WO2022110834A1 - 船用电控系统及方法 - Google Patents

船用电控系统及方法 Download PDF

Info

Publication number
WO2022110834A1
WO2022110834A1 PCT/CN2021/106418 CN2021106418W WO2022110834A1 WO 2022110834 A1 WO2022110834 A1 WO 2022110834A1 CN 2021106418 W CN2021106418 W CN 2021106418W WO 2022110834 A1 WO2022110834 A1 WO 2022110834A1
Authority
WO
WIPO (PCT)
Prior art keywords
control module
speed control
fuel injection
module
drive control
Prior art date
Application number
PCT/CN2021/106418
Other languages
English (en)
French (fr)
Inventor
俞德馨
李韬
Original Assignee
中船动力研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中船动力研究院有限公司 filed Critical 中船动力研究院有限公司
Publication of WO2022110834A1 publication Critical patent/WO2022110834A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems

Definitions

  • the embodiments of the present application relate to marine control technologies, for example, to a marine electrical control system and method.
  • the embodiments of the present application disclose a marine electrical control system and method.
  • An embodiment of the present application provides a marine electronic control system
  • the marine electronic control system includes: a main engine speed control module, a fuel injection execution module, and a drive control module; wherein, the main engine speed control module includes a first main engine speed control module and a third engine speed control module. Two main engine speed control module;
  • the first main engine speed control module is connected with the drive control module, and the drive control module is respectively connected with the fuel injection execution module and the second main engine speed control module;
  • the drive control module is configured to control the fuel injection execution module to execute the fuel injection instruction output by the second host rotational speed control module in response to determining that the first main engine rotational speed control module is in an abnormal state.
  • An embodiment of the present application provides a marine electronic control method, which is applied to a marine electronic control system.
  • the marine electronic control system includes a main engine speed control module, a fuel injection execution module and a drive control module, and the main engine speed control module includes a first A host speed control module and a second host speed control module, the first host speed control module is connected to the drive control module, and the drive control module is respectively connected to the fuel injection execution module and the second host speed control module connection, the marine electronic control method includes:
  • the drive control module controls the fuel injection execution module to execute the fuel injection instruction output by the second main engine speed control module.
  • Fig. 1 is a structural block diagram of a marine electronic control system in an embodiment of the present application
  • Fig. 2 is the working principle diagram of two kinds of host rotational speed control modules in the embodiment of the present application
  • FIG. 3 is a structural block diagram of another marine electronic control system in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the second drive control module monitoring the fuel injection command output of the first drive control module in the embodiment of the present application;
  • FIG. 5 is a schematic diagram of a comparator in an embodiment of the present application.
  • FIG. 1 is a structural block diagram of a marine electronic control system provided in an embodiment of the present application
  • FIG. 2 is a working principle diagram of two main engine speed control modules provided in an embodiment of the present application.
  • the marine electronic control system includes: a main engine speed control module 10 , a fuel injection execution module 30 and at least one drive control module 20 ; wherein, the main engine speed control module 10 includes a first engine speed control module 11 and a second engine speed control module 11 control module 12;
  • the first host speed control module 11 is connected to the drive control module 20, and the drive control module 20 is respectively connected to the fuel injection execution module 30 and the second host speed control module 12;
  • the drive control module 20 is configured to switch from the first main engine rotational speed control module 11 to the second main engine rotational speed control module 12 when the first main engine rotational speed control module 11 is abnormal, and control the fuel injection execution module 30 to execute the second main engine rotational speed control module 12 The output fuel injection command.
  • the fuel injection command output by the host speed control module 10 may include fuel injection data parameters such as fuel injection timing, fuel injection pulse width, and fuel injection quantity. Among them, the fuel injection time can be obtained according to the fuel injection timing, and the opening time of the fuel injector can be obtained according to the fuel injection pulse width.
  • the first host rotational speed control module 11 is the master device, and when the first host rotational speed control module 11 operates in a normal state, the drive control module 20 only executes the fuel injection command issued by the first host rotational speed control module 11 .
  • the second host speed control module 12 is a backup device. When the first host speed control module 11 is in an abnormal state, the drive control module 20 only executes the fuel injection command issued by the second host speed control module 12 .
  • both the first host rotational speed control module 11 and the second host rotational speed control module 12 send fuel injection commands to the drive control module 20, and the drive control module 20 simultaneously receives the first host rotational speed control module 11 and the second host rotational speed control module. 12, but, when the first host speed control module 11 is normal, the drive control module 20 only executes the fuel injection command issued by the first host speed control module 11; when the first host speed control module 11 is in In an abnormal state, the drive control module 20 only executes the fuel injection command issued by the second main engine speed control module 12, thereby ensuring the normal operation of the marine electronic control system.
  • the implementation process of the marine electronic control system is as follows: with reference to FIG. 1 and FIG. 2 , under normal circumstances, the first main engine speed control module 11 and the second main engine speed control module 12 send out sprays to the drive control module 20 at the same time.
  • the drive control module 20 receives and executes the fuel injection command issued by the first engine speed control module 11 , that is, controls the fuel injection execution module 30 according to the first engine speed control module 11
  • the issued fuel injection command executes the fuel injection action.
  • the drive control module 20 executes the fuel injection command issued by the first host rotational speed control module 11 once, it suspends one fuel injection cycle and waits for the next fuel injection command.
  • the drive control module 20 can only receive the fuel injection command sent by the second engine speed control module 12 but not the fuel injection command.
