WO2022110715A1 - 压差式流量传感器及呼吸机 - Google Patents

压差式流量传感器及呼吸机 Download PDF

Info

Publication number
WO2022110715A1
WO2022110715A1 PCT/CN2021/096580 CN2021096580W WO2022110715A1 WO 2022110715 A1 WO2022110715 A1 WO 2022110715A1 CN 2021096580 W CN2021096580 W CN 2021096580W WO 2022110715 A1 WO2022110715 A1 WO 2022110715A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
axis
differential pressure
flow sensor
throttle section
Prior art date
Application number
PCT/CN2021/096580
Other languages
English (en)
French (fr)
Inventor
徐泽林
孟凡泗
尹鹏
邹海涛
Original Assignee
深圳市科曼医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科曼医疗设备有限公司 filed Critical 深圳市科曼医疗设备有限公司
Publication of WO2022110715A1 publication Critical patent/WO2022110715A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical

Definitions

  • the present application relates to the technical field of differential pressure sensors, and in particular, to a differential pressure flow sensor and a ventilator.
  • the flow differential pressure curve is an upward concave parabola, the differential pressure increases rapidly with the increase of the flow rate, and the entire breathing tube has a certain resistance limit.
  • the purpose of the present application is to provide a differential pressure flow sensor and a ventilator capable of accurately measuring flow parameters under low flow.
  • a differential pressure flow sensor includes a main body having a flow channel for circulating airflow, the flow channel including an inflow section, an outflow section and a communication section
  • the throttle section of the inflow section and the outflow section, the inner wall of the throttle section extends toward the axis of the throttle section to form a number of long ribs and a number of short ribs, and a number of the long ribs surround the throttle
  • the segment axes are arranged at intervals, a plurality of the short rib plates are arranged at intervals around the throttle segment axis, and the long rib plates and the short rib plates are arranged at intervals around the throttle segment axis;
  • the distance between the long rib and the axis of the throttle section is greater than the distance between the short rib and the axis of the throttle section distance.
  • the long rib plate and the short rib plate are evenly spaced around the axis of the throttle section.
  • the distance of the long rib toward the axis of the throttle section gradually decreases and then gradually increases.
  • the distance of the short rib toward the axis of the throttle section gradually decreases and then gradually increases.
  • the distance between the long rib and the axis of the throttle section is the same as the distance between the short rib and the throttle section
  • the distances between the segment axes are equal.
  • it further includes a first sampling tube and a second sampling tube, the first sampling tube has a first sampling channel, the second sampling tube has a second sampling channel, and the first sampling channel In communication with the inflow section, the second sampling channel is in communication with the outflow section.
  • the first sampling pipe is disposed at the inlet end of the throttle section, and the second sampling pipe is disposed at the outlet end of the throttle section.
  • the throttling section is a Rafael flow channel.
  • the wall thickness of each position of the throttling section is equal, and the outer wall of the throttling section extends in a direction away from its axis to form a plurality of reinforcing ribs, and a plurality of the reinforcing ribs surround the joint
  • the flow segment axis interval setting is equal
  • a ventilator comprising the differential pressure flow sensor as described in any of the above embodiments.
  • a plurality of long ribs and a plurality of short ribs are formed by extending the inner wall of the throttle section toward the axis of the throttle section, and the plurality of long ribs and the plurality of short ribs are spaced around the axis of the throttle section. , through the long rib and the short rib to form a certain obstruction effect on the airflow, and then the air pressure value of the airflow can be measured. The distance between them is greater than the distance between the short rib plate and the axis of the throttle section.
  • the long rib can measure the air pressure value at low flow rate, while the short rib plate can ensure the smooth flow of air without clogging due to the large distance from the axis of the throttle section, thus effectively solving the pressure difference under low flow rate.
  • the contradiction between the resolution and the air resistance of the differential pressure flow sensor makes the performance of the differential pressure flow sensor in this embodiment better.
  • FIG. 1 is a schematic structural diagram of the differential pressure flow sensor according to the first embodiment of the application
  • FIG. 2 is a cross-sectional view of the differential pressure flow sensor in one direction in FIG. 1;
  • FIG. 3 is a schematic view of the differential pressure flow sensor in FIG. 1 from a viewing angle
  • 100 main body; 101, flow channel; 102, inflow section; 103, outflow section; 104, throttle section; 210, long rib plate; 220, short rib plate; ; 411, the first sampling channel; 420, the second sampling tube; 421, the second sampling channel.
