable to use an Nd-Fe-B sintered magnet (neodymium magnet) from the viewpoint of exhibiting a high magnetic force.
  • the washer 132 is arranged so as to face both ends of the rotating magnet 104 in the vertical direction.
  • the washer 132 is a ring-shaped plate material, and a rotating shaft 103 is inserted through the central portion thereof. That is, the washer 132 is rotatably arranged about the rotation axis O.
  • the washer 132 is a flat washer made of, for example, stainless steel. This makes it possible to prevent or suppress wear of the holder 102 and the rotating magnet 104 due to the rotation of the rotating shaft 103.
  • the configuration including the tubular member 107, the coil 108, and the magnetic core 106 generates an electric current by electromagnetic induction. Therefore, these configurations can be collectively regarded as the "current generating unit 105".
  • the current generation unit 105 includes a first current generation unit 151 provided at a rotationally symmetric position about the rotation axis 103, and a second current generation unit 152.
  • the first current generation unit 151 was arranged in the first cylindrical member 171 and the first coil 181 arranged on the outer periphery of the first tubular member 171 and the tubular member 171 of the first current generation unit 151. Includes the first magnetic core 161.
  • the second current generating portion 152 was arranged in the second cylindrical member 172, the second coil 182 arranged on the outer periphery of the second tubular member 172, and the tubular member 172 of the second current generating portion 152. Includes a second magnetic core 162. That is, the first and second current generating units 151 and 152 have the same configuration. In the following description, when it is not necessary to distinguish between the first current generation unit 151 and the second current generation unit 152, these are referred to as "current generation unit 105".
  • first magnetic core 161 and the second magnetic core 162 are expressed as “magnetic core 106"
  • first tubular member 171 and the second tubular member 172 are expressed as “cylindrical member 107”
  • first coil 181 and The second coil 182 is expressed as "coil 108”.
  • the tubular member 107 has, for example, a cylindrical shape and a hollow rod shape inside, and at least one end portion or the other end portion is fixed to the holder 102.
  • the tubular member 107 is made of a non-magnetic material. In the present embodiment, it is made of a synthetic resin such as plastic from the viewpoint of easy formation. As shown in FIG. 6, the tubular member 107 of the present embodiment extends in the left-right direction (direction of arrow A1).
  • a coil 108 is wound around the outer circumference of the tubular member 107. Therefore, the tubular member 107 also plays the role of a bobbin of the coil 108.
  • the coil 108 of the present embodiment is provided on a part of the outer periphery of the tubular member 107, it may be provided on the entire circumference of the tubular member 107.
  • the coil 108 is, for example, a solenoid coil.
  • the magnetic core 106 is a long rod-shaped member housed inside the tubular member 107.
  • the long rod-shaped member may be long as a whole, may be composed of one member, or may be composed of a plurality of members continuously connected. good. From the viewpoint of increasing the electromotive force, the magnetic core 106 is preferably housed inside the tubular member 107 from one end to the other.
  • the magnetic core 106 is made of a soft magnetic material from the viewpoint of easy switching of magnetism, and changes to a magnetic material by bringing a magnet close to at least one end or the other end.
  • the magnetic core 106 may be a soft magnetic material, for example, an iron material, a SUS (stainless steel) material, a SKH (high speed steel) material, a ferrite material, or the like.
  • the pinion 131 is designed to generate electricity by pressing a switch on the wireless remote controller, the pinion 131 can generate electricity instantly and transmit wirelessly by simply pressing the switch, thus reducing the time lag. ..
  • the magnetic core 106 of the present embodiment is arranged at a position where one end thereof faces the outer peripheral surface of the rotating magnet 104 with the holder 102 interposed therebetween. As a result, the magnetic core 106 is magnetized by receiving the magnetic force of the rotating magnet 104.
  • the magnetic core 106 receives a magnetic force from the rotating magnet 104 and repeatedly reverses the direction of magnetism to generate an electric current in the coil 108. That is, the lines of magnetic force generated from the magnetic core 106 intersect (orthogonally) with the coil 108, so that an alternating current is generated in the coil 108.
  • the generator 100 further comprises a soft magnetic material yoke 109 that abuts on at least one end or the other end of the magnetic core 106 and is held in the holder 102.
  • the yoke is soft iron that amplifies the attractive force of the magnet, and may contain iron, and includes a soft magnetic material. From the viewpoint of further increasing the amount of power generation, the yoke 109 is preferably in contact with at least one end or the other end of the magnetic core 106.
  • the yoke 109 in the present embodiment is held on the outer peripheral surface of the holder 102 with the rotation shaft 103 as the center, and the current generating portion 105 cannot be seen from the outside. As a result, it is possible to prevent a problem from occurring due to foreign matter being mixed into the current generating unit 105. Further, if the other end of the magnetic core 106 is in contact with the yoke 109, the magnetism of the yoke 109 and the magnetic core 106 can be switched integrally, so that the induced electromotive force can be increased.
  • the outer diameter of the magnetic core 106 of the present embodiment and the inner diameter of the tubular member 107 are substantially the same. Since the magnetic core 106 arranged inside the tubular member 107 is attracted by the attractive force from the rotating magnet 104, it is preferable that a part of the holder 102 is arranged between the magnetic core 106 and the rotating magnet 104. As a result, since the magnetic core 106 is held in the tubular member 107, it is possible to prevent the magnetic core 106 from sticking to the rotating magnet 104.
  • One end of the coil 108 of the current generating unit 105 is connected to a rectifying unit (not shown), and the current rectified by the rectifying unit (not shown) is transmitted to an external member (not shown).
  • the external member can be activated by the current generated by the current generating unit 105.
  • the alternating current generated in the coil 108 may be transmitted to the external member without being rectified.
  • the generator 100 of the present embodiment since the rotating magnet 104 and the magnetic core 106 are always in close proximity to each other, the leakage flux can be reduced. Since the generator 100 can effectively utilize the magnetic force generated from both the rotating magnet 104 and the magnetic core 106, it is possible to secure a sufficient amount of power generation even with a small amount of movement. In other words, the generator 100 of the present embodiment is a generator having a feature of high power generation efficiency with respect to movement.
  • the rotating shaft 103 and the rotating magnet 104 are regarded as "rotating bodies"
  • the holder 102, the tubular member 107, the coil 108, and the magnetic core 106 can be regarded as a "fixed body”. That is, even if the cylindrical member 107 itself is not rotated, rocked, or vibrated, a current can be lightly generated from the magnetic core 106 by the magnetic force of the rotating rotating magnet 104.
  • the present embodiment it is possible to efficiently generate an electric current while having a low torque. That is, the power generation efficiency of the current generating unit 105 can be improved. Further, unlike Patent Document 1, the spherical magnet does not need to vibrate inside the tubular member, and the member for vibrating the spherical magnet is not required, so that the generator 100 can be made into a simple and compact structure. ..
  • the generator 100 of the present embodiment is designed so that, for example, the rotating body can generate enough power for the operation of the wireless remote controller only by rotating 180 °
  • the pinion 131 and the input unit of the wireless remote controller are used. If they are connected and the outer circumference of the rotating magnet 104 is magnetized by two poles, the direction of magnetism in the magnetic core 106 is reversed once while the rotating body rotates by 180 °. That is, by pressing the input unit of the wireless remote controller once, it is possible to obtain a moderate click feeling by reversing the magnetism of the magnetic core 106 of the soft magnetic material.
  • the "click feeling" is the sound or response felt when the switch is pressed. That is, the generator 100 of the present embodiment can be suitably used as a generator for small equipment such as a wireless remote controller.
  • the generator 100 of the present embodiment adopts an inexpensive electromagnetic induction method as a generator. Further, by using the magnetic core 106, which is a soft magnetic material, as the material that causes electromagnetic induction, the cost can be further reduced.
  • FIG. 7 is a perspective view of the generator 100A according to the present embodiment
  • FIG. 8 is a cross-sectional view of the generator 100A according to the present embodiment.
  • the generator 100A of the fourth embodiment basically has the same configuration as the generator 100 of the third embodiment, but as shown in FIG. 7, the arrangement configuration of the yoke 109A and the current generating unit 105A. Different about. In FIG. 8, the direction indicated by the arrow A2 is referred to as a vertical direction.
  • the generator 100A in the present embodiment is provided with a first current generating unit 151A and a second current generating unit 152A at rotationally symmetric positions about the rotation shaft 103.
  • the generator 100A includes a yoke 109A that abuts on one end or the other end of the first current generating section 151A and the second current generating section 152A and is held by the holder 102A.
  • the yoke 109A is held by the holder 102A so as to cover the outer peripheral surface of the holder 102A with the rotation shaft 103 as the center.
  • the outer peripheral surface of the coil 108A is not covered with the yoke 109A.
  • the generator 100A of the present embodiment receives the magnetic force from the rotating magnet 104A when the rotating shaft 103 and the rotating magnet 104A rotate, and repeats the reversal of the magnetic direction of the magnetic core 106A. That is, the generator 100A in the present embodiment generates electricity by generating electromagnetic induction in the current generating unit 105A only by switching the direction of the magnetism of the magnetic core 106A. Further, unlike the vibration dynamo device of Patent Document 1, the generator 100A does not require the spherical magnet arranged inside the tubular member to vibrate, and does not require a member for vibration. That is, the relative positional relationship between the rotating magnet 104A of the generator 100A and the magnetic core 106A does not change even during motion (during power generation). Therefore, the size of the generator 100A can be reduced.
  • FIG. 9 is a perspective view of the generator 100B according to the present embodiment
  • FIG. 10 is a cross-sectional view of the generator 100B according to the present embodiment.
  • the generator 100B of the fifth embodiment basically has the same configuration as the generator 100 of the third embodiment, but as shown in FIG. 9, the arrangement configuration of the current generating unit 105B is different.
  • the generator 100B in the present embodiment is rotatably supported by a holder 102B having a storage space 121B and a holder 102B, and at least one end thereof is exposed to the outside of the holder 102B. It has a rotating shaft 103, a rotating magnet 104B arranged in the storage space 121B of the holder 102B and fixed to the rotating shaft 103, one end and the other end, and its outer peripheral surface is close to the rotating magnet 104B.
  • the generator 100B of the fifth embodiment does not have the end of the magnetic core 106B facing the outer peripheral surface of the rotating magnet 104B. That is, at least a part of the outer peripheral surface 183B of the coil 108B wound around the tubular member 107B is close to the rotation shaft 103. Further, the central axis of the tubular member 107B of the present embodiment extends in a direction perpendicular to the rotation axis 103 at a position not intersecting the rotation axis 103.
  • the generator 100B has a configuration in which the yoke 109B and the rotating magnet 104B are close to each other.
  • the yoke 109B is magnetized by receiving a magnetic force from the rotating magnet 104B, and magnetizes the magnetic core 106B that abuts on the yoke 109B. That is, in the generator 100B, since the rotating magnet 104B and the yoke 109B are in close proximity to each other and the yoke 109B and the magnetic core 106B are in contact with each other, the magnetism of the yoke 109B is switched according to the rotation of the rotating magnet 104B, and the magnetic core 106B is switched. Power is generated by reversing the polarity of.
  • the configuration including the tubular member 107B, the coil 108B, the magnetic core 106B, and the yoke 109B generates a current by electromagnetic induction. Therefore, these configurations can be collectively regarded as the "current generating unit 105B".
  • the current generation unit 105B includes a first current generation unit 151B provided at a rotationally symmetric position about the rotation axis 103, and a second current generation unit 152B. That is, since the current generating unit 105B of the generator 100B is larger than the current generating units 105 and 105A of the generators 100 and 100A, the induced electromotive force generated when the direction of magnetism is reversed is also large, so that the amount of power generation is large. can do.
  • the yoke 109B is provided at least on the upper surface and the lower surface of the holder 102B.
  • the yoke 109B may be arranged so as to be able to receive the magnetic force of the rotating magnet 104B and to magnetize the magnetic core 106B.
  • the yoke 109B is provided so as to cover the upper surface (lower surface) of the holder 102B at a position close to the rotating magnet 104B and a position in contact with one end (the other end) of the magnetic core 106B.
  • the pair of yokes 109B are provided so as to sandwich the magnetic core 106B and the rotating magnet 104B from above and below.
  • the yoke 109B may be, for example, one plate-shaped member or a plurality of plate-shaped members. As a result, the magnetic force of the rotating magnet 104B can be transmitted to the magnetic core 106B.
  • the central axis of the tubular member 107B extends in a direction perpendicular to the rotation axis 103 at a position not intersecting the rotation axis 103 has been described.
  • the yoke 109B is arranged so that it can receive the magnetic force of the rotating magnet 104B and can magnetize the magnetic core 106B, the central axis of the tubular member 107B is in the direction horizontal to the rotating axis 103. It may be extended.
  • the current generating units 105, 105A, and 105B of the third to fifth embodiments are configured to be provided at two rotationally symmetric positions about the rotation axis 103, but the number is not limited. For example, if a sufficient amount of power generation can be secured to operate the external member, only one current generating unit 105, 105A, 105B may be provided.
  • the yokes 109, 109A, 109B have the other end portions of the magnetic cores 106, 106A, 106B according to the form of each generator (the other end portions of the magnetic cores 106, 106A, 106B). It is held in the holders 102, 102A, 102B so as to be in contact with the holder 102, 102A, 102B.
  • the generators 100 and 100A according to these embodiments do not have the yokes 109 and 109A. It has sufficient electromotive force. That is, the generators 100 and 100A do not have to include the yokes 109 and 109A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

This generator (1) comprises: a holder (2) which has a storage space; a rotating shaft (3) which is rotatably supported by the holder; a rotating magnet (4) which is positioned in the storage space of the holder and is fixed to the rotating shaft; a non-magnetic tubular member (7) which is supported by the holder; a coil (8) which is positioned around the tubular member; and a magnetic body (6) which is positioned inside the tubular member and receives a magnetic force from the rotating magnet, thereby changing the direction of a magnetic field affecting the coil.