  • the drive control module 20 determines that the first engine speed control module 11 is abnormal, enters a fault state, and executes the fuel injection command issued by the second engine speed control module 12, and After that, the fuel injection command issued by the first main engine speed control module 11 is no longer executed. Therefore, by setting the redundant second engine speed control module 12, it can be ensured that the first engine speed control module 11 is directly switched to the second engine speed control module 12 when an abnormality occurs, thereby ensuring the normal operation of the marine electronic control system. In addition, by setting the drive control module 20 to suspend one fuel injection cycle after executing the fuel injection command issued by the first engine speed control module 11 once, and wait for the next fuel injection command, it is possible to improve whether the first engine speed control module has The accuracy of normal judgment.
  • the marine electronic control system includes: a main engine speed control module, a fuel injection execution module and at least one drive control module; wherein, the main engine speed control module includes a first main engine speed control module and a first engine speed control module. Two main engine rotational speed control modules; wherein, the first main engine rotational speed control module is connected with the driving control module, and the driving control module is respectively connected with the fuel injection execution module and the second main engine rotational speed control module; the driving control module is configured to respond to the determination of the first main engine rotational speed When the control module is in an abnormal state, the first host speed control module switches to the second host speed control module, and controls the fuel injection execution module to execute the fuel injection command output by the second host speed control module.
  • the marine electronic control system can realize that when the first engine speed control module is abnormal, it can automatically switch to the second engine speed control module, and control the fuel injection execution module to execute fuel injection according to the fuel injection command output by the second engine speed control module. order to realize the redundant control of the high-speed electrical control system to improve the reliability of the electrical control system and ensure the normal operation of the marine electrical control system.
  • the marine electronic control system may be oriented to a high-speed motor, that is, a marine high-speed electronic control system.
  • FIG. 3 is a structural block diagram of another marine electronic control system provided in the embodiment of the present application
  • FIG. 4 is a schematic diagram of the second drive control module monitoring the fuel injection command output of the first drive control module provided in the embodiment of the present application.
  • the driving control module 20 includes a first driving control module 21 and a second driving control module 22 , and the first driving control module 21 is respectively connected with the fuel injection execution
  • the module 30 , the first host speed control module 11 , and the second host speed control module 12 are connected, and the second drive control module 22 is respectively connected with the first drive control module 21 , the first host speed control module 11 , and the second host speed control module 12 .
  • the fuel injection execution module 30 is connected;
  • the second drive control module 22 is configured to monitor whether the operating state of the first drive control module is in a normal state, and when the first drive control module 21 is in an abnormal state, the first drive control module 21 is switched to the second drive control module 22 .
  • the running state includes a normal state and an abnormal state.
  • the first drive control module 21 and the second drive control module 22 will determine the transmission according to the fuel injection command issued by the host speed control module (the first host speed control module 11 or the second host speed control module 12).
  • the fuel injection command of the fuel injection execution module 30 is given.
  • the fuel injection command sent by the host speed control module to the drive control module 20 may be recorded as the first fuel injection command, and the first fuel injection command includes, for example, fuel injection timing, fuel injection pulse width, and fuel injection quantity.
  • the first fuel injection command may further include the circulating fuel injection amount, the current common rail pressure, and the like.
  • the fuel injection command sent by the drive control module 20 to the fuel injection execution module 30 may be recorded as a second fuel injection command, and the second fuel injection command is an electrical signal that instructs the fuel injection execution module 30 to perform fuel injection.
  • the first drive control module 21 operates normally, only the first drive control module 21 sends the fuel injection command, that is, the second fuel injection command, to the fuel injection execution module 30, and the second drive control module 22 does not send the fuel injection execution module 30 to the fuel injection execution module 30.
  • the module 30 sends the fuel injection command, that is, the second fuel injection command.
  • the fuel injection execution module 30 executes the fuel injection action according to the fuel injection command sent by the first drive control module 21, that is, the second fuel injection command.
  • the second drive control module 22 and the first drive control module 21 can be connected by setting a heartbeat packet through software, and the second drive control module 22 is set to monitor in real time whether the first drive control module 21 sends a fuel injection command to the fuel injection execution module 30 ie
  • the second fuel injection command is to monitor whether the first drive control module 21 is in a normal state, and switch to the second drive control module 22 when an abnormality is detected in the first drive control module 21, and the second drive control module 22 injects
  • the oil execution module 30 sends an oil injection command, that is, the second fuel injection command.
  • the fuel injection execution module 30 executes the fuel injection action according to the fuel injection command issued by the second driving control module 22, that is, the second fuel injection command.
  • both the first drive control module 21 and the second drive control module 22 will use the fuel injection command issued by the host speed control module (the first host speed control module 11 or the second host speed control module 12 ), that is, the first fuel injection.
  • the instruction to determine the injection timing, injection pulse width and injection quantity is to verify the fuel injection data parameters sent by the host speed control module to ensure the accuracy of the fuel injection parameters and avoid calculation errors caused by the host speed control module. Affect the normal operation of high-speed machines, improve energy utilization, and avoid waste.
  • the marine electronic control system further includes a fuel injection parameter detection module 40 , which is respectively connected to the first engine speed control module 11 and the second engine speed control module 12 .
  • the data detected by the fuel injection parameter detection module 40 is simultaneously sent to the first host speed control module 11 and the second host speed control module 12 .
