WO2022112070A1 - Procede et systeme de regulation de la combustion d'un moteur a combustion interne - Google Patents

Procede et systeme de regulation de la combustion d'un moteur a combustion interne Download PDF

Info

Publication number
WO2022112070A1
WO2022112070A1 PCT/EP2021/081944 EP2021081944W WO2022112070A1 WO 2022112070 A1 WO2022112070 A1 WO 2022112070A1 EP 2021081944 W EP2021081944 W EP 2021081944W WO 2022112070 A1 WO2022112070 A1 WO 2022112070A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
engine
flow
regulating
making
Prior art date
Application number
PCT/EP2021/081944
Other languages
English (en)
Inventor
Xavier Moine
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Priority to US18/022,014 priority Critical patent/US11976601B2/en
Priority to CN202180078981.XA priority patent/CN116472402A/zh
Publication of WO2022112070A1 publication Critical patent/WO2022112070A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0208Arrangements; Control features; Details thereof for small engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to a method and a corresponding system for regulating the combustion of an internal combustion engine. Rather, this disclosure relates to regulation of an engine at low load and low speed.
  • the present disclosure relates to the field of the management of the combustion of an internal combustion engine. It relates more particularly to single-cylinder engines or more generally to engines comprising a throttle valve for each cylinder. This type of engine is most often spark-ignition.
  • one solution consists in injecting fresh air at the level of the exhaust.
  • the air/fuel mixture can remain rich at the level of the combustion chamber when the exhaust gases remain globally such that the lambda probe detects an overall richness of 1.
  • a three-way catalytic converter fitted to the corresponding engine can continue to operate efficiently.
  • This first solution involves adding means to the engine allowing the injection of fresh air at the level of the exhaust and therefore involves an additional cost in the manufacture of the engine.
  • Another solution consists in adapting the shape of the combustion chamber to promote turbulence therein and thus better sweeping of the combustion chamber at the end of combustion.
  • the purpose of the present disclosure is therefore to provide a solution making it possible to improve the stability of an engine at low speed and low load at a lower cost and without deterioration in the performance of the engine at the other operating points.
  • said method comprises the following steps:
  • the means making it possible to regulating the flow of air in the supply line are controlled such that the flow of air is temporarily reduced during the engine cycle with respect to the position of said throttle valve during the other phases of the engine cycle, while a intake valve for introducing air into the corresponding cylinder from said supply line is open or at least for part of the opening time.
  • the air flow can for example be reduced in the supply pipe for a period corresponding to at least 180° CRK.
  • the means making it possible to regulate the flow of air in the air supply pipe comprise for example a butterfly valve, the reduction of the flow of air being obtained by pivoting said butterfly valve without closing the latter.
  • the regulation method according to the present disclosure comprises the following steps:
  • the flow of air can be limited in the supply pipe at least for 180° CRK corresponding to passing through a top dead center until passing through the next bottom dead center with an inlet valve open.
  • This disclosure further relates to:
  • a computer suitable for regulating the combustion of an internal combustion engine comprising, on the one hand, an air supply pipe provided with means making it possible to regulate the flow of air in said pipe and, on the other hand, a single cylinder associated with said means of regulation, characterized in that said computer is also adapted for the implementation of each of the steps of a method of regulation described above;
  • an internal combustion engine comprising, on the one hand, an air supply pipe provided with means for regulating the flow of air in said pipe and, on the other hand, a single cylinder associated with said means regulation, characterized in that it further comprises a computer defined in the preceding paragraph: in such an engine, the means for regulating the flow of air in the supply line advantageously comprise a motorized butterfly valve.
  • FIG. 1 schematically shows a single-cylinder engine in section.
  • FIG. 2 schematically shows the pressure variations at the inlet of the cylinder of the engine of FIG. 1 with a management of the prior art.
  • FIG. 3 schematically shows the control signal for a butterfly valve of the engine of Figure 1 with management of the prior art.
  • FIG. 4 schematically shows the pressure variations at the inlet of the cylinder of the engine of figure 1 with management according to the present disclosure in comparison with the variations of figure 2.
  • FIG. 5 schematically shows the control signal for the butterfly valve of the engine of Figure 1 with management according to the present disclosure.
  • FIG. 6 shows an example of a flowchart for the implementation of an embodiment of a method corresponding to the control signal of FIG. 5.
  • FIG. 1 A person skilled in the art here recognizes a single-cylinder engine represented schematically in section.
  • This engine thus comprises a cylinder 2 in which slides a piston 4 above which there is a combustion chamber 6.
  • the piston 4 is connected by a connecting rod 8 to a flywheel 10.
  • a position sensor 12 makes it possible to know the position angle of the engine flywheel 10 as well as the rotational speed RPM of this flywheel, which corresponds to the rotational speed, or rpm, of the engine.
  • the combustion chamber 6 is supplied, on the one hand, with fuel and, on the other hand, with fresh air.
  • a fuel supply line shown schematically by an arrow 14, supplies a fuel injection system 16 in the combustion chamber.
  • Air is supplied to the combustion chamber 6 by an intake manifold 18.
  • At least one intake valve 20 is used to control the air inlet into the combustion chamber. It will be assumed hereinafter that there is only one intake valve 20.