Description

発電機Generator
 本発明は、発電機に関する。 The present invention relates to a generator.
 発電機を用いた技術として、例えば、特開2018-191417号公報(特許文献1)が挙げられる。特許文献1は、自転車のペダル部に固定された外部マグネットと、自転車のボディ部に固定され、内部に球状磁石が収容された電流発生装置とを備える振動ダイナモ発電装置を開示している。特許文献1の振動ダイナモ装置は、外部マグネットの回転軌道上に電流発生装置が配置されているため、ペダル部を回転するだけで電流発生装置内部の球状磁石が振動し、発電することができる。 As a technique using a generator, for example, Japanese Patent Application Laid-Open No. 2018-191417 (Patent Document 1) can be mentioned. Patent Document 1 discloses a vibration dynamo power generation device including an external magnet fixed to a pedal portion of a bicycle and a current generator fixed to a body portion of the bicycle and accommodating a spherical magnet inside. In the vibration dynamo device of Patent Document 1, since the current generator is arranged on the rotation trajectory of the external magnet, the spherical magnet inside the current generator vibrates and generates electricity just by rotating the pedal portion.
特開2018-191417号公報JP-A-2018-191417
 特許文献1に開示された振動ダイナモ装置は、ペダル部の回転軸を中心とする外部マグネットの公転運動により、電流発生装置内部の球状磁石が振動することで発電する。このため、ペダル部の回転に要する労力に対して得られる電力が比較的少なく、発電効率の向上が望まれている。 The vibration dynamo device disclosed in Patent Document 1 generates electricity by vibrating the spherical magnet inside the current generator due to the orbital motion of the external magnet around the rotation axis of the pedal portion. Therefore, the electric power obtained for the labor required for the rotation of the pedal portion is relatively small, and improvement in power generation efficiency is desired.
 本発明は、発電効率のよい発電機を提供することを目的とする。 An object of the present invention is to provide a generator with high power generation efficiency.
 本実施の一態様に係る発電機は、収納空間を有するホルダーと、ホルダーに回転自在に支持された回転軸と、ホルダーの収納空間内に配置され、回転軸に固定された回転磁石と、ホルダーに保持される非磁性体の筒状部材と、筒状部材の外周に配置されたコイルと、筒状部材内に配置され、回転磁石からの磁力を受けてコイルに影響を及ぼす磁界の向きを変化させる磁性体とを備える。 The generator according to one embodiment of the present embodiment includes a holder having a storage space, a rotating shaft rotatably supported by the holder, a rotating magnet arranged in the storage space of the holder and fixed to the rotating shaft, and a holder. A non-magnetic tubular member held in the cylinder, a coil arranged on the outer periphery of the tubular member, and a direction of a magnetic field arranged inside the tubular member and affecting the coil by receiving a magnetic force from a rotating magnet. It is equipped with a magnetic material that can be changed.
 好ましくは、筒状部材は、回転磁石に近接して設けられ、磁性体は、回転磁石からの磁力を受けて自転運動する球状磁石である。 Preferably, the tubular member is provided close to the rotating magnet, and the magnetic material is a spherical magnet that rotates on its axis in response to the magnetic force from the rotating magnet.
 好ましくは、球状磁石の回転軸線は、回転軸に対して平行である。 Preferably, the axis of rotation of the spherical magnet is parallel to the axis of rotation.
 好ましくは、球状磁石の回転軸線は、コイルの円周軌道面に交差している。 Preferably, the rotation axis of the spherical magnet intersects the circumferential orbital plane of the coil.
 好ましくは、回転磁石は、円筒形状の磁石である。 Preferably, the rotating magnet is a cylindrical magnet.
 好ましくは、筒状部材の一方端面は、回転磁石に近接しており、筒状部材の中心軸線は、回転軸に直交している。 Preferably, one end surface of the tubular member is close to the rotating magnet, and the central axis of the tubular member is orthogonal to the axis of rotation.
 好ましくは、球状磁石を筒状部材の中心部に位置させるための非磁性材料からなるスペーサが、筒状部材内に配置されている。 Preferably, a spacer made of a non-magnetic material for locating the spherical magnet at the center of the tubular member is arranged in the tubular member.
 好ましくは、筒状部材に巻かれたコイルの外周面は、回転軸に近接しており、筒状部材の中心軸線は、回転軸に交差しない位置で回転軸に対して垂直な方向に延びている。 Preferably, the outer peripheral surface of the coil wound around the tubular member is close to the axis of rotation, and the central axis of the tubular member extends in a direction perpendicular to the axis of rotation at a position that does not intersect the axis of rotation. There is.
 好ましくは、筒状部材と、コイルと、球状磁石とを含む電流発生部が、回転軸を中心とした回転対称位置に設けられた第1電流発生部と、第2電流発生部とを含み、球状磁石は、第1電流発生部の筒状部材内に配置された第1球状磁石と、第2電流発生部の筒状部材内に配置された第2球状磁石とを含む。 Preferably, the current generating portion including the tubular member, the coil, and the spherical magnet includes a first current generating portion and a second current generating portion provided at rotationally symmetric positions about the rotation axis. The spherical magnet includes a first spherical magnet arranged in the tubular member of the first current generating portion and a second spherical magnet arranged in the tubular member of the second current generating portion.
 好ましくは、円筒形状の回転磁石は、周方向に2極に着磁されており、球状磁石は、球状磁石の回転軸線を含む平面を境に2極に着磁している。 Preferably, the cylindrical rotating magnet is magnetized in two poles in the circumferential direction, and the spherical magnet is magnetized in two poles with a plane including the rotation axis of the spherical magnet as a boundary.
 好ましくは、筒状部材は、一方端部が回転磁石に近接し、他方端部が回転磁石から離れるように配置されており、磁性体は、回転磁石からの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心である。 Preferably, the tubular member is arranged such that one end is close to the rotating magnet and the other end is away from the rotating magnet, so that the magnetic body receives the magnetic force from the rotating magnet and reverses the direction of magnetism. It is a magnetic core of a soft magnetic material that repeats.
 好ましくは、磁心の少なくとも一方端部または他方端部のいずれかに当接し、ホルダーに保持される軟磁性材料のヨークをさらに備える。 Preferably, it further comprises a yoke of soft magnetic material that abuts on at least one end or the other end of the magnetic core and is held in the holder.
 好ましくは、筒状部材と、コイルと、磁心とを含む電流発生部が、回転軸を中心とした回転対称位置に設けられた第1電流発生部と、第2電流発生部とを含む。 Preferably, the current generating portion including the cylindrical member, the coil, and the magnetic core includes a first current generating portion and a second current generating portion provided at rotationally symmetric positions about the rotation axis.
 好ましくは、筒状部材は、一方端部および他方端部を有し、その外周面が回転磁石に近接するように配置され、磁性体は、回転磁石からの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心であり、発電機は、磁心の一方端部および他方端部に当接し、ホルダーに保持される軟磁性材料のヨークをさらに備える。 Preferably, the tubular member has one end and the other end, the outer peripheral surface thereof is arranged close to the rotating magnet, and the magnetic body receives the magnetic force from the rotating magnet and reverses the direction of magnetism. A magnetic core of a soft magnetic material that repeats the above steps, and the generator further comprises a yoke of the soft magnetic material that abuts on one end and the other end of the magnetic core and is held in a holder.
 好ましくは、筒状部材に巻かれたコイルの外周面は、回転軸に近接しており、筒状部材の中心軸線は、回転軸に交差しない位置で回転軸に対して垂直な方向に延びている。 Preferably, the outer peripheral surface of the coil wound around the tubular member is close to the axis of rotation, and the central axis of the tubular member extends in a direction perpendicular to the axis of rotation at a position that does not intersect the axis of rotation. There is.
 好ましくは、筒状部材と、コイルと、磁心と、ヨークとを含む電流発生部が、回転軸を中心とした回転対称位置に設けられた第1電流発生部と、第2電流発生部とを含む。 Preferably, the current generating portion including the cylindrical member, the coil, the magnetic core, and the yoke has a first current generating portion and a second current generating portion provided at rotationally symmetric positions about the rotation axis. include.
 好ましくは、回転磁石は、円筒形状の磁石であり、周方向に2極に着磁されている。 Preferably, the rotating magnet is a cylindrical magnet and is magnetized in two poles in the circumferential direction.
 好ましくは、回転軸は、少なくともその一方端がホルダーの外に露出しており、ホルダーから露出している一方端部分にピニオンを有している。 Preferably, the rotating shaft has at least one end exposed to the outside of the holder and a pinion at one end exposed from the holder.
 本発明の発電機によれば、回転軸を中心に回転する回転磁石と、回転磁石からの磁力を受けて自転運動をする球状磁石とを利用することで、発電効率を向上することができる。 According to the generator of the present invention, the power generation efficiency can be improved by using a rotating magnet that rotates around a rotating shaft and a spherical magnet that rotates by receiving a magnetic force from the rotating magnet.
 また、本発明の発電機の別の態様によれば、回転軸を中心に回転する回転磁石と、回転磁石からの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心とを利用することで、発電効率を向上することができる。 Further, according to another aspect of the generator of the present invention, a rotating magnet that rotates about a rotation axis and a magnetic core of a soft magnetic material that repeatedly reverses the direction of magnetism by receiving a magnetic force from the rotating magnet are used. Therefore, the power generation efficiency can be improved.
本発明の実施の形態1における発電機の斜視図である。It is a perspective view of the generator in Embodiment 1 of this invention. 本発明の実施の形態1における発電機の断面図であり、(a)は正面縦断面図であり、(b)は図2(a)におけるIIb-IIb線に沿った断面図である。It is sectional drawing of the generator in Embodiment 1 of this invention, (a) is the front vertical sectional view, (b) is the sectional view along line IIb-IIb in FIG. 2 (a). 本発明の実施の形態2における発電機の斜視図である。It is a perspective view of the generator in Embodiment 2 of this invention. 本発明の実施の形態2における発電機の断面図であり、(a)は縦断面図であり、(b)は図4(a)におけるIVb-IVb線に沿った断面図である。2 is a cross-sectional view of the generator according to the second embodiment of the present invention, (a) is a vertical cross-sectional view, and (b) is a cross-sectional view taken along the line IVb-IVb in FIG. 4 (a). 本発明の実施の形態3における発電機の斜視図である。It is a perspective view of the generator in Embodiment 3 of this invention. 本発明の実施の形態3における発電機の断面図である。It is sectional drawing of the generator in Embodiment 3 of this invention. 本発明の実施の形態4における発電機の斜視図である。It is a perspective view of the generator in Embodiment 4 of this invention. 本発明の実施の形態4における発電機の断面図である。It is sectional drawing of the generator in Embodiment 4 of this invention. 本発明の実施の形態5における発電機の斜視図である。It is a perspective view of the generator in Embodiment 5 of this invention. 本発明の実施の形態5における発電機の断面図である。It is sectional drawing of the generator in Embodiment 5 of this invention.
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 An embodiment of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 <発明の概要について>
  図1、2を参照して、本発明に係る発電機1は、収納空間を有するホルダー2と、ホルダー2に回転自在に支持された回転軸3と、ホルダー2の収納空間内に配置され、回転軸3に固定された回転磁石4と、ホルダー2に保持される非磁性体の筒状部材7と、筒状部材7の外周に配置されたコイル8と、筒状部材7内に配置され、回転磁石4からの磁力を受けてコイル8に影響を及ぼす磁界の向きを変化させる磁性体6とを備える。
<Overview of the invention>
With reference to FIGS. 1 and 2, the generator 1 according to the present invention is arranged in a holder 2 having a storage space, a rotating shaft 3 rotatably supported by the holder 2, and a storage space of the holder 2. A rotating magnet 4 fixed to the rotating shaft 3, a non-magnetic tubular member 7 held in the holder 2, a coil 8 arranged on the outer periphery of the tubular member 7, and arranged in the tubular member 7. A magnetic body 6 that changes the direction of a magnetic field that affects the coil 8 by receiving a magnetic force from the rotating magnet 4 is provided.
 以下の説明において、実施の形態1および実施の形態2では、磁性体6は回転磁石4からの磁力を受けて自転運動する球状磁石6である。実施の形態3,4,5では、磁性体6は、回転磁石104からの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心106である。 In the following description, in the first and second embodiments, the magnetic body 6 is a spherical magnet 6 that rotates on its axis in response to a magnetic force from the rotating magnet 4. In the third, fourth, and fifth embodiments, the magnetic body 6 is a magnetic core 106 made of a soft magnetic material that repeatedly inverts the direction of magnetism by receiving a magnetic force from a rotating magnet 104.
 このように、本発明に係る発電機1は、磁性体6がコイル8に影響を及ぼす磁界の向きを変化させるだけで発電することができ、動きに対する発電効率のよい発電機とすることができる。 As described above, the generator 1 according to the present invention can generate power only by changing the direction of the magnetic field in which the magnetic body 6 affects the coil 8, and can be a generator having high power generation efficiency with respect to movement. ..
