WO2022111588A1 - 马达控制方法和电子设备 - Google Patents

马达控制方法和电子设备 Download PDF

Info

Publication number
WO2022111588A1
WO2022111588A1 PCT/CN2021/133198 CN2021133198W WO2022111588A1 WO 2022111588 A1 WO2022111588 A1 WO 2022111588A1 CN 2021133198 W CN2021133198 W CN 2021133198W WO 2022111588 A1 WO2022111588 A1 WO 2022111588A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
camera module
driving
electronic device
lens
Prior art date
Application number
PCT/CN2021/133198
Other languages
English (en)
French (fr)
Inventor
肖宇龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022111588A1 publication Critical patent/WO2022111588A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the technical field of intelligent terminals, and in particular, to a motor control method and an electronic device.
  • a camera module that use two motors for lens focusing.
  • Using dual motors for lens focusing can not only increase the torque, greatly improve the focusing accuracy and stability of the lens, but also effectively reduce the frequency of motor mechanical vibration.
  • Such a camera module can be installed in electronic devices such as mobile phones, cameras, etc., so as to realize image capturing of the electronic devices.
  • the motor in the camera module will be turned into a standby state, specifically, the coil in the motor is powered off.
  • the present application provides a motor control method and electronic device, which can alleviate the problem of lateral displacement of the first frame captured when a camera module using dual motors for lens focusing captures images.
  • the present application provides a motor control method, which is applied to electronic equipment.
  • the electronic equipment is provided with a first camera module.
  • the first camera module includes: a lens, a first motor, and a second motor.
  • the first motor and The second motor is used to focus the lens; the method includes: determining to use the first camera module to capture images; acquiring a first position and a second position, the first position is the position of the first motor, and the second position is the second motor Calculate the difference between the first position and the second position; calculate the first driving parameter according to the difference; after it is determined that the absolute value of the difference is greater than the preset first threshold and the first position is smaller than the second position, according to the first A driving parameter drives the first motor; after it is determined that the absolute value of the difference is greater than the preset first threshold and the first position is greater than the second position, the second motor is driven according to the first driving parameter.
  • the method further includes: returning to the step of acquiring the first position and the second position until it is determined that the absolute value of the difference is not greater than the first threshold.
  • the method further includes: after determining that the absolute value of the difference is not greater than a first threshold, acquiring initial driving parameters, where the initial driving parameters are used to drive the first motor and the second motor Perform focusing of the lens; drive the first motor and the second motor according to the initial driving parameters.
  • the method further includes: after determining that the absolute value of the difference is not greater than the first threshold, starting to display the image captured by the first camera module.
  • driving the first motor according to the first driving parameter includes: sending the first driving parameter to the first motor, where the first driving parameter is used to make the first motor drive according to the first driving parameter.
  • driving the second motor according to the first driving parameter includes: sending the first driving parameter to the second motor, where the first driving parameter is used to drive the second motor according to the first driving parameter.
  • calculating the first driving parameter according to the difference value includes: using the following formula to calculate the first driving parameter according to the difference value:
  • e(t) is the absolute value of the difference
  • K p is the preset proportional coefficient
  • Ti is the preset integral coefficient
  • Td is the preset differential coefficient
  • u(x) is the first driving parameter.
  • an embodiment of the present application provides a motor control method, which is applied to a first motor, where the first motor is one of two motors included in the first camera module, and the two motors are used to perform the first For focusing of the lens in the camera module, the first camera module is arranged in the electronic device; the method includes: acquiring the position of the first motor, sending the position of the first motor to the electronic device, and determining the position of the first motor in the electronic device for use The first camera module captures the image and sends it; receives the first driving parameter sent by the electronic device, the first driving parameter is calculated by the electronic device according to the difference between the positions of the two motors, and the first driving parameter is determined in determining the positions of the two motors. The position of the motor is smaller than the position of the other motor and sent; the first motor is driven according to the first driving parameter.
  • acquiring the position of the first motor includes: acquiring a current value output by the first Hall sensor; setting the first Hall sensor in the first motor; calculating the position of the first motor according to the current value .
  • driving the first motor according to the first driving parameter includes: calculating a first current value output to the first coil according to the first driving parameter; setting the first coil in the first motor; The output current value of a coil is a current having a first current value.
  • an embodiment of the present application provides an electronic device, including: a first camera module, the first camera module includes: a lens, a first motor and a second motor, the first motor and the second motor are used for lens a processor; a memory; and one or more computer programs, wherein the one or more computer programs are stored in the memory, the one or more computer programs comprising instructions that, when executed by the device, cause the device to perform a first A method of any of the aspects.
  • an embodiment of the present application provides a motor, including: a processor, a coil, and a Hall sensor; the processor is configured to execute the method of any one of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it is run on a computer, the computer executes any one of the first aspect or the second aspect. method.
  • the present application provides a computer program for performing the method of the first aspect when the computer program is executed by a computer.
  • the program in the sixth aspect may be stored in whole or in part on a storage medium packaged with the processor, or may be stored in part or in part in a memory not packaged with the processor.
  • FIG. 1 is a front view of a camera module using dual motors for lens focusing according to an embodiment of the present application
  • FIG. 2 is a top sectional view of a camera module using dual motors for lens focusing according to an embodiment of the present application
  • FIG. 3 is an example diagram of the working angle of the lens and the tube in the camera module using dual motors for lens focusing according to an embodiment of the present application, and an example of tilting;
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 5 is a flowchart of an embodiment of the motor control method of the present application.
  • FIG. 6 is a flowchart of another embodiment of the motor control method of the present application.
  • FIG. 7 is a structural diagram of an embodiment of the motor control device of the present application.
  • FIG. 8 is a structural diagram of another embodiment of the motor control device of the present application.
  • camera modules that use dual motors for lens focusing, such as camera modules that include a telephoto lens.
  • the camera module includes 2 motors, which cooperate to complete the focusing of the lens, and can increase the torque to drive the lens, thereby improving the stability of the lens during focusing.
  • the camera module uses dual motors for lens focusing, although it will increase the cost and weight of the camera module, and even some compact camera modules may increase the volume, but just like the lens stabilization is based on CMOS image stabilization, it can Achieve the independent optimization of each camera module, so that the performance of each camera module can reach the best state.
  • FIG. 1 a front view of a camera module using dual motors for lens focusing is shown in FIG. 1 , including a lens 110 , a bottom bracket 120 and a housing 130 .
  • the top sectional view of the camera module is shown in FIG. 2 , including: a first motor 140 and a second motor 150 fixed on the bottom bracket 120 , a tube 160 is arranged between the first motor 140 and the second motor 150 , The lens 110 is fixed to one end of the tube 160 .
  • the first motor 140 includes: a first coil 141, a first processor 142, a first Hall sensor 143, and a first magnet 144;
  • the second motor 150 includes: a second coil 151, a second processor 152, a second Hall sensor the sensor 153 and the second magnet 154 .
  • the tube 160 is attracted by the first magnet 144, and the relative position of the tube 160 and the first magnet 144 remains unchanged. Similarly, the relative position of the tube 160 and the second magnet 154 also remains unchanged.
  • the control principles of the first motor 140 and the second motor 150 are the same. Take the first motor 140 as an example: the first processor 142 outputs current to the first coil 141 , the first coil 141 is fixed on the bottom bracket 120 , and the first coil 141 Based on the electromagnetic induction force generated by the received current, the first magnet 144 can move back and forth and be displaced, and the current output by the first processor to the first coil 141 is different, and the displacement of the first magnet 144 is different; for the same reason, The second magnet 154 can also be displaced; since the relative position of the tube 160 to the first magnet 144 and the second magnet 154 remains unchanged, when the tube 160 moves back and forth under the combined action of the first magnet 144 and the second magnet 154 , the lens 110 on the tube 160 moves back and forth accordingly to realize the focusing of the lens. Generally, a calibration position (not shown in FIG. 2 ) is set in the motor in the forward and backward directions of the magnet, and the calibration position determines the maximum displacement of the magnet in the forward and back
  • the use of dual-motor focusing on the lens can bring the stability of the lens shooting image quality and the optimization of the focusing speed when the lens diameter is increased, the overall power consumption of the camera module will also increase accordingly.
  • a camera module using dual motors for lens focusing is applied to an electronic device such as a mobile phone as a camera module in a camera assembly set up in the electronic device, in order to reduce the overall heating of the camera assembly, a camera module will be set for the camera module.
  • Standby mechanism that is, when the camera module is not in use, the dual motors in the camera module are turned into a standby state to reduce the power consumption and the heating of the camera assembly caused by the power consumption.
  • the mechanism for the two motors in the camera module to enter the standby state is to power off the coils in the motors, that is, power off the first coil and the second coil shown in FIG. 2 .
  • the coil in the motor After the coil in the motor is powered off, it is in the natural center of gravity position and natural stretching state, so it cannot effectively support the tube and lens in the camera module in a fixed position.
  • the tube and lens When the posture of the electronic device changes, the tube and lens will appear. Tilt, deviating from the position of the tube and lens when the coil is powered on (hereinafter referred to as the working position), for example, the position of the tube and lens when the coil is powered on is the position shown by the solid line in Figure 3, however, in the electronic When the device is tilted, the tube and the lens will be tilted accordingly.
  • the tube and the lens are tilted to the left or right as an example.
  • the tilt of the tube and the lens will cause the coils in the two motors.
  • the relative position is offset.
