WO2022110963A1 - 高压直流断路器的快速机械开关测试系统及方法 - Google Patents

高压直流断路器的快速机械开关测试系统及方法 Download PDF

Info

Publication number
WO2022110963A1
WO2022110963A1 PCT/CN2021/117033 CN2021117033W WO2022110963A1 WO 2022110963 A1 WO2022110963 A1 WO 2022110963A1 CN 2021117033 W CN2021117033 W CN 2021117033W WO 2022110963 A1 WO2022110963 A1 WO 2022110963A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
tested
mechanical switch
fast mechanical
switch
Prior art date
Application number
PCT/CN2021/117033
Other languages
English (en)
French (fr)
Inventor
秦逸帆
徐党国
龙凯华
宁琳如
彭兆伟
蔡巍
赵媛
张静岚
卢毅
谢丽芳
杨大伟
杨敏祥
牛铮
李志刚
李大卫
崔贺平
吴刚
Original Assignee
国网冀北电力有限公司电力科学研究院
国家电网有限公司
华北电力科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022797834.3U external-priority patent/CN213658926U/zh
Priority claimed from CN202011353874.7A external-priority patent/CN112433150A/zh
Application filed by 国网冀北电力有限公司电力科学研究院, 国家电网有限公司, 华北电力科学研究院有限责任公司 filed Critical 国网冀北电力有限公司电力科学研究院
Publication of WO2022110963A1 publication Critical patent/WO2022110963A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device