 <実施の形態1>
  図1,2を参照して、本発明の一実施形態の発電機1について説明する。なお、図2(a)において、矢印A1で示す方向を左右方向といい、矢印A2で示す方向を上下方向といい、図2(b)において矢印A3で示す方向を前後方向という。
<Embodiment 1>
A generator 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In FIG. 2A, the direction indicated by the arrow A1 is referred to as a left-right direction, the direction indicated by the arrow A2 is referred to as a vertical direction, and the direction indicated by the arrow A3 in FIG. 2B is referred to as a front-back direction.
 発電機1は、収納空間21を有するホルダー2と、ホルダー2に回転自在に支持され、少なくともその一方端がホルダー2の外に露出している回転軸3と、ホルダー2の収納空間21内に配置され、回転軸3に固定された回転磁石4と、回転磁石4に近接して設けられ、ホルダー2に保持される非磁性体の筒状部材7と、筒状部材7の外周に配置されたコイル8と、筒状部材7内に配置され、回転磁石4からの磁力を受けて自転運動する球状磁石6とを備える。 The generator 1 is rotatably supported by a holder 2 having a storage space 21, a rotating shaft 3 whose at least one end is exposed to the outside of the holder 2, and a storage space 21 of the holder 2. A rotating magnet 4 arranged and fixed to the rotating shaft 3, a non-magnetic tubular member 7 provided close to the rotating magnet 4 and held in the holder 2, and arranged on the outer periphery of the tubular member 7. The coil 8 is provided with a spherical magnet 6 which is arranged in the tubular member 7 and rotates by receiving a magnetic force from the rotating magnet 4.
 ホルダー2は、回転磁石4を収容する収納空間21と、回転軸3を上下方向に挿通する貫通孔22とを有している。本実施の形態では、収納空間21の左右に筒状部材7が収容されるための溝部23をさらに有している。 The holder 2 has a storage space 21 for accommodating the rotating magnet 4 and a through hole 22 for inserting the rotating shaft 3 in the vertical direction. In the present embodiment, the groove 23 for accommodating the tubular member 7 is further provided on the left and right sides of the storage space 21.
 ホルダー2は、非磁性体で形成されている。非磁性体として、例えば、アルミニウムなどの金属、プラスチックなどの合成樹脂などが挙げられる。本実施の形態では、ホルダー2は、合成樹脂で形成されることが好ましい。 The holder 2 is made of a non-magnetic material. Examples of the non-magnetic material include metals such as aluminum and synthetic resins such as plastics. In the present embodiment, the holder 2 is preferably formed of a synthetic resin.
 回転軸3は、このホルダー2の貫通孔22に回転自在に支持されている。回転軸3は、その延在方向に沿った回転軸線Oを中心に回転可能に設けられている。回転軸3は、ホルダー2の貫通孔22および収納空間21内全体を貫通して延びている。回転軸3は、ホルダー2から露出している一方端部分にピニオン31が取り付けられている。 The rotating shaft 3 is rotatably supported by the through hole 22 of the holder 2. The rotation axis 3 is provided so as to be rotatable about the rotation axis O along the extending direction thereof. The rotation shaft 3 extends through the through hole 22 of the holder 2 and the entire inside of the storage space 21. The rotating shaft 3 has a pinion 31 attached to one end portion exposed from the holder 2.
 ホルダー2の内部に挿通される回転軸3のうち、収納空間21に位置する部分には、回転磁石4が固定される。回転磁石4は、たとえば接着、圧嵌などの手法で回転軸3に固定されており、回転軸線Oを中心にして回転軸3と共に回転する。本実施の形態では、回転磁石4は、円筒形状の磁石である。 Of the rotating shaft 3 inserted inside the holder 2, the rotating magnet 4 is fixed to the portion located in the storage space 21. The rotating magnet 4 is fixed to the rotating shaft 3 by a method such as adhesion or pressure fitting, and rotates together with the rotating shaft 3 about the rotating axis O. In the present embodiment, the rotating magnet 4 is a cylindrical magnet.
 回転磁石4として使用する磁石は、永久磁石である。本実施の形態の回転磁石4は、周方向に2極に着磁されているが、回転磁石4の極数は2極以上であれば特に限定されない。なお、「周方向」とは、回転磁石4の外周に沿うように延びる円周方向である。本実施の形態の回転磁石4は、平面断面視リング形状の円筒磁石であるが、その形状または個数については限定されない。たとえば、2つ以上の永久磁石を回転軸3に固定して、周方向の極性が交互に変わる構成としてもよい。回転磁石4は、少なくともその外周面が着磁されていればよいため、片面着磁であってもよく、両面着磁であってもよい。回転磁石4の材料は特に限定されないが、高い磁力を示す観点から、Nd‐Fe‐B焼結磁石(ネオジム磁石)を用いることが好ましい。 The magnet used as the rotating magnet 4 is a permanent magnet. The rotating magnet 4 of the present embodiment is magnetized to two poles in the circumferential direction, but the number of poles of the rotating magnet 4 is not particularly limited as long as it has two or more poles. The "circumferential direction" is a circumferential direction extending along the outer circumference of the rotating magnet 4. The rotating magnet 4 of the present embodiment is a cylindrical magnet having a ring shape in a plan view, but the shape or number thereof is not limited. For example, two or more permanent magnets may be fixed to the rotating shaft 3 so that the polarities in the circumferential direction change alternately. Since the rotating magnet 4 may be magnetized on at least the outer peripheral surface thereof, it may be magnetized on one side or on both sides. The material of the rotating magnet 4 is not particularly limited, but it is preferable to use an Nd-Fe-B sintered magnet (neodymium magnet) from the viewpoint of exhibiting a high magnetic force.
 この回転磁石4の上下方向両端面と対向するように、ワッシャー32が配置されている。ワッシャー32は、リング状の板材であり、中央部分には回転軸3が挿通される。すなわちワッシャー32は、回転軸線Oを中心にして回転可能に配置されている。ワッシャー32は、たとえばステンレスなどの非磁性体で形成された平ワッシャーである。これにより、回転軸3の回転に伴うホルダー2および回転磁石4の摩耗を防止または抑制することができる。 The washer 32 is arranged so as to face both upper and lower end surfaces of the rotating magnet 4. The washer 32 is a ring-shaped plate material, and a rotating shaft 3 is inserted through a central portion thereof. That is, the washer 32 is rotatably arranged about the rotation axis O. The washer 32 is a flat washer made of a non-magnetic material such as stainless steel. This makes it possible to prevent or suppress wear of the holder 2 and the rotating magnet 4 due to the rotation of the rotating shaft 3.
 筒状部材7と、コイル8と、球状磁石6とを含む構成は、電磁誘導により電流を発生させる。そのため、これらの構成はまとめて「電流発生部5」と捉えることができる。電流発生部5は、回転軸3を中心とした回転対称位置に設けられた第1電流発生部51と、第2電流発生部52とを含む。第1電流発生部51は、第1筒状部材71と、第1筒状部材71の外周に配置された第1コイル81と、第1電流発生部51の筒状部材71内に配置された第1球状磁石61とを含む。第2電流発生部52は、第2筒状部材72と、第2筒状部材72の外周に配置された第2コイル82と、第2電流発生部52の筒状部材72内に配置された第2球状磁石62とを含む。すなわち、第1および第2電流発生部51,52は、同様の構成を備えている。以下の説明において、第1電流発生部51と、第2電流発生部52とを区別する必要がない場合には、これらを「電流発生部5」と表現する。同様に、第1球状磁石61および第2球状磁石62は「球状磁石6」と表現し、第1筒状部材71および第2筒状部材72は「筒状部材7」と表現し、第1コイル81および第2コイル82は「コイル8」と表現する。 The configuration including the tubular member 7, the coil 8, and the spherical magnet 6 generates an electric current by electromagnetic induction. Therefore, these configurations can be collectively regarded as the "current generating unit 5". The current generation unit 5 includes a first current generation unit 51 provided at a rotationally symmetric position about the rotation axis 3 and a second current generation unit 52. The first current generating portion 51 is arranged in the first cylindrical member 71, the first coil 81 arranged on the outer periphery of the first tubular member 71, and the tubular member 71 of the first current generating portion 51. Includes a first spherical magnet 61. The second current generating portion 52 is arranged in the second tubular member 72, the second coil 82 arranged on the outer periphery of the second tubular member 72, and the tubular member 72 of the second current generating portion 52. Includes a second spherical magnet 62. That is, the first and second current generating units 51 and 52 have the same configuration. In the following description, when it is not necessary to distinguish between the first current generation unit 51 and the second current generation unit 52, these are referred to as "current generation unit 5". Similarly, the first spherical magnet 61 and the second spherical magnet 62 are expressed as "spherical magnet 6", and the first tubular member 71 and the second tubular member 72 are expressed as "cylindrical member 7". The coil 81 and the second coil 82 are referred to as "coil 8".
 筒状部材7は、内部が中空の棒状であり、両端部はホルダー2に嵌合するように固定されている。本実施の形態の筒状部材7は、図2(b)に示すように前後方向(矢印A3の方向)に延在している。本実施の形態の筒状部材7は、球状磁石6の自転運動容易の観点から円筒部材により形成されており、その外形状及び内形状は断面視において円柱形状である。なお、筒状部材7は、その内部で球状磁石6が自転運動することのできる形状であればよく、特に外形状については限定されない。 The cylindrical member 7 has a hollow rod shape inside, and both ends thereof are fixed so as to fit into the holder 2. As shown in FIG. 2B, the tubular member 7 of the present embodiment extends in the front-rear direction (direction of arrow A3). The tubular member 7 of the present embodiment is formed of a cylindrical member from the viewpoint of facilitating the rotation of the spherical magnet 6, and its outer shape and inner shape are cylindrical in cross-sectional view. The cylindrical member 7 may have a shape in which the spherical magnet 6 can rotate on its axis, and the outer shape is not particularly limited.
 筒状部材7は、非磁性体で形成されている。本実施の形態では、形成容易の観点および球状磁石6の回転時に生じる摩擦抵抗の低減の観点から、プラスチックなどの合成樹脂で形成されている。 The tubular member 7 is made of a non-magnetic material. In the present embodiment, it is made of a synthetic resin such as plastic from the viewpoint of easy formation and reduction of frictional resistance generated when the spherical magnet 6 is rotated.
 この筒状部材7の外周には、コイル8が巻回されている。そのため、筒状部材7は、コイル8のボビンの役割も担う。本実施の形態のコイル8は、筒状部材7の外周の一部に設けられているが、筒状部材7の全周に設けられていてもよい。コイル8は、例えばソレノイドコイルである。 A coil 8 is wound around the outer circumference of the tubular member 7. Therefore, the tubular member 7 also plays the role of a bobbin of the coil 8. Although the coil 8 of the present embodiment is provided on a part of the outer periphery of the tubular member 7, it may be provided on the entire circumference of the tubular member 7. The coil 8 is, for example, a solenoid coil.
 第1、第2筒状部材71,72の内部には、第1、第2球状磁石61、62が設けられている。第1、第2球状磁石61,62は、回転磁石4からの磁力を受けて、回転軸線P,Pを中心に自転運動をする。第1、第2球状磁石61,62は、この回転軸線P、Pを含む平面を境に2極に着磁している。すなわち、第1、第2球状磁石61,62は、N極とS極とが半球ずつ分極着磁された永久磁石である。 Inside the first and second cylindrical members 71 and 72, first and second spherical magnets 61 and 62 are provided. The first and second spherical magnets 61 and 62 receive a magnetic force from the rotating magnet 4 and rotate around the rotation axes P1 and P2. The first and second spherical magnets 61 and 62 are magnetized to two poles with a plane including the rotation axes P1 and P2 as a boundary. That is, the first and second spherical magnets 61 and 62 are permanent magnets in which the N pole and the S pole are polarized and magnetized by hemispheres.
 本実施の形態の第1、第2球状磁石61,62は、それぞれ1個の球状マグネットで構成されている。これにより、第1、第2球状磁石61,62は、支持面に点接触するため、摩擦抵抗が小さくなり、回転軸3の周囲を回転する回転磁石4からの磁力のみで自転運動することができる。 The first and second spherical magnets 61 and 62 of the present embodiment are each composed of one spherical magnet. As a result, the first and second spherical magnets 61 and 62 make point contact with the support surface, so that the frictional resistance becomes small, and the first and second spherical magnets 61 and 62 rotate on their axis only by the magnetic force from the rotating magnet 4 rotating around the rotating shaft 3. can.
 図2(b)に示すように、第1、第2筒状部材71,72は、前後方向に延びており、第1、第2筒状部材71,72および第1、第2コイル81,82の前後方向中央位置は、回転磁石4と略同じ位置である。第1、第2筒状部材71,72内部に配置された第1、第2球状磁石61,62は、回転磁石4からの吸引力に引き寄せられ、第1、第2コイル81,82の前後方向中央位置の内部に配置されるように維持される。これにより、発電機1は、効率的に誘導電流を発生させることができる。また、第1、第2球状磁石61,62の外径は、第1、第2筒状部材71,72の内径(中空形状の直径)よりもやや小さい。第1、第2球状磁石61,62は、回転軸線P、Pを中心に自転運動することで、第1、第2コイル81,82に電流を発生させる。つまり、第1、第2球状磁石61,62から発生する磁力線が第1、第2コイル81,82と交差(直交)することで、第1、第2コイル81,82に交流電流が発生する。 As shown in FIG. 2B, the first and second tubular members 71 and 72 extend in the front-rear direction, and the first and second tubular members 71 and 72 and the first and second coils 81, The center position of 82 in the front-rear direction is substantially the same as that of the rotating magnet 4. The first and second spherical magnets 61 and 62 arranged inside the first and second tubular members 71 and 72 are attracted by the attractive force from the rotating magnet 4, and are before and after the first and second coils 81 and 82. It is maintained to be placed inside the directional center position. As a result, the generator 1 can efficiently generate an induced current. Further, the outer diameters of the first and second spherical magnets 61 and 62 are slightly smaller than the inner diameters (hollow diameters) of the first and second tubular members 71 and 72. The first and second spherical magnets 61 and 62 rotate around the rotation axes P1 and P2 to generate an electric current in the first and second coils 81 and 82. That is, the lines of magnetic force generated from the first and second spherical magnets 61 and 62 intersect (orthogonally) with the first and second coils 81 and 82, so that an alternating current is generated in the first and second coils 81 and 82. ..