  • the first host speed control module 11 and the second host speed control module 12 can calculate the fuel injection data parameters (ie, the first fuel injection command) according to the detection data sent by the fuel injection parameter detection module 40, and the fuel injection data parameters may include fuel injection. Timing, injection pulse width and injection quantity, etc.
  • the fuel injection parameter detection module 40 includes a crankshaft rotation speed detection unit 41 , a temperature detection unit 42 and an oil mist detection unit 43 , a crankshaft rotation speed detection unit 41 , a temperature detection unit 42 and an oil mist detection unit 41 . 43 are all connected to the host rotational speed control module 10 .
  • the host rotational speed control module 10 includes a first host rotational speed control module 11 and a second host rotational speed control module 12 .
  • the crankshaft rotational speed detection unit 41 is respectively connected with the first main engine rotational speed control module 11 and the second main engine rotational speed control module 12
  • the temperature detection unit 42 is respectively connected with the first main engine rotational speed control module 11 and the second main engine rotational speed control module 12
  • the unit 43 is respectively connected with the first host rotational speed control module 11 and the second host rotational speed control module 12 .
  • crankshaft rotational speed detection unit 41 the temperature detection unit 42 and the oil mist detection unit 43 are all configured to output dual output signals.
  • the crankshaft speed detection unit 41 may be a crankshaft speed sensor
  • the temperature detection unit 42 may be a temperature sensor
  • the oil mist detection unit 43 may be an oil mist sensor.
  • the crankshaft speed sensor some temperature sensors and oil mist sensors are considered for redundancy.
  • the crankshaft speed sensor selects Noris's FAHD13 series. This series of sensors can output two speed signals simultaneously into different systems.
  • the temperature sensor selected CMR's MBT19 series, a sensor with two PT1000 thermal resistance sensors. Due to the small shape of the machine and the compact mechanical structure, this choice saves the layout space of the sensor.
  • the marine electronic control system also includes a first CAN (Controller Area Network) bus, and the drive control module 20 communicates with the host rotational speed control module 10 through the first CAN bus L1. connect.
  • CAN Controller Area Network
  • the first host speed control module 11 is respectively connected to the first drive control module 21 and the second drive control module 22 through the first CAN bus L1 (ie, the solid arrow in the figure), and the second host speed control
  • the module 12 is also connected to the first driving control module 21 and the second driving control module 22 respectively through the first CAN bus L1 (ie, the solid arrow in the figure).
  • the first host speed control module 11 and the second host speed control module 12 each have an ID (Identity) number. Due to the characteristics of CAN bus transmission, the drive control module (the first drive control module or the second drive control module) can According to the ID number of the transmitted data, it is distinguished which fuel injection command issued by the host speed control module is received, that is, the first fuel injection command. Similarly, each of the first drive control module 21 and the second drive control module 22 is also provided with an ID number.
  • the marine electronic control system further includes a second CAN bus L2, and the drive control module 20 communicates with the host rotational speed control module 10 through the second CAN bus L2 when the first CAN bus L1 fails. connect.
  • the first host speed control module 11 is respectively connected to the first drive control module 21 and the second drive control module 22 through the second CAN bus L2 (ie, the dotted arrow in the figure), and the second host speed control module 12 is also connected to the first driving control module 21 and the second driving control module 22 respectively through the second CAN bus L2 (ie, the dotted arrow in the figure).
  • the drive control module 20 may not receive the fuel injection command from the host speed control module 10, that is, the first fuel injection command, due to the failure of the communication network, redundancy is designed in the communication between the drive control module 20 and the host speed control module 10.
  • the internal CAN line communication, that is, the second CAN bus is set up, which improves the reliability of the marine electronic control system.
  • the fuel injection execution module 30 includes a solenoid valve 31 and a fuel injector 32 .
  • the solenoid valve 31 is electrically connected to the first drive control module 21 and the second drive control module 22 respectively.
  • the solenoid valve 31 is electrically connected to the first drive control module 21 and the second drive control module 22 respectively.
  • the first drive control module 21 or the second drive control module 22 can control the fuel injection amount and fuel injection speed of the fuel injector 32 by controlling the conduction of the solenoid valve 31 and the number of conduction valves.
  • the marine electronic control system further includes a first relay switch S1, the first relay switch S1 is respectively connected with the first main engine speed control module 11 and the second main engine speed control module 12, the second The host rotational speed control module 12 controls the first host rotational speed control module 11 to be turned on or off through the first relay switch S1.
  • the second host speed control module 12 can control the first host speed control module 11 to be turned on or off by controlling the first relay switch S1 to be turned on or off.
  • the second main engine rotational speed control module 12 controls the first main engine rotational speed control module 11 to turn off by controlling the first relay switch S1 to turn off when the first main engine rotational speed control module 11 is abnormal, so as to ensure that an abnormality occurs in the first main engine rotational speed control module 11 Afterwards, the fuel injection command received by the drive control module 20 , that is, the first fuel injection command is only issued by the second host speed control module 12 to prevent errors in the control system, thereby improving the reliability of the electronic control system.
  • the marine electronic control system further includes a second relay switch S2, the second relay switch S2 is respectively connected with the first drive control module 21 and the second drive control module 22, and the second drive control The module 22 controls the first drive control module 21 to be turned on or off through the second relay switch S2.
  • the second drive control module 22 can control the turn-on or turn-off of the first drive control module 21 by controlling the turn-on or turn-off of the second relay switch S2.
  • the second drive control module 22 controls the first drive control module 21 to turn off by controlling the second relay switch S2 to turn off when the first drive control module 21 is abnormal, so as to ensure that the fuel injection is performed after the first drive control module 21 is abnormal.