  • the airflow in the intake manifold 18 is regulated by a motorized butterfly valve 22. admission located between the motorized butterfly valve 22 and the combustion chamber 6 (or the intake valve 20) is called manifold 24 (also known as the English name "manifold").
  • manifold 24 also known as the English name "manifold"
  • a pressure sensor 26 makes it possible to know the pressure in this manifold 24.
  • the engine is an ignition engine controlled by a spark plug 28.
  • This unit is connected in particular to the injection system 16, to the spark plug 28 (or more generally to an ignition system), to the position sensor 12, to the pressure sensor 26 and to the motorized butterfly valve 22 (which also incorporates at least one throttle position sensor).
  • Figure 1 does not show in particular the engine exhaust system since the present disclosure relates more particularly to an air intake system in an engine.
  • those skilled in the art are familiar with exhaust systems as well as other elements of an engine not illustrated here in this schematic figure.
  • the present disclosure relates more particularly to the operation of the engine of FIG. 1 when the engine speed RPM is low and/or when the load of the engine L is also low. Under these conditions, burnt gases remain present in the combustion chamber during an admission of fresh air. Indeed, it is generally provided that the exhaust valve and the intake valve are open for the same period of time at the start of the admission of fresh air. At high rpm and/or under load, this allows the fresh air entering the combustion chamber to expel the burnt gases that remain there. At low rpm and/or low load, the incoming fresh air does not have enough energy to drive out all the burnt gases. The mixture in the combustion chamber then partially contains gases which slow combustion and the engine speed therefore becomes unstable, i.e. it varies significantly (and uncontrollably).
  • FIG. 2 illustrates by a curve 100 the pressure in the manifold 24 as seen by the pressure sensor 26. As long as the intake valve 20 is closed, this pressure increases to reach a maximum value (corresponding substantially to atmospheric pressure in a non-supercharged engine) shortly after the intake valve 20 begins to open.
  • the two pressure maxima shown in Figure 2 are 720°CRK apart in the case of an engine operating on a four-stroke cycle.
  • Figure 3 illustrates the angular position of a butterfly 32 used to modify the passage section in the intake manifold 18.
  • This butterfly 32 is pivotally mounted (and controlled by a motor) about an axis transverse to the intake manifold 18 and it is considered that it pivots between two extremes 0° and 90° (which are not necessarily reached in practice), 0° corresponding to the smallest possible passage section while 90° corresponds at a maximum opening and therefore the largest possible passage section.
  • the position of the throttle valve 32 in its housing, that is to say in the motorized butterfly valve 22, is subsequently called PAP.
  • the throttle valve 32 remains in the same MED angular position throughout the engine cycle (intake, compression, expansion and exhaust).
  • MOY is for example 8°. This angular value is determined by the electronic control unit 30 so that the mass of air admitted into the combustion chamber 6 corresponds to the mass of fuel in order to obtain complete combustion of the latter.
  • Figure 5 illustrates a throttle opening control 32 corresponding to conditions similar in all respects to those of Figures 2 and 3.
  • the RPM speed and the engine load L are the same and it is assumed that the same quantity fuel must be injected. Therefore, the same mass of air must be admitted into the engine.
  • a curve 200 shows the variations in pressure in the manifold 24 corresponding to this mode of piloting the motorized butterfly valve 22.
  • This FIG. 4 also repeats the curve 100 of FIG. 2 for comparison.
  • This "overpressure" is of the order of about 100mbar. It allows, when the intake valve opens, to prevent a return of the burnt gases which are at the exhaust, substantially at atmospheric pressure, and also facilitates, to a lesser extent, the entry of air fresh in the combustion chamber. In other words, the fresh air arriving with a higher pressure more effectively expels the burnt gases out of the combustion chamber.
  • the "closed" position of the throttle valve is not a fixed position once and for all. It depends on the amount of air to be admitted at each cycle in the engine. Similarly, the “open” position is not fixed but determined according to the quantity of air to be admitted into the engine.
  • the range in which the butterfly 32 assumes its closed position can be as indicated above, for example a range of 180° CRK going from a top dead center to a bottom dead center during which the intake valve 20 is open. .
  • This range may be different. It can correspond to the opening range of the intake valve (for example 10°CRK before top dead center to 60°CRK after bottom dead center). It can be reduced compared to the opening range of the intake valve, it can be larger than the opening range of the intake valve or it can straddle an opening phase and a closing phase of the intake valve. Provision is made, for example, that the range in which the section of the intake manifold is limited by the "closed" position of the throttle valve 32 corresponds to at least 90° CRK during which the intake valve is open, advantageously at least 135° CRK and preferably at least 180°CRK.
  • Figure 6 is a flowchart summarizing a method for achieving stable combustion of a low speed, low load engine according to the present disclosure.
  • the electronic control unit 30 knows the RPM speed and the load L of the engine. These values are compared with a predetermined speed value RPMo and with a predetermined load value Lo.
  • the throttle valve 32 will have a variable angular position for the same air mass setpoint.
  • the present technical solutions may find application in particular for the management of an internal combustion engine.
  • the proposed solution does not call for increasing fuel consumption. It optimizes combustion and improves engine efficiency at low rpm and/or low load. [0064] Finally, the stability of the engine at low speed and/or at low load is not to the detriment of engine performance.