Definitions

  • the embodiments of this specification relate to the technical field of high voltage and insulation, and in particular, to a system and method for testing a rapid mechanical switch of a high-voltage DC circuit breaker.
  • Fast mechanical switches are one of the core components of HVDC circuit breakers, which can build up insulation within milliseconds, ensuring the successful opening of the DC circuit breaker. Due to the increase in the voltage level of the DC system, the main branch of the DC circuit breaker needs to be connected in series with multiple fast mechanical switches. When a fault occurs, the multiple fast mechanical switches need to reach an effective distance in a short period of time to withstand operating overvoltage.
  • the DC circuit breaker Since the DC circuit breaker is connected in series with multiple fast mechanical switches and has a high withstand operating impulse voltage value, once better voltage equalization measures are not taken or a single switch does not reach the designated position within the required time, it will cause its withstand voltage.
  • the impulse voltage of the switch is higher than that of other switches, causing the switch to break down, which in turn causes other switches to break down one after another.
  • the dynamic voltage equalization performance of the fast mechanical switch of the main branch of the HVDC circuit breaker is an important indicator to ensure the reliable breaking of the equipment. Since the working principle and operating conditions of high-voltage DC circuit breakers are different from those of AC circuit breakers, there are currently no international or national standards that can be referenced, resulting in insufficient grasp of the overall status of the fast mechanical switch, which makes the performance detection accuracy of the fast mechanical switch inaccurate. high.
  • the purpose of the embodiments of this specification is to provide a fast mechanical switch testing system and method for a high-voltage DC circuit breaker, so as to improve the accuracy of the dynamic voltage equalization performance test of the fast mechanical switch of the main branch of the high-voltage DC circuit breaker.
  • the embodiments of this specification provide a fast mechanical switch test system for a high-voltage DC circuit breaker, including: a plurality of fast mechanical switches to be tested arranged in series, and at least one position of the fast mechanical switches to be tested.
  • the fast mechanical switch to be tested is in a closed state, and is used to start the opening according to the opening command issued by the computer equipment;
  • the at least one position sensor is used for The position signal is generated according to the motion information during the opening process of the fast mechanical switch to be tested;
  • the impulse voltage generating device is electrically connected to the fast switch to be tested, and is used for discharging instructions in the An impulse voltage is generated at both ends of the fast mechanical switch to be tested;
  • the voltage measurement device is electrically connected to the fast mechanical switch to be tested and the impulse voltage generating device, and is used for according to the speed of the fast mechanical switch to be tested during the opening process.
  • the voltage changes to generate a first voltage signal; the second voltage signal is generated according to the surge voltage generated by the surge voltage generating device; the computer device is used to send an opening command, when the fast mechanical switch to be tested reaches a preset value When the distance is open, send a discharge instruction to the surge voltage generating device; after the surge voltage generating device completes the discharge, determine the to-be-measured according to the position signal, the first voltage signal and the second voltage signal Voltage withstand capability of fast mechanical switches.
  • the embodiment of this specification also provides a fast mechanical switch testing method applied to the high-voltage DC circuit breaker of the above system, the method includes: sending an opening instruction to instruct the fast mechanical switch to be tested to open; When the fast mechanical switch to be tested reaches a preset distance, a discharge instruction is sent to the impulse voltage generating device to instruct the impulse voltage generating device to generate an impulse voltage at both ends of the fast mechanical switch to be tested; After the voltage generating device completes the discharge, according to the motion information during the opening process of the fast mechanical switch to be tested, the impulse voltage generated by the impulse voltage generating device and the voltage change during the opening process of the fast mechanical switch to be tested. Describe the withstand voltage capability of the fast mechanical switch to be tested.
  • a fast mechanical switch test system for a high-voltage DC circuit breaker is built in the embodiments of this specification.
  • At least one position sensor, impulse voltage generating equipment, voltage measuring equipment, and computer equipment in the mechanical switch the fast mechanical switch to be tested is in the closed state, and is used to start the opening according to the opening instruction issued by the computer equipment; all The at least one position sensor is used to generate a position signal according to the motion information of the fast mechanical switch to be tested during the opening process;
  • the discharge command of the device generates an impulse voltage at both ends of the fast mechanical switch to be measured;
  • the voltage measuring device is electrically connected to the fast mechanical switch to be measured and the impulse voltage generating device, and is used to generate an impulse voltage according to the fast mechanical switch to be measured.
  • the voltage change during the opening process of the mechanical switch generates a first voltage signal; according to the impulse voltage generated by the impulse voltage generating device, a second voltage signal is generated;
  • a discharge instruction is sent to the surge voltage generating device; after the surge voltage generating device completes the discharge, according to the position signal, the first voltage signal and the second
  • the voltage signal determines the withstand voltage capability of the fast mechanical switch to be tested, thereby improving the accuracy of the dynamic voltage equalization performance test of the fast mechanical switch of the main branch of the high-voltage DC circuit breaker.
  • FIG. 1 is a schematic structural diagram of a fast mechanical switch test system for a high-voltage DC circuit breaker according to an embodiment of the present specification
  • FIG. 2 is a schematic structural diagram of a fast mechanical switch to be tested according to an embodiment of this specification
  • FIG. 3 is a flow chart of a fast mechanical switching test method applied to the HVDC circuit breaker of the system shown in FIG. 1 according to an embodiment of the present specification;
  • FIG. 4 is an execution sequence diagram of the fast mechanical switching test method applied to the HVDC circuit breaker of the system shown in FIG. 1 according to an embodiment of the present specification;
  • FIG. 5 is a functional block diagram of an electronic device according to an embodiment of the present specification.
  • Vacuum interrupter 2. Connecting rod of switch mechanism; 3. Switch bracket; 4. Opening coil; 5. Repulsion disc; 6. Closing coil; 7. Transfer section; 8. Buffer mechanism; 9. Position sensor; 10, position sensor; 11, position sensor; 12, equalizing resistor; 13, equalizing capacitor; 14, upper wiring seat; 15, lower wiring seat; 16, conductive copper bar; 17, fast mechanical switch; 18, High-voltage DC circuit breaker bracket; 19.
  • Impulse voltage generating equipment 20. Pulse transformer; 21. Computer equipment; 22. Main branch of high-voltage DC circuit breaker; 23. Voltage measuring equipment; 24. Control and protection equipment; 25. Moving contact .
  • the high-voltage DC circuit breaker is a circuit breaker combined with a power electronic device for breaking a DC circuit.
  • the high-voltage DC circuit breaker can not only cut off and connect high-voltage lines and various no-load and load currents when the power system is in normal operation, but also can automatically switch various overload currents through the action of the relay protection device when the power system fails. load and short-circuit current to prevent the expansion of the scope of the accident.
  • HVDC circuit breakers can be classified into mechanical HVDC circuit breakers, solid-state HVDC circuit breakers and hybrid HVDC circuit breakers.
  • the mechanical DC circuit breaker can turn off a very large current, and has the advantages of low cost and low loss, but its breaking speed is relatively slow; the solid-state DC circuit breaker has a fast breaking speed, but its related loss is relatively high , and the price is expensive; in order to overcome the shortcomings of the two, a hybrid circuit breaker can be formed by integrating the mechanical DC circuit breaker and the solid-state DC circuit breaker on one device.
  • the hybrid DC circuit breaker combines the good static characteristics of mechanical switches and the good dynamic performance of power electronic devices, uses fast mechanical switches to conduct normal operating current, uses solid-state power electronic devices to break short-circuit current, and has low on-state loss. , short breaking time, no need for special cooling equipment, etc., is a new direction of research and development of high-voltage DC circuit breakers.
  • Fast mechanical switches are one of the core components of HVDC circuit breakers, which can build up insulation within milliseconds, ensuring the successful opening of the DC circuit breaker. Therefore, the dynamic voltage equalization performance of the fast mechanical switch of the main branch of the HVDC circuit breaker is an important indicator to ensure the reliable breaking of the equipment. Since the working principle and operating conditions of high-voltage DC circuit breakers are different from those of AC circuit breakers, there are currently no international or national standards that can be referenced, resulting in insufficient grasp of the overall status of the fast mechanical switch, which makes the performance detection accuracy of the fast mechanical switch inaccurate. high.
  • the HVDC circuit breaker breaking the DC fault current can be simulated when the DC system fails, according to the voltage generated at both ends of the fast mechanical switch when the DC system fails, the HVDC circuit breaker breaks the DC fault current.
  • the voltage changes at both ends of the fast mechanical switch and the motion information during the opening process of the fast mechanical switch are used to determine the withstand voltage capability of the fast mechanical switch, which is expected to solve the above problems, thereby improving the fast mechanical switch of the main branch of the high-voltage DC circuit breaker.
  • the accuracy of dynamic pressure equalization performance test Based on this, the embodiments of this specification provide a fast mechanical switch test system for a high-voltage DC circuit breaker.