  • the fuel injection command received by the execution module 30 that is, the second fuel injection command is only issued by the second drive control module 22 to prevent errors in the control system, thereby improving the reliability of the electronic control system.
  • the connection between the first drive control module 21 and the second drive control module 22 is always in the state of heartbeat packet connection verification, that is, when the first drive control module 21 operates normally, the heartbeat packet is normally received and sent. If the first drive control module 21 fails, the second drive control module cannot receive the heartbeat packet from the first drive control module 21, so the second drive control module 22 determines that the first drive control module 21 fails, and the second drive control module 22 passes the The second relay switch S2 is controlled to cut off the power supply of the first drive control module 21 , and the second drive control module 22 starts to issue a second fuel injection command to control the fuel injector 32 .
  • the fuel injection execution module 30 may use the high-speed acquisition and processing functions in the main chip in the fuel injection execution module 30 .
  • the main chip in the fuel injection execution module 30 can communicate through the drive chip to exchange the drive current and voltage parameters of the fuel injector. Meanwhile, the main chip in the fuel injection execution module 30 can control the fuel injector by driving the corresponding pins of the fuel injector of the driving chip through high and low levels.
  • the crankshaft speed detection unit 41 may be a crankshaft speed sensor
  • the temperature detection unit 42 may be a temperature sensor
  • the oil mist detection unit 43 may be an oil mist sensor.
  • the crankshaft speed sensor some temperature sensors and oil mist sensors are considered for redundancy.
  • a type of sensor selected for the crankshaft speed sensor can simultaneously output two speed signals into different systems.
  • a type of sensor selected for the temperature sensor can be a sensor with two PT1000 thermal resistances. Due to the small shape of the machine and the compact mechanical structure, this choice saves the layout space of the sensor.
  • the 24V frequency signal passes through the comparator, it is converted into a frequency signal with a peak value of 5V; the 5V frequency signal enters the main chip, and the frequency and period are calculated by the high-speed acquisition module of the main chip to complete the acquisition of the speed signal.
  • TLV represents the comparator
  • VDD_5V represents the 5V voltage signal
  • VDD_24V represents the 24V voltage signal
  • GND represents the ground
  • C299, C297 represent the capacitor
  • D116 represents the bidirectional diode
  • R341, R343, R344, R347, R349, R350, R353, R354, and R357 represent resistors.
  • the comparator TLV includes a negative input terminal IN-, a positive input terminal IN+, a first input terminal V+, a second input terminal V-, and an output terminal OUT.
  • the negative input terminal IN- of the comparator TLV inputs a 24V frequency signal, and the output terminal OUT outputs a 5V frequency signal.
  • the rotational speed control module includes the above-mentioned main chip and the comparator
  • the drive control module includes the above-mentioned main chip and the comparator
  • the rotational speed control module may be the first host rotational speed control module 11 or the second host rotational speed control module 12
  • the driving control module may be the first driving control module 21 or the second driving control module 22 .
  • the first main engine rotational speed control module 11 and the second main engine rotational speed control module 12 are configured to perform segmental PID (Proportion Integral Differential) adjustment through the collected crankshaft rotational speed signal, to control the output cyclic fuel injection quantity, and then to control the stability of the rotational speed.
  • segmental PID Proportion Integral Differential
  • the marine electronic control system further includes a first relay switch S1.
  • the first relay switch S1 is respectively connected to the first main engine rotational speed control module 11 and the second main engine rotational speed control module 12, and the second main engine rotational speed control module 12.
  • the host rotational speed control module 12 controls the first host rotational speed control module 11 to be turned on or off through the first relay switch S1.
  • the first host rotational speed control module 11 and the second host rotational speed control module 12 collect the same detection data through redundancy of sensor signals.
  • the first host rotational speed control module 11 and the second host rotational speed control module 12 can calculate the fuel injection command, ie, the first fuel injection command, through the same program, and simultaneously exchange the calculated data through the CAN bus.
  • the data calculated by the first host rotational speed control module 11 will be compared and verified in the second host rotational speed control module 12. If the data calculated by the first host rotational speed control module 11 exceeds a reasonable range, it is determined that the first host rotational speed control module 11 is invalid. .
  • the second main engine rotational speed control module 12 will cut off the power supply of the first main engine rotational speed control module 11 by controlling the first relay switch S1, and the fuel injection execution module 30 cannot receive the first fuel injection sent by the first main engine rotational speed control module 11.
  • the first fuel injection command issued by the second main engine speed control module 12 is started to be executed.
  • the first fuel injection command of the first host speed control module 11 and the first fuel injection command of the second host speed control module 12 can identify the source of the command through the ID (Identity, identification) frame of the CAN message.
  • One of the failure modes mentioned above is that the first host speed control module 11 is running but the output calculation result is incorrect, and another failure mode is that the first host speed control module 11 stops outputting the fuel injection quality.
  • the second host rotational speed control module 12 will directly cut off the power supply of the first host rotational speed control module 11 by controlling the first relay switch S1.
  • the embodiment of the present application also provides a marine electronic control method, which is applied to a marine electronic control system.
  • the marine electronic control system includes a main engine speed control module, a fuel injection execution module and a drive control module, and the main engine speed control module includes a A main engine rotational speed control module and a second main engine rotational speed control module, the first main engine rotational speed control module is connected to the drive control module, and the drive control module is respectively connected to the fuel injection execution module and the second main engine rotational speed control module Module connection, the marine electrical control method includes:
  • the drive control module controls the fuel injection execution module to execute the fuel injection instruction output by the second main engine speed control module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Safety Devices In Control Systems (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