Abstract

Procédé de régulation de la combustion d'un moteur à combustion interne comportant, d'une part, une conduite d'alimentation en air munie de moyens permettant de réguler le flux d'air dans ladite conduite et, d'autre part, un unique cylindre associé auxdits moyens de régulation, comportant les étapes suivantes : - détermination du régime et/ou de la charge du moteur, et - lorsque le régime est en dessous d'une valeur prédéterminée et/ou la charge du moteur est en dessous d'une valeur prédéterminée, les moyens permettant de réguler le flux d'air dans la conduite d'alimentation sont commandés de telle sorte que le flux d'air est réduit temporairement pendant le cycle moteur par rapport à la position dudit papillon des gaz pendant les autres phases du cycle moteur, pendant qu'une soupape d'admission permettant d'introduire de l'air dans le cylindre correspondant à partir de ladite conduite d'alimentation est ouverte.

Description

Description
Titre : PROCEDE ET SYSTEME DE REGULATION DE LA COMBUSTION D’UN MOTEUR A COMBUSTION INTERNE
[0001] La présente divulgation concerne un procédé et un système correspondant pour la régulation de la combustion d’un moteur à combustion interne. Cette divulgation concerne plutôt une régulation d’un moteur à faible charge et à faible régime.
Domaine technique
[0002] La présente divulgation relève du domaine de la gestion de la combustion d’un moteur à combustion interne. Elle concerne plus particulièrement des moteurs monocylindres ou plus généralement des moteurs comportant un papillon des gaz pour chaque cylindre. Ce type de moteur est le plus souvent à allumage commandé.
Technique antérieure
[0003] Dans la conception d’un moteur à combustion interne, lorsque des performances élevées sont recherchées, les caractéristiques du moteur pour atteindre ces performances élevées vont le plus souvent à l’encontre de la stabilité de la combustion à faible régime et à faible charge. Dans ce type de moteur, à faible régime et faible charge, on constate le plus souvent, du fait de la structure du moteur, que des gaz brûlés restent dans la chambre de combustion en fin de phase d’admission. De ce fait, si aucune mesure n’est prise, les gaz brûlés résiduels viennent ralentir la vitesse de combustion et de ce fait le régime moteur devient instable.
[0004] Parmi les solutions connues pour remédier à ce problème, une solution consiste à injecter de l’air frais au niveau de l’échappement. Ainsi, le mélange air/carburant peut rester riche au niveau de la chambre de combustion lorsque les gaz d’échappement restent globalement tels que la sonde lambda détecte une richesse globale de 1. Ainsi un pot catalytique à trois voies équipant le moteur correspondant peut continuer à fonctionner efficacement. [0005] Cette première solution implique de rajouter dans le moteur des moyens permettant l’injection d’air frais au niveau de l’échappement et implique donc un surcoût dans la fabrication du moteur.
[0006] Une autre solution consiste à adapter la forme de la chambre de combustion pour y favoriser des turbulences et ainsi un meilleur balayage de la chambre de combustion en fin de combustion.
[0007] Cette solution permet à moindre coût de favoriser la stabilité du moteur à faible régime et à faible charge mais est pénalisante pour les performances à hauts régimes et charge élevée.
[0008] La présente divulgation a alors pour but de fournir une solution permettant d’améliorer la stabilité d’un moteur à faible régime et faible charge à moindre coût et sans détérioration des performances du moteur aux autres points de fonctionnement.
Résumé
[0009] La présente divulgation vient améliorer la situation.
[0010] Il est proposé tout d’abord un procédé de régulation de la combustion d’un moteur à combustion interne du type monocylindre ou comportant un papillon des gaz pour chaque cylindre, ledit moteur comportant, d'une part, une conduite d’alimentation en air munie de moyens permettant de réguler le flux d’air dans ladite conduite et, d'autre part, un unique cylindre associé auxdits moyens de régulation, ledit moteur fonctionnant sur la base d’un cycle moteur comportant quatre phases.
[0011] Selon la présente divulgation, il est proposé que ledit procédé comporte les étapes suivantes :
[0012] - détermination du régime et/ou de la charge du moteur, et
[0013] - lorsque le régime est en dessous d’une valeur prédéterminée et/ou la charge du moteur est en dessous d’une valeur prédéterminée, soit lorsque le moteur fonctionne à faible charge et/ou à faible régime, les moyens permettant de réguler le flux d’air dans la conduite d’alimentation sont commandés de telle sorte que le flux d’air est réduit temporairement pendant le cycle moteur par rapport à la position dudit papillon des gaz pendant les autres phases du cycle moteur, pendant qu’une soupape d’admission permettant d’introduire de l’air dans le cylindre correspondant à partir de ladite conduite d’alimentation est ouverte ou bien au moins pendant une partie du temps d’ouverture.
[0014] Ainsi, pendant toute l’ouverture de la soupape d’admission ou bien au moins pendant une partie de ce temps d’ouverture, l’arrivée d’air est limitée. Ceci crée en amont de la soupape d’admission une dépression qui favorise par la suite un meilleur remplissage d’air en amont de la soupape d’admission en créant une aspiration lorsque les moyens permettant de réguler le flux d’air dans la conduite d’alimentation reviennent dans une position permettant un flux d’air plus élevé.
