WO2022110932A1 - 一种直驱对转双风轮风电机组 - Google Patents

一种直驱对转双风轮风电机组 Download PDF

Info

Publication number
WO2022110932A1
WO2022110932A1 PCT/CN2021/114609 CN2021114609W WO2022110932A1 WO 2022110932 A1 WO2022110932 A1 WO 2022110932A1 CN 2021114609 W CN2021114609 W CN 2021114609W WO 2022110932 A1 WO2022110932 A1 WO 2022110932A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
wind turbine
wind
stator
double
Prior art date
Application number
PCT/CN2021/114609
Other languages
English (en)
French (fr)
Inventor
郭小江
李新凯
唐巍
叶昭良
闫姝
付明志
秦猛
劳文欣
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能海上风电科学技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能海上风电科学技术研究有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022110932A1 publication Critical patent/WO2022110932A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the utility model belongs to the technical field of novel wind turbines, in particular to a direct-drive opposite-rotating double-winder wind turbine.
  • the tandem double wind turbine structure is valued for its high efficiency and mature key core equipment.
  • double wind turbine units use two wind turbines coaxially or connected to the main shaft through bevel gears.
  • the two wind rotors can only rotate at the same speed, and cannot achieve independent control of the rotational speeds of the two wind rotors, that is, the two wind rotors cannot be decoupled, which leads to the fact that the two wind rotors cannot operate in their respective high-efficiency areas, resulting in the overall efficiency of the unit. low.
  • the utility model proposes a direct-drive counter-rotating double wind turbine wind turbine with decoupling transmission, Realize the coordinated control of the two wind turbines, aiming at the optimal overall output of the unit, and the overall efficiency of the unit is the highest; improve the utilization rate of wind energy, reduce the diameter of the wind rotor, and reduce the cost per kilowatt-hour of the wind turbine;
  • a direct-drive counter-rotating double-winder wind turbine comprising a double-rotor generator and a front wind wheel and a rear wind wheel arranged in series at both ends of the double-rotor generator, so
  • the double-rotor generator is sequentially provided with an outer rotor, an outer stator, a magnetic isolation layer, an inner stator and an inner rotor from the outside to the inside, the outer rotor is sleeved on the outer stator, and the outer stator is sleeved on the inner stator and A magnetic isolation layer is arranged between the two, and the inner stator is sleeved on the inner rotor; the outer rotor is connected to the front wind wheel through the front main shaft, and the inner rotor is connected to the rear wind wheel in the double wind wheel through the rear main shaft. wheel.
  • the front wind wheel and the rear wind wheel are arranged in series, the diameter of the front wind wheel is larger than the diameter of the rear wind wheel, the front wind wheel is arranged in the upwind direction, and the rear wind wheel is arranged in the downwind direction. , the front wind wheel and the rear wind wheel rotate in opposite directions, and the front wind wheel and the rear wind wheel are provided with a pitch system.
  • the dual-rotor generator is a low-speed permanent magnet synchronous dual-rotor generator, the rotation of the front main shaft drives the outer rotor to rotate and generate electricity; the rotation of the rear main shaft drives the inner rotor to rotate and generate electricity.
  • the outer rotor is connected to the front main shaft through a flange, and the output shaft of the inner rotor is connected to the rear main shaft through a coupling.
  • the outer rotor and the outer stator constitute a front wind turbine generator
  • the inner stator and the inner rotor constitute a rear wind turbine generator
  • the front wind turbine generator is sleeved on the rear wind turbine generator