  • FIG. 1 is a functional structural diagram of a fast mechanical switch test system for a high-voltage DC circuit breaker according to an embodiment of the specification.
  • the fast mechanical switch testing system of the high-voltage DC circuit breaker may include a plurality of fast mechanical switches 17 to be tested arranged in series, at least one position sensor 9-11 arranged in the fast mechanical switches 17 to be tested, and surge voltage generating equipment 19. Voltage measuring equipment 23, computer equipment 21.
  • FIG. 2 is a schematic structural diagram of the fast mechanical switch 17 to be tested according to the embodiment of the specification.
  • the fast mechanical switch 17 may include a vacuum interrupter 1, a switch mechanism connecting rod 2, a switch bracket 3, an opening coil 4, a repulsion disc 5, a closing coil 6, a transition section 7, a position sensor 9, and a position sensor 10. , the position sensor 11 , the upper wiring seat 14 and the lower wiring seat 15 .
  • the upper terminal 14 and the lower terminal 15 can be used to conduct current, and are wired and fixed when a plurality of fast mechanical switches 17 are connected in series;
  • the switch bracket 3 can be used to fix the fast mechanical switches 17;
  • the connecting rod 2 of the switch mechanism is connected to the vacuum interrupter 1 and the repulsion disc 5, and can be switched on and off by moving up and down;
  • the repulsion plate 5 is connected with the switch mechanism connecting rod 2 to generate repulsion when the opening coil is energized, and drive the switch mechanism connecting rod 2 and the moving contact 25 connected with the switching mechanism connecting rod 2 downward.
  • the repulsion plate 5 is also used to generate suction when the closing coil 6 is energized, and drives the switch mechanism connecting rod 2 and the moving contact connected with the switch mechanism connecting rod 2 to move upward, thereby closing the switch. ;
  • the closing coil 6 is fixed on the switch bracket 3 and is used to energize when receiving the closing command.
  • the at least one position sensor generates a position signal according to movement information of the fast mechanical switch 17 to be tested during the opening process.
  • the position sensor can judge whether the repulsion disc moves to a specified position by observing the position of the repulsion disc.
  • the at least one position sensor may include a position sensor 9, a position sensor 10 and a position sensor 11.
  • the position sensor 9, the position sensor 10 and the position sensor 11 are located on the switch bracket 3.
  • the fast mechanical The switch 17 is in the closed state, and the repulsion disc 5 and the sensor 9 are located at the same height.
  • the repulsion disc drives the switch mechanism connecting rod 2 and the switch mechanism connecting rod 2.
  • the moving contact moves downward, the position sensor 9 can detect whether the repulsion disc 5 starts to move downward, the position sensor 10 and the position sensor 11 can detect whether the repulsion disc 5 moves to the same position as the position sensor 10 and the position sensor 11 height position.
  • the quick mechanical switch 17 may further include a buffer mechanism 8 , which is located under the switch mechanism link 2 , for buffering the force generated during the action of the switch.
  • the fast mechanical switch 17 may further include a voltage equalizing circuit, and the voltage equalizing circuit includes a voltage equalizing resistor 12 and a voltage equalizing capacitor 13, which are connected in parallel with the vacuum interrupter 1, and are used in multiple When the quick mechanical switches 17 are connected in series, it is ensured that the voltages of the quick mechanical switches 17 are the same.
  • a plurality of fast mechanical switches 17 to be tested constitute the main branch 22 of the HVDC circuit breaker.
  • the number of fast mechanical switches 17 in the main branch can be determined according to the voltage level of the equipment.
  • a plurality of fast mechanical switches 17 to be tested are placed on the HVDC circuit breaker bracket 18 , and the main branch 22 of the HVDC circuit breaker is formed in series through the conductive copper bars 16 .
  • the conductive copper bars 16 are respectively connected to the lower terminal block 15 of the upper-level rapid mechanical switch 17 to be tested and the upper terminal block 14 of the lower-level rapid mechanical switch 17 to be tested.
  • the upper terminal 14 of the first-stage fast mechanical switch 17 to be tested can be electrically connected to the surge voltage generating device 19; the lower terminal 15 of the last-stage fast mechanical switch 17 can be connected to the ground potential.
  • the impulse voltage generating device 19 is electrically connected to the fast switch to be tested, and after the computer device 21 issues a discharge command, an impulse voltage is generated at both ends of the fast mechanical switch 17 to be tested , so as to simulate the process of the high-voltage DC circuit breaker breaking the DC fault current when the DC system fails.
  • the surge voltage generating device 19 may include a surge voltage generator and a pulse transformer 20 .
  • the impulse voltage generator is a high-voltage generating device that generates pulse waves, and is used to study the insulation performance of electrical equipment when subjected to atmospheric overvoltage and operating overvoltage.
  • the surge voltage generator may include a Marx circuit.
  • the Marx circuit is a circuit invented by German scientist Marx in 1925 to "charge capacitors in parallel, discharge in series, and realize high-voltage output.”
  • the Marx circuit includes multi-level switching gaps. During the series discharge process, it is necessary to trigger the previous stages. When the switch gap is discharged, the subsequent switch gaps will be turned on in turn, thereby realizing the discharge process.
  • the subsequent switch gaps will not be discharged. If the first few switch gaps are discharged, the subsequent switch gaps will be discharged one by one in sequence, and the switch gap synchronization effect is good. , otherwise the synchronization effect is not good.
  • the Marx loop may further include a wave head resistance and a wave tail resistance, which are used to generate the impulse voltage of the preset waveform.
  • the impulse voltage of the waveform that meets the test requirements can be output by adjusting the wave head resistance and the wave tail resistance.
  • the pulse transformer 20 is a transformer that generates pulse wave electromotive force.
  • the pulse transformer 20 can be used to realize the synchronous triggering of the impulse voltage.
  • the pulse transformer 20 can trigger the discharge of the first N-stage switching gaps, and make the subsequent switching gaps turn on in sequence, so as to improve the synchronization effect of the switching gaps.
  • N can take a natural number greater than 2, preferably, N can take 2 or 3.
  • the structure of the pulse transformer 20 is similar to that of a general control transformer, and may be composed of conductive windings and magnetically conductive iron cores.
  • the pulse transformer 20 may be a 100KV pulse transformer with high magnetic permeability and high saturation magnetic induction intensity.
  • peaking capacitors can also be used, and steep switches with special structural design can be used to steepen the microsecond-level leading edge pulse voltage output from the secondary side of the pulse transformer, and finally generate nanosecond-level leading edge steep pulses on the load. .
  • the surge voltage generating device 19 may also be electrically connected to the voltage measuring device, for example, may be connected through a high-voltage wire.
  • the voltage measuring device may generate a second voltage signal according to the surge voltage generated by the surge voltage generating device, and send the second voltage signal to the computer device 21 .
  • the voltage measurement device may also be electrically connected to each of the fast mechanical switches 17 to be tested.
  • high-voltage wires can be used to connect the voltage measuring device and the upper wiring socket 14 and the lower wiring socket 15 of each fast mechanical switch 17 to be tested, so that the voltage measuring device can be used when the impulse voltage generating device generates an impulse voltage.
  • measure the voltage change during the opening process of the fast mechanical switch 17 to be tested generate a first voltage signal, and send the first voltage signal to the computer device 21 .
  • the computer device 21 can be used to send an opening command, and when the fast mechanical switch 17 to be tested reaches a preset opening distance, send a discharge command to the surge voltage generating device; After the voltage generating device is discharged, the withstand voltage capability of the fast mechanical switch 17 to be tested is determined according to the position signal, the first voltage signal and the second voltage signal.
  • the computer device 21 may include an instruction generator for opening an instruction, and when the fast mechanical switch 17 to be tested reaches a preset opening distance, send a discharge instruction to the surge voltage generating device; a signal collector , for collecting the position signal generated by the position sensor according to the motion information during the opening process of the fast mechanical switch 17 to be tested, the first voltage signal and the second voltage signal sent by the voltage measuring device.
  • the fast mechanical switch 17 to be tested starts to open, and the computer device 21 determines the fast mechanical switch to be tested according to the position signal generated by the position sensor. 17 Whether the preset distance is reached. Since there is a certain delay from the time when the computer device 21 sends the discharge command to the surge voltage generating device starts to discharge, the When the impulse voltage generating device starts to discharge, the fast mechanical switch 17 to be tested is at a specified distance. After the surge voltage generating device completes the discharge, the withstand voltage capability of the fast mechanical switch 17 to be tested is determined according to the position signal, the first voltage signal and the second voltage signal.
  • the fast mechanical switch 17 to be tested has passed the test. If it is determined according to the position signal, the first voltage signal and the second voltage signal that the fast mechanical switch 17 to be tested does not move from a distance, the movement deviation of the fast mechanical switch 17 to be tested and the fast mechanical switch 17 to be tested If the deviation of the withstand voltage is within the allowable range, and the fast mechanical switch 17 to be tested does not experience discharge, flashover, etc., it can be considered that the fast mechanical switch 17 to be tested has passed the test.
  • the system may further include a control and protection device 24 for receiving an opening instruction sent by the computer device 21, and sending the opening instruction to the fast mechanical switch 17 to be tested; receiving the opening instruction A position signal generated by at least one position sensor is sent to the computer device 21 .
