WO2022113167A1 - Optical communication control device, optical communication control method, and optical communication control program - Google Patents

Optical communication control device, optical communication control method, and optical communication control program Download PDF

Info

Publication number
WO2022113167A1
WO2022113167A1 PCT/JP2020/043652 JP2020043652W WO2022113167A1 WO 2022113167 A1 WO2022113167 A1 WO 2022113167A1 JP 2020043652 W JP2020043652 W JP 2020043652W WO 2022113167 A1 WO2022113167 A1 WO 2022113167A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
communication control
command
optical communication
traffic
Prior art date
Application number
PCT/JP2020/043652
Other languages
French (fr)
Japanese (ja)
Inventor
貴充 栩野
裕隆 氏川
慈仁 酒井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/043652 priority Critical patent/WO2022113167A1/en
Priority to JP2022564853A priority patent/JP7420284B2/en
Publication of WO2022113167A1 publication Critical patent/WO2022113167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks

Definitions

  • the present invention relates to a technique for saving power in a PON (Passive Optical Network) system.
  • PON Passive Optical Network
  • a communication path between a first L2SW (level 2 switch device) to which a user terminal is connected and a second L2SW connected to an external network is connected by a PON system, and an Ethernet®. It is configured to be redundant with the route connected by (see, for example, Non-Patent Document 1).
  • the ONU Optical Netowork Unit
  • the OLT Optical Line Terminal
  • the server controls the first L2SW and the second L2SW to stop the communication via the PON, so that the ONU goes to sleep and the network power is saved. (See, for example, Non-Patent Documents 2 and 3).
  • the ONU needs to be intermittently activated at regular intervals in order to communicate the PON control signal with the OLT. Therefore, even when the ONU traffic is distributed to Ethernet, the part related to the ONU PON cannot be completely put into sleep state, and there is a problem in power saving of the ONU.
  • the part related to the PON of the ONU is completely not activated until the bandwidth of the PON is required. It is necessary to control to activate the part related to the PON of the ONU when the PON band is required in the sleep state.
  • the present invention presents an optical communication control device, an optical communication control method, and an optical communication control program capable of further power saving of the ONU constituting the PON system arranged in the redundant path.
  • the purpose is to provide.
  • a first path in which a first communication device and a second communication device are connected by an ONU and an OLT constituting a PON system and a first path arranged in parallel with the first path.
  • a monitoring unit that monitors the traffic amount between the ONU and the OLT, and a sleep in which the traffic amount is predetermined.
  • the process of transmitting a distribution command for distributing traffic from the first route to the second route to the first communication device and the second communication device and the ONU link are maintained. It is characterized by having a process of transmitting a link maintenance command to be performed to the OLT and a process of transmitting a sleep command to shift the ONU to a sleep state to the ONU.
  • the first communication device and the second communication device are arranged in parallel with the first path connected by the ONU and the OLT constituting the PON system and the first path. It is an optical communication control method that performs power saving control of a communication system redundant with a second route, and is a monitoring process for monitoring the traffic amount between the ONU and the OLT, and the traffic amount is predetermined. A process of transmitting a distribution command for distributing traffic from the first route to the second route to the first communication device and the second communication device when the sleep threshold is smaller than the determined sleep threshold, and the ONU.
  • It is characterized by executing a process of transmitting a link maintenance command for maintaining the link of the above to the OLT, a process of transmitting a sleep command for shifting the ONU to a sleep state to the ONU, and an instruction process for performing the process.
  • optical communication control program of the present invention is characterized in that the processing performed by the optical communication control method is executed by a computer.
  • the optical communication control device, the optical communication control method, and the optical communication control program according to the present invention can further reduce the power consumption of the ONU constituting the PON system arranged in the redundant path.
  • FIG. 1 shows an overall configuration example of the communication system 100 according to the present embodiment.
  • the communication system 100 is an Ethernet® arranged in parallel with a first path 151 in which a communication path between L2SW101 (1) and L2SW101 (2) is connected by a PON system 102 and a first path 151.
  • the L2SW101 (1) corresponds to the first communication device
  • the L2SW101 (2) corresponds to the second communication device.
  • a user terminal 103 is connected to the L2SW101 (1), an external NW (NetWork) 104 is connected to the L2SW101 (2), and the user terminal 103 is externally connected via the first route 151 or the second route 152. You can access NW104.
  • NW NetworkWork
  • a server 105 for monitoring and controlling the operation of the communication system 100 is connected to the L2SW101 (2).
  • the server 105 controls the operation of the PON system 102 via L2SW101 (2) and L2SW101 (1).
  • the server 105 functions as an optical communication control device that controls the power saving of the communication system 100.
  • the detailed configuration of the server 105 will be described later.
  • the PON system 102 has an OLT 201, an ONU 202 and a splitter 203.
  • the OLT201 is connected to L2SW101 (2) by SNI (Service Node Interface).
  • the OLT 201 is connected to a plurality of ONU 202 via a splitter 203.
  • the downlink optical signal from the OLT 201 to the plurality of ONU 202s is time-division-multiplexed and transmitted to each ONU 202.
  • the upstream optical signals from the plurality of ONU202s to the OLT201 are time-division-multiplexed so as not to collide with each other at the transmission timing given from the OLT201 to the respective ONU202s.
  • the OLT 201 allocates a communication band (data transmission timing, transmittable time, etc.) to each ONU 202 in response to a band request from each ONU 202.
  • the detailed configuration of OLT201 will be described later.
  • the ONU202 is connected to L2SW101 (1) by UNI (User Network Interface).
  • the ONU202 is one of a plurality of ONU202s.
  • the ONU 202 stores data input from the UNI in an internal buffer, transmits a band request to the OLT 201 according to the amount of data stored in the buffer, and allocates a communication band from the OLT 201. Further, the ONU 202 has a function of going to sleep when there is no data to be communicated in order to save power. The detailed configuration of ONU202 will be described later.
  • the splitter 203 is composed of a passive element that branches or synthesizes an optical signal, and combines a function of branching a downlink optical signal transmitted from the OLT 201 into a plurality of ONU 202 and an upstream optical signal transmitted from the plurality of ONU 202. It has a function to output to the OLT201 side.
  • the wavelengths of the upstream optical signal and the downstream optical signal are different.
  • the communication path between L2SW101 (1) and L2SW101 (2) is connected by the PON system 102 with the first path 151 and Ethernet (registered trademark). It is assumed that it is redundant with the second path 152 to be connected. Then, in the optical communication control method according to the present embodiment, the server 105 monitors the traffic volume of the ONU 202 of the PON system 102, and when the traffic volume is smaller than a predetermined threshold value, the server 105 puts the ONU 202 into a sleep state. Is transmitted, and an instruction for distributing data communication from the first path 151 to the second path 152 of the PON system 102 is transmitted to the L2SW101 (1) and the L2SW101 (2).
  • the server 105 determines that the amount of data traffic that should be originally transmitted by the first route 151 distributed to the second route 152 is from a predetermined threshold value.
  • a command to activate ONU202 is transmitted, and the data that should be communicated on the first path 151, which was originally distributed to the second path 152 and communicated, is transferred to the ONU202 and OLT201 in the active state.
  • a distribution command for distributing back to the first path 151 between them is transmitted to ONU202.
  • FIG. 2 shows a configuration example of OLT201.
  • the OLT 201 has an optical transceiver 301, a PON_LSI 302, a PHY 303, and a link control unit 304.
  • the optical transceiver 301 is composed of a laser element, a light receiving element, a modulation / demodulation circuit, and the like, and transmits and receives an optical signal to and from the ONU 202 via the splitter 203 on the PON side.
  • the PON_LSI302 is composed of a dedicated LSI equipped with a function of creating a frame conforming to the PON standard and controlling communication, and has a function of allocating a communication band and controlling a link with a plurality of ONU202s.
  • the PHY 303 has a function of connecting to the upper L2SW101 by a physical layer by SNI, and transmits and receives data to and from the L2SW101.
  • the PHY 303 receives a link maintenance instruction transmitted from the server 105 via the L2SW101 (2).
  • the link control unit 304 in the present embodiment receives a link maintenance command from the server 105 for a certain period of time from the ONU 202. It has a function to control so that the link connection of ONU202 is not disconnected even when the control signal is not received.
  • the command from the server 105 may be received via the PHY 303 or the PON_LSI 302.
  • the OLT201 can control the ONU202.
  • FIG. 3 shows a configuration example of ONU202.
  • the ONU 202 has an optical transceiver 401, a PON_LSI (Large Scale Integration) 402, a PHY 403, and a sleep unit 404.
  • PON_LSI Large Scale Integration
  • the optical transceiver 401 is composed of a laser element, a light receiving element, a modulation / demodulation circuit, and the like, and transmits and receives an optical signal to and from the OLT 201 via the splitter 203 on the PON side.
  • the PON_LSI402 is composed of a dedicated LSI equipped with a function of creating a frame conforming to the PON standard and controlling communication, and periodically OLT201 to request and allocate a communication band with the OLT201 and maintain a link. It has a function to perform keep-alive etc. to access.
  • the PHY403 has a function of connecting to the lower L2SW101 by a physical layer by UNI, and transmits and receives data to and from the L2SW101.
  • the user terminal 103 is connected to the user terminal 103 via the L2SW101 (1), and an instruction transmitted from the server 105 is received via the L2SW101 (2) and the L2SW101 (1).
  • the command from the server 105 is received via the PHY 403.
  • the start command from the server 105 can be received even when the parts related to the PON such as the optical transceiver 401 and the PON_LSI 402 are completely in the sleep state.