  • the electronic device sends the same initial driving parameters to the processors of the two motors, drives the tube and the lens to the corresponding position to achieve the focus of the lens, and displays the image captured by the camera module. If the tube and the lens are tilted, during the process of powering on the coils of the two motors to focus the lens, the tube and the lens will be converted from the tilted position to the working position under the action of the coils of the two motors, and the position of the lens will move.
  • the control of the two motors by the electronic equipment is generally serial control, that is, the same initial driving parameters are sent to the two motors in turn, and the serial control may further aggravate the relationship between the tube and the lens in some cases.
  • the degree of inclination causes a more serious lateral offset problem.
  • the electronic device first sends the initial driving parameters to the first motor, and then sends the same driving parameters to the second motor.
  • the position of the magnet is at the front, because the first motor receives the initial driving parameters first, so the power-on of the first coil is completed first, resulting in the position of the first magnet being further forward, which will aggravate the lateral shift problem of the first frame.
  • an embodiment of the present application provides a motor control method, which can alleviate the problem of lateral shift of the first frame captured when a camera module using dual motors for lens focusing captures an image.
  • the methods provided in the embodiments of the present application can be applied to electronic devices, where a camera module that uses dual motors for lens focusing is provided in the electronic devices.
  • Computer PC, person computer
  • wearable devices such as smart glasses, smart watches, smart screens, etc.
  • FIG. 4 shows a schematic structural diagram of an electronic device 400 .
  • the electronic device 400 may include a processor 410 and a first camera module 420 .
  • the first camera module 420 may include: a first motor 430 and a second motor 440;
  • the first motor 430 includes: a first processor 431, a first coil 432, a first Hall sensor 433, a first magnet (Fig. 4);
  • the second motor 440 includes: a second processor 441, a second coil 442, a second Hall sensor 443, and a second magnet (not shown in FIG. 4).
  • the number of camera modules 420 in the electronic device may be one or N, where N is an integer greater than one.
  • the first camera module 420 may further include structures such as a lens, a tube, and the like, which will not be repeated here.
  • the electronic device 400 may further include a second camera module 450 that uses a single motor to drive the lens.
  • the number of the second camera modules 450 may be 1 or M, where M is an integer greater than 1.
  • the electronic device 400 may further include: an internal memory 460, a display screen 470, and the like.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 400 .
  • the electronic device 400 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 410 may include one or more processing units, for example, the processor 410 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural-network processing unit neural-network processing unit
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 410 for storing instructions and data.
  • the memory in processor 410 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 410 . If the processor 410 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided, and the waiting time of the processor 410 is reduced, thereby improving the efficiency of the system.
  • processor 410 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the MIPI interface can be used to connect the processor 410 with peripheral devices such as a display screen and a camera.
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 410 communicates with the camera through the CSI interface, so as to realize the photographing function of the electronic device 400 .
  • the processor 410 communicates with the display screen through the DSI interface to implement the display function of the electronic device 400 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 410 with a camera, a display screen, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 400 .
  • the electronic device 400 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the first processor 431 outputs current to the first coil 432, and the electromagnetic induction force generated by the current in the first coil 432 drives the first magnet to move in a specified direction, and the first Hall sensor 433 detects The distance of the first magnet relative to the first Hall sensor 433 can detect the displacement of the first magnet.
  • the distance of the first magnet relative to the first Hall sensor 433 can also be referred to as the position of the first motor 430.
  • the sensor 433 sends the detection result to the first processor 431 .
  • the working principle of the second motor reference may be made to the above description of the working principle of the first motor, which will not be repeated here.
  • the electronic device 300 can realize the shooting function through ISP, camera module, video codec, GPU, display screen, and application processor.
  • the ISP is used to process the data fed back by the camera module. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera module through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera module transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera module.
  • Camera modules are used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the internal memory may be used to store computer executable program code, which includes instructions.
  • the internal memory may include a program storage area and a data storage area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 300 and the like.
  • the internal memory may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 410 executes various functional applications and data processing of the electronic device 400 by executing the instructions stored in the internal memory and/or the instructions stored in the memory provided in the processor.
  • the software system of the electronic device 400 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture. Specifically, it can be Android system, Hongmeng system, etc.
  • Hall sensor is a device which is integrated by Hall element, amplifier circuit, temperature compensation circuit and regulated power supply. Hall sensor is a magnetic field sensor implemented according to the Hall effect.
  • the first processor outputs different currents to the first coil to make the first magnet generate different front and rear displacements. Based on the first processing According to the precision of the magnet, the first processor can output a fixed number of different currents corresponding to the precision, and correspondingly, the first processor can control the first magnet to generate the fixed number of different displacements correspondingly. For example, if the output current of the first processor ranges from 0 to 100 mA and the precision is 10 bits, the first processor can output 1024 different currents between 0 and 100 mA. Correspondingly, the first magnet can generate 1024 corresponding currents. different displacements.
  • the processor of the electronic device and the first processor in the first motor may use codes to represent the 1024 different currents and corresponding different displacements, for example, integers 0 ⁇ 1023 may be used to represent them.
  • 0 to 1023 not only represent currents with different current values output by the first processor to the first coil, but also represent different displacements generated by the first magnet accordingly.
  • the Hall sensor When the first magnet is displaced, under the action of the Lorentz force, the electron flow is shifted to one side in the Hall element of the first Hall sensor, thereby generating the Hall voltage, the magnitude of the Hall voltage and the first magnet.
  • the distance between the first Hall sensors In relation to the distance between the first Hall sensors, the distance between the first magnet and the first Hall sensor may also be referred to as the position of the first motor.
  • the maximum displacement and the minimum displacement of the first magnet correspond to the maximum position threshold value and the minimum position threshold value of the first motor, that is, the focus movement threshold value of the first motor for the lens. It should be noted that although the Hall sensor generates a Hall voltage, the related circuit in the Hall sensor can amplify and convert the Hall voltage into current, etc.
  • the signal output by the Hall sensor based on the measured Hall voltage can be is the current signal.
  • a current output by the first processor to the first coil corresponds to a displacement of the first magnet, and corresponds to a distance between the first magnet and the first Hall sensor (that is, a position), corresponding to the output signal of a Hall sensor such as a current signal.
  • the first processor can output 1024 different currents to the first coil, which are represented by codes 0 to 1023 respectively.
  • the codes are integers, and each code in 0 to 1023 corresponds to: A current output by the coil, a position of the first motor, and a current output by the first Hall sensor.
  • the first Hall sensor can output a current signal ranging from a1 mA to a2 mA (a1 ⁇ a2), wherein a1 mA may correspond to the position 0 of the first motor, and a2 mA may correspond to the position 1023 of the first motor.
  • a camera assembly may be provided in the electronic device.
  • the rear camera assembly of a mobile phone may include one, two or even more camera modules.
  • the camera assembly includes a first camera module that uses dual motors to focus the lens
  • the user After opening the "camera" application in the electronic device, the electronic device powers on each camera module and starts each camera module; after that, the electronic device can use one of the camera components based on the user's operation in the "camera” application Or multiple camera modules perform image capture, and switch the camera module used based on the user's operation.
  • the first camera module is not used, the first motor and the second motor in the first camera module In the standby state, the coils of the two motors in the first camera module are powered off.
  • the electronic device will automatically convert the first motor in the first camera module and the first camera module to the first camera module.
  • the second motor changes from the standby state to the working state.
  • the electronic device sends initial driving parameters to the first motor and the second motor in the first camera module to drive the first motor and the second motor to focus the lens, and Display the image captured by the first camera module.
  • the first motor and The positions of the second motors are adjusted to be the same or similar, so as to alleviate or even eliminate the problem of lateral displacement of the first frame captured by the first camera module when capturing images.
  • FIG. 5 is a flowchart of the motor control method of the present application. As shown in FIG. 5 , the motor control method may include:
  • Step 501 The electronic device determines to use the first camera module.
  • the electronic device may determine to use the first camera module based on the operation. For example, when the electronic device detects a user's selection operation for a shooting mode, and the camera modules to be used in the shooting mode indicated by the selection operation include the first camera module, the electronic device can determine to use the first camera module based on the selection operation. camera module.
  • Step 502 The electronic device acquires a first position and a second position, where the first position is the position of the first motor, and the second position is the position of the second motor.
  • the position of the first motor may be obtained from a first processor of the first motor.
  • the first processor may acquire the current output by the signal output terminal of the first Hall sensor in real time from the first Hall sensor, and determine the position of the first motor based on the current value.
  • the position of the first motor can be represented by a code, which is related to the accuracy of the first processor based on the foregoing description. What code is specifically used is not limited in this embodiment of the present application, as long as it can represent the position of the first motor.
  • the position of the second motor may be obtained from a second processor of the second motor.
  • the second processor may acquire the current output by the signal output terminal of the second Hall sensor in real time from the second Hall sensor, and determine the position of the second motor based on the current value.
  • the position of the second motor can also be represented by code.