  • the output shaft of the front wind turbine generator is coaxial and opposite to the output shaft of the rear wind turbine generator
  • an air gap is left between the outer rotor and the outer stator
  • an air gap is left between the stator and the inner rotor.
  • the outer rotor is a permanent magnet rotor
  • the inner rotor is a permanent magnet rotor or an excitation rotor
  • the outer stator and the inner stator are winding stators.
  • the magnetic isolation layer is a magnetic isolation material, and the magnetic isolation layer is used to effectively isolate the electromagnetic generated by the inner rotor and the outer rotor.
  • the front section and the rear section of the inner stator are respectively fixedly connected with an inner rotor bearing seat, and the two inner rotor bearing seats are respectively connected with an inner rotor front bearing and an inner rotor rear bearing, and the inner rotor bearing and the inner rotor bearing are respectively connected.
  • the seat is used to support and fix the inner rotor.
  • the front section and the rear section of the outer stator are respectively fixedly connected with an outer rotor bearing seat, and the two outer rotor bearing seats are respectively connected with an outer rotor front bearing and an outer rotor rear bearing, and the outer rotor bearing and the outer rotor bearing are respectively connected.
  • the seat is used to support and fix the outer rotor.
  • the double-rotor generator is arranged in the nacelle, the front main shaft and the rear main shaft respectively protrude from both sides of the nacelle, and the front main bearing seat and the rear main bearing are fixedly arranged in the nacelle
  • the front main bearing seat is connected to the front main bearing
  • the rear main bearing seat is connected to the rear main bearing
  • the bearing seat and the bearing are used for fixing the front main shaft and the rear main shaft.
  • an electrical system and a control system are arranged inside the nacelle, the wind measurement system is arranged on the upper part of the outer surface of the nacelle, the nacelle is connected to the tower through a yaw system, and the electrical signal lines of the electrical system and the control system pass through the front main shaft. Internally, it is connected to the yaw system, wind measurement system and pitch system.
  • the present utility model at least has the following beneficial effects:
  • the utility model adopts the double rotor generator direct drive structure, the front and rear wind rotors are respectively connected to the front and rear wind turbine generators of the novel double rotor generator through the front and rear main shafts.
  • the decoupling of the operation and control of the front and rear wind rotors is realized, the independent control of the front and rear wind rotor speeds is realized, and the coordinated control of the speed of the two wind rotors is realized. the goal of.
  • the wind turbine provided by the utility model is provided with two front and rear wind rotors, the front and rear wind rotors capture wind energy at the same time, and drive the front and rear wind turbine generators of the dual-rotor engine to generate electricity at the same time, which greatly improves the utilization rate of wind energy, and is comparable to wind turbines of the same capacity.
  • the radius of the wind rotor is shortened, and the load of a single wind rotor is reduced; and the wind rotor of the present invention adopts counter-rotation, that is, the rotation directions of the two wind rotors are opposite, which can increase the output power of the wind rotor and further improve the utilization of wind energy. Rate.