 電流発生部5のコイル8の一端は、整流部(図示せず)に接続されており、整流部(図示せず)によって整流された電流が外部部材(図示せず)に伝達される。これにより、電流発生部5で発生した電流によって外部部材を起動させることができる。なお、コイル8に発生した交流電流を、整流することなく外部部材に伝達してもよい。 One end of the coil 8 of the current generating unit 5 is connected to a rectifying unit (not shown), and the current rectified by the rectifying unit (not shown) is transmitted to an external member (not shown). As a result, the external member can be activated by the current generated by the current generating unit 5. The alternating current generated in the coil 8 may be transmitted to the external member without being rectified.
 (動作について)
  続いて、図2(a),(b)を参照して、本実施の形態の発電機1の動作について説明する。
(About operation)
Subsequently, the operation of the generator 1 of the present embodiment will be described with reference to FIGS. 2 (a) and 2 (b).
 まず、ラックや歯車などの駆動部材(図示せず)の運動がピニオン31に伝わることで、回転軸3が回転する。駆動部材は、たとえばドアの回転軸などの部材である。回転軸3の回転に伴って、回転軸3に固定された回転磁石4が回転軸線Oを中心に回転する。電流発生部5のうち筒状部材7およびコイル8はホルダー2に固定されているので、回転軸3の回転に伴って回転しない。このため、電流発生部5のうち球状磁石6のみがその場で受ける回転磁石4の磁力により、回転軸線P、Pを中心に自転運動をする。コイル8には、回転磁石4の磁力および球状磁石6からの磁力が作用するため、電磁誘導が生じ、起電力(誘導電流)が発生する。この起電力は、コイル8に接続された配線(図示せず)を介して整流回路(図示せず)に伝達される。 First, the rotation shaft 3 rotates by transmitting the motion of a drive member (not shown) such as a rack or a gear to the pinion 31. The drive member is, for example, a member such as a rotating shaft of a door. Along with the rotation of the rotating shaft 3, the rotating magnet 4 fixed to the rotating shaft 3 rotates around the rotating axis O. Since the cylindrical member 7 and the coil 8 of the current generating portion 5 are fixed to the holder 2, they do not rotate with the rotation of the rotating shaft 3. Therefore, among the current generating portions 5, only the spherical magnet 6 rotates on the rotation axes P1 and P2 due to the magnetic force of the rotating magnet 4 received on the spot. Since the magnetic force of the rotating magnet 4 and the magnetic force from the spherical magnet 6 act on the coil 8, electromagnetic induction occurs and an electromotive force (induced current) is generated. This electromotive force is transmitted to the rectifier circuit (not shown) via the wiring (not shown) connected to the coil 8.
 本実施の形態の発電機1は、回転軸3および回転磁石4が反時計回りに回転すると、回転磁石4からの磁力を受けた第1球状磁石61および第2球状磁石62が、各々の回転軸線P、Pを中心に時計回りに自転運動する。ここで、特許文献1の振動ダイナモ装置は、球状磁石が筒状部材内部をスライド移動することで発電する。そのため、筒状部材の両端部には、球状磁石を跳ね返すための部材が必要となる。これに対し本願発明は、回転磁石4と、第1球状磁石61と、第2球状磁石62の相対的な位置関係が、運動時(発電時)であっても変わらず、球状部材を跳ね返すための部材も不要である。そのため、発電機1の大きさを小型化することができる。 In the generator 1 of the present embodiment, when the rotating shaft 3 and the rotating magnet 4 rotate counterclockwise, the first spherical magnet 61 and the second spherical magnet 62, which receive the magnetic force from the rotating magnet 4, rotate respectively. It rotates clockwise around the axes P1 and P2 . Here, the vibration dynamo device of Patent Document 1 generates electricity by sliding the spherical magnet inside the tubular member. Therefore, members for repelling the spherical magnet are required at both ends of the tubular member. On the other hand, in the present invention, the relative positional relationship between the rotating magnet 4, the first spherical magnet 61, and the second spherical magnet 62 does not change even during motion (during power generation), and the spherical member is repelled. No member is required. Therefore, the size of the generator 1 can be reduced.
 また、本実施の形態の発電機1は、回転磁石4と球状磁石6とが常に近接した位置にあるため、漏れ磁束を低減することができる。つまり、発電機1は、回転磁石4および球状磁石6の両方から発生する磁力を有効利用できるからこそ、少ない動きであっても十分な発電量を確保することができる。換言すれば、本実施の形態の発電機1は、動きに対する発電効率がよいという特徴を備える発電機である。 Further, in the generator 1 of the present embodiment, since the rotating magnet 4 and the spherical magnet 6 are always in close proximity to each other, the leakage flux can be reduced. That is, because the generator 1 can effectively utilize the magnetic force generated from both the rotating magnet 4 and the spherical magnet 6, it is possible to secure a sufficient amount of power generation even with a small movement. In other words, the generator 1 of the present embodiment is a generator having a feature of high power generation efficiency with respect to movement.
 (回転磁石と電流発生部との位置関係について)
  図2(b)に示すように、本実施の形態の電流発生部5は、筒状部材7に巻かれたコイル8の外周面83が回転軸3に近接しており、筒状部材7の中心軸線R、Rが回転軸3に交差しない位置で回転軸3に対して垂直な方向に延びるように、位置決めされている。
(Regarding the positional relationship between the rotating magnet and the current generator)
As shown in FIG. 2B, in the current generation unit 5 of the present embodiment, the outer peripheral surface 83 of the coil 8 wound around the tubular member 7 is close to the rotating shaft 3, and the tubular member 7 has a peripheral surface 83. The central axes R 1 and R 2 are positioned so as to extend in a direction perpendicular to the rotation axis 3 at a position where they do not intersect the rotation axis 3.
 図2(a)に示すように、本実施の形態の球状磁石6の回転軸線P,Pは、回転軸3に対して平行である。これにより、発電機1自体をコンパクトな構造にすることができる。 As shown in FIG. 2A, the rotation axes P1 and P2 of the spherical magnet 6 of the present embodiment are parallel to the rotation axis 3 . As a result, the generator 1 itself can be made into a compact structure.
 また、球状磁石6の回転軸線P,Pは、コイル8の円周軌道面83に交差している。これにより、球状磁石6の自転運動時の回転方向とコイル8の巻回方向とが同じ向きとならないため、効率的に電磁誘導を発生することができる。 Further, the rotation axes P1 and P2 of the spherical magnet 6 intersect the circumferential orbital plane 83 of the coil 8 . As a result, the rotation direction of the spherical magnet 6 during the rotation motion and the winding direction of the coil 8 do not become the same direction, so that electromagnetic induction can be efficiently generated.
 (効果)
  以上説明したように、本実施の形態によれば、回転軸3と、回転磁石4と、球状磁石6とを「回転体」と見做した場合、ホルダー2と、筒状部材7と、コイル8とは「固定体」と見做すことができる。つまり、筒状部材7自体を回転、揺動、あるいは振動させなくても、回転する回転磁石4の磁力によって球状磁石6を軽やかに自転運動させることができる。
(effect)
As described above, according to the present embodiment, when the rotating shaft 3, the rotating magnet 4, and the spherical magnet 6 are regarded as "rotating bodies", the holder 2, the tubular member 7, and the coil are used. 8 can be regarded as a "fixed body". That is, the spherical magnet 6 can be lightly rotated by the magnetic force of the rotating rotating magnet 4 without rotating, rocking, or vibrating the tubular member 7 itself.
 その結果、本実施の形態によれば、低トルクでありながら、効率的に電流を発生させることができる。つまり、電流発生部5の発電効率を向上させることができる。また、特許文献1のように筒状部材内部で球状磁石が振動する必要がなく、また球状磁石が振動するための部材も必要ないため、発電機1を簡易かつ小型な構造にすることができる。 As a result, according to the present embodiment, it is possible to efficiently generate an electric current while having a low torque. That is, the power generation efficiency of the current generating unit 5 can be improved. Further, unlike Patent Document 1, the spherical magnet does not need to vibrate inside the tubular member, and the member for vibrating the spherical magnet is not required, so that the generator 1 can be made into a simple and compact structure. ..
 本実施の形態の発電機1は、たとえば回転体が180°回転するだけで無線リモコンの動作に十分な電力を発電することができるように設計した場合、ピニオン31と無線リモコンの入力部とを接続し、回転磁石4の外周を2極着磁とすれば、回転体が180°回転する間に、回転磁石4と球状磁石6とは互いに吸引→反発→吸引されることになる。つまり、無線リモコンの入力部を1回押下するだけで、磁石同士の吸引・反発動作のために程よいクリック感を得ることができる。「クリック感」とは、スイッチを押下した際に感じる音または手応えである。すなわち、本実施の形態の発電機1は、たとえば無線リモコンなどの小型機材の発電機として好適に用いることができる。 When the generator 1 of the present embodiment is designed so that, for example, the rotating body can generate enough power for the operation of the wireless remote control only by rotating 180 °, the pinion 31 and the input unit of the wireless remote control are used. If they are connected and the outer periphery of the rotating magnet 4 is magnetized with two poles, the rotating magnet 4 and the spherical magnet 6 are attracted to each other, repelled, and attracted while the rotating body rotates by 180 °. That is, by pressing the input unit of the wireless remote controller once, it is possible to obtain a moderate click feeling due to the attraction / repulsion operation between the magnets. The "click feeling" is the sound or response felt when the switch is pressed. That is, the generator 1 of the present embodiment can be suitably used as a generator for small equipment such as a wireless remote controller.
 <実施の形態2>
  図3,4を参照して、本発明の実施の形態2の発電機1Aについて説明する。図3は、本実施の形態における発電機1Aの斜視図であり、図4は、本実施の形態における発電機1Aの断面図であり、(a)は縦断面図であり、(b)は図4(a)におけるIVb-IVb線に沿った断面図である。実施の形態2の発電機1Aは、基本的には実施の形態1の発電機1と同様の構成を備えているが、図3に示すように、主に回転軸3に対する電流発生部5Aの相対的な位置関係について異なる。
<Embodiment 2>
The generator 1A of the second embodiment of the present invention will be described with reference to FIGS. 3 and 4. 3A and 3B are perspective views of the generator 1A according to the present embodiment, FIG. 4 is a sectional view of the generator 1A according to the present embodiment, FIG. 3A is a vertical sectional view, and FIG. 4B is a vertical sectional view. 4 is a cross-sectional view taken along the line IVb-IVb in FIG. 4A. The generator 1A of the second embodiment basically has the same configuration as the generator 1 of the first embodiment, but as shown in FIG. 3, mainly the current generating unit 5A with respect to the rotating shaft 3 Different about relative positional relationship.
 図3,4に示すように、本実施の形態における発電機1Aは、回転軸3を中心とした回転対称位置に設けられた第1電流発生部51Aと、第2電流発生部52Aとを含む。第1、第2電流発生部51A,52Aは、第1、第2筒状部材71A,72Aの一方端面が回転磁石4に近接しており、第1、第2筒状部材71A,72Aの中心軸線S,Sが回転軸3と直交している。これにより、発電機1Aを小型化することができる。 As shown in FIGS. 3 and 4, the generator 1A in the present embodiment includes a first current generation unit 51A and a second current generation unit 52A provided at rotationally symmetric positions about the rotation axis 3. .. In the first and second current generating portions 51A and 52A, one end surface of the first and second tubular members 71A and 72A is close to the rotating magnet 4, and the center of the first and second tubular members 71A and 72A. The axes S 1 and S 2 are orthogonal to the axis of rotation 3. As a result, the generator 1A can be miniaturized.
 筒状部材7Aは、一方端面が回転磁石4に近接するようホルダー2Aに固定されており、他方端面が開放されている。本実施の形態の球状磁石6Aは、回転磁石4の磁力により回転軸線O方向に吸引されるように支持されており、回転磁石4の回転によってその場で自転運動するため、必ずしも他方端面を覆う必要はない。しかしながら、球状磁石6Aの脱落防止の観点から、他方端面に図示しないキャップ部材を設けてもよい。 The tubular member 7A is fixed to the holder 2A so that one end face is close to the rotating magnet 4, and the other end face is open. The spherical magnet 6A of the present embodiment is supported so as to be attracted in the rotation axis O direction by the magnetic force of the rotating magnet 4, and rotates on the spot due to the rotation of the rotating magnet 4, so that it does not necessarily cover the other end face. No need. However, from the viewpoint of preventing the spherical magnet 6A from falling off, a cap member (not shown) may be provided on the other end surface.