一种船用电控系统及方法。船用电控系统包括主机转速控制模块(10)、喷油执行模块(30)和驱动控制模块(20);其中,主机转速控制模块(10)包括第一主机转速控制模块(11)和第二主机转速控制模块(12);其中,第一主机转速控制模块(11)与驱动控制模块(20)连接,驱动控制模块(20)分别与喷油执行模块(30)和第二主机转速控制模块(12)连接。

Description

船用电控系统及方法
本公开要求在2020年11月26日提交中国专利局、申请号为202022788347.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请实施例涉及船用控制技术,例如涉及一种船用电控系统及方法。
背景技术
随着科技创新的发展,船舶动力系统从原来的人工机械结构控制转变为电子控制。而且,船舶的运输能力是别的交通工具无法代替的,因此船舶在人们生活中有形无形地占据着重要的地位。随着船舶的大量运用,随之而来的问题就是对船用电控系统的可靠性要求也越来越高。
发明内容
本申请实施例公开了一种船用电控系统及方法。
本申请实施例提供了一种船用电控系统,船用电控系统包括:主机转速控制模块、喷油执行模块和驱动控制模块;其中,所述主机转速控制模块包括第一主机转速控制模块和第二主机转速控制模块;
其中,所述第一主机转速控制模块与所述驱动控制模块连接,所述驱动控制模块分别与所述喷油执行模块和所述第二主机转速控制模块连接;
所述驱动控制模块设置为响应于确定所述第一主机转速控制模块处于异常状态,控制所述喷油执行模块执行所述第二主机转速控制模块输出的喷油指令。
本申请实施例提供了一种船用电控方法,应用于船用电控系统,所述船用电控系统包括主机转速控制模块、喷油执行模块和驱动控制模块,所述主机转速控制模块包括第一主机转速控制模块和第二主机转速控制模块,所述第一主机转速控制模块与所述驱动控制模块连接,所述驱动控制模块分别与所述喷油执行模块和所述第二主机转速控制模块连接,所述船用电控方法包括:
所述驱动控制模块响应于确定所述第一主机转速控制模块处于异常状态,控制所述喷油执行模块执行所述第二主机转速控制模块输出的喷油指令。
附图说明
图1是本申请实施例中的一种船用电控系统的结构框图;
图2是本申请实施例中的两种主机转速控制模块的工作原理图;
图3是本申请实施例中的另一种船用电控系统的结构框图;
图4是本申请实施例中的第二驱动控制模块监测第一驱动控制模块喷油指令输出示意图;
图5为本申请实施例中的比较器的示意图。
具体实施方式
相关技术中,当船舶运行过程中遇到极端情况导致主控制器失效时,会对船舶电控系统的可靠性带来巨大的危害。因此,如何提高船舶动力系统中电控系统的可靠性成为亟待解决的难题。
下面结合附图和实施例对本申请进行说明。另外,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
一种实施例
图1为本申请实施例中提供的一种船用电控系统的结构框图,图2是本申请实施例中提供的两种主机转速控制模块的工作原理图。参考图1,该船用电控系统包括:主机转速控制模块10、喷油执行模块30和至少一个驱动控制模块20;其中,主机转速控制模块10包括第一主机转速控制模块11和第二主机转速控制模块12;
其中,第一主机转速控制模块11与驱动控制模块20连接,驱动控制模块20分别与喷油执行模块30和第二主机转速控制模块12连接;
驱动控制模块20设置为在第一主机转速控制模块11异常时,由第一主机转速控制模块11切换至第二主机转速控制模块12,并控制喷油执行模块30执行第二主机转速控制模块12输出的喷油指令。
其中,主机转速控制模块10输出的喷油指令可以包括喷油正时、喷油脉宽和喷油量等喷油数据参数。其中,根据喷油正时可以获取喷油时间,根据喷油脉宽可以获取喷油器的开启时间。
其中,第一主机转速控制模块11为主设备,第一主机转速控制模块11的运行情况处于正常状态时,驱动控制模块20只执行第一主机转速控制模块11发出的喷油指令。作为冗余考虑,第二主机转速控制模块12为备用设备,当第一主机转速控制模块11处于异常状态时,驱动控制模块20只执行由第二主机转速控制模块12发出的喷油指令。
正常情况下,第一主机转速控制模块11和第二主机转速控制模块12均向驱动控制模块20发出喷油指令,驱动控制模块20同时接收第一主机转速控制模块11和第二主机转速控制模块12发出的喷油指令,但是,在第一主机转速控制模块11正常的情况下,驱动控制模块20只执行第一主机转速控制模块11发出的喷油指令;在第一主机转速控制模块11处于异常状态时,驱动控制模块20只执行第二主机转速控制模块12发出的喷油指令,由此可以确保船用电控系统的正常运行。
在本实施例中,该船用电控系统的实现过程为:结合图1和图2,正常情况下,第一主机转速控制模块11和第二主机转速控制模块12同时向驱动控制模块20发出喷油指令,第一主机转速控制模块11处于正常状态时,驱动控制模块20接收并执行第一主机转速控制模块11发出的喷油指令,即控制喷油执行模块30按照第一主机转速控制模块11发出的喷油指令执行喷油动作。驱动控制模块20执行完一次由第一主机转速控制模块11发出的喷油指令后,暂停一个喷油周期,等待下一个喷油指令。如果第一主机转速控制模块11和第二主机转速控制模块12分别发出第二个喷油指令时,驱动控制模块20只能接收到第二主机转速控制模块12发出的喷油指令而接收不到第一主机转速控制模块11发出的喷油指令时,则此时驱动控制模块20判断第一主机转速控制模块11异常,进入故障状态,执行第二主机转速控制模块12发出的喷油指令,并且在此之后,不再执行第一主机转速控制模块11发出的喷油指令。由此,通过设置冗余的第二主机转速控制模块12可以确保在第一主机转速控制模块11发生异常时直接切换至第二主机转速控制模块12,从而可以确保船用电控系统的正常运行。此外,通过设置驱动控制模块20在执行完一次由第一主机转速控制模块11发出的喷油指令后,暂停一个喷油周期,等待下一个喷油指令,可以提高对第一主机转速控制模块是否正常判断的准确性。
本实施例提供了一种船用电控系统,该船用电控系统包括:主机转速控制模块、喷油执行模块和至少一个驱动控制模块;其中,主机转速控制模块包括第一主机转速控制模块和第二主机转速控制模块;其中,第一主机转速控制模块与驱动控制模块连接,驱动控制模块分别与喷油执行模块和第二主机转速控制模块连接;驱动控制模块设置为响应于确定第一主机转速控制模块处于异常状态,由第一主机转速控制模块切换至第二主机转速控制模块,并控制喷油执行模块执行第二主机转速控制模块输出的喷油指令。通过该船用电控系统可以实现在第一主机转速控制模块异常时,能够自动切换至第二主机转速控制模块, 并根据第二主机转速控制模块输出的喷油指令控制喷油执行模块执行喷油指令,实现对高速机电控系统的冗余控制,以提高电控系统的可靠性,确保船用电控系统的正常运行。