  • the utility model adopts a low-speed permanent magnet synchronous dual-rotor generator, and the outer/inner rotor of the generator is directly connected to the front/rear wind wheel main shaft, eliminating the need for a gearbox, reducing the weight of the engine room on the one hand, and reducing unit failures on the other hand. rate and improve the utilization rate of the unit.
  • the dual-rotor generator of the present utility model is provided with an outer rotor, an outer stator, an inner stator and an inner rotor in sequence from the outside to the inside, and a magnetic isolation layer is arranged between the inner stator and the outer stator, and a magnetic isolation material is used for the outer rotor and the outer stator.
  • the inner stator is magnetically isolated to realize the complete decoupling of the electromagnetic and structure between the inner rotor and the outer rotor, so that the inner and outer rotor speeds of the dual-rotor motor can be independently controlled, thereby realizing the independent control of the two wind rotors, making the whole machine more efficient,
  • the power density of the generator is effectively improved, the structure is compact, the consumption of permanent magnet materials and magnetic steel of the dual-rotor generator is reduced, the volume of the generator is reduced, and the materials such as the wind turbine cabin will be reduced, and the material utilization rate will be further improved.
  • Fig. 1 is the structure schematic diagram of the double wind turbine wind turbine of the present invention
  • Fig. 2 is a schematic diagram of the counter-rotation of the double-wind turbine wind turbine of the present invention.
  • 1 is the front wind wheel
  • 2 is the rear wind wheel
  • 3 is the front main shaft
  • 4 is the rear main shaft
  • 5 is the front main bearing
  • 6 is the rear main bearing
  • 7 is the front main bearing seat
  • 8 is the rear main bearing seat
  • 9 is the engine room
  • 10 is the front bearing of the outer rotor
  • 11 is the rear bearing of the outer rotor
  • 12 is the front bearing of the inner rotor
  • 13 is the rear bearing of the inner rotor
  • 14 is the outer rotor
  • 15 is the outer stator
  • 16 is the magnetic isolation layer
  • 17 is the inner stator
  • 18 is the inner rotor
  • 19 is the tower
  • 20 is the anemometer.
  • a direct-drive counter-rotating double-wind turbine wind turbine the double-rotor generator is arranged in the nacelle 9, the front wind turbine generator of the double-rotor generator is connected to the front main shaft 3, and the front main shaft 3 is connected from the nacelle 9
  • One end extends out to connect to the front wind wheel 1
  • the rear wind turbine generator of the dual rotor generator is connected to the rear main shaft 4
  • the rear main shaft 4 extends from the other end of the nacelle 9 to connect to the rear wind wheel 2
  • the front wind wheel 1 rotates to drive the front
  • the wind turbine generator rotates to generate electricity
  • the rear wind turbine 2 rotates to drive the rear wind turbine generator 18 to rotate and generate electricity.
  • the front wind turbine 1 and the rear wind turbine 2 rotate in opposite directions, that is, reverse rotation, as shown in Figure 2 .
  • the front rotor 1 and the rear rotor 2 are arranged in series, the diameter of the front rotor 1 is larger than that of the rear rotor 2, the front rotor 1 is arranged in the upwind direction, and the rear rotor 2 is arranged in the downwind direction.
  • the wind rotor 1 and the rear wind rotor 2 are provided with a pitch system.
  • the diameter of the rear rotor 1 is about 1/2 of the diameter of the front rotor 2 .
  • the double-rotor generator unit is provided with an outer rotor 14, an outer stator 15, a magnetic isolation layer 16, an inner stator 17, and an inner rotor 18 in sequence from the outside to the inside.