  • control and protection device 24 may include a controller for receiving an opening command sent by the computer device 21, and energizing the opening coil according to the opening command, so as to enable the fast machine to be tested
  • the switch 17 is opened; the information collector is used to collect the position signal generated by the position sensor, and send the position signal to the computer device 21 .
  • the computer device 21 may establish a communication connection with the surge voltage generating device 19 , the voltage measuring device 23 , and the control and protection device 24 , respectively, for information transmission.
  • the communication connection may include a wired connection, such as establishing a wired connection by connecting a data line; the communication connection may also include a wireless connection, such as establishing a wireless connection through a wireless network.
  • a fast mechanical switch test system for a high-voltage DC circuit breaker is built in the embodiments of this specification.
  • At least one position sensor, impulse voltage generating equipment, voltage measuring equipment, and computer equipment in the mechanical switch the fast mechanical switch to be tested is in the closed state, and is used to start the opening according to the opening instruction issued by the computer equipment; all The at least one position sensor is used to generate a position signal according to the motion information of the fast mechanical switch to be tested during the opening process;
  • the discharge command of the device generates an impulse voltage at both ends of the fast mechanical switch to be measured;
  • the voltage measuring device is electrically connected to the fast mechanical switch to be measured and the impulse voltage generating device, and is used to generate an impulse voltage according to the fast mechanical switch to be measured.
  • the voltage change during the opening process of the mechanical switch generates a first voltage signal; according to the impulse voltage generated by the impulse voltage generating device, a second voltage signal is generated;
  • a discharge instruction is sent to the surge voltage generating device; after the surge voltage generating device completes the discharge, according to the position signal, the first voltage signal and the second
  • the voltage signal determines the withstand voltage capability of the fast mechanical switch to be tested, thereby improving the accuracy of the dynamic voltage equalization performance test of the fast mechanical switch of the main branch of the high-voltage DC circuit breaker.
  • This illustrative embodiment also provides a fast mechanical switch test method applied to the high-voltage direct current circuit breaker of the system as shown in FIG. 1 , and the method may include the following steps.
  • S310 Send an opening command to instruct the fast mechanical switch to be tested to open;
  • motion information during the opening process of the fast mechanical switch to be tested can be detected according to a position sensor; accordingly, whether the fast mechanical switch to be tested has reached a preset opening distance is determined according to the motion information.
  • FIG. 4 is an execution sequence diagram of the above method.
  • t 0 is the moment when the computer equipment 21 sends the opening command to the control and protection device, and the test starts at this time
  • t 1 is the start of the fast mechanical switch 17 to be tested receiving the opening command sent by the control and protection device, and the opening is started at the
  • the coil is energized, a repulsive force is generated, which drives the switch mechanism connecting rod and the movable contact of the switching mechanism connecting rod to move downward, thereby opening the gate.
  • the fast mechanical switch starts to move, and the position sensor 9 can monitor the movement information of the fast mechanical switch to be tested during the opening process, and transmit the generated position signal to the control and protection device.
  • ⁇ t 1 is a fixed time delay, that is, the time difference from when the computer equipment sends an opening command to when the fast mechanical switch to be tested starts to open.
  • t 2 is the moment when the computer device 21 sends the discharge command; at this time, the fast mechanical switch 17 to be tested has moved for a certain period of time, but has not reached the specified distance, because the computer device 21 controls to send the discharge command to There is a certain delay between the impulse voltage generating equipment and the impulse voltage generating equipment to apply the impulse voltage to the fast mechanical switch 17 to be measured. Therefore, the computer equipment 21 needs to issue a discharge command in advance to control the impulse voltage generating equipment to discharge.
  • ⁇ t 2-1 is the time from the movement of the fast mechanical switch to be measured to the time when the computer device 21 sends a discharge command, that is, the time from the predetermined distance of the movement of the fast mechanical switch to be measured, which is a fixed time delay.
  • t 3 is the time when the surge voltage generating device receives the discharge instruction. At this time, the discharge command issued by the computer device 21 is received by the surge voltage generating device, and is ready to issue the surge voltage.
  • ⁇ t 3-2 is the time delay of signal transmission, which is a fixed time delay, that is, the time difference between when the computer device 21 sends the discharge command and the impulse voltage generating device receives the channel discharge command.
  • t 4 is the time when the impulse voltage generating device starts to generate the impulse voltage, and the voltage measuring device records the time of the impulse voltage waveform, which is also the time when the fast mechanical switch to be measured moves to the specified distance. At this time, the discharge of the surge voltage generating device is completed, and the withstand voltage is completed.
  • ⁇ t 4-3 is the time from when the impulse voltage generating device receives the discharge command to the completion of the discharge, which is a fixed time delay.
  • ⁇ t 4-1 is the time for the fast mechanical switch to be tested to move to the specified distance. This delay shall be a fixed delay. Under actual working conditions, the impulse voltage will be completely applied to both ends of the fast mechanical switch to be tested in the main branch.
  • the withstand voltage capability of the fast mechanical switch to be tested may be determined according to the position signal, the first voltage signal and the second voltage signal. If it is judged according to the position signal, the first voltage signal and the second voltage signal that the fast mechanical switch to be tested has no distance movement, the movement deviation of the fast mechanical switch to be tested and the withstand voltage of the fast mechanical switch to be tested The deviations are all within the allowable range, and the fast mechanical switch to be tested has no discharge, flashover and other phenomena, it can be considered that the fast mechanical switch to be tested has passed the test.
  • the test methods provided in the embodiments of this specification can send an opening command to instruct the fast mechanical switch to be tested to open; when the fast mechanical switch to be tested reaches the preset value When the distance is opened, a discharge command is sent to the impulse voltage generating device to instruct the impulse voltage generating device to generate an impulse voltage at both ends of the fast mechanical switch to be tested; after the impulse voltage generating device completes the discharge, according to the Measure the motion information during the opening process of the fast mechanical switch, the impulse voltage generated by the impulse voltage generating device and the voltage change during the opening process of the fast mechanical switch to be tested to determine the withstand voltage capability of the fast mechanical switch to be tested, whereby, the accuracy of the dynamic voltage equalization performance test of the fast mechanical switch of the main branch of the HVDC circuit breaker is improved.
  • FIG. 5 is a schematic functional structure diagram of an electronic device according to an embodiment of this specification, and the electronic device may include a memory and a processor.
  • the memory may be used to store the computer program and/or module, and the processor may execute or execute the computer program and/or module stored in the memory and invoke the computer program and/or module stored in the memory. data to realize various functions of fast mechanical switch testing of high-voltage DC circuit breakers.
  • the memory may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required for at least one function; the storage data area may store data created according to the use of the user terminal.
  • the memory may include high-speed random access memory, and may also include non-volatile memory such as hard disk, internal memory, plug-in hard disk, Smart Media Card (SMC), Secure Digital (SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • non-volatile memory such as hard disk, internal memory, plug-in hard disk, Smart Media Card (SMC), Secure Digital (SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (APPlication Specific Integrated Circuit, ASIC), off-the-shelf processors. Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the processor can execute the computer instructions to achieve the following steps: sending an opening instruction to instruct the fast mechanical switch to be tested to open; Send a discharge instruction to instruct the impulse voltage generating device to generate an impulse voltage at both ends of the fast mechanical switch to be tested;
  • the motion information, the surge voltage generated by the surge voltage generating device, and the voltage change during the opening process of the fast mechanical switch to be tested determine the withstand voltage capability of the fast mechanical switch to be tested.
  • each embodiment in this specification is described in a progressive manner, and the same or similar parts of each embodiment may be referred to each other, and each embodiment focuses on the differences from other embodiments. place.
  • the descriptions are relatively simple, and reference may be made to some descriptions of the method embodiments for related parts.
  • a Programmable Logic Device (such as a Field Programmable Gate Array (FPGA)) is an integrated circuit whose logic function is determined by user programming of the device.
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal JHDL
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • VHDL Very-High-Speed Integrated Circuit Hardware Description Language
  • Verilog2 Verilog2
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or A combination of any of these devices.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the specification can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