  • Step 503 The electronic device calculates the absolute value of the difference between the first position and the second position.
  • the difference may be the difference of the codes.
  • the motor position is represented by an integer value in [0, 1023]
  • the first position is 50
  • the second position is 60
  • the absolute value of the difference is 10.
  • Step 504 the electronic device determines whether the absolute value of the difference is smaller than the preset first threshold, if not, executes step 505 , and if so, executes step 509 .
  • the specific value of the first threshold is not limited in the embodiment of the present application, which is related to the precision required for the specific implementation of the motor control method in the embodiment of the present application.
  • Step 505 Calculate the first driving parameter according to the absolute value of the difference.
  • This step can include:
  • the first drive parameter is calculated from the absolute value of the difference using the following formula:
  • K p is a preset proportional coefficient
  • Ti is a preset integral coefficient
  • Td is a preset differential coefficient
  • u(x) is the first driving parameter.
  • the preset proportional coefficient, the preset integral coefficient, and the preset differential coefficient may be preset in the electronic device, and the above coefficients are related to the performance of the motor in the first camera module.
  • the first driving parameter may also be a code under the same reference rule.
  • Step 506 the electronic device determines the size relationship between the first position and the second position, if the first position is greater than the second position, execute step 507, if the first position is smaller than the second position, execute step 508;
  • Step 507 the electronic device drives the first motor by using the first driving parameter; go to step 509 .
  • this step can include:
  • the electronic device sends the first driving parameter to the first processor of the first motor, and correspondingly, the first processor may drive the first motor based on the first driving parameter.
  • the first processor can calculate the first current value corresponding to the first driving parameter according to the first driving parameter, and output the current value to the first coil as the first current value current to realize the driving of the first motor.
  • Step 508 the electronic device drives the second motor by using the first driving parameter; go to step 509 .
  • this step can include:
  • the electronic device sends the first driving parameter to the second processor of the second motor, and accordingly, the second processor can drive the second motor based on the first driving parameter.
  • the second processor may calculate the first current value corresponding to the first driving parameter according to the first driving parameter, and output the current value to the second coil as the first current value current to drive the second motor.
  • Step 509 the electronic device obtains initial driving parameters, and uses the initial driving parameters to drive the first motor and the second motor; and starts to display the image captured by the first camera module.
  • the initial driving parameters are driving parameters for focusing the lens.
  • the initial driving parameters may be the driving parameters of the first motor and the second motor when the first motor and the second motor turned into the standby state last time; at this time, the electronic device uses the initial driving parameters to drive the first motor and the second motor. After the first motor and the second motor, the lens in the first camera module will be in the position where the lens was when the first camera module ended the previous working state and turned to the standby state;
  • the initial driving parameters may be the driving parameters preset for the first motor and the second motor in the electronic device.
  • the electronic device switches to using the first camera module each time, After using the initial driving parameters to drive the first motor and the second motor, the lenses in the first camera module will be in positions corresponding to the initial driving parameters.
  • the motor with a smaller position value is driven based on the difference in position, so that the first motor and the second motor are driven with a smaller position value.
  • the positions of the two motors are close to or even the same, so that the position of the lens is closer to the working position.
  • the first motor and the second motor are driven by the initial driving parameters to focus the lens, and the image captured by the first camera module is displayed.
  • the angle of rotation of the lens is very small, thereby alleviating or even eliminating the problem of lateral shift of the first frame captured by the first camera module when capturing images.
  • the positions of the first motor and the second motor can be as close as possible before the electronic device executes step 509 , as shown in FIG. 6 , the electronic device executes step 507 .
  • the positions of the first motor and the second motor are close, that is, less than the preset first threshold.
  • FIG. 7 is a schematic structural diagram of an embodiment of the motor control device of the application.
  • the device can be applied to electronic equipment.
  • the electronic equipment is provided with a first camera module.
  • the first camera module includes: a lens, a first motor and a second motor, The first motor and the second motor are used to focus the lens; as shown in FIG. 7 , the device 700 may include:
  • a determining unit 710 configured to determine to use the first camera module to capture images
  • an obtaining unit 720 configured to obtain a first position and a second position, where the first position is the position of the first motor, and the second position is the position of the second motor;
  • a calculation unit 730 configured to calculate the difference between the first position and the second position, and calculate the first driving parameter according to the difference
  • the driving unit 740 is configured to drive the first motor according to the first driving parameter after determining that the absolute value of the difference is greater than the preset first threshold and the first position is smaller than the second position; after determining that the absolute value of the difference is greater than the preset After the first threshold value and the first position is greater than the second position, the second motor is driven according to the first driving parameter.
  • the obtaining unit 720 may also be used to obtain the first position and the second position again after the driving unit drives the first motor or the second motor, until the driving unit determines that the absolute value of the difference is not greater than first threshold.
  • the driving unit 740 may also be used to: after determining that the absolute value of the difference is not greater than the first threshold, obtain initial driving parameters, where the initial driving parameters are used to drive the first motor and the second motor to perform Focusing of the lens; drive the first motor and the second motor according to the initial drive parameters.
  • the driving unit 740 further includes: a display unit, configured to start to display the image captured by the first camera module after it is determined that the absolute value of the difference is not greater than the first threshold.
  • the driving unit 740 may be specifically configured to: send the first driving parameter to the first motor, where the first driving parameter is used to make the first motor drive according to the first driving parameter.
  • the driving unit 740 may be specifically configured to: send the first driving parameter to the second motor, where the first driving parameter is used to make the second motor drive according to the first driving parameter.
  • the calculation unit 730 may be specifically configured to: calculate the first driving parameter by using the following formula according to the difference:
  • e(t) is the absolute value of the difference
  • K p is the preset proportional coefficient
  • Ti is the preset integral coefficient
  • Td is the preset differential coefficient
  • u(x) is the first driving parameter.
  • the device 800 can include:
  • an obtaining unit 810 configured to obtain the position of the first motor
  • the sending unit 820 is configured to send the position of the first motor to the electronic device, and the position of the first motor is sent after the electronic device determines to use the first camera module to capture images;
  • the receiving unit 830 is configured to receive the first driving parameter sent by the electronic device.
  • the first driving parameter is calculated by the electronic device according to the difference between the positions of the two motors. In determining the positions of the two motors, the position of the first motor is smaller than that of the other motor. Send after the position of a motor;
  • the driving unit 840 is used for driving the first motor according to the first driving parameter.
  • the obtaining unit 810 may be specifically used for:
  • the first hall sensor is arranged in the first motor
  • the position of the first motor is calculated from the current value.
  • the driving unit 840 may be specifically configured to: calculate the first current value output to the first coil according to the first driving parameter; the first coil is arranged in the first motor; and the current is output to the first coil The value is the current of the first current value.
  • FIGS. 7 to 8 can be used to implement the technical solutions of the method embodiments shown in FIGS. 5 to 6 of the present application, and the implementation principles and technical effects may further refer to the relevant descriptions in the method embodiments.
  • each unit of the apparatus shown in FIG. 7 to FIG. 8 is only a division of logical functions, and in actual implementation, it may be fully or partially integrated into a physical entity, or may be physically separated.
  • these units can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some units can also be implemented in the form of software calling through processing elements, and some units can be implemented in hardware.
  • the acquisition unit may be a separately established processing element, or may be integrated in a certain chip of the electronic device.
  • the implementation of other units is similar.
  • all or part of these units can be integrated together, and can also be implemented independently.
  • each step of the above-mentioned method or each above-mentioned unit may be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the embodiment of the present application also provides an electronic device, including: a first camera module, the first camera module includes: a lens, a first motor and a second motor, the first motor and the second motor are used for a processor; a memory; and one or more computer programs, wherein the one or more computer programs are stored in the memory, the one or more computer programs comprising instructions, when When the instruction is executed by the device, the device is caused to execute the method provided by the embodiments shown in FIG. 5 to FIG. 6 .
  • An embodiment of the present application further provides a motor, including: a processor, a coil, and a Hall sensor; the processor is configured to execute the method provided by the embodiments shown in FIG. 5 to FIG. 6 .
  • Embodiments of the present application also provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it runs on a computer, the computer executes the embodiments shown in FIGS. 5 to 6 of the present application. Methods.
  • An embodiment of the present application further provides a computer program product, the computer program product includes a computer program, which, when running on a computer, enables the computer to execute the method provided by the embodiments shown in FIGS. 5 to 6 of the present application.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate the existence of A alone, the existence of A and B at the same time, and the existence of B alone. where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, and c may represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c may be single, or Can be multiple.
  • any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (Read-Only Memory; hereinafter referred to as: ROM), Random Access Memory (Random Access Memory; hereinafter referred to as: RAM), magnetic disk or optical disk and other various A medium on which program code can be stored.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or optical disk and other various A medium on which program code can be stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