  • the sub 17 is sleeved on the rear wind turbine generator formed on the inner rotor 18, the front wind turbine generator is sleeved on the rear wind turbine generator, and a magnetic isolation layer 16 is arranged between the front wind turbine generator and the rear wind turbine generator,
  • the magnetic isolation layer 16 can completely eliminate the electromagnetic influence of the outer rotor 14 and the inner rotor 18, realize the complete electromagnetic and structural decoupling between the inner rotor and the 18 and the outer rotor 14, so that the inner and outer rotor speeds of the dual-rotor motor can be independently controlled, and then Realize the independent control of the two wind turbines, making the whole machine more efficient.
  • the outer rotor 14 is arranged corresponding to the outer stator 15 with an air gap therebetween, and the inner rotor 17 and the inner rotor 18 are arranged correspondingly with an air gap therebetween.
  • the outer rotor 14 is a permanent magnet rotor
  • the inner rotor is a permanent magnet rotor or an excitation rotor
  • the outer stator 15 and the inner stator 17 are winding stators.
  • the front and rear sections of the outer stator 15 and the inner stator 18 are respectively provided with an outer rotor front bearing 10 , an outer rotor rear bearing 11 , an inner rotor front bearing 12 , and an inner rotor rear bearing for supporting the outer rotor 14 and the inner rotor 18 , respectively.
  • the dual-rotor generator adopts a low-speed permanent magnet synchronous dual-rotor generator.
  • the front main shaft 3 is connected to the outer rotor 14 of the generator, and the rotation of the front main shaft 3 drives the outer rotor 14 to rotate and generate electricity;
  • the rear main shaft 4 is connected to the inner rotor 18 of the generator, and the rotation of the rear main shaft 4 drives the inner rotor 18 to rotate and generate electricity;
  • the seat 7 and the rear bearing seat 8 are fixed in the nacelle 9 and are arranged on both sides of the double rotor generator, the front main bearing 5 is fixed in the front bearing base 7, the rear main bearing 6 is fixed in the rear bearing seat 8, and the front wind wheel is fixed in the rear bearing seat 8.
  • the main shaft 3 is supported by the front main bearing 5 , and the rear rotor main shaft 4 is supported by the rear main bearing 6 .
  • the front main shaft 3 is connected to the outer rotor 14 through a flange
  • the rear main shaft 4 is connected to the output shaft of the inner rotor 18 through a coupling.
  • the front main shaft 3 can also be connected to the outer rotor 14 by bolts.
  • an electrical system and a control system are arranged inside the nacelle 9, the wind measurement system is arranged on the upper part of the outer surface of the nacelle 9, the nacelle 9 is connected to the tower 19 through a yaw system, and the electrical signal lines of the electrical system and the control system pass through the generator The main shaft is then connected to the yaw system, wind measurement system and pitch system from the slip ring.
  • the wind measuring system is an anemometer 20 .
  • the same rotation direction of the front and rear wind wheels can be selected, or the radius ratio of the front and rear wind wheels can be changed;
  • the permanent magnets of the outer rotor 14 and the inner rotor 18 can be set to be excited.
  • a cooling layer is arranged between the outer stator 15 and the inner stator 17, the cooling layer is water-cooled, and the cooling layer is provided with a cooling water pipe.
  • the cooling layer cools the inner stator 15 and the outer stator 17 to further improve the output efficiency of the generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种直驱对转双风轮风电机组,包括双转子发电机以及通过前主轴(3)和后主轴(4)串列布置在双转子发电机两端的前风轮(1)和后风轮(2),双转子发电机由外到里依次设置外转子(14)、外定子(15)、隔磁层(16)、内定子(17)和内转子(18),外转子(14)套设在外定子(15)上,外定子(15)套设在内定子(17)上且两者之间设置有隔磁层(16),内定子(17)套设在内转子(18)上;双转子发电机的前后风轮发电机在结构、电磁和控制三方面解耦,进而实现前后风轮在运行和控制的解耦,以及前后风轮转速独立控制,提高了机组整体效率。