一种高压直流断路器的快速机械开关(17)测试系统及方法。系统包括:多个串联设置的待测快速机械开关(17)、设置在待测快速机械开关(17)中的至少一个位置传感器(9,10,11)、冲击电压发生设备(19)、电压测量设备(23)、计算机设备(21),计算机设备(21)可以发送分闸指令,在待测快速机械开关(17)到达预设开距时,向冲击电压发生设备(19)发送放电指令,在冲击电压发生设备(19)完成放电后,根据待测快速机械开关(17)分闸过程中的运动信息、冲击电压发生设备(19)产生的冲击电压和待测快速机械开关(17)分闸过程中的电压变化确定待测快速机械开关(17)的耐压能力,从而提高对高压直流断路器主支路(22)快速机械开关(17)的动态均压性能测试的准确性。

Description

高压直流断路器的快速机械开关测试系统及方法 技术领域
本说明书实施例涉及高电压与绝缘技术领域,特别涉及一种高压直流断路器的快速机械开关测试系统及方法。
背景技术
近年来,柔性直流输电技术凭借独立且灵活的功率调节能力,谐波含量小,不需要站间通讯、能为风电场等提供交流电压支撑等优点取得了较快的发展。与交流系统相比,直流故障电流缺乏自然零点,要实现其可靠开断,需要人工创造电流零点,同时还需要吸收储存于直流系统感性元件中的巨大能量,因此,与交流断路器相比,直流断路器的设计难度大为增加。高压直流断路器作为切断故障电流的核心设备,对保障柔直电网稳定运行具有重要作用。
快速机械开关是高压直流断路器的核心组件之一,能够在几毫秒内建立绝缘,为直流断路器成功开断提供保障。由于直流系统电压等级提高,直流断路器的主支路需多台快速机械开关串联,发生故障时,多台快速机械开关需在短时间内达到有效开距,耐受操作过电压。
由于直流断路器串联了多台快速机械开关,且耐受的操作冲击电压值较高,一旦未采取较好的均压措施或单个开关未在要求的时间内到达指定位置,将会导致其承受的冲击电压高于其他开关,使得该开关发生击穿,继而引起其他开关相继击穿。
因此,高压直流断路器主支路快速机械开关的动态均压性能是保证设备可靠开断的重要指标。由于高压直流断路器的工作原理和运行工况有别于交流断路器,目前没有国际或国家标准能够参照,导致对于快速机械开关的整体状况的把握不足,使得快速机械开关的性能检测准确性不高。
发明内容
本说明书实施例的目的是提供一种高压直流断路器的快速机械开关测试系统及方法,以提高对高压直流断路器主支路快速机械开关的动态均压性能测试的准确性。
为解决上述问题,本说明书实施例提供一种高压直流断路器的快速机械开关测试系统,包括:多个串联设置的待测快速机械开关、设置在所述待测快速机械开关中的至少一个位置传感器、冲击电压发生设备、电压测量设备、计算机设备;所述待测快速机械开关处于合闸状态,用于根据计算机设备发出的分闸指令,开始进行分闸;所述至少一个位置传感器,用 于根据所述待测快速机械开关分闸过程中的运动信息生成位置信号;所述冲击电压发生设备与所述待测快速开关电性连接,用于根据计算机设备发出的放电指令,在所述待测快速机械开关两端产生冲击电压;所述电压测量设备与所述待测快速机械开关和所述冲击电压发生设备电性连接,用于根据所述待测快速机械开关分闸过程中的电压变化,生成第一电压信号;根据所述冲击电压发生设备产生的冲击电压,生成第二电压信号;所述计算机设备,用于发送分闸指令,在所述待测快速机械开关到达预设开距时,向所述冲击电压发生设备发送放电指令;在所述冲击电压发生设备完成放电后,根据所述位置信号、所述第一电压信号和所述第二电压信号确定所述待测快速机械开关的耐压能力。
为解决上述问题,本说明书实施例还提供一种应用于上述系统的高压直流断路器的快速机械开关测试方法,所述方法包括:发送分闸指令,以指示待测快速机械开关进行分闸;在所述待测快速机械开关到达预设开距时,向冲击电压发生设备发送放电指令,以指示所述冲击电压发生设备在所述待测快速机械开关两端产生冲击电压;在所述冲击电压发生设备完成放电后,根据所述待测快速机械开关分闸过程中的运动信息、所述冲击电压发生设备产生的冲击电压和所述待测快速机械开关分闸过程中的电压变化确定所述待测快速机械开关的耐压能力。
由以上本说明书实施例提供的技术方案可见,本说明书实施例中搭建了一种高压直流断路器的快速机械开关测试系统,多个串联设置的待测快速机械开关、设置在所述待测快速机械开关中的至少一个位置传感器、冲击电压发生设备、电压测量设备、计算机设备;所述待测快速机械开关处于合闸状态,用于根据计算机设备发出的分闸指令,开始进行分闸;所述至少一个位置传感器,用于根据所述待测快速机械开关分闸过程中的运动信息生成位置信号;所述冲击电压发生设备与所述待测快速开关电性连接,用于根据计算机设备发出的放电指令,在所述待测快速机械开关两端产生冲击电压;所述电压测量设备与所述待测快速机械开关和所述冲击电压发生设备电性连接,用于根据所述待测快速机械开关分闸过程中的电压变化,生成第一电压信号;根据所述冲击电压发生设备产生的冲击电压,生成第二电压信号;所述计算机设备,用于发送分闸指令,在所述待测快速机械开关到达预设开距时,向所述冲击电压发生设备发送放电指令;在所述冲击电压发生设备完成放电后,根据所述位置信号、所述第一电压信号和所述第二电压信号确定所述待测快速机械开关的耐压能力,从而提高对高压直流断路器主支路快速机械开关的动态均压性能测试的准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例一种高压直流断路器的快速机械开关测试系统的结构示意图;
图2为本说明书实施例待测快速机械开关的结构示意图;
图3为本说明书实施例应用于如图1所述系统的高压直流断路器的快速机械开关测试方法的流程图;
图4为本说明书实施例应用于如图1所述系统的高压直流断路器的快速机械开关测试方法的执行时序图;
图5为本说明书实施例一种电子设备的功能模块图。
附图标记说明:
1、真空灭弧室;2、开关机构连杆;3、开关支架;4、分闸线圈;5、斥力盘;6、合闸线圈;7、转接段;8、缓冲机构;9、位置传感器;10、位置传感器;11、位置传感器;12、均压电阻;13、均压电容;14、上接线座;15、下接线座;16、导电铜排;17、快速机械开关;18、高压直流断路器支架;19、冲击电压发生设备;20、脉冲变压器;21、计算机设备;22、高压直流断路器主支路;23、电压测量设备;24、控制保护设备;25、动触头。
具体实施方式
本说明书实施例提供高压直流断路器的快速机械开关测试系统及方法。为了使本技术领域的人员更好地理解本说明书实施例中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
在本说明书实施例中,所述高压直流断路器是一种结合了电力电子器件,用于开断直流回路的断路器。所述高压直流断路器不仅能在电力系统正常运行时切断和接通高压线路及各种空载和负荷电流,而且当电力系统发生故障时,可以通过继电保护装置的作用自动切换各种过负荷和短路电流,防止事故范围的扩大。
在本说明书实施例中,由于直流电流不像交流电流那样有过零点,且过电压高,因此灭弧较为困难;另外,直流回路的电感较大,所以需由直流断路器吸收的能量比较大。针对该问题,现有的高压直流断路器可以分为机械式高压直流断路器、固态高压直流断路器和混合式高压直流断路器。所述机械式直流断路器可以关断非常大的电流,并具有成本低、损耗小 等优点,但其开断速度较慢;所述固态直流断路器开断速度迅速,但其相关损耗较高,且价格昂贵;为克服两者的缺点,可以通过将机械式直流断路器和固态直流断路器集成在一个装置上,从而形成混合式断路器。所述混合式直流断路器结合了机械开关良好的静态特性与电力电子器件良好的动态性能,用快速机械开关来导通正常运行电流,用固态电力电子器件来分断短路电流,具有通态损耗小、开断时间短、无需专用冷却设备等优点,是目前高压直流断路器研发的新方向。
快速机械开关是高压直流断路器的核心组件之一,能够在几毫秒内建立绝缘,为直流断路器成功开断提供保障。因此,高压直流断路器主支路快速机械开关的动态均压性能是保证设备可靠开断的重要指标。由于高压直流断路器的工作原理和运行工况有别于交流断路器,目前没有国际或国家标准能够参照,导致对于快速机械开关的整体状况的把握不足,使得快速机械开关的性能检测准确性不高。考虑到如果能够模拟出直流系统发生故障时,高压直流断路器开断直流故障电流的过程,根据直流系统发生故障时在快速机械开关两端产生的电压、高压直流断路器开断直流故障电流的过程中快速机械开关两端的电压变化以及快速机械开关分闸过程中的运动信息来确定快速机械开关的耐压能力,则有望解决上述问题,从而提高对高压直流断路器主支路快速机械开关的动态均压性能测试的准确性。基于此,本说明书实施例提供了一种高压直流断路器的快速机械开关测试系统。
请参阅图1,图1为本说明书实施例一种高压直流断路器的快速机械开关测试系统的功能结构图。所述高压直流断路器的快速机械开关测试系统可以包括多个串联设置的待测快速机械开关17、设置在所述待测快速机械开关17中的至少一个位置传感器9‐11、冲击电压发生设备19、电压测量设备23、计算机设备21。
在一些实施例中,如图2所示,图2为本说明书实施例待测快速机械开关17的结构示意图。所述快速机械开关17可以包括真空灭弧室1、开关机构连杆2、开关支架3、分闸线圈4、斥力盘5、合闸线圈6、转接段7、位置传感器9、位置传感器10、位置传感器11、上接线座14以及下接线座15。
具体的,所述上接线柱14和下接线柱15,可以用于导通电流,并在多个快速机械开关17串联时接线固定;所述开关支架3,可以用于固定快速机械开关17;所述开关机构连杆2连接真空灭弧室1以及斥力盘5,可以通过上下运动控制开关分合;所述分闸线圈4,固定在所述开关支架3上,用于在接收到分闸指令时通电;所述斥力盘5,与开关机构连杆2连接,用于在分闸线圈通电时产生斥力,带动开关机构连杆2和与开关机构连杆2连接的动触头25向下运动,从而进行分闸;所述斥力盘5还用于在合闸线圈6通电时产生吸力,带动开关机构连杆2和与开关机构连杆2连接的动触头向上运动,从而进行合闸;所述合闸线圈6,固定在开关支 架3上,用于在接收到合闸指令时通电.
在一些实施例中,所述至少一个位置传感器根据所述待测快速机械开关17分闸过程中的运动信息生成位置信号。具体的,所述位置传感器可以通过观测斥力盘位置,判断斥力盘是否运动到指定位置。举例来说,所述至少一个位置传感器可以包括位置传感器9、位置传感器10和位置传感器11,位置传感器9、位置传感器10和位置传感器11位于开关支架3上,在开始测试前,待测快速机械开关17处于合闸状态,斥力盘5与所述传感器9位于同一高度,在待测快速机械开关17接收到分闸指令后,斥力盘带动开关机构连杆2和与开关机构连杆2连接的动触头向下运动,所述位置传感器9可以检测斥力盘5是否开始向下运动,所述位置传感器10和位置传感器11可以检测斥力盘5是否运动到与位置传感器10和位置传感器11处于同一高度的位置。
在一些实施例中,所述快速机械开关17还可以包括缓冲机构8,位于开关机构连杆2下方,用于缓冲开关动作过程中产生的力。
在一些实施例中,所述快速机械开关17还可以包括均压电路,所述均压电路包括均压电阻12和均压电容13,与所述真空灭弧室1并联,用于在多个快速机械开关17串联时,保证各快速机械开关17电压一致。
在一些实施例中,如图2所示,多个待测快速机械开关17构成高压直流断路器主支路22。其中,对于一台高压直流断路器,主支路快速机械开关17的数量可以依据设备电压等级确定。
在一些实施例中,多个待测快速机械开关17置于高压直流断路器支架18上,并通过导电铜排16串联构成高压直流断路器主支路22。导电铜排16分别连接上级待测快速机械开关17的下接线座15以及下级待测快速机械开关17的上接线座14。对于首级待测快速机械开关17上接线座14,可以与所述冲击电压发生设备19电性连接;对于末级快速机械开关17下接线座15,可以与地电位相连。
在本说明书实施例中,所述冲击电压发生设备19与所述待测快速开关电性连接,在所述计算机设备21发出放电指令后,在所述待测快速机械开关17两端产生冲击电压,从而模拟出直流系统发生故障时,高压直流断路器开断直流故障电流的过程。
在一些实施例中,所述冲击电压发生设备19可以包括冲击电压发生器和脉冲变压器20。所述冲击电压发生器是一种产生脉冲波的高电压发生装置,用于研究电力设备遭受大气过电压和操作过电压时的绝缘性能。如图2所示,所述冲击电压发生器可以包括Marx回路。所述Marx回路是德国科学家Marx在1925年发明的“电容并联充电,串联放电,实现高压输出的电路。”所述Marx回路中包括多级开关间隙,在串联放电过程中,需要触发前面几级开关间隙放电,后面的开关间隙会被依次导通,从而实现放电过程。具体的,在放电过程中,前面几 级开关间隙不放电,则之后的开关间隙都不放点,若前面几级开关间隙放电,则后面的开关间隙按顺序逐个放电,则开关间隙同步效果好,否则同步效果不好。