[0015] Dans le procédé de régulation proposé, le flux d’air peut par exemple être réduit dans la conduite d’alimentation pendant une période correspondant à au moins 180°CRK.
[0016] Selon une forme de réalisation permettant un contrôle efficace et rapide des moyens permettant de réguler le flux d’air dans la conduite d’alimentation en air, ces derniers comportent par exemple une vanne papillon, la réduction du flux d’air étant obtenue en faisant pivoter ladite vanne papillon sans fermer celle-ci.
[0017] Selon une variante, le procédé de régulation selon la présente divulgation comporte les étapes suivantes :
[0018] - détermination du régime et de la charge moteur,
[0019] - détermination d’une quantité de carburant à injecter et d’une masse d’air correspondante,
[0020] - détermination d’une commande de position moyenne pour les moyens de régulation du flux d’air dans la conduite d’alimentation permettant d’obtenir la masse d’air déterminée au cours d’un cycle moteur,
[0021] - commande de position desdits moyens de régulation pour limiter le flux d’air dans la conduite d’alimentation par rapport à la commande de position moyenne temporairement pendant l’ouverture de la soupape d’admission, et
[0022] - commande de position desdits moyens de régulation lorsque le flux d’air n’est pas limité pour que le flux d’air dans la conduite d’alimentation sur un cycle moteur permette de fournir la masse d’air déterminée. [0023] Selon cette variante de réalisation de procédé de régulation selon la présente divulgation, le flux d’air peut être limité dans la conduite d’alimentation au moins pendant 180°CRK correspondant au passage par un point mort haut jusqu’au passage par le point mort bas suivant, une soupape d’admission étant ouverte.
[0024] La présente divulgation concerne en outre :
[0025] - un produit programme d’ordinateur, comprenant une série d’instructions de code pour la mise en oeuvre d’un procédé de régulation de la combustion d’un moteur à combustion interne décrit ci-dessus, quand il est mis en oeuvre par un calculateur ;
[0026] - un calculateur adapté pour la régulation de la combustion d’un moteur à combustion interne comportant, d'une part, une conduite d’alimentation en air munie de moyens permettant de réguler le flux d’air dans ladite conduite et, d'autre part, un unique cylindre associé auxdits moyens de régulation, caractérisé en ce que ledit calculateur est également adapté pour la mise en oeuvre de chacune des étapes d’un procédé de régulation décrit ci-dessus ;
[0027] - un moteur à combustion interne comportant, d'une part, une conduite d’alimentation en air munie de moyens permettant de réguler le flux d’air dans ladite conduite et, d'autre part, un unique cylindre associé auxdits moyens de régulation, caractérisé en ce qu’il comporte en outre un calculateur défini au paragraphe précédent : dans un tel moteur, les moyens permettant de réguler le flux d’air dans la conduite d’alimentation comportent avantageusement une vanne papillon motorisée.
Brève description des dessins
[0028] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse du dessin annexé, sur lequel :
Fig. 1
[0029] [Fig. 1] montre schématiquement un moteur monocylindre en coupe.
Fig. 2 [0030] [Fig. 2] montre schématiquement les variations de pression à l’entrée du cylindre du moteur de la figure 1 avec une gestion de l’art antérieur.
Fig. 3
[0031] [Fig. 3] montre schématiquement le signal de commande pour une vanne papillon du moteur de la figure 1 avec une gestion de l’art antérieur.
Fig. 4
[0032] [Fig. 4] montre schématiquement les variations de pression à l’entrée du cylindre du moteur de la figure 1 avec une gestion selon la présente divulgation en comparaison avec les variations de la figure 2.
Fig. 5
[0033] [Fig. 5] montre schématiquement le signal de commande pour la vanne papillon du moteur de la figure 1 avec une gestion selon la présente divulgation.
Fig. 6
[0034] [Fig. 6] montre un exemple d’organigramme pour la mise en oeuvre d’un mode de réalisation d’un procédé correspondant au signal de commande de la figure 5.
Description des modes de réalisation
[0035] Il est maintenant fait référence à la figure 1. L’homme du métier reconnaît ici un moteur monocylindre représenté schématiquement en coupe. Ce moteur comporte ainsi un cylindre 2 dans lequel coulisse un piston 4 au-dessus duquel se trouve une chambre de combustion 6. Le piston 4 est relié par une bielle 8 à un volant moteur 10. Un capteur de position 12 permet de connaître la position angulaire du volant moteur 10 ainsi que la vitesse de rotation RPM de ce volant, qui correspond à la vitesse de rotation, ou régime, du moteur.
[0036] La chambre de combustion 6 est alimentée, d'une part, en carburant et, d'autre part, en air frais. Une conduite d’alimentation en carburant, schématisée par une flèche 14 vient alimenter un système d’injection 16 de carburant dans la chambre de combustion. [0037] De l’air est amené vers la chambre de combustion 6 par une tubulure d’admission 18. Au moins une soupape d’admission 20 permet de commander l’entrée d’air dans la chambre de combustion. On supposera par la suite qu’il n’y a qu’une seule soupape d’admission 20. Le flux d’air dans la tubulure d’admission 18 est régulé par une vanne papillon motorisée 22. L’espace de la tubulure d’admission situé entre la vanne papillon motorisée 22 et la chambre de combustion 6 (ou la soupape d’admission 20) est appelé collecteur 24 (connu aussi sous le nom anglais « manifold »). Un capteur de pression 26 permet de connaître la pression dans ce collecteur 24.