  • an embodiment of the present application provides a differential pressure flow sensor.
  • the differential pressure flow sensor in this embodiment includes a main body 100 .
  • the main body 100 has a flow channel 101 for circulating gas.
  • the channel 101 is divided into at least three sections, namely the inflow section 102, the outflow section 103, and the throttle section 104 connecting the inflow section 102 and the outflow section 103.
  • the inflow section 102 is used for input air flow
  • the outflow section 103 is used for output air flow.
  • the required parameters can be measured by taking the air pressure values at the inlet end and the outlet end of the throttling section 104 .
  • the flow channel 101 has a symmetrical shape with respect to its axis center, so as to ensure the stability of the flow through the flow channel 101 to improve the measurement accuracy.
  • the throttling section 104 is the Lafare flow channel 101 .
  • the specific structure of the Laval flow channel 101 in this embodiment is as follows: along any axial direction of the throttling section 104, the flow cross-sectional area of the throttling section 104 gradually decreases and then increases gradually.
  • the segment 104 is set in the form of the Lafael flow channel 101.
  • the inner wall of the throttle section 104 extends toward the axis of the throttle section 104 to form several long rib plates 210 and several short rib plates 220 .
  • the axis of the section 104 is spaced apart, and the long rib 210 and the short rib 220 are spaced around the axis of the throttle section 104; on any section perpendicular to the axis of the throttle section 104, between the long rib 210 and the axis of the throttle section 104 The distances are greater than the distance between the short rib 220 and the axis of the throttle section 104 .
  • the long rib plate 210 can measure the air pressure value at low flow rate, while the short rib plate 220 can ensure the smooth flow of air without clogging due to the large distance from the axis of the throttle section 104, thus effectively solving the problem of low flow rate.
  • the contradiction between the lower differential pressure resolution and the air resistance of the differential pressure flow sensor makes the performance of the differential pressure flow sensor in this embodiment better.
  • the long rib 210 and the short rib 220 are evenly spaced around the axis of the throttle section 104 .
  • the stability of the circulating airflow can be improved, and the measurement accuracy of the differential pressure flow sensor in this embodiment can be indirectly improved.
  • the distance of the long rib 210 toward the axis of the throttle section 104 gradually decreases and then gradually increases.
  • the resistance to the airflow at each position of the long rib 210 is different, thereby further improving the resolution of the differential pressure flow sensor.
  • the distance of the short rib 220 toward the axis of the throttle section 104 gradually decreases and then gradually increases.
  • the resistance to the airflow at each position of the short rib 220 is different, thereby further improving the resolution of the differential pressure flow sensor.
  • the distance between the long rib 210 and the axis of the throttle section 104 gradually decreases and then gradually increases, or only the short rib
  • the distance of 220 toward the axis of the throttle section 104 gradually decreases and then gradually increases, or the distance between the long rib 210 and the short rib 220 toward the axis of the throttle section 104 gradually decreases and then gradually increases.
  • the difference between the distance between the long rib 210 and the axis of the throttle section 104 and the distance between the short rib 220 and the axis of the throttle section 104 is equal, In turn, the stability of the airflow flowing through the throttling section 104 is further improved.
  • the distance between the long rib 210 and the axis of the throttle section 104 can be 0.
  • the distance between the long rib 210 and the axis of the throttle section 104 is not 0, for example, the long rib 210
  • the closest distance to the axis of the throttle section 104 is 5-10 mm.
  • the distances from each position of the long rib 210 to the axis of the throttle section 104 are the same, and similarly, the distances from each position of the short rib 220 to the axis of the throttle section 104 are the same.
  • the thickness of the long rib plate 210 is 1-10 mm, preferably, the thickness of the long rib plate 210 is 1-5 mm.
  • the long rib 210 is within this thickness range, its effect on the airflow flowing through the throttle section 104 is most obvious, thereby maintaining the resolution of the differential pressure flow sensor in this embodiment at a high state.
  • the thickness of the short rib plate 220 is 1-10 mm, preferably, the thickness of the short rib plate 220 is 1-5 mm.
  • the effect of the short rib 220 on the airflow flowing through the throttling section 104 is most obvious, so that the resolution of the differential pressure flow sensor in this embodiment is kept at a very high state.
  • the wall thickness of each position of the throttling section 104 is equal.