Description

一种直驱对转双风轮风电机组 技术领域
本实用新型属于新型风力发电机组技术领域,具体属于一种直驱对转双风轮风电机组。
背景技术
随着风电装机容量的快速发展,目前主流风电机组采用单风轮水平轴形式,且朝着大型化发展,但随着风电机组大型化发展,其核心关键技术受到诸多限制,迫切需要发展新形式高效风能转换装置。
串列式双风轮结构形式以其高效率、关键核心设备成熟受到重视。但是目前现有报道的双风轮机组采用两风轮共轴或通过锥形齿轮连接至主轴。所述结构形式两风轮只能同转速,不能实现两风轮转速独立控制,即两风轮不能实现解耦,进而导致两风轮不能在各自的高效区运行,导致所述机组整机效率偏低。
实用新型内容
为了解决现有技术中存在的串列式双风轮机组在运行上未能解耦,运行效率偏低的问题,本实用新型提出一种传动解耦的直驱对转双风轮风电机组,实现两风轮转速协同控制,以机组整体出力最优为目标,机组整体效率最高;提高风能利用率,减小风轮直径,降低风力发电机组度电成本;
为实现上述目的,本实用新型提供如下技术方案:一种直驱对转双风轮风电机组,包括双转子发电机以及串列布置在双转子发电机两端的前风轮和后风轮,所述双转子发电机由外到里依次设置外转子、外定子、隔磁层、内定子和内转子,所述外转子套设在外定子上,所述外定子套设在所述内定子上且两者之间设置有隔磁层,所述内定子套设在内转子上;所述外转子通过前主轴连接所述前风轮,所述内转子通过后主轴连接双风轮中的后风轮。
进一步的,所述前风轮和后风轮串列布置,所述前风轮的直径大于所述后风轮的直径,所述前风轮布置在上风向,所述后风轮布置在下风向,所述前风轮和后风轮旋转方向相反,所述前风轮和后风轮上设置有变桨系统。
进一步的,所述双转子发电机为低速永磁同步双转子发电机,所述前主轴旋转带动所述外转子旋转发电;所述后主轴旋转带动所述内转子旋转发电。
进一步的,所述外转子通过法兰与前主轴连接,所述内转子的输出轴通过联轴器与后主轴连接。
进一步的,所述外转子和外定子构成前风轮发电机,所述内定子和内转子构成后风轮发电机,所述前风轮发电机套设在所述后风轮发电机上,且所述前风轮发电机的输出轴与所述后风轮发电机的输出轴同轴并且方向相反;所述外转子和外定子之间留有气隙,所述定子和内转子之间留有气隙;所述外转子为永磁转子,所述内转子为永磁转子或励磁转子,所述外定子和内定子为绕组定子。
进一步的,所述隔磁层为隔磁材料,所述隔磁层用于对内转子与外转子产生的电磁进行有效隔离。
进一步的,所述内定子的前段和后段分别固定连接一内转子轴承座,所述俩内转子轴承座分别连接有内转子前轴承和内转子后轴承,所述内转子轴承和内转子轴承座用于支撑和固定所述内转子。
进一步的,所述外定子的前段和后段分别固定连接一外转子轴承座,所述俩外转子轴承座分别连接有外转子前轴承和外转子后轴承,所述外转子轴承和外转子轴承座用于支撑和固定所述外转子。
进一步的,还包括机舱,所述双转子发电机设置在所述机舱内,所述前主轴和后主轴分别从机舱两侧伸出,所述机舱内固定设置有前主轴承座和后主轴承座,所述前主轴承座连接前主轴承,所述后主轴承座连接后主轴承,所述轴承座和轴承用于固定所述前主轴和后主轴。
进一步的,所述机舱内部设置有电气系统及控制系统,测风系统设置在机舱外表面上部,所述机舱通过偏航系统连接到塔筒上,电气系统及控制系统电信号线穿过前主轴内部后接入到偏航系统、测风系统及变桨系统中。
与现有技术相比,本实用新型至少具有以下有益效果:
本实用新型采用双转子发电机直驱结构,前后风轮通过前后主轴分别连接至新型双转子发电机的前 后风轮发电机上,双转子发电机的前后风轮发电机在结构、电磁、控制三方面实现完全解耦,进而实现前后风轮在运行和控制方面的解耦,实现前后风轮转速独立控制,实现两风轮转速协同控制,以机组整体出力最优为目标,达到机组整体效率最高的目的。
进一步的,本实用新型提供的风电机组设有前后两个风轮,前后风轮同时捕获风能,带动双转子发动机的前后风轮发电机同时发电,极大地提高了风能利用率,与同等容量的单风轮机组相比缩短了风轮半径,减轻了单个风轮载荷;并且本实用新型的风轮采用对转,即两风轮旋转方向相反,可以增加风轮输出功率,进一步提高风能的利用率。
进一步的,本实用新型采用低速永磁同步双转子发电机,发电机外/内转子与前/后风轮主轴直连,省去了齿轮箱,一方面减轻机舱重量,另一方面减少机组故障率,提高机组利用率。