一种马达控制方法和电子设备,电子设备中设置第一摄像头模组,第一摄像头模组包括:镜头、第一马达和第二马达,第一马达和第二马达用于进行镜头的对焦;方法中,确定使用第一摄像头模组进行图像拍摄;获取第一位置和第二位置,第一位置是第一马达的位置,第二位置是第二马达的位置;计算第一位置和第二位置的差值;根据差值计算第一驱动参数;在确定差值的绝对值大于预设第一阈值、且第一位置小于第二位置后,根据第一驱动参数驱动第一马达;在确定差值的绝对值大于预设第一阈值、且第一位置大于第二位置后,根据第一驱动参数驱动第二马达。本申请能够缓解第一摄像头模组进行图像拍摄时,拍摄到的首帧画面发生横向偏移的问题。

Description

马达控制方法和电子设备 技术领域
本申请涉及智能终端技术领域,特别涉及马达控制方法和电子设备。
背景技术
目前,存在使用两个马达进行镜头对焦的摄像头模组。使用双马达进行镜头对焦不仅可以增大扭矩,大幅提高镜头对焦精度和稳定性,还可以有效的降低马达机械震动频点。这种摄像头模组可以设置于电子设备例如手机、照相机等,以实现电子设备的图像拍摄。为了降低电子设备的功耗,在摄像头模组中的镜头未被使用时,摄像头模组中的马达会转入待机状态,具体是将马达中的线圈下电。
发明人发现使用双马达进行镜头对焦的摄像头模组在上电进行图像拍摄时,拍摄到的首帧画面很容易发生横向偏移问题,影响用户体验。
发明内容
本申请提供了一种马达控制方法和电子设备,能够缓解使用双马达进行镜头对焦的摄像头模组进行图像拍摄时,拍摄到的首帧画面发生横向偏移的问题。
第一方面,本申请提供了一种马达控制方法,应用于电子设备,电子设备中设置第一摄像头模组,第一摄像头模组包括:镜头、第一马达和第二马达,第一马达和第二马达用于进行镜头的对焦;方法包括:确定使用第一摄像头模组进行图像拍摄;获取第一位置和第二位置,第一位置是第一马达的位置,第二位置是第二马达的位置;计算第一位置和第二位置的差值;根据差值计算第一驱动参数;在确定差值的绝对值大于预设第一阈值、且第一位置小于第二位置后,根据第一驱动参数驱动第一马达;在确定差值的绝对值大于预设第一阈值、且第一位置大于第二位置后,根据第一驱动参数驱动第二马达。
在一种可能的实现方式中,驱动第一马达或者驱动第二马达之后,还包括:返回获取第一位置和第二位置的步骤,直到确定差值的绝对值不大于第一阈值。
在一种可能的实现方式中,还包括:在确定差值的绝对值不大于第一阈值后,获取初始驱动参数,所述初始驱动参数用于驱动所述第一马达和所述第二马达进行所述镜头的对焦;根据初始驱动参数驱动第一马达和第二马达。
在一种可能的实现方式中,还包括:在确定差值的绝对值不大于第一阈值后,开始显示第一摄像头模组拍摄到的图像。
在一种可能的实现方式中,根据第一驱动参数驱动第一马达,包括:将第一驱动参数发送至第一马达,第一驱动参数用于使得第一马达根据第一驱动参数进行驱 动。
在一种可能的实现方式中,根据第一驱动参数驱动第二马达,包括:将第一驱动参数发送至第二马达,第一驱动参数用于使得第二马达根据第一驱动参数进行驱动。
在一种可能的实现方式中,根据差值计算第一驱动参数,包括:根据差值使用以下公式计算第一驱动参数:
Figure PCTCN2021133198-appb-000001
其中,e(t)是差值的绝对值,K p是预设比例系数,Ti是预设积分系数,Td是预设微分系数,u(x)是第一驱动参数。
第二方面,本申请实施例提供一种马达控制方法,应用于第一马达,第一马达是第一摄像头模组中所包括的两个马达中的一个马达,两个马达用于进行第一摄像头模组中镜头的对焦,第一摄像头模组设置于电子设备中;方法包括:获取第一马达的位置,将第一马达的位置发送给电子设备,第一马达的位置在电子设备确定使用第一摄像头模组进行图像拍摄后发送;接收电子设备发送的第一驱动参数,第一驱动参数由电子设备根据两个马达的位置的差值计算得到,在确定两个马达的位置中第一马达的位置小于另一马达的位置后发送;根据第一驱动参数驱动第一马达。
在一种可能的实现方式中,获取第一马达的位置,包括:获取第一霍尔传感器输出的电流值;第一霍尔传感器设置于第一马达中;根据电流值计算第一马达的位置。
在一种可能的实现方式中,根据第一驱动参数驱动第一马达,包括:根据第一驱动参数计算输出至第一线圈的第一电流值;第一线圈设置于第一马达中;向第一线圈输出电流值为第一电流值的电流。
第三方面,本申请实施例提供一种电子设备,包括:第一摄像头模组,第一摄像头模组包括:镜头、第一马达和第二马达,第一马达和第二马达用于进行镜头的对焦;处理器;存储器;以及一个或多个计算机程序,其中一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令,当指令被设备执行时,使得设备执行第一方面任一项的方法。
第四方面,本申请实施例提供一种马达,包括:处理器、线圈、霍尔传感器;处理器用于执行第二方面任一项的方法。
第五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行第一方面或第二方面任一项的方法。
第六方面,本申请提供一种计算机程序,当计算机程序被计算机执行时,用于执行第一方面的方法。
在一种可能的设计中,第六方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例使用双马达进行镜头对焦的摄像头模组的正视图;
图2为本申请实施例使用双马达进行镜头对焦的摄像头模组的俯视剖面图;
图3为本申请实施例使用双马达进行镜头对焦的摄像头模组中镜头和管筒的工作角度、以及发生倾斜下的示例图;
图4为本申请实施例电子设备的结构示意图;
图5为本申请马达控制方法一个实施例的流程图;
图6为本申请马达控制方法另一个实施例的流程图;
图7为本申请马达控制装置一个实施例的结构图;
图8为本申请马达控制装置另一个实施例的结构图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
近年摄像头模组的结构愈加复杂化,为压缩镜头体积并保证画质,厂商不得不提高镜头口径,压缩对焦马达体积,导致对焦系统负担加重。基于此,出现了使用双马达进行镜头对焦的摄像头模组,例如包括长焦镜头的摄像头模组。摄像头模组中包括2颗马达,协同完成镜头的对焦,可以增加力矩带动镜头,从而提升对焦时镜头的稳定性。摄像头模组使用双马达进行镜头对焦,虽然会增加摄像头模组的成本和重量,甚至对于部分紧凑型摄像头模组而言可能还会增加体积,但就像镜头防抖基于CMOS防抖一样,可以做到对每一个摄像头模组的独立优化,使每一个摄像头模组的效能达到最佳状态。
在一个实例中,使用双马达进行镜头对焦的摄像头模组的正视图如图1所示,包括镜头110、底部支架120以及壳体130。该摄像头模组的俯视剖面图如图2所示,包括:固定于底部支架120上的第一马达140和第二马达150,第一马达140和第二马达150之间设置有管筒160,镜头110固定于管筒160的一端。第一马达140包括:第一线圈141、第一处理器142、第一霍尔传感器143、以及第一磁铁144;第二马达150包括:第二线圈151、第二处理器152、第二霍尔传感器153、以及第二磁铁154。管筒160受到第一磁铁144的吸引,与第一磁铁144的相对位置保持不变,同理,管筒160与第二磁铁154的相对位置也保持不变。
第一马达140和第二马达150的控制原理相同,以第一马达140为例:第一处理器142向第一线圈141输出电流,第一线圈141固定在底部支架120上,第一线圈141基于接收到的电流所产生的电磁感应力使得第一磁铁144能够前后移动,发生位移, 第一处理器向第一线圈141输出的电流不同,第一磁铁144的位移大小不同;同样的道理,第二磁铁154也可以发生位移;由于管筒160与第一磁铁144、第二磁铁154保持相对位置不变,故管筒160在第一磁铁144和第二磁铁154的共同作用下前后移动时,管筒160上的镜头110随之前后移动,实现镜头对焦。一般的,马达中在磁铁向前移动的方向上和向后移动的方向上分别设置一个标定位置(图2中未示出),上述标定位置决定了磁铁前后移动的最大位移。