  • the sleep unit 404 has a normal sleep function compliant with the PON standard that puts the optical transceiver 401 and the PON_LSI 402 into a sleep state when there is no communication data.
  • the normal sleep function it is necessary to intermittently activate the sleep function in order to maintain the link state with the OLT 201 and confirm the presence / absence of communication data. Therefore, the ONU 202 according to the present embodiment is provided with a sleep control unit 405 in the sleep unit 404 to realize a sleep function that does not need to be started intermittently in addition to the normal sleep function.
  • the sleep control unit 405 has a function of receiving a sleep command from the server 105, and puts the optical transceiver 401 and the PON_LSI 402 into a sleep state without intermittent activation by the sleep command from the server 105.
  • the sleep control unit 405 wakes up from the sleep state and shifts to the active state when the start command of the server 105 is received from the UNI side in the sleep state in which the sleep control unit 405 does not start intermittently.
  • the circuits and functions related to the PON side do not operate, but the circuits and functions that receive the start command of the server 105 from the UNI side are operating.
  • the ONU 202 realizes sleep control that does not start intermittently by the command of the server 105, so that the ONU 202 is further compared with the conventional sleep function that starts intermittently. Low power consumption is possible.
  • FIG. 4 shows a configuration example of the server 105.
  • the server 105 has an L2SW monitoring unit 501, a command unit 502, and an L2SW control unit 503.
  • the server 105 may be configured by a computer that executes the processing performed in each block by a program stored in advance.
  • the L2SW monitoring unit 501 performs a process of monitoring information (bandwidth information, etc.) for each flow in the L2SW 101 (monitoring process).
  • the L2SW monitoring unit 501 can monitor the traffic volume of the ONU 202 via the L2SW101 (1).
  • the L2SW monitoring unit 501 can monitor the amount of traffic from the OLT 201 to each ONU 202 via the L2SW101 (2). That is, the L2SW monitoring unit 501 can monitor the traffic volume of uplink communication from ONU202 to OLT201 and the traffic volume of downlink communication from OLT201 to ONU202, respectively.
  • the command unit 502 performs a process of transmitting various commands to the link control unit 304 of the OLT 201, the sleep control unit 405 of the ONU 202, and the L2SW control unit 503 in the own device (server 105) (command processing). Specifically, the command unit 502 performs a process of comparing the traffic amount of the ONU 202 monitored by the L2SW monitoring unit 501 with at least one preset threshold value, and puts the ONU 202 into a sleep state when a predetermined condition is satisfied. A sleep command is transmitted from the L2SW control unit 503 to the ONU 202.
  • the instruction unit 502 transmits a link maintenance command to the OLT 201 in order to maintain the link state of the ONU 202 that has transmitted the sleep command. Further, the command unit 502 transmits to the L2SW 101 a distribution command for distributing the data communicated between the ONU 202 and the OLT 201, which cannot be communicated due to the sleep command, to the second path 152.
  • the command unit 502 activates the ONU 202 in the sleep state.
  • the start command for this is transmitted from the L2SW control unit 503 to the ONU202.
  • the command unit 502 transfers the data to be communicated on the first path 151, which was originally distributed to the second path 152, to the first path 151 between the ONU 202 and the OLT 201 in the active state.
  • a distribution command for distributing back is transmitted to ONU202.
  • the L2SW control unit 503 controls the transmission method (transmission port, etc.) for each communication flow in the L2SW 101.
  • the L2SW control unit 503 transmits commands to the OLT 201 and ONU 202 output from the command unit 502, for example, as an Ethernet frame.
  • the server 105 can control the sleep of the ONU 202 based on the traffic volume of the ONU 202 connected via the L2SW 101.
  • the server 105 since the server 105 according to the present embodiment transmits a link maintenance command to the OLT 201 facing the ONU 202 in the sleep state, the link with the OLT 201 is not disconnected even when the ONU 202 is in the sleep state for a long time. Communication can be performed immediately after the ONU202 is activated.
  • the server 105 since the server 105 according to the present embodiment distributes the communication of the ONU 202 in the sleep state to the redundant route, the communication of the user terminal 103 is not affected.
  • FIG. 5 shows an example of the control process of the server 105.
  • the process of FIG. 5 is a process mainly performed on the server 105 side in cooperation with each part described with reference to FIGS. 1 to 4.
  • a program optical communication control program
  • FIG. 5 is stored in advance in a storage medium such as a memory.
  • step S101 the command unit 502 of the server 105 determines whether or not the traffic amount (first traffic amount) for the ONU 202 monitored by the L2SW monitoring unit 501 is smaller than the preset first threshold value (determination). 1). If the result of the determination 1 is Yes, the process proceeds to step S102, and if the result is No, the process of step S101 is repeated. Traffic for ONU ⁇ 1st threshold ... (judgment 1)
  • step S102 the command unit 502 of the server 105 determines whether or not the traffic amount (second traffic amount) transmitted from the ONU 202 monitored by the L2SW monitoring unit 501 is smaller than the preset second threshold value. (Judgment 2). If the result of determination 2 is Yes, the process proceeds to step S103, and if No, the process returns to step S101.
  • the first threshold value and the second threshold value correspond to the sleep threshold value and may be set to the same value or may be set to different values. ONU transmission traffic ⁇ second threshold value ... (judgment 2)
  • step S103 the command unit 502 of the server 105 transmits a traffic distribution instruction to distribute the traffic of the first route 151 of the PON system 102 to the second route 152 of the Ethernet to the L2SW 101. Then, the command unit 502 transmits a link maintenance command for causing the OLT 201 to maintain the link of the ONU 202. Further, the command unit 502 transmits a sleep command to put the ONU 202 into the sleep state to the ONU 202.
  • step S104 the command unit 502 of the server 105 determines whether or not the traffic amount (third traffic amount) for the ONU 202 monitored by the L2SW monitoring unit 501 is larger than the preset third threshold value (determination). 3). If the result of the determination 3 is Yes, the process proceeds to step S106, and if the result is No, the process proceeds to step S105.
  • the third threshold value is equal to or higher than the first threshold value. Traffic for ONU> 3rd threshold ... (Judgment 3)
  • step S105 the command unit 502 of the server 105 determines whether or not the traffic amount (fourth traffic amount) transmitted from the ONU 202 monitored by the L2SW monitoring unit 501 is larger than the preset fourth threshold value. (Judgment 4). If the result of the determination 4 is Yes, the process proceeds to step S106, and if No, the process returns to step S104.
  • the fourth threshold value is equal to or higher than the second threshold value. Further, the third threshold value and the fourth threshold value correspond to the activation threshold value and may be set to the same value or may be set to different values. ONU transmission traffic> 4th threshold ... (judgment 4)
  • step S106 the instruction unit 502 of the server 105 transmits an activation command for activating the ONU 202 from the sleep state to the ONU 202.
  • step S107 the command unit 502 of the server 105 transfers the traffic originally to be communicated by the PON system 102, which was distributed to the second route 152 of the Ethernet when the ONU 202 is in the sleep state, into the first route of the PON system 102.
  • a traffic distribution command for distributing back to 151 is transmitted to L2SW101.
  • the first threshold value, the second threshold value, the third threshold value, and the fourth threshold value can be set separately. Further, each threshold value may be set to, for example, a ratio (for example, 90%) to the communication band of the second route 152 of Ethernet, or may be set to a ratio (for example, 10%) to the band of ONU202. .. Alternatively, the threshold value may be changed according to the communication status of the plurality of redundant routes. For example, if the total traffic volume of the plurality of redundant routes is large, the threshold value is increased, and if the total traffic volume is small, the threshold value is decreased.
  • the server 105 monitors the traffic volume of the ONU 202, puts the ONU 202 into a sleep state based on the traffic volume of the ONU 202, and makes the traffic of the PON system redundant. Since the ONU 202 is distributed to the Ethernet route, it is not necessary to start the ONU 202 intermittently, and power saving can be achieved as compared with the conventional case. In particular, since the OLT 201 maintains the ONU202 link in the sleep state, the ONU202 link can be put to sleep longer than the time when the link is disconnected.
  • the sleep control in the communication system 100 according to the present embodiment will be compared with the conventional sleep control.
  • the ONU 202 has a conventional sleep control (referred to as a first sleep control) that needs to be activated intermittently even during sleep, and a sleep control that does not require intermittent activation used in the present embodiment. It has two functions (referred to as a second sleep control).
  • a conventional sleep control referred to as a first sleep control
  • a sleep control that does not require intermittent activation used in the present embodiment. It has two functions (referred to as a second sleep control).
  • FIG. 6 shows a comparative example of the conventional sleep control and the sleep control used in the present embodiment.
  • the horizontal axis represents time.
  • the ONU 202 intermittently activates the optical transceiver 401 and the PON_LSI 402 to activate them, resulting in high power consumption.
  • the sleep state is changed from the active state by the sleep command from the server 105, the sleep state is maintained until the start command is received from the server 105. ..
  • the ONU 202 has a second sleep control capable of maintaining a sleep state without intermittent activation, in addition to the conventional first sleep control that needs to be activated intermittently. ..
  • the second sleep control When used as the ONU202 of the PON system 102 arranged in the redundant path, the second sleep control enables significant power saving as compared with the conventional first sleep control. Become. When the ONU202 is not arranged in the redundant path, the ONU202 can save power by the conventional first sleep control.
  • the optical communication control device, the optical communication control method, and the optical communication control program according to the present invention further reduce the power consumption of the ONU constituting the PON system arranged in the redundant path. Can be planned.