进一步的,本实用新型的双转子发电机由外到内依次设置外转子、外定子,内定子、内转子,并且在内定子与外定子之间设置隔磁层,采用隔磁材料对外转子和内定子进行隔磁,实现内转子与外转子之间电磁和结构的完全解耦,使双转子电机的内外转子转速可以独立控制,进而实现两风轮的独立控制,使整机效率更高,有效提高了发电机功率密度,结构紧凑,减少了双转子发电机永磁材料、磁钢等的用量,发电机体积减小,对风电机组机舱等材料都会减小,进一步提高材料利用率。
采用了上述技术,能够有效地、大幅度地降低风力发电机组度电成本。
附图说明
图1为本实用新型的双风轮风电机组结构示意图;
图2为本实用新型的双风轮风电机组对转示意图。
附图中:1为前风轮、2为后风轮、3为前主轴、4为后主轴、5为前主轴承、6为后主轴承、7为前主轴承座、8为后主轴承座、9为机舱、10为外转子前轴承、11为外转子后轴承、12为内转子前轴承、13为内转子后轴承、14为外转子、15为外定子、16为隔磁层、17为内定子、18为内转子、19为塔筒、20为风速仪。
具体实施方式
以下结合附图对本实用新型的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本实用新型,并不用于限定本实用新型。
如图1所示,一种直驱对转双风轮风电机组,双转子发电机设置在机舱9中,双转子发电机的前风轮发电机与前主轴3连接,前主轴3从机舱9的一端伸出连接前风轮1,双转子发电机的后风轮发电机与后主轴4连接,后主轴4从机舱9的另一端伸出连接后风轮2,前风轮1旋转带动前风轮发电机转动发电,后风轮2旋转带动后风轮发电机18转动发电,为捕获更多风能,前风轮1和后风轮2旋转方向相反,即对转,如图2所示。
优选的,前风轮1和后风轮2串列布置,前风轮1的直径大于后风轮2的直径并且前风轮1布置在上风向,后风轮2布置在下风向,所述前风轮1和后风轮2内设置有变桨系统。
优选的,后风轮1的直径约为前风轮直径2的1/2。
双转子发电机单元由外到内依次设置外转子14、外定子15、隔磁层16、内定子17、内转子18,外转子14套设在外定子15上组成的前风轮发电机,内定子17套设在内转子18上组成的后风轮发电机,前风轮发电机套设在后风轮发电机上并且前风轮发电机和后风轮发电机之间设置隔磁层16,隔磁层16可以彻底消除外转子14和内转子18的电磁影响,实现内转子与18和外转子14之间电磁和结构的完全解耦,使双转子电机的内外转子转速可以独立控制,进而实现两风轮的独立控制,使整机效率更高。
优选的,外转子14与外定子15对应设置并且之间留有气隙,内转子17与内转子18对应设置并且之间留有气隙。
优选的,外转子14为永磁体转子、内转子为永磁转子或励磁转子,外定子15和内定子17为绕组定子。
优选的,外定子15和内定子18的前段和后段还分别设置有用于支撑外转子14和内转子18的外转 子前轴承10、外转子后轴承11、内转子前轴承12、内转子后轴承13。
优选的,双转子发电机采用低速永磁同步双转子发电机。
优选的,前主轴3与发电机外转子14连接,前主轴3旋转带动外转子14旋转发电;后主轴4与发电机内转子18连接,后主轴4旋转带动内转子18旋转发电;前主轴承座7和后轴承座8固定在机舱9内并且设置在双转子发电机的两侧,前主轴承5固定在前轴承底座7内,后主轴承6固定在后轴承座8内,前风轮主轴3由前主轴承5支撑,后风轮主轴4由后主轴承6支撑。
优选的,前主轴3通过法兰连接外转子14,后主轴4通过联轴器连接内转子18的输出轴。
优选的,前主轴3还可通过螺栓连接外转子14。
优选的,机舱9内部设置有电气系统及控制系统,测风系统设置在机舱9外表面上部,机舱9通过偏航系统连接到塔筒19上,电气系统及控制系统电信号线穿过发电机主轴内部后从滑环接入到偏航系统、测风系统及变桨系统中。
优选的,测风系统为风速仪20。
以上,为本实用新型技术方案的基础方案,本领域的技术人员在基础方案的基础上,可以选择或者组合以下技术手段:
在前风轮1与后风轮2的旋转方向上,可将前后风轮选择相同的旋转方向,或改变前后风轮的半径比;
在双转子发电机的设计上,可将外转子14和内转子18的永磁体设置为励磁方式。
在外定子15和内定子17之间上设置冷却层,冷却层采用水冷,冷却层设有冷却水管,冷却层对内定子15与外定子17进行冷却,进一步提高发电机输出效率。
最后应说明的是:以上仅为本实用新型的优选实施例而已,并不用于限制本实用新型,尽管参照前述实施例对本实用新型进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (10)