在一些实施例中,所述Marx回路还可以包括波头电阻和波尾电阻,用于产生预设波形的冲击电压。具体的,可以通过调整波头电阻和波尾电阻,输出满足测试要求的波形的冲击电压。
在一些实施例中,所述脉冲变压器20是一种产生脉冲波电动势的变压器。在本说明书实施例中,所述脉冲变压器20可以用于实现冲击电压的同步触发。具体的,所述脉冲变压器20可以触发前N级开关间隙放电,并使后面的开关间隙被依次导通,提高开关间隙的同步效果。其中N可以取大于2的自然数,优选的,N可以取2或3。
在一些实施例中,所述脉冲变压器20的结构和一般控制变压器类似,可以由导电的绕组和导磁的铁心构成。为了实现同步触发,所述脉冲变压器20可以为磁导率大、饱和磁感应强度大的百千伏脉冲变压器。为了实现高速触发,还可以使用峰化电容,使用特殊结构设计的陡化开关,将脉冲变压器副边所输出的微秒级前沿脉冲电压进行陡化,最终在负载上产生纳秒级前沿陡脉冲。
在一些实施例中,所述冲击电压发生设备19还可以与所述电压测量设备电性连接,例如可以通过高压导线连接。在所述冲击电压发生设备产生冲击电压时,所述电压测量设备可以根据所述冲击电压发生设备产生的冲击电压,生成第二电压信号,并将所述第二电压信号发送至计算机设备21。
在一些实施例中,所述电压测量设备还可以与各个待测快速机械开关17电性连接。具体的,可以使用高压导线连接所述电压测量设备和各个待测快速机械开关17的上接线座14、下接线座15,从而使得所述电压测量设备在所述冲击电压发生设备产生冲击电压时,测量所述待测快速机械开关17分闸过程中的电压变化,并生成第一电压信号,将所述第一电压信号发送至计算机设备21。
在一些实施例中,所述计算机设备21可以用于发送分闸指令,在所述待测快速机械开关17到达预设开距时,向所述冲击电压发生设备发送放电指令;在所述冲击电压发生设备完成放电后,根据所述位置信号、所述第一电压信号和所述第二电压信号确定所述待测快速机械开关17的耐压能力。具体的,所述计算机设备21可以包括指令发生器,用于分闸指令,在所述待测快速机械开关17到达预设开距时,向所述冲击电压发生设备发送放电指令;信号采集器,用于采集位置传感器根据所述待测快速机械开关17分闸过程中的运动信息生成的位置信号、所述电压测量设备发送的第一电压信号和第二电压信号。
具体的,所述计算机设备21在发送分闸指令后,所述待测快速机械开关17开始进行分闸, 所述计算机设备21根据所述位置传感器生成的位置信号判断所述待测快速机械开关17是否到达预设开距。由于所述计算机设备21发送放电指令到所述冲击电压发生设备开始放电具有一定的延迟,因此可以在判断所述待测快速机械开关17到达预设开距时,发出放电指令,以使所述冲击电压发生设备开始放电时,所述待测快速机械开关17处于指定开距。在所述冲击电压发生设备完成放电后,根据所述位置信号、所述第一电压信号和所述第二电压信号确定所述待测快速机械开关17的耐压能力。若根据所述位置信号、所述第一电压信号和所述第二电压信号判断所述待测快速机械开关17未发生距动,待测快速机械开关17的运动偏差和待测快速机械开关17耐受电压的偏差均在允许范围内,且待测快速机械开关17未发生放电、闪络等现象,则可以认为待测快速机械开关17测试通过。
在一些实施例中,所述系统还可以包括控制保护设备24,用于接收计算机设备21发送的分闸指令,并将所述分闸指令发送至所述待测快速机械开关17;接收所述至少一个位置传感器生成的位置信号,将所述位置信号发送至所述计算机设备21。
在一些实施例中,所述控制保护设备24可以包括控制器,用于接收计算机设备21发送的分闸指令,根据所述分闸指令对分闸线圈进行通电,以使所述待测快速机械开关17进行分闸;信息采集器,用于采集位置传感器生成的位置信号,并将所述位置信号发送至计算机设备21。
在一些实施例中,所述计算机设备21可以分别与冲击电压发生设备19、电压测量设备23、控制保护设备24建立通信连接,用于信息的传递。具体的,所述通信连接可以包括有线连接,如通过连接数据线的方式建立有线连接;所述通信连接还可以包括无线连接,如通过无线网络的方式建立无线连接。
由以上本说明书实施例提供的技术方案可见,本说明书实施例中搭建了一种高压直流断路器的快速机械开关测试系统,多个串联设置的待测快速机械开关、设置在所述待测快速机械开关中的至少一个位置传感器、冲击电压发生设备、电压测量设备、计算机设备;所述待测快速机械开关处于合闸状态,用于根据计算机设备发出的分闸指令,开始进行分闸;所述至少一个位置传感器,用于根据所述待测快速机械开关分闸过程中的运动信息生成位置信号;所述冲击电压发生设备与所述待测快速开关电性连接,用于根据计算机设备发出的放电指令,在所述待测快速机械开关两端产生冲击电压;所述电压测量设备与所述待测快速机械开关和所述冲击电压发生设备电性连接,用于根据所述待测快速机械开关分闸过程中的电压变化,生成第一电压信号;根据所述冲击电压发生设备产生的冲击电压,生成第二电压信号;所述计算机设备,用于发送分闸指令,在所述待测快速机械开关到达预设开距时,向所述冲击电压发生设备发送放电指令;在所述冲击电压发生设备完成放电后,根据所述位置信号、 所述第一电压信号和所述第二电压信号确定所述待测快速机械开关的耐压能力,从而提高对高压直流断路器主支路快速机械开关的动态均压性能测试的准确性。
请参阅图3。本说明实施例还提供应用于如图1所述系统的高压直流断路器的快速机械开关测试方法,所述方法可以包括以下步骤。
S310:发送分闸指令,以指示待测快速机械开关进行分闸;
S320:在所述待测快速机械开关到达预设开距时,向冲击电压发生设备发送放电指令,以指示所述冲击电压发生设备在所述待测快速机械开关两端产生冲击电压;
S330:在所述冲击电压发生设备完成放电后,根据所述待测快速机械开关分闸过程中的运动信息、所述冲击电压发生设备产生的冲击电压和所述待测快速机械开关分闸过程中的电压变化确定所述待测快速机械开关的耐压能力。
在一些实施例中,可以根据位置传感器检测所述待测快速机械开关分闸过程中的运动信息;相应的,根据所述运动信息判断所述待测快速机械开关是否到达预设开距。
具体的,如图4所示,图4为上述方法的执行时序图。其中,t 0为计算机设备21发出分闸指令至控制保护设备的时刻,此时测试开始;t 1为待测快速机械开关17接收到控制保护设备发出的分闸指令开始,在所述分闸线圈通电时产生斥力,带动所述开关机构连杆和所述开关机构连杆的动触头向下运动,从而进行分闸。此时快速机械开关开始运动,可以通过位置传感器9可以监测待测快速机械开关分闸过程中的运动信息,并将生成的位置信号传送给控制保护设备。Δt 1为固定时延,即计算机设备发出分闸指令到待测快速机械开关开始分闸的时间差。
在本说明书实施例中,t 2为计算机设备21发出放电指令的时刻;此时,待测快速机械开关17已经运动一定时间,但并未到达指定开距,由于计算机设备21控发出放电指令至冲击电压发生设备,再到冲击电压发生设备对待测快速机械开关17施加冲击电压,存在一定时延,因此,需提前由计算机设备21发出放电指令,控制冲击电压发生设备放电。其中,Δt 2‐1为待测快速机械开关运动到计算机设备21发出放电指令的时间,即待测快速机械开关运动预设开距的时间,为固定时延。
在本说明书实施例中,t 3为冲击电压发生设备接收到放电指令的时刻。此时计算机设备21发出的放电指令被冲击电压发生设备接收,并准备发出冲击电压。Δt 3‐2为信号传输的时延,为固定时延,即计算机设备21发出放电指令与冲击电压发生设备接收道放电指令的时间差。
在本说明书实施例中,t 4为冲击电压发生设备开始产生冲击电压,电压测量设备记录冲击电压波形时刻,此时刻也是待测快速机械开关运动到指定开距的时刻。此时,冲击电压发 生设备放电结束,耐压完成。其中,Δt 4‐3为冲击电压发生设备接收到放电指令到完成放电的时间,为固定时延。
在本说明书实施例中,Δt 4‐1为待测快速机械开关运动到指定开距的时间。这段时延应为固定时延。在实际工况下,此时冲击电压将完全施加于主支路的待测快速机械开关两端。
在一些实施例中,在所述冲击电压发生设备完成放电后,可以根据所述位置信号、所述第一电压信号和所述第二电压信号确定所述待测快速机械开关的耐压能力。若根据所述位置信号、所述第一电压信号和所述第二电压信号判断所述待测快速机械开关未发生距动,待测快速机械开关的运动偏差和待测快速机械开关耐受电压的偏差均在允许范围内,且待测快速机械开关未发生放电、闪络等现象,则可以认为待测快速机械开关测试通过。
由以上本说明书实施例提供的技术方案可见,本说明书实施例中提供的测试方法,可以发送分闸指令,以指示待测快速机械开关进行分闸;在所述待测快速机械开关到达预设开距时,向冲击电压发生设备发送放电指令,以指示所述冲击电压发生设备在所述待测快速机械开关两端产生冲击电压;在所述冲击电压发生设备完成放电后,根据所述待测快速机械开关分闸过程中的运动信息、所述冲击电压发生设备产生的冲击电压和所述待测快速机械开关分闸过程中的电压变化确定所述待测快速机械开关的耐压能力,从而提高对高压直流断路器主支路快速机械开关的动态均压性能测试的准确性。
图5为本说明书实施例一种电子设备的功能结构示意图,所述电子设备可以包括存储器和处理器。
在一些实施例中,所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现高压直流断路器的快速机械开关测试的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据用户终端的使用所创建的数据。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
所述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(APPlication Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field‐Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理 器或者该处理器也可以是任何常规的处理器等。所述处理器可以执行所述计算机指令实现以下步骤:发送分闸指令,以指示待测快速机械开关进行分闸;在所述待测快速机械开关到达预设开距时,向冲击电压发生设备发送放电指令,以指示所述冲击电压发生设备在所述待测快速机械开关两端产生冲击电压;在所述冲击电压发生设备完成放电后,根据所述待测快速机械开关分闸过程中的运动信息、所述冲击电压发生设备产生的冲击电压和所述待测快速机械开关分闸过程中的电压变化确定所述待测快速机械开关的耐压能力。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其它实施例的不同之处。尤其,对于装置实施例和设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域技术人员在阅读本说明书文件之后,可以无需创造性劳动想到将本说明书列举的部分或全部实施例进行任意组合,这些组合也在本说明书公开和保护的范围内。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very‐High‐Speed Integrated Circuit Hardware Description Language)与Verilog2。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电 路。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本说明书可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本说明书的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本说明书各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本说明书可用于众多通用或专用的计算机系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
本说明书可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
虽然通过实施例描绘了本说明书,本领域普通技术人员知道,本说明书有许多变形和变化而不脱离本说明书的精神,希望所附的权利要求包括这些变形和变化而不脱离本说明书的精神。