 筒状部材7Aを上記のように固定すると、その内部に配置された球状磁石6Aは回転磁石4の磁力のため、筒状部材7Aの一方端面に引き寄せられてしまう。これを防止するために、本実施の形態では、球状磁石6Aを筒状部材7Aの中心部に位置させるための非磁性材料からなるスペーサ9が、筒状部材7A内に配置されている。スペーサ9は、球状磁石6Aがコイル8Aの中心部に位置するように支持できるものであればよく、その形状については特に限定されない。これにより、コイル8Aは、その左右方向中心位置において、球状磁石6Aからの磁力による電磁誘導を発生させることができ、コイル8Aの左右方向端部位置で電磁誘導を発生させるよりも起電力を大きくすることができる。すなわち、スペーサ9を備える発電機1Aは、効率的に発電することができる。なお、スペーサ9は、球状磁石6Aとの接触抵抗を小さくする観点から、硬質で滑らかな材料で形成されることが好ましく、たとえば樹脂で形成される。 When the tubular member 7A is fixed as described above, the spherical magnet 6A arranged inside the tubular member 7A is attracted to one end surface of the tubular member 7A due to the magnetic force of the rotating magnet 4. In order to prevent this, in the present embodiment, a spacer 9 made of a non-magnetic material for locating the spherical magnet 6A at the center of the tubular member 7A is arranged in the tubular member 7A. The spacer 9 may be any as long as it can support the spherical magnet 6A so as to be located at the center of the coil 8A, and its shape is not particularly limited. As a result, the coil 8A can generate electromagnetic induction by the magnetic force from the spherical magnet 6A at the center position in the left-right direction, and has a larger electromotive force than the electromagnetic induction at the position of the end portion in the left-right direction of the coil 8A. can do. That is, the generator 1A provided with the spacer 9 can efficiently generate power. The spacer 9 is preferably formed of a hard and smooth material, for example, of a resin, from the viewpoint of reducing the contact resistance with the spherical magnet 6A.
 (動作について)
  本実施の形態の発電機1Aは、回転軸3および回転磁石4が反時計回りに回転すると、回転磁石4からの磁力を受けて、第1球状磁石61Aが回転軸線Qを中心に時計回りに自転運動し、第2球状磁石62Aが回転軸線Qを中心に時計回りに自転運動する。すなわち、本実施の形態における発電機1Aは、回転磁石4、第1球状磁石61A、および第2球状磁石62Aの各々がその場で自転運動するだけで、第1および第2電流発生部51A、52Aに誘導電流が発生することにより発電する。また、発電機1Aは、特許文献1の振動ダイナモ装置のように、筒状部材内部に配置された球状磁石が振動する必要がなく、振動のための部材も必要としない。つまり、発電機1Aの回転磁石4と、第1球状磁石61Aと、第2球状磁石62Aは、運動時(発電時)であっても各々の相対的な位置関係が変わらない。そのため、発電機1Aの大きさを小型化することができる。
(About operation)
In the generator 1A of the present embodiment, when the rotating shaft 3 and the rotating magnet 4 rotate counterclockwise, the first spherical magnet 61A receives the magnetic force from the rotating magnet 4 and the first spherical magnet 61A rotates clockwise around the rotating axis Q1 . The second spherical magnet 62A rotates clockwise around the rotation axis Q2 . That is, in the generator 1A of the present embodiment, the rotating magnet 4, the first spherical magnet 61A, and the second spherical magnet 62A each rotate on the spot, and the first and second current generating portions 51A, Power is generated by generating an induced current at 52A. Further, unlike the vibration dynamo device of Patent Document 1, the generator 1A does not require the spherical magnet arranged inside the tubular member to vibrate, and does not require a member for vibration. That is, the relative positional relationship between the rotating magnet 4 of the generator 1A, the first spherical magnet 61A, and the second spherical magnet 62A does not change even during motion (during power generation). Therefore, the size of the generator 1A can be reduced.
 (回転磁石と電流発生部との位置関係について)
  本実施の形態の第1、第2球状磁石61A、62Aの回転軸線Q,Qは、回転軸3の回転軸線Oと平行である。これにより、発電機1A自体をコンパクトな構造とすることができる。また、第1、第2球状磁石61A、62Aの回転軸線Q,Qは、第1、第2コイル81A、82Aの円周軌道面83Aに交差している。これにより、球状磁石6Aの自転運動時の回転方向とコイル8の巻回方向とが同じ向きとならないため、効率的に電磁誘導を発生することができる。
(Regarding the positional relationship between the rotating magnet and the current generator)
The rotation axes Q1 and Q2 of the first and second spherical magnets 61A and 62A of the present embodiment are parallel to the rotation axis O of the rotation axis 3. As a result, the generator 1A itself can have a compact structure. Further, the rotation axes Q1 and Q2 of the first and second spherical magnets 61A and 62A intersect the circumferential orbital plane 83A of the first and second coils 81A and 82A. As a result, the rotation direction of the spherical magnet 6A during the rotation motion and the winding direction of the coil 8 do not become the same direction, so that electromagnetic induction can be efficiently generated.
 なお、本実施の形態1,2の第1電流発生部51,51Aおよび第2電流発生部52,52Aは、回転軸3を中心とした回転対称位置に2個設ける構成であるとしたが、外部部材を作動させるのに十分な発電量を確保できるのであれば、電流発生部5,5Aは1個設けるのみでもよい。 Although the first current generating units 51, 51A and the second current generating units 52, 52A of the first and second embodiments are configured to be provided at two rotationally symmetric positions about the rotation axis 3. If a sufficient amount of power generation can be secured to operate the external member, only one current generating unit 5, 5A may be provided.
 <実施の形態3>
  図5,6を参照して、本発明の他の実施形態の発電機100について説明する。
<Embodiment 3>
The generator 100 of another embodiment of the present invention will be described with reference to FIGS. 5 and 6.
 発電機100は、収納空間121を有するホルダー102と、ホルダー102に回転自在に支持され、少なくともその一方端がホルダー102の外に露出している回転軸103と、ホルダー102の収納空間121内に配置され、回転軸103に固定された回転磁石104と、一方端部が回転磁石104に近接し、他方端部が回転磁石104から離れるように配置され、ホルダー102に保持される非磁性体の筒状部材107と、筒状部材107の外周に配置されたコイル108と、筒状部材107内に配置され、回転磁石104からの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心106とを備える。 The generator 100 is rotatably supported by a holder 102 having a storage space 121, a rotating shaft 103 whose at least one end is exposed to the outside of the holder 102, and a storage space 121 of the holder 102. A non-magnetic material that is arranged and fixed to a rotating shaft 103, and a non-magnetic material that is arranged so that one end is close to the rotating magnet 104 and the other end is away from the rotating magnet 104, and is held by the holder 102. A magnetic core of a soft magnetic material that is arranged inside a tubular member 107, a coil 108 arranged on the outer periphery of the tubular member 107, and repeatedly reverses the direction of magnetism by receiving a magnetic force from a rotating magnet 104. It is equipped with 106.
 ホルダー102は、回転磁石104を収容する収納空間121と、回転軸103を上下方向に挿通する貫通孔122とを有している。本実施の形態では、収納空間121の左右に筒状部材107が収容されるための溝部123をさらに有している。 The holder 102 has a storage space 121 for accommodating the rotating magnet 104 and a through hole 122 for inserting the rotating shaft 103 in the vertical direction. In the present embodiment, the groove portions 123 for accommodating the tubular member 107 are further provided on the left and right sides of the storage space 121.
 ホルダー102は、非磁性体で形成されている。非磁性体として、例えば、アルミニウムなどの金属、プラスチックなどの合成樹脂などが挙げられる。本実施の形態では、ホルダー102は、合成樹脂で形成されることが好ましい。 The holder 102 is made of a non-magnetic material. Examples of the non-magnetic material include metals such as aluminum and synthetic resins such as plastics. In this embodiment, the holder 102 is preferably made of a synthetic resin.
 回転軸103は、このホルダー102の貫通孔122に回転自在に支持されている。回転軸103は、その延在方向に沿った回転軸線Oを中心に回転可能に設けられている。回転軸103は、ホルダー102の貫通孔122および収納空間121内全体を貫通して延びている。回転軸103は、ホルダー102から露出している一方端部分にピニオン131を有している。 The rotating shaft 103 is rotatably supported by the through hole 122 of the holder 102. The rotation axis 103 is provided so as to be rotatable about the rotation axis O along the extending direction thereof. The rotation shaft 103 extends through the through hole 122 of the holder 102 and the entire storage space 121. The rotating shaft 103 has a pinion 131 at one end portion exposed from the holder 102.
 ホルダー102の内部に挿通される回転軸103のうち、収納空間121に位置する部分には、回転磁石104が固定される。回転磁石104は、たとえば接着、圧嵌などの手法で回転軸103に固定されており、回転軸線Oを中心にして回転軸103と共に回転する。本実施の形態では、回転磁石104は、円筒形状の磁石である。 Of the rotating shaft 103 inserted inside the holder 102, the rotating magnet 104 is fixed to the portion located in the storage space 121. The rotating magnet 104 is fixed to the rotating shaft 103 by a method such as adhesion or pressure fitting, and rotates together with the rotating shaft 103 about the rotating axis O. In the present embodiment, the rotating magnet 104 is a cylindrical magnet.
 回転磁石104として使用する磁石は、永久磁石である。本実施の形態の回転磁石104は、周方向に2極に着磁されているが、回転磁石104の極数は2極以上であれば特に限定されない。なお、「周方向」とは、回転磁石104の外周に沿うように延びる円周方向である。本実施の形態の回転磁石104は、平面断面視リング形状の円筒磁石であるが、その形状または個数については限定されない。たとえば、2つ以上の永久磁石を回転軸103に固定して、周方向の極性が交互に変わる構成としてもよい。回転磁石104は、少なくともその外周面が着磁されていればよいため、片面着磁であってもよく、両面着磁であってもよい。回転磁石104の材料は特に限定されないが、高い磁力を示す観点から、Nd‐Fe‐B焼結磁石(ネオジム磁石)を用いることが好ましい。 The magnet used as the rotating magnet 104 is a permanent magnet. The rotating magnet 104 of the present embodiment is magnetized to two poles in the circumferential direction, but the number of poles of the rotating magnet 104 is not particularly limited as long as it has two or more poles. The "circumferential direction" is a circumferential direction extending along the outer circumference of the rotating magnet 104. The rotating magnet 104 of the present embodiment is a cylindrical magnet having a ring shape in a plan view, but the shape or number thereof is not limited. For example, two or more permanent magnets may be fixed to the rotating shaft 103 so that the polarities in the circumferential direction change alternately. Since the rotating magnet 104 may be magnetized on at least the outer peripheral surface thereof, it may be magnetized on one side or on both sides. The material of the rotating magnet 104 is not particularly limited, but it is preferable to use an Nd-Fe-B sintered magnet (neodymium magnet) from the viewpoint of exhibiting a high magnetic force.
 この回転磁石104の上下方向両端面と対向するように、ワッシャー132が配置されている。ワッシャー132は、リング状の板材であり、中央部分には回転軸103が挿通される。すなわちワッシャー132は、回転軸線Oを中心にして回転可能に配置されている。ワッシャー132は、たとえばステンレスなどで形成された平ワッシャーである。これにより、回転軸103の回転に伴うホルダー102および回転磁石104の摩耗を防止または抑制することができる。 The washer 132 is arranged so as to face both ends of the rotating magnet 104 in the vertical direction. The washer 132 is a ring-shaped plate material, and a rotating shaft 103 is inserted through the central portion thereof. That is, the washer 132 is rotatably arranged about the rotation axis O. The washer 132 is a flat washer made of, for example, stainless steel. This makes it possible to prevent or suppress wear of the holder 102 and the rotating magnet 104 due to the rotation of the rotating shaft 103.
 筒状部材107と、コイル108と、磁心106とを含む構成は、電磁誘導により電流を発生させる。そのため、これらの構成はまとめて「電流発生部105」と捉えることができる。電流発生部105は、回転軸103を中心とした回転対称位置に設けられた第1電流発生部151と、第2電流発生部152とを含む。第1電流発生部151は、第1筒状部材171と、第1筒状部材171の外周に配置された第1コイル181と、第1電流発生部151の筒状部材171内に配置された第1磁心161とを含む。第2電流発生部152は、第2筒状部材172と、第2筒状部材172の外周に配置された第2コイル182と、第2電流発生部152の筒状部材172内に配置された第2磁心162とを含む。すなわち、第1および第2電流発生部151,152は、同様の構成を備えている。以下の説明において、第1電流発生部151と、第2電流発生部152とを区別する必要がない場合には、これらを「電流発生部105」と表現する。同様に、第1磁心161および第2磁心162は「磁心106」と表現し、第1筒状部材171および第2筒状部材172は「筒状部材107」と表現し、第1コイル181および第2コイル182は「コイル108」と表現する。 The configuration including the tubular member 107, the coil 108, and the magnetic core 106 generates an electric current by electromagnetic induction. Therefore, these configurations can be collectively regarded as the "current generating unit 105". The current generation unit 105 includes a first current generation unit 151 provided at a rotationally symmetric position about the rotation axis 103, and a second current generation unit 152. The first current generation unit 151 was arranged in the first cylindrical member 171 and the first coil 181 arranged on the outer periphery of the first tubular member 171 and the tubular member 171 of the first current generation unit 151. Includes the first magnetic core 161. The second current generating portion 152 was arranged in the second cylindrical member 172, the second coil 182 arranged on the outer periphery of the second tubular member 172, and the tubular member 172 of the second current generating portion 152. Includes a second magnetic core 162. That is, the first and second current generating units 151 and 152 have the same configuration. In the following description, when it is not necessary to distinguish between the first current generation unit 151 and the second current generation unit 152, these are referred to as "current generation unit 105". Similarly, the first magnetic core 161 and the second magnetic core 162 are expressed as "magnetic core 106", the first tubular member 171 and the second tubular member 172 are expressed as "cylindrical member 107", and the first coil 181 and The second coil 182 is expressed as "coil 108".