Abstract

This optical communication control device performs energy-efficient control of a communication system in which a first communication device and a second communication device art redundantly connected by a first path, which is connected to an ONU and an OLT, and a second path, and comprises: a monitoring unit which monitors the amount of traffic between the ONU and the OLT, and a command unit which, if the amount of traffic is less than a predetermined sleep threshold, performs processing for transmitting to the first communication device and the second communication device an allocation command for allocating traffic from the first path to the second path, processing for transmitting a link hold command to the OLT, and processing for transmitting a sleep command to the ONU. By this means, it is possible for the ONU to save energy.

Description

光通信制御装置、光通信制御方法、および光通信制御プログラムOptical communication control device, optical communication control method, and optical communication control program
 本発明は、PON(Passive Optical Network)システムを省電力化する技術に関する。 The present invention relates to a technique for saving power in a PON (Passive Optical Network) system.
 通信システムの分野では冗長構成を図るのが一般的である。例えば、ユーザ端末が接続される第1のL2SW(レベル2スイッチ装置)と外部ネットワークに接続される第2のL2SWとの間の通信経路をPONシステムで接続される経路と、Ethernet(登録商標)で接続される経路とに冗長化する構成がとられている(例えば、非特許文献1参照)。この例では、PONシステムを構成するONU(Optical Netowork Unit)が第1のL2SW、OLT(Optical Line Terminal)が第2のL2SWにそれぞれ接続される。そして、ユーザ端末のトラフィックがEthernet経由で送信可能な場合、サーバーは第1のL2SWおよび第2のL2SWを制御してPON経由の通信を止めることでONUがスリープ状態になり、ネットワークの省電力化が実現される(例えば、非特許文献2,3参照)。 In the field of communication systems, it is common to have a redundant configuration. For example, a communication path between a first L2SW (level 2 switch device) to which a user terminal is connected and a second L2SW connected to an external network is connected by a PON system, and an Ethernet®. It is configured to be redundant with the route connected by (see, for example, Non-Patent Document 1). In this example, the ONU (Optical Netowork Unit) constituting the PON system is connected to the first L2SW, and the OLT (Optical Line Terminal) is connected to the second L2SW. When the traffic of the user terminal can be transmitted via Ethernet, the server controls the first L2SW and the second L2SW to stop the communication via the PON, so that the ONU goes to sleep and the network power is saved. (See, for example, Non-Patent Documents 2 and 3).
 ところが、従来技術では、例えば非特許文献3の図6などに記載されているように、ONUはPON制御信号をOLTと通信するために一定間隔で間欠的に起動する必要がある。このため、ONUのトラフィックをEthernetに振り分けた場合でも、ONUのPONに関係する部分を完全にスリープ状態にすることができず、ONUの省電力化には課題があった。 However, in the prior art, for example, as described in FIG. 6 of Non-Patent Document 3, the ONU needs to be intermittently activated at regular intervals in order to communicate the PON control signal with the OLT. Therefore, even when the ONU traffic is distributed to Ethernet, the part related to the ONU PON cannot be completely put into sleep state, and there is a problem in power saving of the ONU.
 このように、ONUの更なる省電力化を実現するためには、ONUのトラフィックをEthernetに振り分けた後、PONの帯域が必要になるまでONUのPONに関係する部分を起動させずに完全なスリープ状態にして、PONの帯域が必要となったときにONUのPONに関係する部分を起動する制御が必要である。 In this way, in order to realize further power saving of the ONU, after the ONU traffic is distributed to the Ethernet, the part related to the PON of the ONU is completely not activated until the bandwidth of the PON is required. It is necessary to control to activate the part related to the PON of the ONU when the PON band is required in the sleep state.
 上記課題に鑑み、本発明は、冗長化された経路に配置されたPONシステムを構成するONUの更なる省電力化を図ることができる光通信制御装置、光通信制御方法、および光通信制御プログラムを提供することを目的とする。 In view of the above problems, the present invention presents an optical communication control device, an optical communication control method, and an optical communication control program capable of further power saving of the ONU constituting the PON system arranged in the redundant path. The purpose is to provide.
 本発明は、第1の通信装置と第2の通信装置との間がPONシステムを構成するONUとOLTとで接続される第1の経路と、前記第1の経路と並列に配置された第2の経路とに冗長化された通信システムの省電力制御を行う光通信制御装置において、前記ONUと前記OLTとの間のトラフィック量を監視する監視部と、前記トラフィック量が予め決められたスリープ用閾値より小さい場合に、前記第1の経路から前記第2の経路へトラフィックを振り分ける振分け命令を前記第1の通信装置および前記第2の通信装置へ送信する処理と、前記ONUのリンクを維持するリンク維持命令を前記OLTへ送信する処理と、前記ONUをスリープ状態へ移行させるスリープ命令を前記ONUへ送信する処理と、を行う命令部とを有することを特徴とする。 In the present invention, a first path in which a first communication device and a second communication device are connected by an ONU and an OLT constituting a PON system, and a first path arranged in parallel with the first path. In an optical communication control device that performs power saving control of a communication system redundant with two routes, a monitoring unit that monitors the traffic amount between the ONU and the OLT, and a sleep in which the traffic amount is predetermined. When the value is smaller than the threshold value, the process of transmitting a distribution command for distributing traffic from the first route to the second route to the first communication device and the second communication device and the ONU link are maintained. It is characterized by having a process of transmitting a link maintenance command to be performed to the OLT and a process of transmitting a sleep command to shift the ONU to a sleep state to the ONU.
 また、本発明は、第1の通信装置と第2の通信装置との間がPONシステムを構成するONUとOLTとで接続される第1の経路と、前記第1の経路と並列に配置された第2の経路とに冗長化された通信システムの省電力制御を行う光通信制御方法であって、前記ONUと前記OLTとの間のトラフィック量を監視する監視処理と、前記トラフィック量が予め決められたスリープ用閾値より小さい場合に、前記第1の経路から前記第2の経路へトラフィックを振り分ける振分け命令を前記第1の通信装置および前記第2の通信装置へ送信する処理と、前記ONUのリンクを維持するリンク維持命令を前記OLTへ送信する処理と、前記ONUをスリープ状態へ移行させるスリープ命令を前記ONUへ送信する処理と、を行う命令処理とを実行することを特徴とする。 Further, in the present invention, the first communication device and the second communication device are arranged in parallel with the first path connected by the ONU and the OLT constituting the PON system and the first path. It is an optical communication control method that performs power saving control of a communication system redundant with a second route, and is a monitoring process for monitoring the traffic amount between the ONU and the OLT, and the traffic amount is predetermined. A process of transmitting a distribution command for distributing traffic from the first route to the second route to the first communication device and the second communication device when the sleep threshold is smaller than the determined sleep threshold, and the ONU. It is characterized by executing a process of transmitting a link maintenance command for maintaining the link of the above to the OLT, a process of transmitting a sleep command for shifting the ONU to a sleep state to the ONU, and an instruction process for performing the process.
 また、本発明の光通信制御プログラムは、前記光通信制御方法で行う処理をコンピュータで実行することを特徴とする。 Further, the optical communication control program of the present invention is characterized in that the processing performed by the optical communication control method is executed by a computer.
 本発明に係る光通信制御装置、光通信制御方法、および光通信制御プログラムは、冗長化された経路に配置されたPONシステムを構成するONUの更なる省電力化を図ることができる。 The optical communication control device, the optical communication control method, and the optical communication control program according to the present invention can further reduce the power consumption of the ONU constituting the PON system arranged in the redundant path.
本実施形態に係る通信システムの全体構成例を示す図である。It is a figure which shows the whole structure example of the communication system which concerns on this embodiment. OLTの構成例を示す図である。It is a figure which shows the structural example of OLT. ONUの構成例を示す図である。It is a figure which shows the structural example of ONU. サーバーの構成例を示す図である。It is a figure which shows the configuration example of a server. サーバーの制御処理の一例を示す図である。It is a figure which shows an example of the control process of a server. 従来のスリープ制御と本実施形態で用いるスリープ制御の比較例を示す図である。It is a figure which shows the comparative example of the conventional sleep control and the sleep control used in this embodiment.
 以下、図面を参照して本発明に係る光通信制御装置、光通信制御方法、および光通信制御プログラムの実施形態について説明する。 Hereinafter, embodiments of the optical communication control device, the optical communication control method, and the optical communication control program according to the present invention will be described with reference to the drawings.
 図1は、本実施形態に係る通信システム100の全体構成例を示す。通信システム100は、L2SW101(1)とL2SW101(2)との間の通信経路がPONシステム102で接続される第1の経路151と、第1の経路151と並列に配置されたEthernet(登録商標)で接続される第2の経路152とに冗長化されている。ここで、L2SW101(1)は第1の通信装置、L2SW101(2)は第2の通信装置にそれぞれ対応する。 FIG. 1 shows an overall configuration example of the communication system 100 according to the present embodiment. The communication system 100 is an Ethernet® arranged in parallel with a first path 151 in which a communication path between L2SW101 (1) and L2SW101 (2) is connected by a PON system 102 and a first path 151. ) Is made redundant with the second path 152 connected by. Here, the L2SW101 (1) corresponds to the first communication device, and the L2SW101 (2) corresponds to the second communication device.
 L2SW101(1)にはユーザ端末103が接続され、L2SW101(2)には外部NW(NetWork)104が接続されており、ユーザ端末103は第1の経路151または第2の経路152を介して外部NW104にアクセスすることができる。 A user terminal 103 is connected to the L2SW101 (1), an external NW (NetWork) 104 is connected to the L2SW101 (2), and the user terminal 103 is externally connected via the first route 151 or the second route 152. You can access NW104.