Claims (10)

  1. 一种高压直流断路器的快速机械开关测试系统,其特征在于,包括:多个串联设置的待测快速机械开关、设置在所述待测快速机械开关中的至少一个位置传感器、冲击电压发生设备、电压测量设备、计算机设备;
    所述待测快速机械开关处于合闸状态,用于根据计算机设备发出的分闸指令,开始进行分闸;
    所述至少一个位置传感器,用于根据所述待测快速机械开关分闸过程中的运动信息生成位置信号;
    所述冲击电压发生设备与所述待测快速开关电性连接,用于根据计算机设备发出的放电指令,在所述待测快速机械开关两端产生冲击电压;
    所述电压测量设备与所述待测快速机械开关和所述冲击电压发生设备电性连接,用于根据所述待测快速机械开关分闸过程中的电压变化,生成第一电压信号;根据所述冲击电压发生设备产生的冲击电压,生成第二电压信号;
    所述计算机设备,用于发送分闸指令,在所述待测快速机械开关到达预设开距时,向所述冲击电压发生设备发送放电指令;在所述冲击电压发生设备完成放电后,根据所述位置信号、所述第一电压信号和所述第二电压信号确定所述待测快速机械开关的耐压能力。
  2. 根据权利要求1所述的系统,其特征在于,所述待测快速机械开关包括:
    开关机构连杆,用于控制所述待测快速机械开关的开合;
    分闸线圈,用于在接收到所述分闸指令时通电;
    与所述开关机构连杆连接的斥力盘,用于在所述分闸线圈通电时产生斥力,带动所述开关机构连杆和与所述开关机构连杆连接的动触头向下运动,从而进行分闸。
  3. 根据权利要求2所述的系统,其特征在于,所述根据所述待测快速机械开关分闸过程中的运动信息生成位置信号包括:根据所述斥力盘的位置变化生成位置信号。
  4. 根据权利要求1所述的系统,其特征在于,所述待测快速机械开关还包括:
    均压电路,用于保持各个待测快速机械开关的分压一致。
  5. 根据权利要求4所述的系统,其特征在于,所述均压电路由均压电容和均压电阻组成。
  6. 根据权利要求1所述的系统,其特征在于,所述冲击电压发生设备包括:
    波头电阻和波尾电阻,用于产生预设波形的冲击电压;
    脉冲变压器,用于同步冲击电压各级同时触发。
  7. 根据权利要求1所述的系统,其特征在于,所述电压测量设备包括:
    与所述待测快速机械开关数量一致的多个低电压等级阻容分压力器,用于测量各个待测快速机械开关分闸过程中的电压变化;
    高电压等级阻容分压器,用于测量所述冲击电压发生设备产生的冲击电压。
  8. 根据权利要求1所述的系统,其特征在于,所述系统还包括:
    控制保护设备,用于接收计算机设备发送的分闸指令,并将所述分闸指令发送至所述待测快速机械开关;接收所述至少一个位置传感器生成的位置信号,将所述位置信号发送至所述计算机设备。
  9. 一种应用于权利要求1‐8任一项所述的高压直流断路器的快速机械开关测试系统的高压直流断路器的快速机械开关测试方法,其特征在于,所述方法包括:
    发送分闸指令,以指示待测快速机械开关进行分闸;
    在所述待测快速机械开关到达预设开距时,向冲击电压发生设备发送放电指令,以指示所述冲击电压发生设备在所述待测快速机械开关两端产生冲击电压;
    在所述冲击电压发生设备完成放电后,根据所述待测快速机械开关分闸过程中的运动信息、所述冲击电压发生设备产生的冲击电压和所述待测快速机械开关分闸过程中的电压变化确定所述待测快速机械开关的耐压能力。
  10. 根据权利要求9所述的方法,其特征在于,根据位置传感器检测所述待测快速机械开关分闸过程中的运动信息;
    相应的,根据所述运动信息判断所述待测快速机械开关是否到达预设开距。
PCT/CN2021/117033 2020-11-27 2021-09-07 高压直流断路器的快速机械开关测试系统及方法 WO2022110963A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022797834.3U CN213658926U (zh) 2020-11-27 2020-11-27 高压直流断路器的快速机械开关测试系统
CN202011353874.7A CN112433150A (zh) 2020-11-27 2020-11-27 高压直流断路器的快速机械开关测试系统及方法
CN202011353874.7 2020-11-27
CN202022797834.3 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022110963A1 true WO2022110963A1 (zh) 2022-06-02