[0038] Dans l’exemple illustré, le moteur est un moteur à allumage commandé par une bougie d’allumage 28.
[0039] Une unité de commande électronique 30, couramment appelée ECU, permet de contrôler et de commander le moteur. Cette unité est reliée notamment au système d’injection 16, à la bougie d’allumage 28 (ou plus généralement à un système d’allumage), au capteur de position 12, au capteur de pression 26 et à la vanne de papillon motorisée 22 (qui intègre aussi au moins un capteur de position du papillon).
[0040] La figure 1 ne montre pas notamment le système d’échappement du moteur puisque la présente divulgation concerne plus particulièrement un système d’admission d’air dans un moteur. Toutefois, l’homme du métier connaît des systèmes d’échappement de même que d’autres éléments d’un moteur non illustrés ici sur cette figure schématique.
[0041] La présente divulgation concerne plus particulièrement le fonctionnement du moteur de la figure 1 lorsque le régime moteur RPM est faible et/ou que la charge du moteur L est faible également. Dans ces conditions, des gaz brûlés restent présents dans la chambre de combustion lors d’une admission d’air frais. En effet, il est prévu généralement que la soupape d’échappement et la soupape d’admission sont ouvertes pendant un même laps de temps au début de l’admission d’air frais. À haut régime et/ou en charge, cela permet à l’air frais qui rentre dans la chambre de combustion de chasser les gaz brûlés qui y restent. À faible régime et/ou à faible charge, l’air frais rentrant n’a pas assez d’énergie pour chasser tous les gaz brûlés. Le mélange dans la chambre de combustion contient alors partiellement des gaz brûlés qui ralentissent la combustion et le régime moteur devient de ce fait instable, c’est-à-dire qu’il varie de manière sensible (et incontrôlée).
[0042] Les figures 2 et 3 illustrent le fonctionnement habituel du moteur de la figure 1 selon l’état de la technique antérieure à la présente divulgation. La figure 2 illustre par une courbe 100 la pression dans le collecteur 24 telle qu’elle est vue par le capteur de pression 26. Tant que la soupape d’admission 20 est fermée, cette pression augmente pour atteindre une valeur maximale (correspondant sensiblement à la pression atmosphérique dans un moteur non suralimenté) un peu après que la soupape d’admission 20 commence à s’ouvrir. Les deux maximas de pression illustrés sur la figure 2 sont distants de 720°CRK dans le cas d’un moteur fonctionnant selon un cycle à quatre temps.
[0043] La figure 3 illustre la position angulaire d’un papillon 32 utilisé pour modifier la section de passage dans la tubulure d’admission 18. Ce papillon 32 est monté pivotant (et commandé par un moteur) autour d’un axe transversal à la tubulure d’admission 18 et on considère qu’il pivote entre deux extrêmes 0° et 90° (qui ne sont pas forcément atteints dans la pratique), 0° correspondant à une section de passage la plus réduite possible tandis que 90° correspond à une ouverture maximale et donc une section de passage la plus grande possible.
[0044] On appelle par la suite PAP la position du papillon 32 dans son boîtier, c’est- à-dire dans la vanne papillon motorisée 22. Dans l’état de l’art antérieur à la présente divulgation, le papillon 32 reste dans une même position angulaire MOY durant tout le cycle moteur (admission, compression, détente et échappement). Dans l’exemple illustré, MOY vaut par exemple 8°. Cette valeur angulaire est déterminée par l’unité de commande électronique 30 de telle sorte que la masse d’air admise dans la chambre de combustion 6 corresponde à la masse de carburant afin d’obtenir une combustion complète de ce dernier.
[0045] De manière originale, il est proposé pour améliorer la combustion dans le moteur -à faible régime et/ou à faible charge, dans une variante de réalisation préférée, à faible régime et à faible charge- et améliorer la stabilité de la combustion, d’agir rapidement sur la vanne papillon motorisée 22 pour faire varier la position angulaire de son papillon 32 pendant le cycle de combustion ou cycle moteur de manière à réduire la section de passage dans la tubulure d’admission lors de l’admission d’air dans la chambre de combustion (par rapport à la position de ce papillon 32 pendant les autres phases du cycle). Il s’agit donc de faire varier la position du papillon 32, ce dernier étant plus fermé durant l’admission d’air dans la chambre de combustion.
[0046] Pour que la quantité (masse) d’air entrant dans la chambre de combustion puisse correspondre à la quantité de carburant injectée, il faut adapter l’angle d’ouverture du papillon 32 en dehors de la phase d’admission.
[0047] La figure 5 illustre une commande d’ouverture du papillon 32 correspondant à des conditions en tous points similaires à celles des figures 2 et 3. Le régime RPM et la charge L du moteur sont les mêmes et on suppose que la même quantité de carburant doit être injectée. De ce fait, la même masse d’air doit être admise dans le moteur.
[0048] Pour mémoire, dans la configuration des figures 2 et 3, pour admettre la bonne masse d’air, il a été déterminé que le papillon 32 devait être ouvert selon un angle PAP=MOY. À titre purement illustratif et non limitatif, on a par exemple PAP=MOY=8°.