虽然镜头使用双马达对焦能在镜头口径提升的情况下带来镜头拍摄画面质量的稳定性和对焦速度的优化,但是摄像头模组的整体功耗也会随之提高。在将使用双马达进行镜头对焦的摄像头模组应用于电子设备例如手机上,作为电子设备设置的相机组件中的一个摄像头模组时,为了降低相机组件的整体发热情况,会为摄像头模组设置待机机制,也即在该摄像头模组不被使用时,将该摄像头模组中的双马达均转入待机状态以降低其功耗和功耗导致的相机组件发热情况。摄像头模组中的两个马达进入待机状态的机制是将马达中的线圈下电,也即将图2中所示的第一线圈和第二线圈下电。马达中的线圈下电后,处于自然重心位置和自然舒展状态,从而无法有效支撑摄像头模组中的管筒和镜头处于固定位置,在电子设备的姿态变化时,管筒和镜头会随之出现倾斜,偏离线圈上电情况下管筒和镜头的位置(以下称为工作位置),例如管筒和镜头在线圈上电时的位置在如图3中实线所示的位置,但是,在电子设备发生倾斜时,管筒和镜头会随之出现倾斜,例如图3中虚线所示分别以管筒和镜头出现了左倾或者右倾为例,管筒和镜头的倾斜会导致两个马达中线圈的相对位置发生偏移。当摄像头模组再次被使用时,电子设备向两个马达的处理器发送同样的初始驱动参数,驱动管筒和镜头到达相应的位置实现镜头对焦,并且,显示摄像头模组拍摄的图像。如果管筒和镜头发生了倾斜,给两个马达的线圈上电进行镜头对焦的过程中,在两个马达的线圈的作用下管筒和镜头会从倾斜位置转换至工作位置,镜头的位置移动会使得镜头的光轴发生旋转,进而使得摄像头模组拍摄到的首帧画面发生横向偏移问题,影响用户体验。而且,电子设备对于两个马达的控制一般是串行控制,也即依次向两个马达分别发送同样的初始驱动参数,而该串行控制在某些情况下还可能进一步加重管筒和镜头的倾斜程度,造成更严重的横向偏移问题,举例来说,电子设备先向第一马达发送初始驱动参数,再向第二马达发送同样的驱动参数,而如果图3中第一马达的第一磁铁位置靠前,由于第一马达先接收到初始驱动参数,从而先完成第一线圈的上电,导致第一磁铁的位置更为靠前,将加重首帧画面的横向偏移问题。
为了解决以上问题,本申请实施例提供一种马达控制方法,能够缓解使用双马达进行镜头对焦的摄像头模组进行图像拍摄时,拍摄到的首帧画面发生横向偏移的问题。
本申请实施例提供的方法可以应用于电子设备,电子设备中设置有使用双马达进行镜头对焦的摄像头模组,电子设备例如可以是:手机,照相机,平板电脑(Pad,portable android device),个人电脑(PC,person computer),可穿戴设备例如智能眼镜、智能手表,智慧屏等。
示例性的,图4示出了电子设备400的结构示意图。电子设备400可以包括处理器410、第一摄像头模组420。其中,第一摄像头模组420可以包括:第一马达430 和第二马达440;第一马达430包括:第一处理器431、第一线圈432、第一霍尔传感器433、第一磁铁(图4中未示出);第二马达440包括:第二处理器441、第二线圈442、第二霍尔传感器443、第二磁铁(图4中未示出)。在一个实例中,电子设备中摄像头模组420的数量可以为1个或者N个,N是大于1的整数。
其中,第一摄像头模组420中还可以包括:镜头、管筒等结构,这里不再赘述。
可选地,电子设备400还可以包括使用单马达进行镜头驱动的第二摄像头模组450,第二摄像头模组450的数量可以为1个或者M个,M是大于1的整数。
可选地,电子设备400还可以包括:内部存储器460,显示屏470等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备400的具体限定。在本申请另一些实施例中,电子设备400可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器410可以包括一个或多个处理单元,例如:处理器410可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器410中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器410中的存储器为高速缓冲存储器。该存储器可以保存处理器410刚用过或循环使用的指令或数据。如果处理器410需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器410的等待时间,因而提高了系统的效率。
在一些实施例中,处理器410可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
MIPI接口可以被用于连接处理器410与显示屏,摄像头等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器410和摄像头通过CSI接口通信,实现电子设备400的拍摄功能。处理器410和显示屏通过DSI接口通信,实现电子设备400的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置 为数据信号。在一些实施例中,GPIO接口可以用于连接处理器410与摄像头,显示屏等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备400的结构限定。在本申请另一些实施例中,电子设备400也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
在第一马达中,第一处理器431向第一线圈432输出电流,第一线圈432中基于电流产生的电磁感应力驱使第一磁铁发生指定方向上的位移,第一霍尔传感器433通过检测第一磁铁相对于第一霍尔传感器433的距离可以检测第一磁铁发生的位移,第一磁铁相对于第一霍尔传感器433的距离也可以称为第一马达430的位置,第一霍尔传感器433将检测结果发送至第一处理器431。第二马达中的工作原理可以参考上述关于第一马达中工作原理的描述,这里不赘述。
电子设备300可以通过ISP,摄像头模组,视频编解码器,GPU,显示屏以及应用处理器等实现拍摄功能。
ISP用于处理摄像头模组反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头模组感光元件上,光信号转换为电信号,摄像头模组感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头模组中。
摄像头模组用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。
内部存储器可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备300使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器410通过运行存储在内部存储器的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备400的各种功能应用以及数据处理。
电子设备400的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。具体可以为安卓系统、鸿蒙系统等等。
为了便于理解,本申请以下实施例将以具有图4所示结构的电子设备为例,结合附图和应用场景,对本申请实施例提供的方法进行具体说明。
首先对马达中霍尔传感器检测马达位置的原理进行简要说明。
霍尔传感器是由霍尔元件、放大器电路、温度补偿电路以及稳压电源等集成得 到的器件。霍尔传感器是根据霍尔效应实现的一种磁场传感器。
如前所述,参见图1和图2所示,仍以第一马达为例,第一处理器通过向第一线圈输出不同的电流来使得第一磁铁产生不同的前后位移,基于第一处理器的精度,第一处理器可以输出精度对应的固定数量的不同电流,相应的,第一处理器可以控制第一磁铁对应产生该固定数量的不同位移。举例来说,第一处理器的输出电流范围是0~100mA,精度为10bit,则第一处理器可以输出1024种0~100mA之间的不同电流,相应的,第一磁铁可以对应产生1024种不同的位移。电子设备的处理器和第一马达中的第一处理器可以使用代码来表示这1024种不同电流和对应的不同位移,例如可以用整数0~1023来表示。0~1023既代表了第一处理器向第一线圈输出的不同电流值的电流,也可以代表第一磁铁据此产生的不同位移。