 また、L2SW101(2)には、通信システム100の動作を監視および制御するためのサーバー105が接続されている。 Further, a server 105 for monitoring and controlling the operation of the communication system 100 is connected to the L2SW101 (2).
 サーバー105は、L2SW101(2)およびL2SW101(1)を経由してPONシステム102の動作を制御する。特に、サーバー105は、通信システム100の省電力制御を行う光通信制御装置として機能する。なお、サーバー105の詳細な構成は後述する。 The server 105 controls the operation of the PON system 102 via L2SW101 (2) and L2SW101 (1). In particular, the server 105 functions as an optical communication control device that controls the power saving of the communication system 100. The detailed configuration of the server 105 will be described later.
 PONシステム102は、OLT201、ONU202およびスプリッタ203を有する。 The PON system 102 has an OLT 201, an ONU 202 and a splitter 203.
 OLT201は、SNI(Service Node Interface)により、L2SW101(2)に接続される。OLT201は、スプリッタ203を介して複数のONU202に接続されている。例えばOLT201から複数のONU202への下りの光信号は、時分割多重されて各ONU202に送信される。また、複数のONU202からOLT201への上りの光信号は、OLT201からそれぞれのONU202に与えられる送信タイミングで衝突しないように時分割多重される。このために、OLT201は、各ONU202からの帯域要求に応じて、各ONU202に通信帯域(データの送信タイミングおよび送信可能時間など)を割り当てる。なお、OLT201の詳細な構成は後述する。 OLT201 is connected to L2SW101 (2) by SNI (Service Node Interface). The OLT 201 is connected to a plurality of ONU 202 via a splitter 203. For example, the downlink optical signal from the OLT 201 to the plurality of ONU 202s is time-division-multiplexed and transmitted to each ONU 202. Further, the upstream optical signals from the plurality of ONU202s to the OLT201 are time-division-multiplexed so as not to collide with each other at the transmission timing given from the OLT201 to the respective ONU202s. For this purpose, the OLT 201 allocates a communication band (data transmission timing, transmittable time, etc.) to each ONU 202 in response to a band request from each ONU 202. The detailed configuration of OLT201 will be described later.
 ONU202は、UNI(User Network Interface)により、L2SW101(1)に接続される。ここで、ONU202は、複数のONU202の中の1台である。ONU202は、UNIから入力するデータを内部のバッファに蓄積し、バッファに蓄積されたデータ量により帯域要求をOLT201に送信し、OLT201から通信帯域が割り当てられる。また、ONU202は、省電力化のために、通信するデータが無いときにスリープ状態になる機能を有する。なお、ONU202の詳細な構成は後述する。 ONU202 is connected to L2SW101 (1) by UNI (User Network Interface). Here, the ONU202 is one of a plurality of ONU202s. The ONU 202 stores data input from the UNI in an internal buffer, transmits a band request to the OLT 201 according to the amount of data stored in the buffer, and allocates a communication band from the OLT 201. Further, the ONU 202 has a function of going to sleep when there is no data to be communicated in order to save power. The detailed configuration of ONU202 will be described later.
 スプリッタ203は、光信号を分岐または合成する受動素子で構成され、OLT201から送信される下りの光信号を複数のONU202に分岐する機能と、複数のONU202から送信される上りの光信号を合成してOLT201側に出力する機能とを有する。なお、上りの光信号と下りの光信号の波長は異なる。 The splitter 203 is composed of a passive element that branches or synthesizes an optical signal, and combines a function of branching a downlink optical signal transmitted from the OLT 201 into a plurality of ONU 202 and an upstream optical signal transmitted from the plurality of ONU 202. It has a function to output to the OLT201 side. The wavelengths of the upstream optical signal and the downstream optical signal are different.
 このように、本実施形態に係る通信システム100は、L2SW101(1)とL2SW101(2)との間の通信経路がPONシステム102で接続される第1の経路151と、Ethernet(登録商標)で接続される第2の経路152とに冗長化されていることを前提とする。そして、本実施形態に係る光通信制御方法では、サーバー105は、PONシステム102のONU202のトラフィック量を監視して、トラフィック量が予め決められた閾値より小さい場合に、ONU202をスリープ状態にさせる命令を送信し、PONシステム102の第1の経路151から第2の経路152へデータ通信を振り分けさせる命令をL2SW101(1)およびL2SW101(2)に送信する。 As described above, in the communication system 100 according to the present embodiment, the communication path between L2SW101 (1) and L2SW101 (2) is connected by the PON system 102 with the first path 151 and Ethernet (registered trademark). It is assumed that it is redundant with the second path 152 to be connected. Then, in the optical communication control method according to the present embodiment, the server 105 monitors the traffic volume of the ONU 202 of the PON system 102, and when the traffic volume is smaller than a predetermined threshold value, the server 105 puts the ONU 202 into a sleep state. Is transmitted, and an instruction for distributing data communication from the first path 151 to the second path 152 of the PON system 102 is transmitted to the L2SW101 (1) and the L2SW101 (2).
 また、ONU202は、間欠的な起動を行わないスリープ状態において、サーバー105は、第2の経路152へ振り分けた第1の経路151で本来送信されるべきデータのトラフィック量が予め決められた閾値より大きい場合に、ONU202をアクティブ状態にさせる命令を送信し、第2の経路152へ振り分けて通信していた本来第1の経路151で通信されるべきデータをアクティブ状態になったONU202とOLT201との間の第1の経路151へ振り分け戻すための振り分け命令をONU202に送信する。 Further, in the sleep state in which the ONU 202 is not started intermittently, the server 105 determines that the amount of data traffic that should be originally transmitted by the first route 151 distributed to the second route 152 is from a predetermined threshold value. When the size is large, a command to activate ONU202 is transmitted, and the data that should be communicated on the first path 151, which was originally distributed to the second path 152 and communicated, is transferred to the ONU202 and OLT201 in the active state. A distribution command for distributing back to the first path 151 between them is transmitted to ONU202.
 ここで、以降の説明において、L2SW101(1)およびL2SW101(2)に共通の説明を行う場合は、符号末尾の(番号)を省略してL2SW101と記載する。 Here, in the following description, when the description common to L2SW101 (1) and L2SW101 (2) is given, the (number) at the end of the code is omitted and described as L2SW101.
 図2は、OLT201の構成例を示す。図2において、OLT201は、光トランシーバ301、PON_LSI302、PHY303およびリンク制御部304を有する。 FIG. 2 shows a configuration example of OLT201. In FIG. 2, the OLT 201 has an optical transceiver 301, a PON_LSI 302, a PHY 303, and a link control unit 304.
 光トランシーバ301は、レーザー素子、受光素子、変復調回路などで構成され、PON側のスプリッタ203を介して、ONU202との間で光信号の送信および受信を行う。 The optical transceiver 301 is composed of a laser element, a light receiving element, a modulation / demodulation circuit, and the like, and transmits and receives an optical signal to and from the ONU 202 via the splitter 203 on the PON side.
 PON_LSI302は、PON規格に準拠したフレームの作成や通信制御を行う機能が搭載された専用のLSIで構成され、複数のONU202との間で通信帯域の割り当てやリンク制御などを行う機能を有する。 The PON_LSI302 is composed of a dedicated LSI equipped with a function of creating a frame conforming to the PON standard and controlling communication, and has a function of allocating a communication band and controlling a link with a plurality of ONU202s.
 PHY303は、SNIにより上位側のL2SW101と物理層で接続する機能を有し、L2SW101との間でデータの送信および受信を行う。図1の例では、PHY303は、L2SW101(2)を介して、サーバー105から送信されるリンク維持命令を受信する。 The PHY 303 has a function of connecting to the upper L2SW101 by a physical layer by SNI, and transmits and receives data to and from the L2SW101. In the example of FIG. 1, the PHY 303 receives a link maintenance instruction transmitted from the server 105 via the L2SW101 (2).
 リンク制御部304は、一定期間制御信号を受信しないONU202のリンク接続を切断する通常のPON規格に準拠する機能に加えて、本実施形態では、サーバー105からのリンク維持命令により、ONU202から一定期間制御信号を受信しない場合でもONU202のリンク接続を切断しないように制御する機能を有する。なお、サーバー105からの命令は、PHY303を介して受信してもよいし、PON_LSI302を介して受信してもよい。 In addition to the function conforming to the normal PON standard that disconnects the link connection of the ONU 202 that does not receive the control signal for a certain period of time, the link control unit 304 in the present embodiment receives a link maintenance command from the server 105 for a certain period of time from the ONU 202. It has a function to control so that the link connection of ONU202 is not disconnected even when the control signal is not received. The command from the server 105 may be received via the PHY 303 or the PON_LSI 302.
 このように、本実施形態に係るOLT201は、ONU202を制御することができる。 In this way, the OLT201 according to the present embodiment can control the ONU202.
 図3は、ONU202の構成例を示す。図3において、ONU202は、光トランシーバ401、PON_LSI(Large Scale Integration)402、PHY403およびスリープ部404を有する。 FIG. 3 shows a configuration example of ONU202. In FIG. 3, the ONU 202 has an optical transceiver 401, a PON_LSI (Large Scale Integration) 402, a PHY 403, and a sleep unit 404.
 光トランシーバ401は、レーザー素子、受光素子、変復調回路などで構成され、PON側のスプリッタ203を介して、OLT201との間で光信号の送信および受信を行う。 The optical transceiver 401 is composed of a laser element, a light receiving element, a modulation / demodulation circuit, and the like, and transmits and receives an optical signal to and from the OLT 201 via the splitter 203 on the PON side.
 PON_LSI402は、PON規格に準拠したフレームの作成や通信制御を行う機能が搭載された専用のLSIで構成され、OLT201との間で通信帯域の要求および割り当て、リンクを維持するために定期的にOLT201にアクセスするキープアライブなどを行う機能を有する。 The PON_LSI402 is composed of a dedicated LSI equipped with a function of creating a frame conforming to the PON standard and controlling communication, and periodically OLT201 to request and allocate a communication band with the OLT201 and maintain a link. It has a function to perform keep-alive etc. to access.
 PHY403は、UNIにより下位側のL2SW101と物理層で接続する機能を有し、L2SW101との間でデータの送信および受信を行う。図1の例では、L2SW101(1)を介してユーザ端末103に接続されるとともに、サーバー105から送信される命令をL2SW101(2)およびL2SW101(1)を介して受信する。なお、サーバー105からの命令は、PHY403を介して受信する。これにより、光トランシーバ401およびPON_LSI402などPONに関係する部分が完全にスリープ状態であってもサーバー105からの起動命令を受け取ることができる。 The PHY403 has a function of connecting to the lower L2SW101 by a physical layer by UNI, and transmits and receives data to and from the L2SW101. In the example of FIG. 1, the user terminal 103 is connected to the user terminal 103 via the L2SW101 (1), and an instruction transmitted from the server 105 is received via the L2SW101 (2) and the L2SW101 (1). The command from the server 105 is received via the PHY 403. As a result, the start command from the server 105 can be received even when the parts related to the PON such as the optical transceiver 401 and the PON_LSI 402 are completely in the sleep state.