[0049] Dans des conditions similaires, il est prévu sur la figure 5 de fermer le papillon 32 de telle sorte que sa position angulaire soit PAP=MIN avec MIN<MOY. À titre illustratif (et non limitatif), on aura par exemple MIN=5°. Cette position n’est prise par le papillon 32 par exemple uniquement lorsque la soupape d’admission 20 est ouverte. Lorsque la soupape d’admission 20 est fermée, le papillon 32 prend une position angulaire PAP=MAX avec MAX>MOY. À titre d’exemple illustratif et non limitatif, on peut par exemple avoir MAX=9°.
[0050] En commandant de la sorte la vanne papillon motorisée 22, on remarque que la courbe de pression dans le collecteur 24 varie. Sur la figure 4, on a représenté par une courbe 200 les variations de pression dans le collecteur 24 correspondant à ce mode de pilotage de la vanne papillon motorisée 22. Cette figure 4 reprend aussi la courbe 100 de la figure 2 pour comparaison. On remarque notamment que juste avant l’ouverture de la soupape d’admission 20, la pression dans le collecteur 24 est supérieure à la pression observée lorsque le papillon 32 garde une position angulaire constante. Cette « surpression » est de l’ordre d’environ lOOmbar. Elle permet, lorsque la soupape d’admission s’ouvre, d’empêcher un retour des gaz brûlés qui se trouvent à l’échappement, sensiblement à la pression atmosphérique, et facilite aussi, dans une moindre mesure, l’entrée d’air frais dans la chambre de combustion. Autrement dit, l’air frais arrivant avec une pression supérieure chasse plus efficacement les gaz brûlés hors de la chambre de combustion.
[0051] Généralement, la soupape d’admission 20 s’ouvre un peu avant le passage au point mort haut correspondant du piston 4 et se ferme après le passage suivant au point mort bas de ce piston 4. On prévoit avantageusement que le papillon 32 est dans sa position fermée (PAP=MIN) au moins entre le passage du piston 4 du point mort haut au point mort bas correspondant à une admission d’air.
[0052] La position « fermée » du papillon n’est pas une position fixée une fois pour toutes. Elle dépend de la quantité d’air à admettre à chaque cycle dans le moteur. De même la position « ouverte » n’est pas fixe mais déterminée en fonction de la quantité d’air à admettre dans le moteur.
[0053] La plage dans laquelle le papillon 32 prend sa position fermée peut être comme indiqué plus haut par exemple une plage de 180°CRK allant d’un point mort haut à un point mort bas durant laquelle la soupape d’admission 20 est ouverte.
[0054] Cette plage peut être différente. Elle peut correspondre à la plage d’ouverture de la soupape d’admission (par exemple 10°CRK avant le point mort haut à 60°CRK après le point mort bas). Elle peut être réduite par rapport à la plage d’ouverture de la soupape d’admission, elle peut être plus grande que la plage d’ouverture de la soupape d’admission ou bien elle peut être à cheval sur une phase d’ouverture et une phase de fermeture de la soupape d’admission. On prévoit par exemple que la plage dans laquelle la section de la tubulure d’admission est limitée par la position « fermée » du papillon 32 correspond à au moins 90°CRK pendant lesquels la soupape d’admission est ouverte, avantageusement au moins 135°CRK et de préférence au moins 180°CRK.
[0055] La description est faite ci-dessus pour un moteur monocylindre. L’homme du métier comprend aussi qu’elle peut être réalisée pour un moteur comportant plusieurs cylindres avec une vanne papillon (ou équivalent) motorisée pour commander le débit d’air alimentant chaque cylindre.
[0056] La figure 6 est un organigramme résumant un procédé permettant d’obtenir une combustion stable d’un moteur à faible régime et faible charge selon la présente divulgation.
[0057] L’unité de commande électronique 30 connaît le régime RPM et la charge L du moteur. Ces valeurs sont comparées à une valeur de régime RPMo prédéterminée et à une valeur de charge Lo prédéterminée.
[0058] Si le régime RPM est supérieur à RPMo ou si la charge L est supérieure à Lo, alors la vanne papillon motorisée 22 est commandée de telle sorte que son papillon 32 garde une position angulaire constante (PAP=MOY) pour chaque consigne de masse d’air.
[0059] Par contre, si le régime RPM est inférieur à RPMo et que la charge du moteur est inférieure à Lo, alors le papillon 32 aura une position angulaire variable pour une même consigne de masse d’air.
[0060] Dans la forme de réalisation simplifiée illustrée ici, il est déterminé en fonction de la position angulaire du moteur (°CRK) si le moteur est en phase d’admission ou non. Le cas échéant, la vanne papillon motorisée est commandée pour que le papillon prenne la position angulaire PAP=MIN et sinon une commande est envoyée pour que la position du papillon soit PAP=MAX.
Application industrielle
[0061] Les présentes solutions techniques peuvent trouver à s’appliquer notamment pour la gestion d’un moteur à combustion interne.
[0062] La solution proposée par la présente divulgation permet d’améliorer la stabilité d’un moteur sans avoir à l’équiper d’éléments complémentaires. Les modifications à apporter sont simplement logicielles.
[0063] La solution proposée n’appelle pas à augmenter la consommation de carburant. Elle permet une optimisation de la combustion et améliore le rendement du moteur à faible régime et/ou faible charge. [0064] Enfin, la stabilité du moteur à faible régime et/ou à faible charge ne se fait pas au détriment des performances du moteur.
[0065] La présente divulgation ne se limite pas aux exemples de procédés et de systèmes décrits ci-dessus et aux variantes décrits ci-avant, seulement à titre d’exemples mais elle englobe toutes les variantes que pourra envisager l’homme de l’art dans le cadre de la protection recherchée.