  • the outer wall of the throttling section 104 is concave toward the axis of the throttling section 104.
  • the outer wall of the throttling section 104 extends in a direction away from its axis to form a plurality of reinforcing ribs 300, and the plurality of reinforcing ribs 300 surround the throttling section 104.
  • the axes are arranged at intervals, and the strength of the throttle section 104 can be significantly improved by several reinforcing ribs 300, so as to increase its life.
  • the long rib plate 210, the short rib plate 220 and the main body 100 are integrally formed, thereby improving the structural stability thereof.
  • the reinforcing rib 300 is integrally formed with the main body 100, thereby improving the stability of the structure.
  • the differential pressure flow sensor further includes a first sampling tube 410 and a second sampling tube 420 , the first sampling tube 410 has a first sampling channel 411 , and the second sampling tube 420 has a second sampling tube 411 .
  • the first sampling channel 411 communicates with the inflow section 102
  • the second sampling channel 421 communicates with the outflow section 103 .
  • the inlet end of the throttle section 104 can be measured through the first sampling channel 411
  • the outlet end of the throttle section 104 can be measured through the second sampling channel 421 .
  • the distance between the first sampling tube 410 and the throttle section 104 is equal to the distance between the second sampling tube 420 and the throttle section 104 .
  • the first sampling tube 410 and the second sampling tube 420 are symmetrical about the throttle section 104, so that the user can measure in both directions, which increases the convenience of installation of the differential pressure flow sensor in this embodiment.
  • first sampling pipe 410 is disposed at the inlet end of the throttle section 104
  • second sampling pipe 420 is disposed at the outlet end of the throttle section 104 .
  • Samples are collected at the inlet end and the outlet end of the throttle section 104 respectively. Since the data at this location is representative, the first sampling tube 410 is set at the inlet end of the throttle section 104 and the second sampling tube 420 is set at the inlet end of the throttle section 104.
  • the measurement accuracy of the differential pressure flow sensor in this embodiment can be further improved.
  • An embodiment of the present application also provides a ventilator.