在一实施例中,船用电控系统可面向高速机,即可为船用高速机电控系统。
图3是本申请实施例中提供的另一种船用电控系统的结构框图,图4是本申请实施例中提供的第二驱动控制模块监测第一驱动控制模块喷油指令输出示意图。
在上述一实施例的基础上,在另一实施例中,参考图3,驱动控制模块20包括第一驱动控制模块21和第二驱动控制模块22,第一驱动控制模块21分别与喷油执行模块30、第一主机转速控制模块11、第二主机转速控制模块12连接,第二驱动控制模块22分别与第一驱动控制模块21、第一主机转速控制模块11、第二主机转速控制模块12、喷油执行模块30连接;
第二驱动控制模块22设置为监测第一驱动控制模块的运行状态是否处于正常状态,并在第一驱动控制模块21处于异常状态时,由第一驱动控制模块21切换至第二驱动控制模块22。
本实施例中,运行状态包括正常状态与异常状态。
其中,正常情况下,第一驱动控制模块21和第二驱动控制模块22都会根据主机转速控制模块(第一主机转速控制模块11或第二主机转速控制模块12)发出的喷油指令来确定发送给喷油执行模块30的喷油指令。
其中,主机转速控制模块发送给驱动控制模块20的喷油指令可记为第一喷油指令,第一喷油指令包括如喷油正时、喷油脉宽和喷油量等。
此外,第一喷油指令还可包括,循环喷油量、当前共轨轨压等。
其中,驱动控制模块20发送给喷油执行模块30的喷油指令可记为第二喷油指令,第二喷油指令为一个命令喷油执行模块30是否执行喷油动作的电信号。
但是,在第一驱动控制模块21正常运行的情况下,只有第一驱动控制模块21向喷油执行模块30发送喷油指令即第二喷油指令,第二驱动控制模块22不向喷油执行模块30发送喷油指令即第二喷油指令,此时,喷油执行模块30根据第一驱动控制模块21发出的喷油指令即第二喷油指令执行喷油动作。
第二驱动控制模块22与第一驱动控制模块21可通过软件设置心跳包来连接,第二驱动控制模块22设置为实时监测第一驱动控制模块21是否向喷油执行模块30发出喷油指令即第二喷油指令,即监测第一驱动控制模块21是否处 于正常状态,并在监测到第一驱动控制模块21发生异常时切换至第二驱动控制模块22,由第二驱动控制模块22向喷油执行模块30发送喷油指令即第二喷油指令,此时,喷油执行模块30根据第二驱动控制模块22发出的喷油指令即第二喷油指令执行喷油动作。其中,第二驱动控制模块监测第一驱动控制模块喷油指令输出示意图可参考图4,其中,图4中的M0为第一驱动控制模块21出现异常输出时段。
正常情况下,第一驱动控制模块21和第二驱动控制模块22都会根据主机转速控制模块(第一主机转速控制模块11或第二主机转速控制模块12)发出的喷油指令即第一喷油指令来确定喷油正时、喷油脉宽和喷油量,是对主机转速控制模块发出的喷油数据参数进行校验,以确保喷油参数的准确性,避免因主机转速控制模块计算出错影响高速机的正常运行,提高能量利用率,避免浪费。
在一实施例中,继续参考图3,该船用电控系统还包括喷油参数检测模块40,喷油参数检测模块40分别与第一主机转速控制模块11和第二主机转速控制模块12连接。
喷油参数检测模块40检测的数据同时发送到第一主机转速控制模块11和第二主机转速控制模块12。第一主机转速控制模块11和第二主机转速控制模块12根据喷油参数检测模块40发出的检测数据可以计算出喷油数据参数(即第一喷油指令),喷油数据参数可以包括喷油正时、喷油脉宽和喷油量等。
在一实施例中,继续参考图3,喷油参数检测模块40包括曲轴转速检测单元41、温度检测单元42和油雾检测单元43,曲轴转速检测单元41、温度检测单元42和油雾检测单元43均与主机转速控制模块10连接。
在一实施例中,主机转速控制模块10包括第一主机转速控制模块11和第二主机转速控制模块12。曲轴转速检测单元41分别与第一主机转速控制模块11和第二主机转速控制模块12连接,温度检测单元42分别与第一主机转速控制模块11和第二主机转速控制模块12连接,油雾检测单元43分别与第一主机转速控制模块11和第二主机转速控制模块12连接。
在一实施例中,曲轴转速检测单元41、温度检测单元42和油雾检测单元43均设置为输出双路输出信号。
在一实施例中,曲轴转速检测单元41可以为曲轴转速传感器,温度检测单元42可以为温度传感器,油雾检测单元43可以为油雾传感器。在传感器选型时,曲轴转速传感器、部分温度传感器和油雾传感器出于冗余的考虑,例如曲轴转速传感器选择了Noris的FAHD13系列,该系列传感器可以同时输出两个 转速信号进入不同的系统。温度传感器选择了CMR的MBT19系列中,一个传感器带有两个PT1000热电阻的传感器。由于本机的外形较小,机械结构比较紧凑,这样的选择节约了传感器的布置空间。
在一实施例中,继续参考图3,该船用电控系统还包括第一CAN(Controller Area Network,控制器局域网络)总线,驱动控制模块20通过第一CAN总线L1与主机转速控制模块10通信连接。
例如,参考图3,第一主机转速控制模块11通过第一CAN总线L1(即图中的实线箭头)分别与第一驱动控制模块21和第二驱动控制模块22连接,第二主机转速控制模块12也通过第一CAN总线L1(即图中的实线箭头)分别与第一驱动控制模块21和第二驱动控制模块22连接。其中,第一主机转速控制模块11和第二主机转速控制模块12各自具有一个ID(Identity)号,由于CAN总线传输的特性,驱动控制模块(第一驱动控制模块或第二驱动控制模块)可以根据传输过来的数据的ID号区分接收的是哪个主机转速控制模块发出的喷油指令即第一喷油指令。同理,第一驱动控制模块21和第二驱动控制模块22各自也设有ID号。
在一实施例中,继续参考图3,该船用电控系统还包括第二CAN总线L2,驱动控制模块20在第一CAN总线L1发生故障时通过第二CAN总线L2与主机转速控制模块10通信连接。
例如,参考图3,第一主机转速控制模块11通过第二CAN总线L2(即图中的虚线箭头)分别与第一驱动控制模块21和第二驱动控制模块22连接,第二主机转速控制模块12也通过第二CAN总线L2(即图中的虚线箭头)分别与第一驱动控制模块21和第二驱动控制模块22连接。考虑到可能由于通讯网络的故障导致驱动控制模块20接收不到主机转速控制模块10的喷油指令即第一喷油指令,在驱动控制模块20和主机转速控制模块10的通讯中设计了冗余的内部CAN线通讯,即设置了第二CAN总线,提高了该船用的电控系统的可靠性。