 スリープ部404は、通信データが無い場合に光トランシーバ401およびPON_LSI402をスリープ状態にするPON規格に準拠した通常のスリープ機能を有する。しかし、通常のスリープ機能では、OLT201とのリンク状態の維持と通信データの有無の確認とを行うために間欠的に起動する必要がある。そこで、本実施形態に係るONU202は、スリープ部404にスリープ制御部405を設け、通常のスリープ機能に加えて、間欠的に起動する必要がないスリープ機能を実現する。 The sleep unit 404 has a normal sleep function compliant with the PON standard that puts the optical transceiver 401 and the PON_LSI 402 into a sleep state when there is no communication data. However, in the normal sleep function, it is necessary to intermittently activate the sleep function in order to maintain the link state with the OLT 201 and confirm the presence / absence of communication data. Therefore, the ONU 202 according to the present embodiment is provided with a sleep control unit 405 in the sleep unit 404 to realize a sleep function that does not need to be started intermittently in addition to the normal sleep function.
 スリープ制御部405は、サーバー105からのスリープ命令を受信する機能を有し、サーバー105からのスリープ命令により、光トランシーバ401およびPON_LSI402を間欠的な起動を行わないスリープ状態にする。 The sleep control unit 405 has a function of receiving a sleep command from the server 105, and puts the optical transceiver 401 and the PON_LSI 402 into a sleep state without intermittent activation by the sleep command from the server 105.
 また、スリープ制御部405は、間欠的な起動を行わないスリープ状態において、UNI側からサーバー105の起動命令を受信した場合に、スリープ状態から起動してアクティブ状態に移行する。なお、スリープ状態では、PON側に関係する回路や機能は動作しないが、UNI側からサーバー105の起動命令を受信する回路や機能は動作している。 Further, the sleep control unit 405 wakes up from the sleep state and shifts to the active state when the start command of the server 105 is received from the UNI side in the sleep state in which the sleep control unit 405 does not start intermittently. In the sleep state, the circuits and functions related to the PON side do not operate, but the circuits and functions that receive the start command of the server 105 from the UNI side are operating.
 このようにして、本実施形態に係るONU202は、サーバー105の命令により、間欠的な起動を行わないスリープ制御を実現するので、間欠的に起動する従来のスリープ機能に比べて、更なるONU202の低消費電力化が可能になる。 In this way, the ONU 202 according to the present embodiment realizes sleep control that does not start intermittently by the command of the server 105, so that the ONU 202 is further compared with the conventional sleep function that starts intermittently. Low power consumption is possible.
 図4は、サーバー105の構成例を示す。図4において、サーバー105は、L2SW監視部501、命令部502およびL2SW制御部503を有する。ここで、サーバー105は、各ブロックで行われる処理を予め記憶されたプログラムにより実行するコンピュータで構成されてもよい。 FIG. 4 shows a configuration example of the server 105. In FIG. 4, the server 105 has an L2SW monitoring unit 501, a command unit 502, and an L2SW control unit 503. Here, the server 105 may be configured by a computer that executes the processing performed in each block by a program stored in advance.
 L2SW監視部501は、L2SW101におけるフロー毎の情報(帯域情報等)を監視する処理を行う(監視処理)。図1の例では、L2SW監視部501は、L2SW101(1)を介して、ONU202のトラフィック量を監視することができる。同様に、L2SW監視部501は、L2SW101(2)を介して、OLT201から各ONU202へのトラフィック量を監視することができる。つまり、L2SW監視部501は、ONU202からOLT201への上り通信のトラフィック量、およびOLT201からONU202への下り通信のトラフィック量をそれぞれ監視することができる。 The L2SW monitoring unit 501 performs a process of monitoring information (bandwidth information, etc.) for each flow in the L2SW 101 (monitoring process). In the example of FIG. 1, the L2SW monitoring unit 501 can monitor the traffic volume of the ONU 202 via the L2SW101 (1). Similarly, the L2SW monitoring unit 501 can monitor the amount of traffic from the OLT 201 to each ONU 202 via the L2SW101 (2). That is, the L2SW monitoring unit 501 can monitor the traffic volume of uplink communication from ONU202 to OLT201 and the traffic volume of downlink communication from OLT201 to ONU202, respectively.
 命令部502は、OLT201のリンク制御部304、ONU202のスリープ制御部405、および自装置(サーバー105)内のL2SW制御部503に各種の命令を送信する処理を行う(命令処理)。具体的には、命令部502は、L2SW監視部501が監視するONU202のトラフィック量と予め設定された少なくとも1つの閾値とを比較する処理を行い、所定の条件を満たす場合に、ONU202をスリープ状態にさせるためのスリープ命令をL2SW制御部503からONU202に送信する。 The command unit 502 performs a process of transmitting various commands to the link control unit 304 of the OLT 201, the sleep control unit 405 of the ONU 202, and the L2SW control unit 503 in the own device (server 105) (command processing). Specifically, the command unit 502 performs a process of comparing the traffic amount of the ONU 202 monitored by the L2SW monitoring unit 501 with at least one preset threshold value, and puts the ONU 202 into a sleep state when a predetermined condition is satisfied. A sleep command is transmitted from the L2SW control unit 503 to the ONU 202.
 そして、命令部502は、スリープ命令を送信したONU202のリンク状態を維持させるために、OLT201にリンク維持命令を送信する。さらに、命令部502は、スリープ命令により通信できなくなったONU202とOLT201との間で通信されるデータを第2の経路152に振り分けるための振り分け命令をL2SW101に送信する。 Then, the instruction unit 502 transmits a link maintenance command to the OLT 201 in order to maintain the link state of the ONU 202 that has transmitted the sleep command. Further, the command unit 502 transmits to the L2SW 101 a distribution command for distributing the data communicated between the ONU 202 and the OLT 201, which cannot be communicated due to the sleep command, to the second path 152.
 また、第2の経路152へ振り分けた第1の経路151で本来送信されるべきデータのトラフィック量が所定の条件を満たさなくなった場合、命令部502は、スリープ状態にあるONU202をアクティブ状態にさせるための起動命令をL2SW制御部503からONU202に送信する。そして、命令部502は、第2の経路152へ振り分けて通信していた本来第1の経路151で通信されるべきデータをアクティブ状態になったONU202とOLT201との間の第1の経路151へ振り分け戻すための振り分け命令をONU202に送信する。 Further, when the traffic volume of the data originally to be transmitted on the first route 151 distributed to the second route 152 does not satisfy the predetermined condition, the command unit 502 activates the ONU 202 in the sleep state. The start command for this is transmitted from the L2SW control unit 503 to the ONU202. Then, the command unit 502 transfers the data to be communicated on the first path 151, which was originally distributed to the second path 152, to the first path 151 between the ONU 202 and the OLT 201 in the active state. A distribution command for distributing back is transmitted to ONU202.
 L2SW制御部503は、L2SW101における通信フローごとの送信方法(送信ポートなど)を制御する。特に本実施形態では、L2SW制御部503は、命令部502から出力されるOLT201およびONU202への命令を例えばEthernetフレームとして送信する。 The L2SW control unit 503 controls the transmission method (transmission port, etc.) for each communication flow in the L2SW 101. In particular, in the present embodiment, the L2SW control unit 503 transmits commands to the OLT 201 and ONU 202 output from the command unit 502, for example, as an Ethernet frame.
 このように、サーバー105は、L2SW101を介して接続されるONU202のトラフィック量に基づいて、ONU202のスリープ制御を行うことができる。 In this way, the server 105 can control the sleep of the ONU 202 based on the traffic volume of the ONU 202 connected via the L2SW 101.
 特に、本実施形態に係るサーバー105は、スリープ状態になったONU202に対向するOLT201にリンク維持命令送信するので、ONU202が長時間のスリープ状態になった場合でもOLT201とのリンクが切断されず、ONU202が起動して直ぐに通信を行うことができる。 In particular, since the server 105 according to the present embodiment transmits a link maintenance command to the OLT 201 facing the ONU 202 in the sleep state, the link with the OLT 201 is not disconnected even when the ONU 202 is in the sleep state for a long time. Communication can be performed immediately after the ONU202 is activated.
 また、本実施形態に係るサーバー105は、スリープ状態になったONU202の通信を冗長化された経路に振り分けるので、ユーザ端末103の通信が影響を受けることはない。 Further, since the server 105 according to the present embodiment distributes the communication of the ONU 202 in the sleep state to the redundant route, the communication of the user terminal 103 is not affected.
 図5は、サーバー105の制御処理の一例を示す。なお、図5の処理は、図1から図4で説明した各部と連携して、主にサーバー105側で行われる処理である。ここで、サーバー105をコンピュータで実現する場合、図5の処理を実行するためのプログラム(光通信制御プログラム)が予めメモリなどの記憶媒体に記憶されている。 FIG. 5 shows an example of the control process of the server 105. The process of FIG. 5 is a process mainly performed on the server 105 side in cooperation with each part described with reference to FIGS. 1 to 4. Here, when the server 105 is realized by a computer, a program (optical communication control program) for executing the process of FIG. 5 is stored in advance in a storage medium such as a memory.
 ステップS101において、サーバー105の命令部502は、L2SW監視部501により監視されるONU202向けのトラフィック量(第1のトラフィック量)が予め設定された第1閾値より小さいか否かを判定する(判定1)。そして、判定1の結果がYesの場合はステップS102の処理に進み、Noの場合はステップS101の処理を繰り返す。
 ONU向けトラフィック<第1閾値 …(判定1)
In step S101, the command unit 502 of the server 105 determines whether or not the traffic amount (first traffic amount) for the ONU 202 monitored by the L2SW monitoring unit 501 is smaller than the preset first threshold value (determination). 1). If the result of the determination 1 is Yes, the process proceeds to step S102, and if the result is No, the process of step S101 is repeated.
Traffic for ONU <1st threshold ... (judgment 1)
 ステップS102において、サーバー105の命令部502は、L2SW監視部501により監視されるONU202から送信されるトラフィック量(第2のトラフィック量)が予め設定された第2閾値より小さいか否かを判定する(判定2)。そして、判定2の結果がYesの場合はステップS103の処理に進み、Noの場合はステップS101の処理に戻る。ここで、第1閾値および第2閾値は、スリープ用閾値に対応し、同じ値に設定されてもよいし、異なる値に設定されてもよい。
 ONU送信トラフィック<第2閾値 …(判定2)