Family

ID=81755275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117033 WO2022110963A1 (zh) 2020-11-27 2021-09-07 高压直流断路器的快速机械开关测试系统及方法

Country Status (1)

Country Link
WO (1) WO2022110963A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116338447A (zh) * 2023-02-28 2023-06-27 湖北清江水电开发有限责任公司 一种隔离开关分合闸状态监测方法
CN116679200A (zh) * 2023-08-03 2023-09-01 国网山东省电力公司淄博供电公司 一种高压断路器动作特性检测方法及终端机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261978A (ja) * 1986-05-09 1987-11-14 Mitsubishi Electric Corp 開閉機器動作特性監視装置
CN101813751A (zh) * 2010-04-13 2010-08-25 河北工业大学 低压断路器手柄驱动机构
CN105487001A (zh) * 2014-09-18 2016-04-13 扬州市鑫源电气有限公司 一种开关联合试验系统
CN109061450A (zh) * 2018-06-19 2018-12-21 北京平高清大科技发展有限公司 一种直流断路器用机械开关的试验电路
CN109696622A (zh) * 2018-11-30 2019-04-30 平高集团有限公司 快速机械开关的动态绝缘试验方法与系统
CN109738175A (zh) * 2019-02-14 2019-05-10 国网冀北电力有限公司电力科学研究院 直流断路器的快速机械开关机械特性监测系统及方法
CN112433150A (zh) * 2020-11-27 2021-03-02 国网冀北电力有限公司电力科学研究院 高压直流断路器的快速机械开关测试系统及方法
CN213658926U (zh) * 2020-11-27 2021-07-09 国网冀北电力有限公司电力科学研究院 高压直流断路器的快速机械开关测试系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261978A (ja) * 1986-05-09 1987-11-14 Mitsubishi Electric Corp 開閉機器動作特性監視装置
CN101813751A (zh) * 2010-04-13 2010-08-25 河北工业大学 低压断路器手柄驱动机构
CN105487001A (zh) * 2014-09-18 2016-04-13 扬州市鑫源电气有限公司 一种开关联合试验系统
CN109061450A (zh) * 2018-06-19 2018-12-21 北京平高清大科技发展有限公司 一种直流断路器用机械开关的试验电路
CN109696622A (zh) * 2018-11-30 2019-04-30 平高集团有限公司 快速机械开关的动态绝缘试验方法与系统
CN109738175A (zh) * 2019-02-14 2019-05-10 国网冀北电力有限公司电力科学研究院 直流断路器的快速机械开关机械特性监测系统及方法
CN112433150A (zh) * 2020-11-27 2021-03-02 国网冀北电力有限公司电力科学研究院 高压直流断路器的快速机械开关测试系统及方法
CN213658926U (zh) * 2020-11-27 2021-07-09 国网冀北电力有限公司电力科学研究院 高压直流断路器的快速机械开关测试系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116338447A (zh) * 2023-02-28 2023-06-27 湖北清江水电开发有限责任公司 一种隔离开关分合闸状态监测方法
CN116338447B (zh) * 2023-02-28 2024-05-14 湖北清江水电开发有限责任公司 一种隔离开关分合闸状态监测方法
CN116679200A (zh) * 2023-08-03 2023-09-01 国网山东省电力公司淄博供电公司 一种高压断路器动作特性检测方法及终端机
CN116679200B (zh) * 2023-08-03 2023-11-14 国网山东省电力公司淄博供电公司 一种高压断路器动作特性检测方法及终端机

Similar Documents

Publication Publication Date Title
CN112433150A (zh) 高压直流断路器的快速机械开关测试系统及方法
WO2022110963A1 (zh) 高压直流断路器的快速机械开关测试系统及方法
CN106556791B (zh) 一种大功率igbt动态测试电路及其控制方法
Wu et al. Investigation of an active current injection DC circuit breaker based on a magnetic induction current commutation module
Tang et al. A high-speed protection scheme for the DC transmission line of a MMC-HVDC grid
CN100580835C (zh) 断路器同步控制器及其控制方法
Luo et al. Modern IGBT gate driving methods for enhancing reliability of high-power converters—An overview
US7633725B2 (en) Micro-electromechanical system based soft switching
Martinez-Velasco et al. Parametric analysis of the hybrid HVDC circuit breaker
CN110286320A (zh) 具有保护功能的直流断路器半导体组件关断能力测试回路
Pei et al. Hybrid DC circuit breaker with coupled inductor for automatic current commutation
CN103311903A (zh) 一种开关装置及其发电系统
Tzelepis et al. Impact of VSC converter topology on fault characteristics in HVDC transmission systems
Berglund et al. One-cycle fault interruption at 500 kV: System benefits and breaker design
Wu et al. Technical assessment on self-charging mechanical HVDC circuit breaker
CN108919109A (zh) 一种多断口高压直流快速机械开关动态均压模拟试验方法
CN213658926U (zh) 高压直流断路器的快速机械开关测试系统
Shu et al. A bi-directional current-limiting hybrid DC circuit breaker with fast-breaking capability
Lenz et al. Impact of topology and fault current on dimensioning and performance of HVDC circuit breakers
CN206178105U (zh) 断路器合闸电阻投入过程触头弹跳检测装置
Ray et al. A coupled inductor based hybrid circuit breaker topology for subsea hvdc transmission systems
Almalki et al. Capacitor bank switching transient analysis using frequency dependent network equivalents
CN201936800U (zh) 户外高压智能型永磁真空开关
Liu et al. Railway DC circuit breaker based on the superconducting fault current limiter
CN105717448A (zh) 真型高压断路器机构缺陷模拟与分合闸线圈电流检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896467

Country of ref document: EP

Kind code of ref document: A1