第一磁铁发生位移时,在洛伦兹力的作用下,电子流在第一霍尔传感器的霍尔元件中向一侧偏移,从而产生霍尔电压,霍尔电压的大小和第一磁铁与第一霍尔传感器之间的距离远近相关,第一磁铁与第一霍尔传感器之间的距离也可以称为第一马达的位置。第一磁铁的最大位移和最小位移对应着第一马达的最大位置门限值和最小位置门限值,也即第一马达针对于镜头的推焦移动门限值。需要说明的是,霍尔传感器虽然产生霍尔电压,但是霍尔传感器中的相关电路可以对霍尔电压进行放大、转换为电流等处理,霍尔传感器基于测量得到的霍尔电压输出的信号可以是电流信号。总结一下,第一处理器向第一线圈输出的一个电流,对应着第一磁铁的一种位移,对应着第一磁铁与第一霍尔传感器之间的一个距离(也即第一马达的一个位置),对应着一个霍尔传感器的输出信号例如电流信号。延续前述举例,第一处理器可以向第一线圈输出1024种不同电流,分别用代码0~1023表示,代码为整数,则0~1023中的每个代码对应着:第一处理器向第一线圈输出的一个电流,第一马达的一个位置,第一霍尔传感器输出的一个电流。假设第一霍尔传感器可以输出a1毫安~a2毫安的电流信号(a1<a2),其中a1毫安可以对应第一马达的位置0,a2毫安可以对应第一马达的位置1023。
电子设备中可以设置有相机组件,例如手机的后置相机组件可以包括1个、2个甚至更多个摄像头模组,假设相机组件中包括使用双马达进行镜头对焦的第一摄像头模组,用户在打开电子设备中的“相机”应用后,电子设备为各个摄像头模组上电,启动各个摄像头模组;之后,电子设备可以基于用户在“相机”应用中的操作使用相机组件中的某一个或者多个摄像头模组进行图像拍摄,并基于用户的操作切换所使用的摄像头模组,此时,如果第一摄像头模组未被使用,第一摄像头模组中的第一马达和第二马达处于待机状态,第一摄像头模组中两个马达的线圈均被下电,一旦基于用户操作确定使用第一摄像头模组进行图像拍摄,电子设备将第一摄像头模组中的第一马达和第二马达从待机状态转为工作状态,此时,电子设备向第一摄像头模组中的第一马达和第二马达下发初始驱动参数,以驱动第一马达和第二马达进行镜头对焦,并且显示第一摄像头模组拍摄的图像。本申请实施例马达控制方法可以在电子设备确定使用第一摄像头模组后、向第一摄像头模组中的第一马达 和第二马达下发初始驱动参数进行镜头对焦之前,将第一马达和第二马达的位置调整至相同或者相近,以缓解甚至消除第一摄像头模组进行图像拍摄时,拍摄到的首帧画面发生横向偏移的问题。
图5是本申请马达控制方法流程图,如图5所示,马达控制方法可以包括:
步骤501:电子设备确定使用第一摄像头模组。
电子设备可以在检测到用户针对于相机应用中的某一操作后,基于该操作确定使用第一摄像头模组。例如,电子设备检测到用户针对于一拍摄模式的选择操作,该选择操作指示的拍摄模式所需使用的摄像头模组中包括第一摄像头模组,则电子设备可以基于该选择操作确定使用第一摄像头模组。
步骤502:电子设备获取第一位置和第二位置,第一位置是第一马达的位置,第二位置是第二马达的位置。
第一马达的位置可以从第一马达的第一处理器获取。第一处理器可以从第一霍尔传感器实时获取第一霍尔传感器的信号输出端输出的电流,基于电流值确定第一马达的位置。第一马达的位置可以通过代码表示,基于前述描述可知,该代码与第一处理器的精度有关。具体使用什么代码本申请实施例不作限定,只要能够代表第一马达的位置即可。
第二马达的位置可以从第二马达的第二处理器获取。第二处理器可以从第二霍尔传感器实时获取第二霍尔传感器的信号输出端输出的电流,基于电流值确定第二马达的位置。第二马达的位置也可以通过代码表示。
步骤503:电子设备计算第一位置和第二位置之间差值的绝对值。
第一位置和第二位置如果通过代码表示,该差值可以是代码的差值。延续前述举例,马达位置通过[0,1023]内的整数数值来表示,第一位置是50,第二位置是60,则差值的绝对值为10。
步骤504:电子设备判断差值的绝对值是否小于预设第一阈值,如果否,执行步骤505,如果是,执行步骤509。
第一阈值的具体取值本申请实施例不作限定,其与本申请实施例马达控制方法在具体实现时所要求的精度相关。
步骤505:根据差值的绝对值计算第一驱动参数。
本步骤可以包括:
根据差值的绝对值使用以下公式计算第一驱动参数:
Figure PCTCN2021133198-appb-000002
其中,e(t)是第一位置和第二位置之间的差值的绝对值,K p是预设比例系数,Ti是预设积分系数,Td是预设微分系数,u(x)是所述第一驱动参数。其中,预设比例系数、预设积分系数、预设微分系数可以预先设置于电子设备中,上述系数与第一摄像头模组中马达的性能相关。
如果差值绝对值是代码,则第一驱动参数也可以是同样指代规则下的代码。
步骤506:电子设备判断第一位置和第二位置的大小关系,如果第一位置大于第二位置,执行步骤507,如果第一位置小于第二位置,执行步骤508;
步骤507:电子设备使用第一驱动参数驱动第一马达;执行步骤509。
其中,本步骤可以包括:
电子设备向第一马达的第一处理器发送第一驱动参数,相应的,第一处理器可以基于第一驱动参数进行第一马达驱动。
具体的,如果第一驱动参数是上述举例中的代码,则第一处理器可以根据第一驱动参数计算第一驱动参数对应的第一电流值,向第一线圈输出电流值为第一电流值的电流,实现第一马达的驱动。
步骤508:电子设备使用第一驱动参数驱动第二马达;执行步骤509。
其中,本步骤可以包括:
电子设备向第二马达的第二处理器发送第一驱动参数,相应的,第二处理器可以基于第一驱动参数进行第二马达驱动。
具体的,如果第一驱动参数是上述举例中的代码,则第二处理器可以根据第一驱动参数计算第一驱动参数对应的第一电流值,向第二线圈输出电流值为第一电流值的电流,实现第二马达的驱动。
步骤509:电子设备获取初始驱动参数,使用初始驱动参数驱动第一马达和第二马达;并且,开始显示第一摄像头模组拍摄的图像。
初始驱动参数是用于进行镜头对焦的驱动参数。
在一种可能的实现方式中,初始驱动参数可以是第一马达和第二马达前一次转入待机状态时第一马达和第二马达的驱动参数;此时,电子设备使用初始驱动参数驱动第一马达和第二马达后,第一摄像头模组中的镜头将会处于第一摄像头模组前一次结束工作状态转入待机状态时镜头所处位置;
或者,在另一种可能的实现方式中,初始驱动参数可以是电子设备中为第一马达和第二马达预设的驱动参数,此时,电子设备每次切换至使用第一摄像头模组,使用初始驱动参数驱动第一马达和第二马达后,第一摄像头模组中的镜头都会处于初始驱动参数对应的位置。
图5所示的方法,在驱动第一马达和第二马达进行镜头对焦、显示第一摄像头模组拍摄的图像之前,基于位置的差值驱动位置数值较小的电机,使得第一电机和第二电机的位置接近甚至相同,从而使得镜头的位置更接近于工作位置,之后,再使用初始驱动参数驱动第一马达和第二马达进行镜头对焦,并显示第一摄像头模组拍摄的图像,此时,将镜头旋转的角度很小,从而缓解甚至消除第一摄像头模组进行图像拍摄时,拍摄到的首帧画面发生横向偏移的问题。
可选地,为了使得本申请马达控制方法达到更好的处理效果,使得电子设备执行步骤509之前,第一马达和第二马达的位置能够尽量接近,参见图6所示,电子设备执行步骤507或者执行步骤508之后,可以返回步骤502,重新获取第一位置和 第二位置,直到步骤504中电子设备判断差值的绝对值小于预设第一阈值,执行步骤509,从而保证电子设备执行步骤509之前,第一马达和第二马达的位置接近,也即小于预设第一阈值。
可以理解的是,上述实施例中的部分或全部步骤骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
图7为本申请马达控制装置一个实施例的结构示意图,该装置可以应用于电子设备,电子设备中设置第一摄像头模组,第一摄像头模组包括:镜头、第一马达和第二马达,第一马达和第二马达用于进行镜头的对焦;如图7所示,该装置700可以包括:
确定单元710,用于确定使用第一摄像头模组进行图像拍摄;
获取单元720,用于获取第一位置和第二位置,第一位置是第一马达的位置,第二位置是第二马达的位置;
计算单元730,用于计算第一位置和第二位置的差值,根据差值计算第一驱动参数;
驱动单元740,用于在确定差值的绝对值大于预设第一阈值、且第一位置小于第二位置后,根据第一驱动参数驱动第一马达;在确定差值的绝对值大于预设第一阈值、且第一位置大于第二位置后,根据第一驱动参数驱动第二马达。
在一种可能的实现方式中,获取单元720还可以用于:驱动单元驱动第一马达或者第二马达后,重新获取第一位置和第二位置,直到驱动单元确定差值的绝对值不大于第一阈值。
在一种可能的实现方式中,驱动单元740还可以用于:在确定差值的绝对值不大于第一阈值后,获取初始驱动参数,初始驱动参数用于驱动第一马达和第二马达进行镜头的对焦;根据初始驱动参数驱动第一马达和第二马达。
在一种可能的实现方式中,驱动单元740,还包括:显示单元,用于在确定差值的绝对值不大于第一阈值后,开始显示第一摄像头模组拍摄到的图像。
在一种可能的实现方式中,驱动单元740具体可以用于:将第一驱动参数发送至第一马达,第一驱动参数用于使得第一马达根据第一驱动参数进行驱动。