  1. 一种直驱对转双风轮风电机组,其特征在于,包括双转子发电机以及串列布置在双转子发电机两端的前风轮(1)和后风轮(2),所述双转子发电机由外到里依次设置外转子(14)、外定子(15)、隔磁层(16)、内定子(17)和内转子(18),所述外转子(14)套设在外定子(15)上,所述外定子(15)套设在所述内定子(17)上且两者之间设置有隔磁层(16),所述内定子(17)套设在内转子(18)上;所述外转子(14)通过前主轴(3)连接所述前风轮(1),所述内转子(18)通过后主轴(4)连接双风轮中的后风轮(2)。
  2. 根据权利要求1所述的一种驱对转双风轮风电机组,其特征在于,所述前风轮(1)和后风轮(2)串列布置,所述前风轮(1)的直径大于所述后风轮(2)的直径,所述前风轮(1)布置在上风向,所述后风轮(2)布置在下风向,所述前风轮(1)和后风轮(2)旋转方向相反,所述前风轮(1)和后风轮(2)上设置有变桨系统。
  3. 根据权利要求1所述的一种驱对转双风轮风电机组,其特征在于,所述双转子发电机为低速永磁同步双转子发电机,所述前主轴(3)旋转带动所述外转子(14)旋转发电;所述后主轴(4)旋转带动所述内转子(18)旋转发电。
  4. 根据权利要求1所述的一种驱对转双风轮风电机组,其特征在于,所述外转子(14)通过法兰与前主轴(3)连接,所述内转子(18)的输出轴通过联轴器与后主轴(4)连接。
  5. 根据权利要求1所述的一种驱对转双风轮风电机组,其特征在于,所述外转子(14)和外定子(15)构成前风轮发电机,所述内定子(17)和内转子(18)构成后风轮发电机,所述前风轮发电机套设在所述后风轮发电机上,且所述前风轮发电机的输出轴与所述后风轮发电机的输出轴同轴并且方向相反;所述外转子(14)和外定子(15)之间留有气隙,所述定子(17)和内转子(18)之间留有气隙;所述外转子(14)为永磁转子,所述内转子(17)为永磁转子或励磁转子,所述外定子和内定子为绕组定子。
  6. 根据权利要求1所述的一种驱对转双风轮风电机组,其特征在于,所述隔磁层(16)为隔磁材料,所述隔磁层(16)用于对内转子(18)与外转子(16)产生的电磁进行有效隔离。
  7. 根据权利要求5所述的一种驱对转双风轮风电机组,其特征在于,所述内定子(17)的前段和后段分别固定连接一内转子轴承座,所述俩内转子轴承座分别连接有内转子前轴承(12)和内转子后轴承(13),所述内转子轴承和内转子轴承座用于支撑和固定所述内转子(18)。
  8. 根据权利要求5所述的一种驱对转双风轮风电机组,其特征在于,所述外定子(15)的前段和后段分别固定连接一外转子轴承座,所述俩外转子轴承座分别连接有外转子前轴承(10)和外转子后轴承(11),所述外转子轴承和外转子轴承座用于支撑和固定所述外转子(14)。
  9. 根据权利要求1所述的一种驱对转双风轮风电机组,其特征在于,还包括机舱(9),所述双转子发电机设置在所述机舱(9)内,所述前主轴(3)和后主轴(4)分别从机舱(9)两侧伸出,所述机舱(19)内固定设置有前主轴承座(7)和后主轴承座(8),所述前主轴承座(7)连接前主轴承(5),所述后主轴承座(8)连接后主轴承(6),所述轴承座和轴承用于固定所述前主轴(3)和后主轴(4)。
  10. 根据权利要求1所述的一种驱对转双风轮风电机组,其特征在于,所述机舱(9)内部设置有电气系统及控制系统,测风系统设置在机舱(9)外表面上部,所述机舱(9)通过偏航系统连接到塔筒(19)上,电气系统及控制系统电信号线穿过前主轴(3)内部后接入到偏航系统、测风系统及变桨系统中。
PCT/CN2021/114609 2020-11-30 2021-08-25 一种直驱对转双风轮风电机组 WO2022110932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022840107.0 2020-11-30
CN202022840107.0U CN214366534U (zh) 2020-11-30 2020-11-30 一种直驱对转双风轮风电机组