In step S102, the command unit 502 of the server 105 determines whether or not the traffic amount (second traffic amount) transmitted from the ONU 202 monitored by the L2SW monitoring unit 501 is smaller than the preset second threshold value. (Judgment 2). If the result of determination 2 is Yes, the process proceeds to step S103, and if No, the process returns to step S101. Here, the first threshold value and the second threshold value correspond to the sleep threshold value and may be set to the same value or may be set to different values.
ONU transmission traffic <second threshold value ... (judgment 2)
 ステップS103において、サーバー105の命令部502は、PONシステム102の第1の経路151のトラフィックをEthernetの第2の経路152に振り分けさせるトラフィック振分け命令をL2SW101に送信する。そして、命令部502は、OLT201にONU202のリンクを維持させるリンク維持命令を送信する。さらに、命令部502は、ONU202をスリープ状態にさせるスリープ命令をONU202に送信する。 In step S103, the command unit 502 of the server 105 transmits a traffic distribution instruction to distribute the traffic of the first route 151 of the PON system 102 to the second route 152 of the Ethernet to the L2SW 101. Then, the command unit 502 transmits a link maintenance command for causing the OLT 201 to maintain the link of the ONU 202. Further, the command unit 502 transmits a sleep command to put the ONU 202 into the sleep state to the ONU 202.
 ステップS104において、サーバー105の命令部502は、L2SW監視部501により監視されるONU202向けのトラフィック量(第3のトラフィック量)が予め設定された第3閾値より大きいか否かを判定する(判定3)。そして、判定3の結果がYesの場合はステップS106の処理に進み、Noの場合はステップS105の処理に進む。なお、第3閾値は、第1閾値以上である。
 ONU向けトラフィック>第3閾値 …(判定3)
In step S104, the command unit 502 of the server 105 determines whether or not the traffic amount (third traffic amount) for the ONU 202 monitored by the L2SW monitoring unit 501 is larger than the preset third threshold value (determination). 3). If the result of the determination 3 is Yes, the process proceeds to step S106, and if the result is No, the process proceeds to step S105. The third threshold value is equal to or higher than the first threshold value.
Traffic for ONU> 3rd threshold ... (Judgment 3)
 ステップS105において、サーバー105の命令部502は、L2SW監視部501により監視されるONU202から送信されるトラフィック量(第4のトラフィック量)が予め設定された第4閾値より大きいか否かを判定する(判定4)。そして、判定4の結果がYesの場合はステップS106の処理に進み、Noの場合はステップS104の処理に戻る。なお、第4閾値は、第2閾値以上である。また、第3閾値および第4閾値は、起動用閾値に対応し、同じ値に設定されてもよいし、異なる値に設定されてもよい。
 ONU送信トラフィック>第4閾値 …(判定4)
In step S105, the command unit 502 of the server 105 determines whether or not the traffic amount (fourth traffic amount) transmitted from the ONU 202 monitored by the L2SW monitoring unit 501 is larger than the preset fourth threshold value. (Judgment 4). If the result of the determination 4 is Yes, the process proceeds to step S106, and if No, the process returns to step S104. The fourth threshold value is equal to or higher than the second threshold value. Further, the third threshold value and the fourth threshold value correspond to the activation threshold value and may be set to the same value or may be set to different values.
ONU transmission traffic> 4th threshold ... (judgment 4)
 ステップS106において、サーバー105の命令部502は、ONU202をスリープ状態から起動させる起動命令をONU202に送信する。 In step S106, the instruction unit 502 of the server 105 transmits an activation command for activating the ONU 202 from the sleep state to the ONU 202.
 ステップS107において、サーバー105の命令部502は、ONU202がスリープ状態にあるときにEthernetの第2の経路152へ振り分けていた本来PONシステム102で通信されるべきトラフィックをPONシステム102の第1の経路151に振り分け戻すためのトラフィック振分け命令をL2SW101に送信する。 In step S107, the command unit 502 of the server 105 transfers the traffic originally to be communicated by the PON system 102, which was distributed to the second route 152 of the Ethernet when the ONU 202 is in the sleep state, into the first route of the PON system 102. A traffic distribution command for distributing back to 151 is transmitted to L2SW101.
 なお、第1閾値、第2閾値、第3閾値、および第4閾値は、それぞれに別々に設定可能である。また、各閾値は、例えばEthernetの第2の経路152の通信帯域に対する割合(例えば90%など)に設定されてもよいし、ONU202の帯域に対する割合(例えば10%など)に設定されてもよい。あるいは、冗長化された複数の経路の通信状況に応じて閾値を変えるようにしてもよい。例えば、冗長化された複数の経路の全体のトラフィック量が多い場合は閾値を大きくし、全体のトラフィック量が少ない場合は閾値を小さくする。 The first threshold value, the second threshold value, the third threshold value, and the fourth threshold value can be set separately. Further, each threshold value may be set to, for example, a ratio (for example, 90%) to the communication band of the second route 152 of Ethernet, or may be set to a ratio (for example, 10%) to the band of ONU202. .. Alternatively, the threshold value may be changed according to the communication status of the plurality of redundant routes. For example, if the total traffic volume of the plurality of redundant routes is large, the threshold value is increased, and if the total traffic volume is small, the threshold value is decreased.
 このように、本実施形態に係る通信システム100は、サーバー105がONU202のトラフィック量を監視して、ONU202のトラフィック量に基づいて、ONU202をスリープ状態にさせるとともに、PONシステムのトラフィックを冗長化されたEthernetの経路に振り分けるので、ONU202は間欠的な起動を行う必要が無くなり、従来よりも省電力化を図ることができる。特にOLT201にスリープ状態になっているONU202のリンクを維持させるので、ONU202のリンクが切断される時間よりも長くスリープ状態にすることができる。 As described above, in the communication system 100 according to the present embodiment, the server 105 monitors the traffic volume of the ONU 202, puts the ONU 202 into a sleep state based on the traffic volume of the ONU 202, and makes the traffic of the PON system redundant. Since the ONU 202 is distributed to the Ethernet route, it is not necessary to start the ONU 202 intermittently, and power saving can be achieved as compared with the conventional case. In particular, since the OLT 201 maintains the ONU202 link in the sleep state, the ONU202 link can be put to sleep longer than the time when the link is disconnected.
 次に、本実施形態に係る通信システム100におけるスリープ制御と従来のスリープ制御とを比較する。 Next, the sleep control in the communication system 100 according to the present embodiment will be compared with the conventional sleep control.
 本実施形態に係るONU202は、スリープ中においても間欠的に起動する必要がある従来のスリープ制御(第1のスリープ制御と称する)と、本実施形態で用いる間欠的な起動を必要としないスリープ制御(第2のスリープ制御と称する)との2つの機能を有する。 The ONU 202 according to the present embodiment has a conventional sleep control (referred to as a first sleep control) that needs to be activated intermittently even during sleep, and a sleep control that does not require intermittent activation used in the present embodiment. It has two functions (referred to as a second sleep control).
 図6は、従来のスリープ制御と本実施形態で用いるスリープ制御の比較例を示す。図6において、横軸は時間を示す。 FIG. 6 shows a comparative example of the conventional sleep control and the sleep control used in the present embodiment. In FIG. 6, the horizontal axis represents time.
 図6において、従来の第1のスリープ制御では、アクティブ状態からスリープ状態になると、予め決められた時間ごとに間欠的に起動して送受信データの有無やリンクを維持するための制御などを行う必要がある。このため、ONU202は、間欠的に光トランシーバ401およびPON_LSI402を起動してアクティブ状態にするので、消費電力が大きくなってしまう。 In FIG. 6, in the conventional first sleep control, when the active state is changed to the sleep state, it is necessary to intermittently wake up at predetermined time intervals to control the presence / absence of transmitted / received data and maintain the link. There is. Therefore, the ONU 202 intermittently activates the optical transceiver 401 and the PON_LSI 402 to activate them, resulting in high power consumption.
 これに対して、本実施形態に係るONU202が行う第2のスリープ制御では、サーバー105からのスリープ命令によりアクティブ状態からスリープ状態になると、サーバー105から起動命令を受け取るまで、スリープ状態が維持される。 On the other hand, in the second sleep control performed by ONU202 according to the present embodiment, when the sleep state is changed from the active state by the sleep command from the server 105, the sleep state is maintained until the start command is received from the server 105. ..
 このように、本実施形態に係るONU202は、間欠的に起動する必要がある従来の第1のスリープ制御とは別に、間欠的に起動することなくスリープ状態を維持できる第2のスリープ制御を有する。そして、冗長化された経路に配置されたPONシステム102のONU202として用いられる場合は、第2のスリープ制御を行うことにより、従来の第1のスリープ制御に比べて大幅な省電力化が可能になる。なお、ONU202が冗長化された経路に配置されていない場合は、ONU202は、従来の第1のスリープ制御により省電力化を図ることができる。 As described above, the ONU 202 according to the present embodiment has a second sleep control capable of maintaining a sleep state without intermittent activation, in addition to the conventional first sleep control that needs to be activated intermittently. .. When used as the ONU202 of the PON system 102 arranged in the redundant path, the second sleep control enables significant power saving as compared with the conventional first sleep control. Become. When the ONU202 is not arranged in the redundant path, the ONU202 can save power by the conventional first sleep control.
 以上、説明したように、本発明に係る光通信制御装置、光通信制御方法、および光通信制御プログラムは、冗長化された経路に配置されたPONシステムを構成するONUの更なる省電力化を図ることができる。 As described above, the optical communication control device, the optical communication control method, and the optical communication control program according to the present invention further reduce the power consumption of the ONU constituting the PON system arranged in the redundant path. Can be planned.
100・・・通信システム;101・・・L2SW;102・・・PONシステム;103・・・ユーザ端末;104・・・外部NW;105・・・サーバー;201・・・OLT;202・・・ONU;203・・・スプリッタ;301・・・光トランシーバ;302・・・PON_LSI;303・・・PHY;304・・・リンク制御部;401・・・光トランシーバ;402・・・PON_LSI;403・・・PHY;404・・・スリープ部;405・・・スリープ制御部;501・・・L2SW監視部;502・・・命令部;503・・・L2SW制御部 100 ... Communication system; 101 ... L2SW; 102 ... PON system; 103 ... User terminal; 104 ... External NW; 105 ... Server; 201 ... OLT; 202 ... ONU; 203 ... Splitter; 301 ... Optical transceiver; 302 ... PON_LSI; 303 ... PHY; 304 ... Link control unit; 401 ... Optical transceiver; 402 ... PON_LSI; 403. PHY; 404 ... sleep unit; 405 ... sleep control unit; 501 ... L2SW monitoring unit; 502 ... command unit; 503 ... L2SW control unit