在一实施例中,继续参考图3,喷油执行模块30包括电磁阀31和喷油器32,电磁阀31分别与第一驱动控制模块21、第二驱动控制模块22电连接,电磁阀31与喷油器32机械连接。
其中,第一驱动控制模块21或第二驱动控制模块22通过控制电磁阀31的导通以及导通的阀门数量可以控制喷油器32的喷油量和喷油速度等。
在一实施例中,继续参考图3,该船用电控系统还包括第一继电器开关S1, 第一继电器开关S1分别与第一主机转速控制模块11和第二主机转速控制模块12连接,第二主机转速控制模块12通过第一继电器开关S1控制第一主机转速控制模块11的导通或者关闭。
例如,第二主机转速控制模块12通过控制第一继电器开关S1的导通或者关闭可以控制第一主机转速控制模块11的导通或者关闭。第二主机转速控制模块12在第一主机转速控制模块11发生异常时通过控制第一继电器开关S1断开以控制第一主机转速控制模块11关闭,可以确保在第一主机转速控制模块11出现异常后,驱动控制模块20接收到的喷油指令即第一喷油指令只由第二主机转速控制模块12发出,防止控制系统出错,由此可以提高电控系统的可靠性。
在一实施例中,继续参考图3,该船用电控系统还包括第二继电器开关S2,第二继电器开关S2分别与第一驱动控制模块21和第二驱动控制模块22连接,第二驱动控制模块22通过第二继电器开关S2控制第一驱动控制模块21的导通或者关闭。
例如,第二驱动控制模块22通过控制第二继电器开关S2的导通或者关闭可以控制第一驱动控制模块21的导通或者关闭。第二驱动控制模块22在第一驱动控制模块21发生异常时通过控制第二继电器开关S2断开以控制第一驱动控制模块21关闭,可以确保在第一驱动控制模块21出现异常后,喷油执行模块30接收到的喷油指令即第二喷油指令只由第二驱动控制模块22发出,防止控制系统出错,由此可以提高电控系统的可靠性。
例如,第一驱动控制模块21和第二驱动控制模块22之间一直处于心跳包连接验证的状态,即第一驱动控制模块21正常运行时,心跳包正常接收和发送。若第一驱动控制模块21失效,第二驱动控制模块接收不到第一驱动控制模块21的心跳包,从而第二驱动控制模块22判定第一驱动控制模块21失效,第二驱动控制模块22通过控制第二继电器开关S2切断第一驱动控制模块21的电源,第二驱动控制模块22开始发出第二喷油指令控制喷油器32。
在一实施例中,喷油执行模块30可使用喷油执行模块30中的主芯片中的高速采集和处理功能。
例如,喷油执行模块30中的主芯片可通过驱动芯片进行通讯,以交换喷油器的驱动电流和电压参数。同时,喷油执行模块30中的主芯片可通过高低电平驱动所述驱动芯片的喷油器对应引脚,来实现喷油器的控制。
在一实施例中,曲轴转速检测单元41可以为曲轴转速传感器,温度检测单 元42可以为温度传感器,油雾检测单元43可以为油雾传感器。在传感器选型时,曲轴转速传感器、部分温度传感器和油雾传感器出于冗余的考虑,例如曲轴转速传感器选用的一类传感器可以同时输出两个转速信号进入不同的系统。温度传感器选用的一类传感器可带有两个PT1000热电阻的传感器。由于本机的外形较小,机械结构比较紧凑,这样的选择节约了传感器的布置空间。
例如,参考图5,24V频率信号通过比较器后,转化成为峰值为5V的频率信号;5V频率信号进入主芯片,通过主芯片的高速采集模块进行频率和周期的计算,完成转速信号的采集。
图5中,TLV表示比较器,VDD_5V表示5V的电压信号,VDD_24V表示24V的电压信号,GND表示接地,C299、C297表示电容,D116表示双向二极管,R341、R343、R344、R347、R349、R350、R353、R354、R357表示电阻。
比较器TLV包括负输入端IN-,正输入端IN+,第一输入端V+,第二输入端V-,输出端OUT。
比较器TLV的负输入端IN-输入24V频率信号,输出端OUT输出5V频率信号。
例如,转速控制模块包括上述的主芯片和比较器,驱动控制模块包括上述的主芯片和比较器。
其中,转速控制模块可为第一主机转速控制模块11或第二主机转速控制模块12,驱动控制模块可为第一驱动控制模块21或第二驱动控制模块22。
例如,第一主机转速控制模块11和第二主机转速控制模块12设置为通过采集到的曲轴转速信号进行分段PID(Proportion Integral Differential)调节,控制输出循环喷油量,进而控制转速的稳定。
在一实施例中,继续参考图3,该船用电控系统还包括第一继电器开关S1,第一继电器开关S1分别与第一主机转速控制模块11和第二主机转速控制模块12连接,第二主机转速控制模块12通过第一继电器开关S1控制第一主机转速控制模块11的导通或者关闭。
例如,第一主机转速控制模块11和第二主机转速控制模块12通过传感器信号冗余,采集到相同的检测数据。第一主机转速控制模块11和第二主机转速控制模块12可通过相同的程序计算喷油指令即第一喷油指令,同时通过CAN总线互相交换所计算的数据。第一主机转速控制模块11计算的数据会在第二主机转速控制模块12中进行比较验证,若第一主机转速控制模块11所计算的数 据超出合理范围,即判断第一主机转速控制模块11失效。此时第二主机转速控制模块12会通过控制第一继电器开关S1切断第一主机转速控制模块11的电源,喷油执行模块30在接收不到第一主机转速控制模块11发出的第一喷油指令后,开始执行第二主机转速控制模块12发出的第一喷油指令。第一主机转速控制模块11的第一喷油指令和第二主机转速控制模块12的第一喷油指令可以通过CAN报文的ID(Identity,标识)帧来分辨指令来源。
上文涉及的一种失效模式为,第一主机转速控制模块11运行但是输出的计算结果有误,另一种失效模式为第一主机转速控制模块11停止输出喷油质量,在这种情况下,第二主机转速控制模块12会直接通过控制第一继电器开关S1切断第一主机转速控制模块11的电源。
本申请实施例还提供了一种船用电控方法,应用于船用电控系统,所述船用电控系统包括主机转速控制模块、喷油执行模块和驱动控制模块,所述主机转速控制模块包括第一主机转速控制模块和第二主机转速控制模块,所述第一主机转速控制模块与所述驱动控制模块连接,所述驱动控制模块分别与所述喷油执行模块和所述第二主机转速控制模块连接,所述船用电控方法包括:
所述驱动控制模块响应于确定所述第一主机转速控制模块处于异常状态,控制所述喷油执行模块执行所述第二主机转速控制模块输出的喷油指令。
本申请的方法实施例也可参考本申请上述的船用电控系统的系统实施例,实施例的技术内容相近,在此不再赘述。