  • the ventilator in this embodiment includes the differential pressure flow sensor in any of the above embodiments, because the linearity of the differential pressure flow sensor in the above embodiment is better , which effectively solves the contradiction between the differential pressure resolution and the air resistance of the differential pressure flow sensor under low flow, and improves the measurement accuracy under low flow.
  • the monitoring performance of the ventilator equipped with the differential pressure flow sensor is better, the use is safer, and the performance is better.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压差式流量传感器,包括主体(100),主体(100)具有用于流通气流的流道(101),流道(101)包括流入段(102)、流出段(103)以及连通流入段(102)与流出段(103)的节流段(104),节流段(104)内壁朝向节流段(104)轴线延伸形成若干长肋板(210)和若干短肋板(220),若干长肋板(210)环绕节流段(104)轴线间隔设置,若干短肋板(220)环绕节流段(104)轴线间隔设置,长肋板(210)与短肋板(220)环绕节流段(104)轴线间隔设置;其中,在垂直于节流段(104)轴线的任一截面上,长肋板(210)与节流段(104)轴线之间的距离均大于短肋板(220)与节流段(104)轴线之间的距离。进而长肋板(210)可以测量低流量下的气压值,而短肋板(220)由于距离节流段轴线的距离较大,因此能够保证气流的通畅,不会发生堵塞,从而有效的解决了低流量下压差分辨率与压差式流量传感器气阻之间的矛盾,使压差式流量传感器的性能更佳。

Description

压差式流量传感器及呼吸机 技术领域
本申请涉及压差式传感器的技术领域,尤其涉及一种压差式流量传感器及呼吸机。
背景技术
由于压差式流量传感器的特性,流量压差曲线呈上凹抛物线,压差随着流量的增长快速增长,而整个呼吸管道存在一定的阻力限值。
技术问题
这就存在一个矛盾,即低流量下压差分辨率与压差式流量传感器气阻之间的矛盾,即能够满足低流量时的测量精度时,容易造成气流不通畅,而气流顺畅时,其在低流量下的测量精度又不能实现。
技术解决方案
本申请的目的在于提供一种能够精确测量低流量下的流量参数的压差式流量传感器及呼吸机。
根据本申请的一方面,提供一种压差式流量传感器,所述压差式流量传感器包括主体,所述主体具有用于流通气流的流道,所述流道包括流入段、流出段以及连通所述流入段与所述流出段的节流段,所述节流段内壁朝向所述节流段轴线延伸形成若干长肋板和若干短肋板,若干所述长肋板环绕所述节流段轴线间隔设置,若干所述短肋板环绕所述节流段轴线间隔设置,所述长肋板与所述短肋板环绕所述节流段轴线间隔设置;
其中,在垂直于所述节流段轴线的任一截面上,所述长肋板与所述节流段轴线之间的距离均大于所述短肋板与所述节流段轴线之间的距离。
作为本申请的一个实施例,所述长肋板与所述短肋板环绕所述节流段轴线均匀间隔设置。
作为本申请的一个实施例,沿所述节流段轴向的任一方向,所述长肋板朝向所述节流段轴线的距离逐渐变小后再逐渐变大。
作为本申请的一个实施例,沿所述节流段轴向的任一方向,所述短肋板朝向所述节流段轴线的距离逐渐变小后再逐渐变大。
作为本申请的一个实施例,在垂直于所述节流段轴线的任一截面上,所述长肋板和所述节流段轴线之间的距离与所述短肋板和所述节流段轴线之间的距离之差相等。
作为本申请的一个实施例,还包括第一采样管和第二采样管,所述第一采样管具有第一采样通道,所述第二采样管具有第二采样通道,所述第一采样通道与所述流入段连通,所述第二采样通道与所述流出段连通。
作为本申请的一个实施例,所述第一采样管设置在所述节流段的入口端处,所述第二采样管设置在所述节流段的出口端处。
作为本申请的一个实施例,所述节流段为拉法尔流道。
作为本申请的一个实施例,所述节流段的各位置的壁厚是相等的,所述节流段外壁朝向远离其轴线的方向延伸形成若干加强筋,若干所述加强筋环绕所述节流段轴线间隔设置。
根据本申请的另一方面,提供一种呼吸机,包括如上任一实施例中所述的压差式流量传感器。
有益效果
实施本申请实施例,将具有如下有益效果:
本实施例中的压差式流量传感器,通过节流段内壁朝向节流段轴线延伸形成若干长肋板和若干短肋板,而若干长肋板和若干短肋板环绕节流段轴线间隔设置,通过长肋板和短肋板对气流形成一定的阻扰作用,进而可以测量气流的气压值,其中,由于在垂直于节流段轴线的任一截面上,长肋板与节流段轴线之间的距离均大于短肋板与节流段轴线之间的距离。进而长肋板可以测量低流量下的气压值,而短肋板由于距离节流段轴线的距离较大,因此能够保证气流的通畅,不会发生堵塞,从而有效的解决了低流量下压差分辨率与压差式流量传感器气阻之间的矛盾,使本实施例中的压差式流量传感器的性能更佳。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施例所述的压差式流量传感器的结构示意图;
图2为图1中的压差式流量传感器一个方向的剖示图;
图3为图1中的压差式流量传感器一个视角的示意图;