Claims

Revendications
[Revendication 1] Procédé de régulation de la combustion d’un moteur à combustion interne du type monocylindre ou comportant un papillon des gaz pour chaque cylindre, ledit moteur comportant, d'une part, une conduite d’alimentation (18) en air munie de moyens (22) permettant de réguler le flux d’air dans ladite conduite et, d'autre part, un unique cylindre (2) associé auxdits moyens (22) de régulation, ledit moteur fonctionnant sur la base d’un cycle moteur comportant quatre phases, caractérisé en ce que ledit procédé comporte les étapes suivantes :
- détermination du régime et/ou de la charge du moteur, et
- lorsque le régime est en dessous d’une valeur prédéterminée et/ou la charge du moteur est en dessous d’une valeur prédéterminée, soit lorsque le moteur fonctionne à faible charge et/ou à faible régime, les moyens (22) permettant de réguler le flux d’air dans la conduite d’alimentation (18) sont commandés de telle sorte que le flux d’air est réduit temporairement pendant le cycle moteur par rapport à la position dudit papillon des gaz pendant les autres phases du cycle moteur, pendant qu’une soupape d’admission (20) permettant d’introduire de l’air dans le cylindre (2) correspondant à partir de ladite conduite d’alimentation (18) est ouverte ou bien au moins pendant une partie du temps d’ouverture.
[Revendication 2] Procédé de régulation selon la revendication 1 , caractérisé en ce que le flux d’air est réduit dans la conduite d’alimentation (18) pendant une période correspondant à au moins 180°CRK.
[Revendication 3] Procédé de régulation selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens (22) permettant de réguler le flux d’air dans la conduite d’alimentation en air comportent une vanne papillon, la réduction du flux d’air est obtenue en faisant pivoter ladite vanne papillon sans fermer celle-ci.
[Revendication 4] Procédé de régulation selon l'une des revendications 1 à 3, caractérisé en ce qu’il comporte les étapes suivantes :
- détermination du régime et de la charge moteur,
- détermination d’une quantité de carburant à injecter et d’une masse d’air correspondante, - détermination d’une commande de position moyenne pour les moyens (22) de régulation du flux d’air dans la conduite d’alimentation permettant d’obtenir la masse d’air déterminée au cours d’un cycle moteur,
- commande de position desdits moyens (22) de régulation pour limiter le flux d’air dans la conduite d’alimentation par rapport à la commande de position moyenne temporairement pendant l’ouverture de la soupape d’admission (20), et
- commande de position desdits moyens (22) de régulation lorsque le flux d’air n’est pas limité pour que le flux d’air dans la conduite d’alimentation sur un cycle moteur permette de fournir la masse d’air déterminée.
[Revendication 5] Procédé de régulation selon la revendication 4, caractérisé en ce que le flux d’air est limité dans la conduite d’alimentation (18) au moins pendant 180°CRK correspondant au passage par un point mort haut jusqu’au passage par le point mort bas suivant, une soupape d’admission (20) étant ouverte.
[Revendication 6] Produit programme d’ordinateur, comprenant une série d’instructions de code pour la mise en oeuvre d’un procédé de régulation de la combustion d’un moteur à combustion interne selon l'une des revendications 1 à 5, quand il est mis en oeuvre par un calculateur.
[Revendication 7] Calculateur adapté pour la régulation de la combustion d’un moteur à combustion interne comportant, d'une part, une conduite d’alimentation (18) en air munie de moyens (22) permettant de réguler le flux d’air dans ladite conduite et, d'autre part, un unique cylindre (2) associé auxdits moyens (22) de régulation, caractérisé en ce que ledit calculateur est également adapté pour la mise en oeuvre de chacune des étapes d’un procédé selon l'une des revendications 1 à 5.
[Revendication 8] Moteur à combustion interne comportant, d'une part, une conduite d’alimentation (18) en air munie de moyens (22) permettant de réguler le flux d’air dans ladite conduite et, d'autre part, un unique cylindre (2) associé auxdits moyens (22) de régulation, caractérisé en ce qu’il comporte en outre un calculateur (30) selon la revendication 7. [Revendication 9] Moteur selon la revendication 8, caractérisé en ce que les moyens (22) permettant de réguler le flux d’air dans la conduite d’alimentation comportent une vanne papillon motorisée.
PCT/EP2021/081944 2020-11-25 2021-11-17 Procede et systeme de regulation de la combustion d'un moteur a combustion interne WO2022112070A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/022,014 US11976601B2 (en) 2020-11-25 2021-11-17 Method and system for controlling the combustion of an internal combustion engine
CN202180078981.XA CN116472402A (zh) 2020-11-25 2021-11-17 内燃式发动机的燃烧的调节方法和系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012098 2020-11-25
FR2012098A FR3116563A1 (fr) 2020-11-25 2020-11-25 Procédé et système de régulation de la combustion d’un moteur à combustion interne

Publications (1)

Publication Number Publication Date
WO2022112070A1 true WO2022112070A1 (fr) 2022-06-02

Family

ID=74045956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/081944 WO2022112070A1 (fr) 2020-11-25 2021-11-17 Procede et systeme de regulation de la combustion d'un moteur a combustion interne

Country Status (4)

Country Link
US (1) US11976601B2 (fr)
CN (1) CN116472402A (fr)
FR (1) FR3116563A1 (fr)
WO (1) WO2022112070A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128051B2 (en) * 1998-03-19 2006-10-31 Hitachi, Ltd. Internal combustion engine, and control apparatus and method thereof
EP2639431A1 (fr) * 2010-11-08 2013-09-18 Toyota Jidosha Kabushiki Kaisha Dispositif de commande pour moteur
DE102016111505A1 (de) * 2015-07-08 2017-01-12 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für ein Fahrzeug
FR3089562A1 (fr) * 2018-12-07 2020-06-12 Renault S.A.S Procédé de commande d’un moteur à combustion interne suralimenté