 筒状部材107は、たとえば円筒形状で内部が中空の棒状であり、少なくとも一方端部または他方端部のいずれかがホルダー102に固定されている。筒状部材107は非磁性体で形成されている。本実施の形態では、形成容易の観点から、プラスチックなどの合成樹脂で形成されている。本実施の形態の筒状部材107は、図6に示すように左右方向(矢印A1の方向)に延在している。 The tubular member 107 has, for example, a cylindrical shape and a hollow rod shape inside, and at least one end portion or the other end portion is fixed to the holder 102. The tubular member 107 is made of a non-magnetic material. In the present embodiment, it is made of a synthetic resin such as plastic from the viewpoint of easy formation. As shown in FIG. 6, the tubular member 107 of the present embodiment extends in the left-right direction (direction of arrow A1).
 この筒状部材107の外周には、コイル108が巻回されている。そのため、筒状部材107は、コイル108のボビンの役割も担う。本実施の形態のコイル108は、筒状部材107の外周の一部に設けられているが、筒状部材107の全周に設けられていてもよい。コイル108は、例えばソレノイドコイルである。 A coil 108 is wound around the outer circumference of the tubular member 107. Therefore, the tubular member 107 also plays the role of a bobbin of the coil 108. Although the coil 108 of the present embodiment is provided on a part of the outer periphery of the tubular member 107, it may be provided on the entire circumference of the tubular member 107. The coil 108 is, for example, a solenoid coil.
 磁心106は、筒状部材107の内部に収容される長尺状の棒状部材である。長尺状の棒状部材とは、全体的にみて長尺状であればよく、1つの部材で構成されるものでもよいし、複数の部材が連続的に連なって構成されるものであってもよい。磁心106は、起電力を高める観点から、筒状部材107の内部において、一方端部から他方端部に亘って収容されることが好ましい。 The magnetic core 106 is a long rod-shaped member housed inside the tubular member 107. The long rod-shaped member may be long as a whole, may be composed of one member, or may be composed of a plurality of members continuously connected. good. From the viewpoint of increasing the electromotive force, the magnetic core 106 is preferably housed inside the tubular member 107 from one end to the other.
 磁心106は、磁性の切り替え易さの観点から軟磁性材料で構成され、少なくとも一方端部または他方端部のいずれかに磁石を近接させることで磁性体に変化する。磁心106は、軟磁性材料であればよく、たとえば鉄材、SUS(ステンレス)材、SKH(ハイスピード鋼)材、フェライト材などである。これにより、たとえば無線リモコンのスイッチの押下によりピニオン131が回転することで発電することができるように設計した場合、スイッチを押下するだけで瞬時に発電して無線を送信できるため、タイムラグを低減できる。 The magnetic core 106 is made of a soft magnetic material from the viewpoint of easy switching of magnetism, and changes to a magnetic material by bringing a magnet close to at least one end or the other end. The magnetic core 106 may be a soft magnetic material, for example, an iron material, a SUS (stainless steel) material, a SKH (high speed steel) material, a ferrite material, or the like. As a result, for example, if the pinion 131 is designed to generate electricity by pressing a switch on the wireless remote controller, the pinion 131 can generate electricity instantly and transmit wirelessly by simply pressing the switch, thus reducing the time lag. ..
 本実施の形態の磁心106は、一方端部が、回転磁石104の外周面と対向する位置にホルダー102を隔てて配置される。これにより、磁心106は回転磁石104の磁力を受けて磁化される。磁心106は、回転磁石104からの磁力を受けて、磁性の向きの反転を繰り返すことで、コイル108に電流を発生させる。つまり、磁心106から発生する磁力線がコイル108と交差(直交)することで、コイル108に交流電流が発生する。 The magnetic core 106 of the present embodiment is arranged at a position where one end thereof faces the outer peripheral surface of the rotating magnet 104 with the holder 102 interposed therebetween. As a result, the magnetic core 106 is magnetized by receiving the magnetic force of the rotating magnet 104. The magnetic core 106 receives a magnetic force from the rotating magnet 104 and repeatedly reverses the direction of magnetism to generate an electric current in the coil 108. That is, the lines of magnetic force generated from the magnetic core 106 intersect (orthogonally) with the coil 108, so that an alternating current is generated in the coil 108.
 図5に一点鎖線で示すように、発電機100は、磁心106の少なくとも一方端部または他方端部のいずれかに当接し、ホルダー102に保持される軟磁性材料のヨーク109をさらに備える。これにより、漏れ磁束をさらに低減することができ、誘導起電力を増加することができるため、発電機100の発電量を増加することができる。ヨークとは、マグネットが持つ吸着力を増幅する軟鉄であり、鉄を含んでいればよく、軟磁性材料を含む。ヨーク109は、発電量をさらに増加させる観点から、磁心106の少なくとも一方端部または他方端部のいずれかと当接していることが好ましい。 As shown by the alternate long and short dash line in FIG. 5, the generator 100 further comprises a soft magnetic material yoke 109 that abuts on at least one end or the other end of the magnetic core 106 and is held in the holder 102. As a result, the leakage flux can be further reduced and the induced electromotive force can be increased, so that the amount of power generated by the generator 100 can be increased. The yoke is soft iron that amplifies the attractive force of the magnet, and may contain iron, and includes a soft magnetic material. From the viewpoint of further increasing the amount of power generation, the yoke 109 is preferably in contact with at least one end or the other end of the magnetic core 106.
 本実施の形態におけるヨーク109は、回転軸103を中心としてホルダー102の外周面に保持されており、電流発生部105が外部から見えない。これにより、電流発生部105への異物混入により不具合が生じてしまうことを防止できる。また、磁心106の他方端部とヨーク109とが当接していれば、ヨーク109および磁心106の磁性を一体的に切り替えることができるため、誘導起電力を大きくすることができる。 The yoke 109 in the present embodiment is held on the outer peripheral surface of the holder 102 with the rotation shaft 103 as the center, and the current generating portion 105 cannot be seen from the outside. As a result, it is possible to prevent a problem from occurring due to foreign matter being mixed into the current generating unit 105. Further, if the other end of the magnetic core 106 is in contact with the yoke 109, the magnetism of the yoke 109 and the magnetic core 106 can be switched integrally, so that the induced electromotive force can be increased.
 本実施の形態の磁心106の外径と、筒状部材107の内径(中空形状の直径)とは、略同一である。筒状部材107内部に配置された磁心106は、回転磁石104からの吸引力に引き寄せられるため、磁心106と回転磁石104との間にはホルダー102の一部分が配置されることが好ましい。これにより、磁心106は筒状部材107内に保持されるため、磁心106が回転磁石104とくっついてしまうことを防止できる。 The outer diameter of the magnetic core 106 of the present embodiment and the inner diameter of the tubular member 107 (the diameter of the hollow shape) are substantially the same. Since the magnetic core 106 arranged inside the tubular member 107 is attracted by the attractive force from the rotating magnet 104, it is preferable that a part of the holder 102 is arranged between the magnetic core 106 and the rotating magnet 104. As a result, since the magnetic core 106 is held in the tubular member 107, it is possible to prevent the magnetic core 106 from sticking to the rotating magnet 104.
 電流発生部105のコイル108の一端は、整流部(図示せず)に接続されており、整流部(図示せず)によって整流された電流が外部部材(図示せず)に伝達される。これにより、電流発生部105で発生した電流によって外部部材を起動させることができる。なお、コイル108に発生した交流電流を、整流することなく外部部材に伝達してもよい。 One end of the coil 108 of the current generating unit 105 is connected to a rectifying unit (not shown), and the current rectified by the rectifying unit (not shown) is transmitted to an external member (not shown). As a result, the external member can be activated by the current generated by the current generating unit 105. The alternating current generated in the coil 108 may be transmitted to the external member without being rectified.
 また、本実施の形態の発電機100は、回転磁石104と磁心106とが常に近接した位置にあるため、漏れ磁束を低減することができる。発電機100は、回転磁石104および磁心106の両方から発生する磁力を有効利用できるからこそ、少ない動きであっても十分な発電量を確保することができる。換言すれば、本実施の形態の発電機100は、動きに対する発電効率がよいという特徴を備える発電機である。 Further, in the generator 100 of the present embodiment, since the rotating magnet 104 and the magnetic core 106 are always in close proximity to each other, the leakage flux can be reduced. Since the generator 100 can effectively utilize the magnetic force generated from both the rotating magnet 104 and the magnetic core 106, it is possible to secure a sufficient amount of power generation even with a small amount of movement. In other words, the generator 100 of the present embodiment is a generator having a feature of high power generation efficiency with respect to movement.
 以上説明したように、本実施の形態によれば、回転軸103と、回転磁石104とを「回転体」と見做した場合、ホルダー102と、筒状部材107と、コイル108と、磁心106は「固定体」と見做すことができる。つまり、筒状部材107自体を回転、揺動、あるいは振動させなくても、回転する回転磁石104の磁力によって磁心106から軽やかに電流を発生させることができる。 As described above, according to the present embodiment, when the rotating shaft 103 and the rotating magnet 104 are regarded as "rotating bodies", the holder 102, the tubular member 107, the coil 108, and the magnetic core 106 Can be regarded as a "fixed body". That is, even if the cylindrical member 107 itself is not rotated, rocked, or vibrated, a current can be lightly generated from the magnetic core 106 by the magnetic force of the rotating rotating magnet 104.
 その結果、本実施の形態によれば、低トルクでありながら、効率的に電流を発生させることができる。つまり、電流発生部105の発電効率を向上させることができる。また、特許文献1のように筒状部材内部で球状磁石が振動する必要がなく、また球状磁石が振動するための部材も必要ないため、発電機100を簡易かつ小型な構造にすることができる。 As a result, according to the present embodiment, it is possible to efficiently generate an electric current while having a low torque. That is, the power generation efficiency of the current generating unit 105 can be improved. Further, unlike Patent Document 1, the spherical magnet does not need to vibrate inside the tubular member, and the member for vibrating the spherical magnet is not required, so that the generator 100 can be made into a simple and compact structure. ..
 本実施の形態の発電機100は、たとえば回転体が180°回転するだけで無線リモコンの動作に十分な電力を発電することができるように設計した場合、ピニオン131と無線リモコンの入力部とを接続し、回転磁石104の外周を2極着磁とすれば、回転体が180°回転する間に、磁心106における磁性の向きが1回反転することになる。つまり、無線リモコンの入力部を1回押下するだけで、軟磁性材料の磁心106の磁性が反転することによる程よいクリック感を得ることができる。「クリック感」とは、スイッチを押下した際に感じる音または手応えである。すなわち、本実施の形態の発電機100は、たとえば無線リモコンなどの小型機材の発電機として好適に用いることができる。 When the generator 100 of the present embodiment is designed so that, for example, the rotating body can generate enough power for the operation of the wireless remote controller only by rotating 180 °, the pinion 131 and the input unit of the wireless remote controller are used. If they are connected and the outer circumference of the rotating magnet 104 is magnetized by two poles, the direction of magnetism in the magnetic core 106 is reversed once while the rotating body rotates by 180 °. That is, by pressing the input unit of the wireless remote controller once, it is possible to obtain a moderate click feeling by reversing the magnetism of the magnetic core 106 of the soft magnetic material. The "click feeling" is the sound or response felt when the switch is pressed. That is, the generator 100 of the present embodiment can be suitably used as a generator for small equipment such as a wireless remote controller.
 本実施の形態の発電機100は、発電機として安価な電磁誘導方式を採用している。また、電磁誘導を引き起こすものを軟磁性体材料である磁心106としたことで、さらにコストを低減することができた。 The generator 100 of the present embodiment adopts an inexpensive electromagnetic induction method as a generator. Further, by using the magnetic core 106, which is a soft magnetic material, as the material that causes electromagnetic induction, the cost can be further reduced.
 <実施の形態4>
  図7,8を参照して、本発明の実施の形態4の発電機100Aについて説明する。図7は、本実施の形態における発電機100Aの斜視図であり、図8は、本実施の形態における発電機100Aの断面図である。実施の形態4の発電機100Aは、基本的には実施の形態3の発電機100と同様の構成を備えているが、図7に示すように、ヨーク109Aと電流発生部105Aとの配置構成について異なる。なお、図8において、矢印A2で示す方向を上下方向という。
<Embodiment 4>
The generator 100A according to the fourth embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a perspective view of the generator 100A according to the present embodiment, and FIG. 8 is a cross-sectional view of the generator 100A according to the present embodiment. The generator 100A of the fourth embodiment basically has the same configuration as the generator 100 of the third embodiment, but as shown in FIG. 7, the arrangement configuration of the yoke 109A and the current generating unit 105A. Different about. In FIG. 8, the direction indicated by the arrow A2 is referred to as a vertical direction.