Publications (1)

Publication Number Publication Date
WO2022110932A1 true WO2022110932A1 (zh) 2022-06-02

Family

ID=77981185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114609 WO2022110932A1 (zh) 2020-11-30 2021-08-25 一种直驱对转双风轮风电机组

Country Status (2)

Country Link
CN (1) CN214366534U (zh)
WO (1) WO2022110932A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001072A (zh) * 2006-12-15 2007-07-18 天津市新源电气科技有限公司 套叠双转子风电励磁方式及其控制系统及其电机
JP2009281228A (ja) * 2008-05-21 2009-12-03 Koji Arima 風力発電装置
RU2404371C1 (ru) * 2009-05-12 2010-11-20 Юрий Фёдорович Ващенко Планетарная трансмиссия к генератору электрического тока ветроэлектрической станции
US20160123299A1 (en) * 2014-11-02 2016-05-05 Tangshan TOYODA Technology Co., Ltd Dual rotor wind turbine generator set
CN208441963U (zh) * 2018-06-11 2019-01-29 贵州电网有限责任公司 一种风力发电设备
CN110957822A (zh) * 2019-12-09 2020-04-03 齐鲁工业大学 一种双转子磁通切换风力发电机及发电系统
CN110971095A (zh) * 2019-12-12 2020-04-07 齐鲁工业大学 一种双定子风力发电机及发电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001072A (zh) * 2006-12-15 2007-07-18 天津市新源电气科技有限公司 套叠双转子风电励磁方式及其控制系统及其电机
JP2009281228A (ja) * 2008-05-21 2009-12-03 Koji Arima 風力発電装置
RU2404371C1 (ru) * 2009-05-12 2010-11-20 Юрий Фёдорович Ващенко Планетарная трансмиссия к генератору электрического тока ветроэлектрической станции
US20160123299A1 (en) * 2014-11-02 2016-05-05 Tangshan TOYODA Technology Co., Ltd Dual rotor wind turbine generator set
CN208441963U (zh) * 2018-06-11 2019-01-29 贵州电网有限责任公司 一种风力发电设备
CN110957822A (zh) * 2019-12-09 2020-04-03 齐鲁工业大学 一种双转子磁通切换风力发电机及发电系统
CN110971095A (zh) * 2019-12-12 2020-04-07 齐鲁工业大学 一种双定子风力发电机及发电系统

Also Published As

Publication number Publication date
CN214366534U (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN100495900C (zh) 套叠式双转子变速变频发电机
CN112324623A (zh) 一种直驱对转双风轮风电机组
CN101660499B (zh) 并网型混合驱动式变桨变速恒频风力发电机组
CN101001036B (zh) 变速恒频风电机及其励磁控制系统
Bensalah et al. Large wind turbine generators: State-of-the-art review
CN201496204U (zh) 并网型混合驱动式变桨变速恒频风力发电机组
WO2011106919A1 (zh) 风力发电装置
CN1976178B (zh) 变速恒频励磁控制系统
CN106050575A (zh) 多风轮双转子风力发电机组树
CN201004589Y (zh) 串联式双转子风力发电机及其变速变频励磁系统
CN100495901C (zh) 变速变频风力发电机励磁控制系统
WO2022110932A1 (zh) 一种直驱对转双风轮风电机组
CN112302878A (zh) 一种半直驱串列双风轮风电机组
CN100499352C (zh) 套叠式双转子发电机变速变频励磁控制系统
CN100546169C (zh) 套叠双转子风机变速变频励磁方法
CN200980029Y (zh) 套叠式双转子变速变频励磁发电机
CN1976180B (zh) 变速变频风电机及其励磁控制系统
CN214304168U (zh) 一种半直驱串列双风轮风电机组
CN200983569Y (zh) 串联双转子风力发电机变速变频励磁系统
CN114123717A (zh) 一种大功率混合式风电齿轮箱
CN108282064B (zh) 一种交流及永磁混合励磁双馈风力发电机及发电系统
CN201854159U (zh) 1.5和2兆瓦级中转子低速永磁同步风力发电机
CN200980032Y (zh) 串联双转子变速变频励磁风电机
CN205895498U (zh) 一种多风轮双转子风力发电机组树
CN201854158U (zh) 2.5、3和3.6兆瓦中转子低速永磁同步风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21896436

Country of ref document: EP

Kind code of ref document: A1