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905988B1 (fr) 2006-09-19 2008-12-26 Peugeot Citroen Automobiles Sa Procede et systeme de regulation de la stabilite du regime d'un moteur a combustion interne
JP2008088835A (ja) * 2006-09-29 2008-04-17 Denso Corp 内燃機関の制御装置
US9103293B2 (en) * 2011-12-15 2015-08-11 Ford Global Technologies, Llc Method for reducing sensitivity for engine scavenging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128051B2 (en) * 1998-03-19 2006-10-31 Hitachi, Ltd. Internal combustion engine, and control apparatus and method thereof
EP2639431A1 (fr) * 2010-11-08 2013-09-18 Toyota Jidosha Kabushiki Kaisha Dispositif de commande pour moteur
DE102016111505A1 (de) * 2015-07-08 2017-01-12 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für ein Fahrzeug
FR3089562A1 (fr) * 2018-12-07 2020-06-12 Renault S.A.S Procédé de commande d’un moteur à combustion interne suralimenté

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUERHAPTER A ET AL: "HOMOGENE SELBSTZUENDUNG DIE PRAKTISCHE UMSETZUNG AM TRANSIENTEN VOLLMOTOR", MTZ - MOTORTECHNISCHE ZEITSCHRIFT, SPRINGER, vol. 65, no. 2, 1 February 2004 (2004-02-01), pages 94 - 101, XP001198707, ISSN: 0024-8525 *

Also Published As

Publication number Publication date
CN116472402A (zh) 2023-07-21
US20230349335A1 (en) 2023-11-02
FR3116563A1 (fr) 2022-05-27
US11976601B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
EP0730706B1 (fr) Procede pour ameliorer le fonctionnement d&#39;un moteur thermique suralimente et balaye avec de l&#39;air, et moteur thermique agence pour la mise en oeuvre du procede
FR2886978A1 (fr) Moteur a combustion interne et procede destine a commander un generateur a turbine dans un moteur a combustion interne
FR2530730A1 (fr) Moteur a allumage par compression et a turbocompresseur, pouvant fonctionner avec un faible taux de compression
FR2909718A1 (fr) Moteur a combustion interne suralimente
EP0090122A2 (fr) Dispositif de régulation de l&#39;alimentation d&#39;un moteur à combustion interne
EP0117795B1 (fr) Moteur à combustion interne suralimenté par turbocompresseur
EP0961880B1 (fr) Procede et dispositif de regeneration d&#39;un filtre a vapeurs de carburant pour un moteur a injection directe
WO2022112070A1 (fr) Procede et systeme de regulation de la combustion d&#39;un moteur a combustion interne
EP2655836B1 (fr) Dispositif de commande d&#39;un moteur thermique
FR3058464A1 (fr) Systeme d&#39;injection d&#39;air dans un circuit d&#39;echappement de gaz d&#39;un moteur thermique suralimente.
FR2843421A1 (fr) Appareil et procede de commande pour un moteur a combustion interne possedant un systeme de soupapes variables
FR2850706A1 (fr) Procede pour actionner un moteur a combustion interne fonctionnant avec injection directe de carburant
FR2842567A1 (fr) Procede de commande pour delivrer un couple uniforme pour un moteur a combustion interne a turbocompresseur a gaz d&#39;echappement
FR2914949A1 (fr) Moteur a combustion interne, appareil de commande du moteur et procede de gestion d&#39;un moteur a combustion interne a turbocompresseur
EP2123881B1 (fr) Moteur à combustion interne suralimente par turbo-compresseur
EP2452060A1 (fr) Procede de controle d&#39;un debit d&#39;air injecte dans un moteur, ensemble comprenant un calculateur mettant en uvre le procede et un vehicule comprenant l&#39;ensemble
FR3070434A1 (fr) Dispositif de commande de moteur
FR2914366A1 (fr) Procede de controle du fonctionnement d&#39;un moteur a combustion interne en mode de combustion a autoallumage controle et moteur utilisant un tel procede
FR2856432A1 (fr) Procede de controle d&#39;un systeme de motorisation a moteur diesel et piege a oxydes d&#39;azote
FR3051224B1 (fr) Procede de controle d&#39;un dispositif de motorisation et dispositif de motorisation associe
WO2001051786A1 (fr) Procede et dispositif pour ameliorer le fonctionnement a bas regime des moteurs thermiques suralimentes
WO2023078969A1 (fr) Procédé et système de purge d&#39;un canister d&#39;un moteur à combustion équipé d&#39;au moins un circuit de recirculation des gaz d&#39;échappement
EP3601770A1 (fr) Procede de controle d&#39;un moteur a allumage commande suralimente avec recirculation partielle des gaz d&#39;echappement, et dispositif de motorisation associe
FR2882574A1 (fr) Procede de controle de l&#39;admission d&#39;air d&#39;un moteur a combustion interne suralimente pour compenser les variations de densite de l&#39;air.
FR2874967A1 (fr) Procede de regeneration d&#39;un systeme a filtre a particules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078981.X

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023009889

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023009889

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230522

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811228

Country of ref document: EP

Kind code of ref document: A1