 図7に示すように、本実施の形態における発電機100Aは、回転軸103を中心とした回転対称位置に第1電流発生部151Aと、第2電流発生部152Aとが設けられている。発電機100Aは、第1電流発生部151Aおよび第2電流発生部152Aの一方端部または他方端部に当接し、ホルダー102Aに保持されるヨーク109Aを備える。 As shown in FIG. 7, the generator 100A in the present embodiment is provided with a first current generating unit 151A and a second current generating unit 152A at rotationally symmetric positions about the rotation shaft 103. The generator 100A includes a yoke 109A that abuts on one end or the other end of the first current generating section 151A and the second current generating section 152A and is held by the holder 102A.
 ヨーク109Aは、回転軸103を中心としてホルダー102Aの外周面を覆うようにホルダー102Aに保持される。本実施の形態の発電機100Aは、発電機100と異なり、コイル108Aの外周面がヨーク109Aに覆われていない。 The yoke 109A is held by the holder 102A so as to cover the outer peripheral surface of the holder 102A with the rotation shaft 103 as the center. In the generator 100A of the present embodiment, unlike the generator 100, the outer peripheral surface of the coil 108A is not covered with the yoke 109A.
 本実施の形態の発電機100Aは、回転軸103および回転磁石104Aが回転すると、回転磁石104Aからの磁力を受けて、磁心106Aの磁性の向きの反転を繰り返す。すなわち、本実施の形態における発電機100Aは磁心106Aの磁性の向きが切り替わるだけで、電流発生部105Aに電磁誘導が発生することにより発電する。また、発電機100Aは、特許文献1の振動ダイナモ装置のように、筒状部材内部に配置された球状磁石が振動する必要がなく、振動のための部材も必要としない。つまり、発電機100Aの回転磁石104Aと、磁心106Aは、運動時(発電時)であっても各々の相対的な位置関係が変わらない。そのため、発電機100Aの大きさを小型化することができる。 The generator 100A of the present embodiment receives the magnetic force from the rotating magnet 104A when the rotating shaft 103 and the rotating magnet 104A rotate, and repeats the reversal of the magnetic direction of the magnetic core 106A. That is, the generator 100A in the present embodiment generates electricity by generating electromagnetic induction in the current generating unit 105A only by switching the direction of the magnetism of the magnetic core 106A. Further, unlike the vibration dynamo device of Patent Document 1, the generator 100A does not require the spherical magnet arranged inside the tubular member to vibrate, and does not require a member for vibration. That is, the relative positional relationship between the rotating magnet 104A of the generator 100A and the magnetic core 106A does not change even during motion (during power generation). Therefore, the size of the generator 100A can be reduced.
 〈実施の形態5〉
  図9,10を参照して、本発明の実施の形態5の発電機100Bについて説明する。図9は、本実施の形態における発電機100Bの斜視図であり、図10は、本実施の形態における発電機100Bの断面図である。実施の形態5の発電機100Bは、基本的には実施の形態3の発電機100と同様の構成を備えているが、図9に示すように、電流発生部105Bの配置構成について異なる。
<Embodiment 5>
The generator 100B according to the fifth embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. 9 is a perspective view of the generator 100B according to the present embodiment, and FIG. 10 is a cross-sectional view of the generator 100B according to the present embodiment. The generator 100B of the fifth embodiment basically has the same configuration as the generator 100 of the third embodiment, but as shown in FIG. 9, the arrangement configuration of the current generating unit 105B is different.
 図9,10に示すように、本実施の形態における発電機100Bは、収納空間121Bを有するホルダー102Bと、ホルダー102Bに回転自在に支持され、少なくともその一方端がホルダー102Bの外に露出している回転軸103と、ホルダー102Bの収納空間121B内に配置され、回転軸103に固定された回転磁石104Bと、一方端部および他方端部を有し、その外周面が回転磁石104Bに近接するように配置され、ホルダー102Bに保持される非磁性体の筒状部材107Bと、筒状部材107Bの外周に配置されたコイル108Bと、筒状部材107B内に配置され、回転磁石104Bからの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心106Bと、磁心106Bの一方端部および他方端部に当接し、ホルダー102Bに保持される軟磁性材料のヨーク109Bとを備える。 As shown in FIGS. 9 and 10, the generator 100B in the present embodiment is rotatably supported by a holder 102B having a storage space 121B and a holder 102B, and at least one end thereof is exposed to the outside of the holder 102B. It has a rotating shaft 103, a rotating magnet 104B arranged in the storage space 121B of the holder 102B and fixed to the rotating shaft 103, one end and the other end, and its outer peripheral surface is close to the rotating magnet 104B. A non-magnetic tubular member 107B arranged in such a manner and held in the holder 102B, a coil 108B arranged on the outer periphery of the tubular member 107B, and a magnetic force from the rotating magnet 104B arranged in the tubular member 107B. It is provided with a magnetic core 106B of a soft magnetic material that repeatedly reverses the direction of magnetism in response to the above, and a yoke 109B of a soft magnetic material that abuts on one end and the other end of the magnetic core 106B and is held by the holder 102B.
 実施の形態5の発電機100Bは、実施の形態3,4の発電機100,100Aとは異なり、磁心106Bの端部が回転磁石104Bの外周面と対向していない。つまり、筒状部材107Bに巻かれたコイル108Bの外周面183Bの少なくとも一部分が、回転軸103に近接している。また、本実施の形態の筒状部材107Bの中心軸線は、回転軸103に交差しない位置で回転軸103に対して垂直な方向に延びている。このような構成のため、発電機100Bは、磁心106Bと回転磁石104Bとを十分に近接させることが困難であり、回転磁石104Bは磁心106Bで発生する誘導起電力に殆ど寄与することができない。 Unlike the generators 100 and 100A of the third and fourth embodiments, the generator 100B of the fifth embodiment does not have the end of the magnetic core 106B facing the outer peripheral surface of the rotating magnet 104B. That is, at least a part of the outer peripheral surface 183B of the coil 108B wound around the tubular member 107B is close to the rotation shaft 103. Further, the central axis of the tubular member 107B of the present embodiment extends in a direction perpendicular to the rotation axis 103 at a position not intersecting the rotation axis 103. Due to such a configuration, it is difficult for the generator 100B to bring the magnetic core 106B and the rotating magnet 104B sufficiently close to each other, and the rotating magnet 104B can hardly contribute to the induced electromotive force generated by the magnetic core 106B.
 しかし、発電機100Bは、ヨーク109Bと回転磁石104Bとが近接する配置構成である。ヨーク109Bは、回転磁石104Bからの磁力を受けて磁化され、ヨーク109Bと当接する磁心106Bを磁化させる。つまり、発電機100Bは、回転磁石104Bとヨーク109Bとが近接しており、ヨーク109Bと磁心106Bとが当接しているため、回転磁石104Bの回転に応じてヨーク109Bの磁性が切り替わり、磁心106Bの極性が反転することで発電する。 However, the generator 100B has a configuration in which the yoke 109B and the rotating magnet 104B are close to each other. The yoke 109B is magnetized by receiving a magnetic force from the rotating magnet 104B, and magnetizes the magnetic core 106B that abuts on the yoke 109B. That is, in the generator 100B, since the rotating magnet 104B and the yoke 109B are in close proximity to each other and the yoke 109B and the magnetic core 106B are in contact with each other, the magnetism of the yoke 109B is switched according to the rotation of the rotating magnet 104B, and the magnetic core 106B is switched. Power is generated by reversing the polarity of.
 筒状部材107Bと、コイル108Bと、磁心106Bと、ヨーク109Bとを含む構成は、電磁誘導により電流を発生させる。そのため、これらの構成はまとめて「電流発生部105B」と捉えることができる。電流発生部105Bは、回転軸103を中心とした回転対称位置に設けられた第1電流発生部151Bと、第2電流発生部152Bとを含む。つまり、発電機100Bの電流発生部105Bは、発電機100,100Aの電流発生部105,105Aよりも大きい分、磁性の向きが反転する際に生じる誘導起電力も大きくなるため、発電量を多くすることができる。 The configuration including the tubular member 107B, the coil 108B, the magnetic core 106B, and the yoke 109B generates a current by electromagnetic induction. Therefore, these configurations can be collectively regarded as the "current generating unit 105B". The current generation unit 105B includes a first current generation unit 151B provided at a rotationally symmetric position about the rotation axis 103, and a second current generation unit 152B. That is, since the current generating unit 105B of the generator 100B is larger than the current generating units 105 and 105A of the generators 100 and 100A, the induced electromotive force generated when the direction of magnetism is reversed is also large, so that the amount of power generation is large. can do.
 ヨーク109Bは、少なくともホルダー102Bの上面および下面に設けられる。ヨーク109Bは、回転磁石104Bの磁力を受けることができ、かつ磁心106Bを磁化することのできる配置であればよい。具体的には、ヨーク109Bは、ホルダー102Bの上面(下面)のうち、回転磁石104Bに近接する位置および磁心106Bの一方端部(他方端部)に当接する位置を覆うように設けられる。換言すれば、一対のヨーク109Bは、磁心106Bおよび回転磁石104Bを上下から挟み込むように設けられる。ヨーク109Bは、たとえば1枚の板状部材であってもよいし、複数の板状部材であってもよい。これにより、回転磁石104Bの磁力を磁心106Bへ伝達することができる。 The yoke 109B is provided at least on the upper surface and the lower surface of the holder 102B. The yoke 109B may be arranged so as to be able to receive the magnetic force of the rotating magnet 104B and to magnetize the magnetic core 106B. Specifically, the yoke 109B is provided so as to cover the upper surface (lower surface) of the holder 102B at a position close to the rotating magnet 104B and a position in contact with one end (the other end) of the magnetic core 106B. In other words, the pair of yokes 109B are provided so as to sandwich the magnetic core 106B and the rotating magnet 104B from above and below. The yoke 109B may be, for example, one plate-shaped member or a plurality of plate-shaped members. As a result, the magnetic force of the rotating magnet 104B can be transmitted to the magnetic core 106B.
 なお、本実施の形態では、筒状部材107Bの中心軸線が、回転軸103に交差しない位置で回転軸103に対して垂直な方向に延びている場合について説明した。しかしながら、ヨーク109Bは、回転磁石104Bの磁力を受けることができ、かつ磁心106Bを磁化することのできる配置であれば、筒状部材107Bの中心軸線は、回転軸103に対して水平な方向に延びていてもよい。 In the present embodiment, a case where the central axis of the tubular member 107B extends in a direction perpendicular to the rotation axis 103 at a position not intersecting the rotation axis 103 has been described. However, if the yoke 109B is arranged so that it can receive the magnetic force of the rotating magnet 104B and can magnetize the magnetic core 106B, the central axis of the tubular member 107B is in the direction horizontal to the rotating axis 103. It may be extended.
 なお、本実施の形態3~5の電流発生部105,105A,105Bは、回転軸103を中心とした回転対称位置に2つ設ける構成であるとしたが、その個数に限定されない。たとえば、外部部材を作動させるのに十分な発電量を確保できるのであれば、電流発生部105,105A,105Bを1つ設けるのみとしてもよい。 It should be noted that the current generating units 105, 105A, and 105B of the third to fifth embodiments are configured to be provided at two rotationally symmetric positions about the rotation axis 103, but the number is not limited. For example, if a sufficient amount of power generation can be secured to operate the external member, only one current generating unit 105, 105A, 105B may be provided.
 また、電流発生部105,105A,105Bを1つしか設けない場合であっても、ヨーク109,109A,109Bは、各々の発電機の形態に合わせて(磁心106,106A,106Bの他方端部と当接するようにして)ホルダー102,102A,102Bに保持される。 Further, even if only one current generating unit 105, 105A, 105B is provided, the yokes 109, 109A, 109B have the other end portions of the magnetic cores 106, 106A, 106B according to the form of each generator (the other end portions of the magnetic cores 106, 106A, 106B). It is held in the holders 102, 102A, 102B so as to be in contact with the holder 102, 102A, 102B.
 また、実施の形態3,4の発電機100,100Aについて、ヨーク109,109Aを備える例を説明したが、これらの実施の形態に係る発電機100,100Aは、ヨーク109,109Aを備えずとも十分な起電力を有している。つまり、発電機100,100Aはヨーク109,109Aを備えていなくてもよい。 Further, although an example in which the yokes 109 and 109A are provided for the generators 100 and 100A of the third and fourth embodiments has been described, the generators 100 and 100A according to these embodiments do not have the yokes 109 and 109A. It has sufficient electromotive force. That is, the generators 100 and 100A do not have to include the yokes 109 and 109A.
 以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 Although the embodiment of the present invention has been described above with reference to the drawings, the present invention is not limited to that of the illustrated embodiment. It is possible to make various modifications and modifications to the illustrated embodiment within the same range as the present invention or within the same range.
 1 発電機、2 ホルダー、3 回転軸、4 回転磁石、5 電流発生部、6 球状磁石、7 筒状部材、8 コイル、9 スペーサ、51 第1電流発生部、52 第2電流発生部、61 第1球状磁石、62 第2球状磁石、71 第1筒状部材、72 第2筒状部材、81 第1コイル、82 第2コイル、 100 発電機、102 ホルダー、103 回転軸、104 回転磁石、105 電流発生部、106 磁心、107 筒状部材、108 コイル、109 ヨーク、151 第1電流発生部、152 第2電流発生部、161 第1磁心、162 第2磁心、171 第1筒状部材、172 第2筒状部材、181 第1コイル、182 第2コイル。
 