Claims (11)

  1. 一种船用电控系统,包括:主机转速控制模块、喷油执行模块和驱动控制模块;其中,所述主机转速控制模块包括第一主机转速控制模块和第二主机转速控制模块;
    其中,所述第一主机转速控制模块与所述驱动控制模块连接,所述驱动控制模块分别与所述喷油执行模块和所述第二主机转速控制模块连接;
    所述驱动控制模块设置为响应于确定所述第一主机转速控制模块处于异常状态,控制所述喷油执行模块执行所述第二主机转速控制模块输出的喷油指令。
  2. 根据权利要求1所述的船用电控系统,其中,所述驱动控制模块包括第一驱动控制模块和第二驱动控制模块,所述第一驱动控制模块分别与所述喷油执行模块、所述第一主机转速控制模块、所述第二主机转速控制模块连接,所述第二驱动控制模块分别与所述第一驱动控制模块、所述第一主机转速控制模块、所述第二主机转速控制模块、所述喷油执行模块连接;
    所述第二驱动控制模块设置为监测所述第一驱动控制模块是否处于正常状态,并响应于所述第一驱动控制模块处于异常状态,由所述第一驱动控制模块切换至所述第二驱动控制模块。
  3. 根据权利要求1所述的船用电控系统,其中,所述船用电控系统还包括喷油参数检测模块,所述喷油参数检测模块分别与所述第一主机转速控制模块和所述第二主机转速控制模块连接。
  4. 根据权利要求3所述的船用电控系统,其中,所述喷油参数检测模块包括曲轴转速检测单元、温度检测单元和油雾检测单元,所述曲轴转速检测单元、所述温度检测单元和所述油雾检测单元分别与所述第一主机转速控制模块连接,所述曲轴转速检测单元、所述温度检测单元和所述油雾检测单元分别与所述第二主机转速控制模块连接。
  5. 根据权利要求4所述的船用电控系统,其中,所述曲轴转速检测单元、所述温度检测单元和所述油雾检测单元均设置为输出双路输出信号。
  6. 根据权利要求1所述的船用电控系统,其中,所述船用电控系统还包括第一控制器局域网络CAN总线,所述驱动控制模块通过所述第一CAN总线与所述主机转速控制模块通信连接。
  7. 根据权利要求6所述的船用电控系统,其中,所述船用电控系统还包括第二CAN总线,所述驱动控制模块设置为响应于检测到所述第一CAN总线发生故障,通过所述第二CAN总线与所述主机转速控制模块通信连接。
  8. 根据权利要求2所述的船用电控系统,其中,所述喷油执行模块包括电磁 阀和喷油器,所述电磁阀分别与所述第一驱动控制模块、所述第二驱动控制模块电连接,所述电磁阀与所述喷油器机械连接。
  9. 根据权利要求1所述的船用电控系统,其中,所述船用电控系统还包括第一继电器开关,所述第一继电器开关分别与所述第一主机转速控制模块和所述第二主机转速控制模块连接,所述第二主机转速控制模块设置为通过所述第一继电器开关控制所述第一主机转速控制模块的导通或者关闭。
  10. 根据权利要求2所述的船用电控系统,其中,所述船用电控系统还包括第二继电器开关,所述第二继电器开关分别与所述第一驱动控制模块和所述第二驱动控制模块连接,所述第二驱动控制模块设置为通过所述第二继电器开关控制所述第一驱动控制模块的导通或者关闭。
  11. 一种船用电控方法,应用于船用电控系统,所述船用电控系统包括主机转速控制模块、喷油执行模块和驱动控制模块,所述主机转速控制模块包括第一主机转速控制模块和第二主机转速控制模块,所述第一主机转速控制模块与所述驱动控制模块连接,所述驱动控制模块分别与所述喷油执行模块和所述第二主机转速控制模块连接,所述船用电控方法包括:
    所述驱动控制模块响应于确定所述第一主机转速控制模块处于异常状态,控制所述喷油执行模块执行所述第二主机转速控制模块输出的喷油指令。
PCT/CN2021/106418 2020-11-26 2021-07-15 船用电控系统及方法 WO2022110834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022788347.0 2020-11-26
CN202022788347.0U CN214151411U (zh) 2020-11-26 2020-11-26 一种船用高速机电控系统

Publications (1)

Publication Number Publication Date
WO2022110834A1 true WO2022110834A1 (zh) 2022-06-02

Family

ID=77567067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106418 WO2022110834A1 (zh) 2020-11-26 2021-07-15 船用电控系统及方法

Country Status (2)

Country Link
CN (1) CN214151411U (zh)
WO (1) WO2022110834A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033567A (zh) * 2021-11-30 2022-02-11 中船动力研究院有限公司 一种发动机的电控系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165136A (ja) * 2009-01-15 2010-07-29 Yokogawa Electric Corp 冗長化制御装置
CN106502158A (zh) * 2016-11-16 2017-03-15 东南大学 一种基于底层双冗余结构的新型船舶主推进控制系统
CN107143429A (zh) * 2017-07-06 2017-09-08 重庆红江机械有限责任公司 电控单体泵柴油机ecu冗余系统及设计方法
WO2018053680A1 (en) * 2016-09-20 2018-03-29 SZ DJI Technology Co., Ltd. Systems and methods for providing redundancy to electronic speed control systems
CN109162818A (zh) * 2018-10-31 2019-01-08 潍柴动力股份有限公司 一种发动机的控制系统、控制方法及发动机
CN111648874A (zh) * 2020-06-30 2020-09-11 无锡威孚高科技集团股份有限公司 一种具备多重冗余功能的电控燃油系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165136A (ja) * 2009-01-15 2010-07-29 Yokogawa Electric Corp 冗長化制御装置
WO2018053680A1 (en) * 2016-09-20 2018-03-29 SZ DJI Technology Co., Ltd. Systems and methods for providing redundancy to electronic speed control systems
CN106502158A (zh) * 2016-11-16 2017-03-15 东南大学 一种基于底层双冗余结构的新型船舶主推进控制系统
CN107143429A (zh) * 2017-07-06 2017-09-08 重庆红江机械有限责任公司 电控单体泵柴油机ecu冗余系统及设计方法
CN109162818A (zh) * 2018-10-31 2019-01-08 潍柴动力股份有限公司 一种发动机的控制系统、控制方法及发动机
CN111648874A (zh) * 2020-06-30 2020-09-11 无锡威孚高科技集团股份有限公司 一种具备多重冗余功能的电控燃油系统

Also Published As

Publication number Publication date
CN214151411U (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN109162818B (zh) 一种发动机的控制系统、控制方法及发动机
CN107143429B (zh) 电控单体泵柴油机ecu冗余系统及设计方法
CN105278516B (zh) 一种双冗余开关量plc控制系统可靠容错控制器的实现方法
CN103838230B (zh) 一种可扩充冗余度和轴数的数字舵机控制系统的故障切换方法
WO2022110834A1 (zh) 船用电控系统及方法
CN103051490A (zh) 一种刀片服务器进行开关机的测试方法
JP2006226136A (ja) 大気圧センサの故障診断方法および装置
CN105573112B (zh) 内燃机车励磁控制器双机热冗余自动切换系统
JPH0143144B2 (zh)
CN106930841A (zh) 电子节气门控制失效保护系统
CN112096530A (zh) 一种船用发动机电控冗余的控制方法、装置及系统
KR20160128593A (ko) 중속 디젤 엔진의 이중화 제어 시스템 및 그 방법
JP2749345B2 (ja) 内燃機関の安全停止装置を監視する方法及び装置
CN108757199A (zh) 电喷发动机控制装置的冗余控制方法
JP5067359B2 (ja) 電子制御システムの故障診断装置
CN206193530U (zh) 一种柴油发电机组双冗余监控系统
KR20220144407A (ko) 전기 모터 제어 시스템 및 차량
CN115453853A (zh) 无人机飞管系统舵机故障排查系统
CN109441649B (zh) 数字式调速控制器及其控制发动机工作的方法
CN109164728A (zh) 一种工业级控制柜及其系统安全控制方法
CN111287824B (zh) 空气辅助scr系统中尿素泵的控制方法、装置及系统
CN105863851B (zh) 一种双机热备份电子调速器双线圈热冗余执行器切换控制方法
CN107561438A (zh) 一种柴油机调速器油门开度正确性检查方法
CN110159442B (zh) 一种控制方法、控制装置及控制系统
CN206431208U (zh) 一种启停起动机耐久测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.10.2023)