在一种可能的实现方式中,驱动单元740具体可以用于:将第一驱动参数发送至第二马达,第一驱动参数用于使得第二马达根据第一驱动参数进行驱动。
在一种可能的实现方式中,计算单元730具体可以用于:根据差值使用以下公式计算第一驱动参数:
Figure PCTCN2021133198-appb-000003
其中,e(t)是差值的绝对值,K p是预设比例系数,Ti是预设积分系数,Td是预设微分系数,u(x)是第一驱动参数。
图8为本申请马达控制装置一个实施例的结构示意图,该装置可以应用于第一马 达,该装置800可以包括:
获取单元810,用于获取第一马达的位置;
发送单元820,用于将第一马达的位置发送给电子设备,第一马达的位置在电子设备确定使用第一摄像头模组进行图像拍摄后发送;
接收单元830,用于接收电子设备发送的第一驱动参数,第一驱动参数由电子设备根据两个马达的位置的差值计算得到,在确定两个马达的位置中第一马达的位置小于另一马达的位置后发送;
驱动单元840,用于根据第一驱动参数驱动第一马达。
在一种可能的实现方式中,获取单元810具体可以用于:
获取第一霍尔传感器输出的电流值;第一霍尔传感器设置于第一马达中;
根据电流值计算第一马达的位置。
在一种可能的实现方式中,驱动单元840具体可以用于:根据第一驱动参数计算输出至第一线圈的第一电流值;第一线圈设置于第一马达中;向第一线圈输出电流值为第一电流值的电流。
图7~图8所示实施例提供的装置可用于执行本申请图5~图6所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
应理解以上图7~图8所示装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,获取单元可以为单独设立的处理元件,也可以集成在电子设备的某一个芯片中实现。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
本申请实施例还提供一种电子设备,包括:第一摄像头模组,所述第一摄像头模组包括:镜头、第一马达和第二马达,所述第一马达和所述第二马达用于进行所述镜头的对焦;处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述设备执行时,使得所述设备执行图5~图6所示实施例提供的方法。
本申请实施例还提供一种马达,包括:处理器、线圈、霍尔传感器;所述处理器用于执行图5~图6所示实施例提供的方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请图图5~图6所示实施例提供的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请图图5~图6所示实施例提供的方法。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可 以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory;以下简称:ROM)、随机存取存储器(Random Access Memory;以下简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种马达控制方法,应用于电子设备,所述电子设备中设置第一摄像头模组,所述第一摄像头模组包括:镜头、第一马达和第二马达,所述第一马达和所述第二马达用于进行所述镜头的对焦;其特征在于,所述方法包括:
    确定使用所述第一摄像头模组进行图像拍摄;
    获取第一位置和第二位置,所述第一位置是所述第一马达的位置,所述第二位置是所述第二马达的位置;
    计算所述第一位置和所述第二位置的差值;
    根据所述差值计算第一驱动参数;
    在确定所述差值的绝对值大于预设第一阈值、且第一位置小于第二位置后,根据所述第一驱动参数驱动所述第一马达;
    在确定所述差值的绝对值大于预设第一阈值、且第一位置大于第二位置后,根据所述第一驱动参数驱动所述第二马达。
  2. 根据权利要求1所述的方法,其特征在于,驱动所述第一马达或者驱动所述第二马达之后,还包括:
    返回所述获取第一位置和第二位置的步骤,直到确定所述差值的绝对值不大于所述第一阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    在确定所述差值的绝对值不大于所述第一阈值后,获取初始驱动参数;所述初始驱动参数用于驱动所述第一马达和所述第二马达进行所述镜头的对焦;
    根据所述初始驱动参数驱动所述第一马达和所述第二马达。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    在确定所述差值的绝对值不大于所述第一阈值后,显示所述第一摄像头模组拍摄到的图像。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述第一驱动参数驱动所述第一马达,包括:
    将所述第一驱动参数发送至所述第一马达,所述第一驱动参数用于使得所述第一马达根据所述第一驱动参数进行驱动。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述第一驱动参数驱动所述第二马达,包括:
    将所述第一驱动参数发送至所述第二马达,所述第一驱动参数用于使得所述第二马达根据所述第一驱动参数进行驱动。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述根据所述差值计算第一驱动参数,包括:
    根据所述差值使用以下公式计算所述第一驱动参数:
    Figure PCTCN2021133198-appb-100001
    其中,e(t)是所述差值的绝对值,K p是预设比例系数,Ti是预设积分系数,Td是预设微分系数,u(x)是所述第一驱动参数。
  8. 一种马达控制方法,应用于第一马达,所述第一马达是第一摄像头模组中所包括的两个马达中的一个马达,所述两个马达用于进行所述第一摄像头模组中镜头的对焦,所述第一摄像头模组设置于电子设备中;其特征在于,所述方法包括:
    获取所述第一马达的位置,将所述第一马达的位置发送给电子设备,所述第一马达的位置在所述电子设备确定使用所述第一摄像头模组进行图像拍摄后发送;
    接收所述电子设备发送的第一驱动参数,所述第一驱动参数由所述电子设备根据所述两个马达的位置的差值计算得到,在确定所述两个马达的位置中所述第一马达的位置小于另一马达的位置后发送;
    根据所述第一驱动参数驱动所述第一马达。
  9. 根据权利要求8所述的方法,其特征在于,所述获取所述第一马达的位置,包括:
    获取第一霍尔传感器输出的电流值;所述第一霍尔传感器设置于所述第一马达中;
    根据所述电流值计算所述第一马达的位置。
  10. 根据权利要求8或9所述的方法,其特征在于,所述根据所述第一驱动参数驱动所述第一马达,包括:
    根据所述第一驱动参数计算输出至第一线圈的第一电流值;所述第一线圈设置于所述第一马达中;
    向所述第一线圈输出电流值为所述第一电流值的电流。
  11. 一种电子设备,其特征在于,包括:
    第一摄像头模组,所述第一摄像头模组包括:镜头、第一马达和第二马达,所述第一马达和所述第二马达用于进行所述镜头的对焦;
    处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述设备执行时,使得所述设备执行权利要求1至7任一项所述的方法。
  12. 一种马达,其特征在于,包括:处理器、线圈、霍尔传感器;所述处理器用于执行权利要求8至10任一项所述的方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行权利要求1至10任一项所述的方法。
PCT/CN2021/133198 2020-11-26 2021-11-25 马达控制方法和电子设备 WO2022111588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011349645.8 2020-11-26
CN202011349645.8A CN114554072B (zh) 2020-11-26 2020-11-26 马达控制方法和电子设备