1 Generator, 2 Holder, 3 Rotating shaft, 4 Rotating magnet, 5 Current generating part, 6 Spherical magnet, 7 Cylindrical member, 8 Coil, 9 Spacer, 51 1st current generating part, 52 2nd current generating part, 61 1st spherical magnet, 62 2nd spherical magnet, 71 1st tubular member, 72 2nd tubular member, 81 1st coil, 82 2nd coil, 100 generator, 102 holder, 103 rotating shaft, 104 rotating magnet, 105 current generator, 106 magnetic core, 107 tubular member, 108 coil, 109 yoke, 151 first current generator, 152 second current generator, 161 first magnetic core, 162 second magnetic core, 171 first tubular member, 172 second tubular member, 181 first coil, 182 second coil.

Claims (18)

  1.  収納空間を有するホルダーと、
     前記ホルダーに回転自在に支持された回転軸と、
     前記ホルダーの収納空間内に配置され、前記回転軸に固定された回転磁石と、
     前記ホルダーに保持される非磁性体の筒状部材と、
     前記筒状部材の外周に配置されたコイルと、
     前記筒状部材内に配置され、前記回転磁石からの磁力を受けて前記コイルに影響を及ぼす磁界の向きを変化させる磁性体とを備える、発電機。
    A holder with a storage space and
    A rotating shaft rotatably supported by the holder,
    A rotating magnet arranged in the storage space of the holder and fixed to the rotating shaft,
    A non-magnetic tubular member held in the holder,
    The coil arranged on the outer circumference of the tubular member and
    A generator which is arranged in the tubular member and includes a magnetic material which receives a magnetic force from the rotating magnet and changes the direction of a magnetic field which affects the coil.
  2.  前記筒状部材は、前記回転磁石に近接して設けられ、
     前記磁性体は、前記回転磁石からの磁力を受けて自転運動する球状磁石である、請求項1に記載の発電機。
    The cylindrical member is provided in close proximity to the rotating magnet and is provided.
    The generator according to claim 1, wherein the magnetic material is a spherical magnet that rotates on its axis in response to a magnetic force from the rotating magnet.
  3.  前記球状磁石の回転軸線は、前記回転軸に対して平行である、請求項2に記載の発電機。 The generator according to claim 2, wherein the rotation axis of the spherical magnet is parallel to the rotation axis.
  4.  前記球状磁石の回転軸線は、前記コイルの円周軌道面に交差している、請求項2に記載の発電機。 The generator according to claim 2, wherein the rotation axis of the spherical magnet intersects the circumferential orbital plane of the coil.
  5.  前記回転磁石は、円筒形状の磁石である、請求項1~4のいずれかに記載の発電機。 The generator according to any one of claims 1 to 4, wherein the rotating magnet is a cylindrical magnet.
  6.  前記筒状部材の一方端面は、前記回転磁石に近接しており、
     前記筒状部材の中心軸線は、前記回転軸に直交している、請求項1~5のいずれかに記載の発電機。
    One end face of the tubular member is in close proximity to the rotating magnet.
    The generator according to any one of claims 1 to 5, wherein the central axis of the tubular member is orthogonal to the rotation axis.
  7.  前記球状磁石を前記筒状部材の中心部に位置させるための非磁性材料からなるスペーサが、前記筒状部材内に配置されている、請求項6に記載の発電機。 The generator according to claim 6, wherein a spacer made of a non-magnetic material for locating the spherical magnet at the center of the tubular member is arranged in the tubular member.
  8.   前記筒状部材に巻かれたコイルの外周面は、前記回転軸に近接しており、前記筒状部材の中心軸線は、前記回転軸に交差しない位置で前記回転軸に対して垂直な方向に延びている、請求項1~5のいずれかに記載の発電機。 The outer peripheral surface of the coil wound around the tubular member is close to the rotation axis, and the central axis of the tubular member is in a direction perpendicular to the rotation axis at a position not intersecting the rotation axis. The generator according to any one of claims 1 to 5, which is extended.
  9.  前記筒状部材と、前記コイルと、前記球状磁石とを含む電流発生部が、
     前記回転軸を中心とした回転対称位置に設けられた第1電流発生部と、第2電流発生部とを含み、
     前記球状磁石は、前記第1電流発生部の筒状部材内に配置された第1球状磁石と、前記第2電流発生部の筒状部材内に配置された第2球状磁石とを含む、請求項1~8のいずれかに記載の発電機。
    The current generating portion including the cylindrical member, the coil, and the spherical magnet is
    It includes a first current generating unit and a second current generating unit provided at rotationally symmetric positions about the rotation axis.
    The spherical magnet includes a first spherical magnet arranged in the tubular member of the first current generating portion and a second spherical magnet arranged in the tubular member of the second current generating portion. The generator according to any one of Items 1 to 8.
  10.  前記円筒形状の回転磁石は、周方向に2極に着磁されており、
     前記球状磁石は、前記球状磁石の回転軸線を含む平面を境に2極に着磁している、請求項5に記載の発電機。
    The cylindrical rotating magnet is magnetized in two poles in the circumferential direction.
    The generator according to claim 5, wherein the spherical magnet is magnetized to two poles with a plane including the rotation axis of the spherical magnet as a boundary.
  11.  前記筒状部材は、一方端部が前記回転磁石に近接し、他方端部が前記回転磁石から離れるように配置されており、
     前記磁性体は、前記回転磁石からの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心である、請求項1に記載の発電機。
    The tubular member is arranged so that one end is close to the rotating magnet and the other end is away from the rotating magnet.
    The generator according to claim 1, wherein the magnetic material is a magnetic core of a soft magnetic material that repeatedly reverses the direction of magnetism by receiving a magnetic force from the rotating magnet.
  12.  前記磁心の少なくとも一方端部または他方端部のいずれかに当接し、前記ホルダーに保持される軟磁性材料のヨークをさらに備える、請求項11に記載の発電機。 The generator according to claim 11, further comprising a yoke of a soft magnetic material that abuts on at least one end or the other end of the magnetic core and is held in the holder.
  13.  前記筒状部材と、前記コイルと、前記磁心とを含む電流発生部が、
     前記回転軸を中心とした回転対称位置に設けられた第1電流発生部と、第2電流発生部とを含む、請求項11または12に記載の発電機。
    The current generating portion including the cylindrical member, the coil, and the magnetic core
    The generator according to claim 11 or 12, which includes a first current generating unit and a second current generating unit provided at rotationally symmetric positions about the rotation axis.
  14.  前記筒状部材は、一方端部および他方端部を有し、その外周面が前記回転磁石に近接するように配置され、
     前記磁性体は、前記回転磁石からの磁力を受けて磁性の向きの反転を繰り返す軟磁性材料の磁心であり、
     前記発電機は、前記磁心の一方端部および他方端部に当接し、前記ホルダーに保持される軟磁性材料のヨークをさらに備える、請求項1に記載の発電機。
    The cylindrical member has one end and the other end, and the outer peripheral surface thereof is arranged so as to be close to the rotating magnet.
    The magnetic material is a magnetic core of a soft magnetic material that repeatedly reverses the direction of magnetism by receiving a magnetic force from the rotating magnet.
    The generator according to claim 1, wherein the generator further comprises a yoke of a soft magnetic material that abuts on one end and the other end of the magnetic core and is held in the holder.
  15.  前記筒状部材に巻かれたコイルの外周面は、前記回転軸に近接しており、前記筒状部材の中心軸線は、前記回転軸に交差しない位置で前記回転軸に対して垂直な方向に延びている、請求項14に記載の発電機。 The outer peripheral surface of the coil wound around the tubular member is close to the rotation axis, and the central axis of the tubular member is in a direction perpendicular to the rotation axis at a position not intersecting the rotation axis. The generator according to claim 14, which is extended.
  16.  前記筒状部材と、前記コイルと、前記磁心と、前記ヨークとを含む電流発生部が、
     前記回転軸を中心とした回転対称位置に設けられた第1電流発生部と、第2電流発生部とを含む、請求項14または15に記載の発電機。
    The current generating portion including the cylindrical member, the coil, the magnetic core, and the yoke is
    The generator according to claim 14 or 15, which includes a first current generating unit and a second current generating unit provided at rotationally symmetric positions about the rotation axis.
  17.  前記回転磁石は、円筒形状の磁石であり、周方向に2極に着磁されている、請求項11~16のいずれかに記載の発電機。 The generator according to any one of claims 11 to 16, wherein the rotating magnet is a cylindrical magnet and is magnetized in two poles in the circumferential direction.
  18.  前記回転軸は、少なくともその一方端が前記ホルダーの外に露出しており、
     前記ホルダーから露出している一方端部分にピニオンを有している、請求項1~17のいずれかに記載の発電機。
     
    At least one end of the rotating shaft is exposed to the outside of the holder.
    The generator according to any one of claims 1 to 17, which has a pinion at one end exposed from the holder.
PCT/JP2021/026181 2020-11-24 2021-07-12 Generator WO2022113417A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020194452A JP6868926B1 (en) 2020-11-24 2020-11-24 Generator
JP2020-194452 2020-11-24
JP2021-064245 2021-04-05
JP2021064245A JP2022159821A (en) 2021-04-05 2021-04-05 Generator

Publications (1)

Publication Number Publication Date
WO2022113417A1 true WO2022113417A1 (en) 2022-06-02

Family

ID=81754463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026181 WO2022113417A1 (en) 2020-11-24 2021-07-12 Generator

Country Status (1)

Country Link
WO (1) WO2022113417A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089309A (en) * 2013-11-01 2015-05-07 信 羽鳥 Power generation method and object position display device using the same
JP2017028893A (en) * 2015-07-23 2017-02-02 ヤマウチ株式会社 Oscillatory dynamo apparatus
JP2017108605A (en) * 2015-11-27 2017-06-15 ヤマウチ株式会社 Oscillation dynamo apparatus and electric power supply
JP2018191417A (en) * 2017-05-01 2018-11-29 ヤマウチ株式会社 Vibration dynamo power generator
JP2019216527A (en) * 2018-06-12 2019-12-19 ヤマウチ株式会社 Vibration dynamo device
US20200220446A1 (en) * 2019-01-09 2020-07-09 Green Wave Power Systems Llc Magnetically-coupled torque-assist apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089309A (en) * 2013-11-01 2015-05-07 信 羽鳥 Power generation method and object position display device using the same
JP2017028893A (en) * 2015-07-23 2017-02-02 ヤマウチ株式会社 Oscillatory dynamo apparatus
JP2017108605A (en) * 2015-11-27 2017-06-15 ヤマウチ株式会社 Oscillation dynamo apparatus and electric power supply
JP2018191417A (en) * 2017-05-01 2018-11-29 ヤマウチ株式会社 Vibration dynamo power generator
JP2019216527A (en) * 2018-06-12 2019-12-19 ヤマウチ株式会社 Vibration dynamo device
US20200220446A1 (en) * 2019-01-09 2020-07-09 Green Wave Power Systems Llc Magnetically-coupled torque-assist apparatus

Similar Documents

Publication Publication Date Title
JP5888867B2 (en) Vibration actuator
JP4218412B2 (en) Rolling drive linear actuator and electric toothbrush using the same
JP2009509482A (en) Magnetic motor
JP2004343933A (en) Linear actuator for both vibration and rolling drive, and electric toothbrush using the same
JP2004343931A (en) Vibratory linear actuator and electric toothbrush using the same
US7482718B2 (en) Enhanced internal electrical generator powered by hand-crank
JP2010265805A (en) Electromagnetic driving device of magnetism intensifying type
JP2010524552A (en) Electromechanical massage device and wearable massage equipment
JP5785886B2 (en) Magnetic spring device
JP2608002B2 (en) Magnet chuck
WO2022113417A1 (en) Generator
JP2003174759A (en) Magnetic driver
KR101094651B1 (en) Sensory signal output apparatus
CN211963064U (en) Operating device
JP6868926B1 (en) Generator
JP6999994B1 (en) Generator
JP2022159821A (en) Generator
CN110601436A (en) Vibration power generation device
WO2021129358A1 (en) Operating device
JP2006246691A (en) Linear oscillating actuator module
JP3523331B2 (en) Exciter
JP4602888B2 (en) Vibration generator
JP2017135811A (en) Power generator
JP5968984B2 (en) Vibration actuator
JP2004343930A (en) Actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897397

Country of ref document: EP

Kind code of ref document: A1