Claims (7)

  1.  第1の通信装置と第2の通信装置との間がPONシステムを構成するONUとOLTとで接続される第1の経路と、前記第1の経路と並列に配置された第2の経路とに冗長化された通信システムの省電力制御を行う光通信制御装置において、
     前記ONUと前記OLTとの間のトラフィック量を監視する監視部と、
     前記トラフィック量が予め決められたスリープ用閾値より小さい場合に、前記第1の経路から前記第2の経路へトラフィックを振り分ける振分け命令を前記第1の通信装置および前記第2の通信装置へ送信する処理と、前記ONUのリンクを維持するリンク維持命令を前記OLTへ送信する処理と、前記ONUをスリープ状態へ移行させるスリープ命令を前記ONUへ送信する処理と、を行う命令部と
     を有することを特徴とする光通信制御装置。
    A first path in which the first communication device and the second communication device are connected by an ONU and an OLT constituting a PON system, and a second path arranged in parallel with the first path. In an optical communication control device that controls power saving of a communication system that is redundant in
    A monitoring unit that monitors the amount of traffic between the ONU and the OLT,
    When the traffic amount is smaller than the predetermined sleep threshold value, a distribution command for distributing traffic from the first route to the second route is transmitted to the first communication device and the second communication device. It has a command unit for performing a process, a process of transmitting a link maintenance command for maintaining the link of the ONU to the OLT, and a process of transmitting a sleep command for shifting the ONU to the sleep state to the ONU. A featured optical communication control device.
  2.  請求項1に記載の光通信制御装置において、
     前記監視部は、前記ONUがスリープ状態にある場合に、本来前記ONUと前記OLTとの間で通信されるべきトラフィックであって前記第2の経路へ振り分けられたトラフィック量を監視し、
     前記命令部は、前記振り分けられたトラフィック量が予め決められた起動用閾値より大きい場合に、前記ONUをアクティブ状態へ移行させる起動命令を前記ONUへ送信する処理と、前記第2の経路へ振り分けられていたトラフィックを前記第1の経路へ振り分け戻すための振分け命令を前記第1の通信装置および前記第2の通信装置へ送信する処理とを行う
     ことを特徴とする光通信制御装置。
    In the optical communication control device according to claim 1,
    When the ONU is in the sleep state, the monitoring unit monitors the amount of traffic that should originally be communicated between the ONU and the OLT and is distributed to the second route.
    When the distributed traffic amount is larger than the predetermined activation threshold value, the command unit transmits an activation command for shifting the ONU to the active state to the ONU, and distributes the ONU to the second route. An optical communication control device characterized by performing a process of transmitting a distribution command for distributing the traffic to the first route back to the first communication device and the second communication device.
  3.  請求項2に記載の光通信制御装置において、
     前記スリープ用閾値および前記起動用閾値は、冗長化された前記第2の経路の通信帯域に対する予め決められた割合で設定される
     ことを特徴とする光通信制御装置。
    In the optical communication control device according to claim 2,
    An optical communication control device, wherein the sleep threshold value and the activation threshold value are set at a predetermined ratio with respect to the redundant communication band of the second path.
  4.  第1の通信装置と第2の通信装置との間がPONシステムを構成するONUとOLTとで接続される第1の経路と、前記第1の経路と並列に配置された第2の経路とに冗長化された通信システムの省電力制御を行う光通信制御方法であって、
     前記ONUと前記OLTとの間のトラフィック量を監視する監視処理と、
     前記トラフィック量が予め決められたスリープ用閾値より小さい場合に、前記第1の経路から前記第2の経路へトラフィックを振り分ける振分け命令を前記第1の通信装置および前記第2の通信装置へ送信する処理と、前記ONUのリンクを維持するリンク維持命令を前記OLTへ送信する処理と、前記ONUをスリープ状態へ移行させるスリープ命令を前記ONUへ送信する処理と、を行う命令処理と
     を実行することを特徴とする光通信制御方法。
    A first path in which the first communication device and the second communication device are connected by an ONU and an OLT constituting a PON system, and a second path arranged in parallel with the first path. It is an optical communication control method that controls the power saving of a redundant communication system.
    A monitoring process for monitoring the amount of traffic between the ONU and the OLT, and
    When the traffic amount is smaller than the predetermined sleep threshold value, a distribution command for distributing traffic from the first route to the second route is transmitted to the first communication device and the second communication device. Processing, a process of transmitting a link maintenance command for maintaining the link of the ONU to the OLT, a process of transmitting a sleep command for shifting the ONU to the sleep state to the ONU, and an instruction process for performing the processing are executed. An optical communication control method characterized by.
  5.  請求項4に記載の光通信制御方法において、
     前記監視処理では、前記ONUがスリープ状態にある場合に、本来前記ONUと前記OLTとの間で通信されるべきトラフィックであって前記第2の経路へ振り分けられたトラフィック量を監視し、
     前記命令処理では、前記振り分けられたトラフィック量が予め決められた起動用閾値より大きい場合に、前記ONUをアクティブ状態へ移行させる起動命令を前記ONUへ送信する処理と、前記第2の経路へ振り分けられていたトラフィックを前記第1の経路へ振り分け戻すための振分け命令を前記第1の通信装置および前記第2の通信装置へ送信する処理とを行う
     ことを特徴とする光通信制御方法。
    In the optical communication control method according to claim 4,
    In the monitoring process, when the ONU is in the sleep state, the amount of traffic that should originally be communicated between the ONU and the OLT and is distributed to the second route is monitored.
    In the instruction processing, when the distributed traffic amount is larger than the predetermined activation threshold value, the processing of transmitting the activation command for shifting the ONU to the active state to the ONU and the distribution to the second route. An optical communication control method comprising performing a process of transmitting a distribution command for distributing the traffic to the first route back to the first communication device and the second communication device.
  6.  請求項5に記載の光通信制御方法において、
     前記スリープ用閾値および前記起動用閾値は、冗長化された前記第2の経路の通信帯域に対する予め決められた割合で設定される
     ことを特徴とする光通信制御方法。
    In the optical communication control method according to claim 5,
    An optical communication control method, wherein the sleep threshold value and the activation threshold value are set at a predetermined ratio with respect to the redundant communication band of the second path.
  7.  請求項4から請求項6のいずれか一項に記載の光通信制御方法で行う処理をコンピュータで実行することを特徴とする光通信制御プログラム。 An optical communication control program characterized in that a computer executes a process performed by the optical communication control method according to any one of claims 4 to 6.
PCT/JP2020/043652 2020-11-24 2020-11-24 Optical communication control device, optical communication control method, and optical communication control program WO2022113167A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/043652 WO2022113167A1 (en) 2020-11-24 2020-11-24 Optical communication control device, optical communication control method, and optical communication control program
JP2022564853A JP7420284B2 (en) 2020-11-24 2020-11-24 Optical communication control device, optical communication control method, and optical communication control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/043652 WO2022113167A1 (en) 2020-11-24 2020-11-24 Optical communication control device, optical communication control method, and optical communication control program