Publications (1)

Publication Number Publication Date
WO2022111588A1 true WO2022111588A1 (zh) 2022-06-02

Family

ID=81668325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133198 WO2022111588A1 (zh) 2020-11-26 2021-11-25 马达控制方法和电子设备

Country Status (2)

Country Link
CN (1) CN114554072B (zh)
WO (1) WO2022111588A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115903453B (zh) * 2022-09-30 2024-04-09 荣耀终端有限公司 一种马达的控制方法、控制系统以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309007A (zh) * 2012-03-07 2013-09-18 华晶科技股份有限公司 双马达镜头致动装置及其双马达镜头致动方法
CN103676071A (zh) * 2012-09-10 2014-03-26 佳能株式会社 控制装置、致动器、图像模糊校正装置及可交换透镜
KR101478572B1 (ko) * 2014-09-30 2015-01-05 에스피오주식회사 줌 대물렌즈를 이용한 자동초점 시스템
CN104410783A (zh) * 2014-11-07 2015-03-11 广东欧珀移动通信有限公司 一种对焦方法及终端
CN109698902A (zh) * 2017-10-24 2019-04-30 华为技术有限公司 一种同步聚焦方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460696B (zh) * 2014-10-29 2017-05-24 广东欧珀移动通信有限公司 移动终端跌落的保护处理方法、系统及其装置
US9736406B2 (en) * 2015-01-22 2017-08-15 Canon Kabushiki Kaisha Image capturing apparatus and control method thereof
CN111103922B (zh) * 2018-10-26 2023-08-25 华为技术有限公司 摄像头、电子设备和身份验证方法
CN110166695B (zh) * 2019-06-26 2021-10-01 Oppo广东移动通信有限公司 摄像头防抖方法、装置、电子设备和计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309007A (zh) * 2012-03-07 2013-09-18 华晶科技股份有限公司 双马达镜头致动装置及其双马达镜头致动方法
CN103676071A (zh) * 2012-09-10 2014-03-26 佳能株式会社 控制装置、致动器、图像模糊校正装置及可交换透镜
KR101478572B1 (ko) * 2014-09-30 2015-01-05 에스피오주식회사 줌 대물렌즈를 이용한 자동초점 시스템
CN104410783A (zh) * 2014-11-07 2015-03-11 广东欧珀移动通信有限公司 一种对焦方法及终端
CN109698902A (zh) * 2017-10-24 2019-04-30 华为技术有限公司 一种同步聚焦方法及装置

Also Published As

Publication number Publication date
CN114554072A (zh) 2022-05-27
CN114554072B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN113454982B (zh) 用于使图像稳定化的电子装置及其操作方法
KR102385024B1 (ko) 카메라 및 자이로스코프의 융합을 이용한 5차원 (5d) 비디오 안정화 장치 및 방법
CN109309796B (zh) 使用多个相机获取图像的电子装置和用其处理图像的方法
WO2020192480A1 (zh) 摄像头防抖系统、方法、电子设备
US8908916B2 (en) Control apparatus, control method, and program to search for a subject and automatically perform image-recording
WO2015081556A1 (zh) 双镜头设备的拍照方法及双镜头设备
JP2005536167A (ja) デジタルカメラモジュール及びデジタルホスト装置
KR20200101230A (ko) 구도를 추천하기 위한 전자 장치 및 그의 동작 방법
US11503223B2 (en) Method for image-processing and electronic device
EP4387256A1 (en) Camera switching method and electronic device
KR20190025373A (ko) 복수의 이미지 센서들의 동기화 제어 방법 및 이를 구현한 전자 장치
EP4344240A1 (en) Camera switching method, and electronic device
US8861949B2 (en) Apparatus and method of adjusting automatic focus
WO2022111588A1 (zh) 马达控制方法和电子设备
KR102330264B1 (ko) 움직임 정보에 기반하여 동영상을 재생하기 위한 장치 및 그의 동작 방법
US11610293B2 (en) Image processing apparatus and image processing method
US20230421889A1 (en) Photographing Method and Electronic Device
CN111988518A (zh) 具有能切换视线的相机模块的电子装置及录制视频的方法
KR20210101009A (ko) 복수의 카메라를 이용한 동영상 촬영 방법 및 그 장치
WO2021218551A1 (zh) 拍照方法、装置、终端设备及存储介质
KR20170011876A (ko) 영상 처리 장치 및 그 동작 방법
WO2021179819A1 (zh) 照片处理方法、装置、存储介质及电子设备
KR102677285B1 (ko) 슬로 모션 영상 생성 방법 및 장치
WO2024051684A1 (zh) 电压调整方法及相关装置
JP2013097728A (ja) 電子機器およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897088

Country of ref document: EP

Kind code of ref document: A1