Publications (1)

Publication Number Publication Date
WO2022113167A1 true WO2022113167A1 (en) 2022-06-02

Family

ID=81754104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043652 WO2022113167A1 (en) 2020-11-24 2020-11-24 Optical communication control device, optical communication control method, and optical communication control program

Country Status (2)

Country Link
JP (1) JP7420284B2 (en)
WO (1) WO2022113167A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097257A (en) * 2009-10-28 2011-05-12 Hitachi Ltd Passive optical network system and optical subscriber terminal device
JP2014138232A (en) * 2013-01-16 2014-07-28 Fujitsu Telecom Networks Ltd Communication system and high-order side communication device and low-order side communication device
JP2016115962A (en) * 2014-12-11 2016-06-23 日本電信電話株式会社 Pon (passive optical network) system and communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097257A (en) * 2009-10-28 2011-05-12 Hitachi Ltd Passive optical network system and optical subscriber terminal device
JP2014138232A (en) * 2013-01-16 2014-07-28 Fujitsu Telecom Networks Ltd Communication system and high-order side communication device and low-order side communication device
JP2016115962A (en) * 2014-12-11 2016-06-23 日本電信電話株式会社 Pon (passive optical network) system and communication device

Also Published As

Publication number Publication date
JP7420284B2 (en) 2024-01-23
JPWO2022113167A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US9270406B2 (en) Communication method, optical communication system, station-side optical-line terminal apparatus, and user-side optical-line terminal apparatus
US9130677B2 (en) Communication system, station-side optical line terminating apparatus, user-side optical line terminating apparatus, control apparatus, and communication method
US8565601B2 (en) Communication method for optical communication system, optical communication system, slave station apparatus, control device, and computer program
JP6445706B2 (en) Communication method, apparatus, and system applied to multi-wavelength passive optical network
JP4960532B2 (en) Station side communication device, subscriber side communication device, communication system, and communication method
US9391693B2 (en) Protection for distributed radio access networks
US8346082B2 (en) Method of saving power in optical access network
JP4903276B2 (en) Power saving in IEEE 802 standard network
CN104662845A (en) Optical wireless access system
CN101087207A (en) A processing method for multi-node communication failure
WO2014103804A1 (en) Optical-wireless access system
US20130279918A1 (en) Power saving control method and node device in optical communication network
JP2012222400A (en) Subscriber-side terminal device and power consumption control method for the same
JP5546662B2 (en) Slave station apparatus, communication method of optical communication system, optical communication system, and control apparatus
JP5618147B2 (en) Station side optical terminator, control method thereof and control program
JP5541249B2 (en) PON system, station side apparatus, operation method thereof, and access control apparatus
JP2012142698A (en) Station side device, communication system and communication control method
WO2022113167A1 (en) Optical communication control device, optical communication control method, and optical communication control program
WO2011083564A1 (en) Pon system, subscriber-side device, station-side device, and communications method
JP2013207555A (en) Pon system, station side device and operation method therefor, and access control device
JP2013150052A (en) Communication system and method for controlling power saving of communication system
JP2012257341A (en) Communication method, optical communication system, user-side optical line termination device, office-side optical line termination device and control device
US8873959B2 (en) 802.3av compliant method using small timescale bandwidth assignment for increased ONU downstream energy efficiency
JP2013187759A (en) Station-side device, pon system and band allocating method
KR101327554B1 (en) Optical network unit and method for saving power thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963432

Country of ref document: EP

Kind code of ref document: A1