其中:100、主体;101、流道;102、流入段;103、流出段;104、节流段;210、长肋板;220、短肋板;300、加强筋;410、第一采样管;411、第一采样通道;420、第二采样管;421、第二采样通道。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以容许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参考图1-图3,本申请一实施例提供了一种压差式流量传感器,本实施例中的压差式流量传感器包括主体100,主体100具有用于流通气体的流道101,流道101至少分为三段,分别为流入段102、流出段103以及连通流入段102和流出段103的节流段104,流入段102用于输入气流,流出段103用于输出气流,通过分别采取节流段104入口端与出口端的气压值,即可对所需参数进行测量。
优选地,流道101为关于其轴线中心对称的形状,进而保证流量流经流道101的稳定性,以提高测量精度。
优选地,节流段104为拉法尔流道101。本实施例中的拉法尔流道101的具体结构为:沿着节流段104轴向的任一方向,节流段104的流通截面积逐渐减小后再逐渐变大,通过将节流段104设置为拉法尔流道101的形式,在气流经过节流段104时,由于各个位置的流通截面积大小不同,进而对气流的阻力不同,从而够提高压差式流量传感器的线性度,从而提高低流量下的压差分辨率,使本实施例中的压差式流量传感器的测量精度更高。
具体地,节流段104内壁朝向节流段104轴线延伸形成若干长肋板210和若干短肋板220,若干长肋板210环绕节流段104轴线间隔设置,若干短肋板220环绕节流段104轴线间隔设置,长肋板210与短肋板220环绕节流段104轴线间隔设置;在垂直于节流段104轴线的任一截面上,长肋板210与节流段104轴线之间的距离均大于短肋板220与节流段104轴线之间的距离。进而长肋板210可以测量低流量下的气压值,而短肋板220由于距离节流段104轴线的距离较大,因此能够保证气流的通畅,不会发生堵塞,从而有效的解决了低流量下压差分辨率与压差式流量传感器气阻之间的矛盾,使本实施例中的压差式流量传感器的性能更佳。
请参考图3,在一实施例中,长肋板210与短肋板220环绕节流段104轴线均匀间隔设置。通过将长肋板210与短肋板220环绕节流段104轴线均匀间隔设置,能够使流通的气流的稳定性更好,间接能够提高本实施例中的压差式流量传感器的测量精度。
请参考图2,在一实施例中,沿节流段104轴向的任一方向,长肋板210朝向节流段104轴线的距离逐渐变小后再逐渐变大。本实施例中,气流经过节流段104时,长肋板210各个位置对气流的阻力是不同的,进而能够进一步提高压差式流量传感器的分辨率。
同样优选地,沿节流段104轴向的任一方向,短肋板220朝向节流段104轴线的距离逐渐变小后再逐渐变大。本实施例中,气流经过节流段104时,短肋板220各个位置对气流的阻力是不同的,进而能够进一步提高压差式流量传感器的分辨率。
需要说明的是,本实施例中的压差式流量传感器,既可以是仅有长肋板210朝向节流段104轴线的距离逐渐变小后再逐渐变大,还可以是仅有短肋板220朝向节流段104轴线的距离逐渐变小后再逐渐变大,还可以是长肋板210和短肋板220同时朝向节流段104轴线的距离逐渐变小后再逐渐变大。
进一步地,在垂直于节流段104轴线的任一截面上,长肋板210和节流段104轴线之间的距离与短肋板220和节流段104轴线之间的距离之差相等,进而进一步提高流经节流段104的气流的稳定性。
需要说明的是,长肋板210与节流段104轴线之间的距离可以为0,当然,优选为长肋板210与节流段104轴线之间的距离不为0,比如长肋板210距离节流段104轴线最近的距离为5-10mm。
在一些实施例中,长肋板210各位置距离节流段104轴线的距离是相等的,同样,短肋板220各位置距离节流段104轴线的距离是相等的。
在一些实施例中,长肋板210的厚度为1-10mm,优选地,长肋板210的厚度为1-5mm。当长肋板210在该厚度范围内,其与流经节流段104的气流的作用最明显,进而使本实施例中的压差式流量传感器的分辨率保持在很高的状态。
同样,短肋板220的厚度为1-10mm,优选地,短肋板220的厚度为1-5mm。当短肋板220在该厚度范围内,其与流经节流段104的气流的作用最明显,进而使本实施例中的压差式流量传感器的分辨率保持在很高的状态。
基于提高本实施例中的压差式流量传感器的分辨率的目的,节流段104的各位置的壁厚是相等的,由于节流段104为拉法尔流道101的结构,进而节流段104的外壁是朝向节流段104轴线凹陷的,为了保证节流段104的强度,节流段104外壁朝向远离其轴线的方向延伸形成若干加强筋300,若干加强筋300环绕节流段104轴线间隔设置,通过若干加强筋300可以显著提高节流段104的强度,以提高其寿命。
优选地,长肋板210、短肋板220以及主体100一体成型设置,进而提高其结构的稳定性。
进一步地,加强筋300与主体100一体成型设置,进而提高其结构的稳定性。
请参考图1,在一实施例中,压差式流量传感器还包括第一采样管410和第二采样管420,第一采样管410具有第一采样通道411,第二采样管420具有第二采样通道421,第一采样通道411与流入段102连通,第二采样通道421与流出段103连通。通过第一采样通道411能够对节流段104的入口端进行测量,通过第二采样通道421能够对节流段104的出口端进行测量。
优选地,第一采样管410和节流段104之间的距离与第二采样管420和节流段104之间的距离相等。本实施例中的第一采样管410与第二采样管420关于节流段104左右对称,进而用户可以双向测量,增加了本实施例中的压差式流量传感器安装的便捷性。
进一步地,第一采样管410设置在节流段104的入口端处,第二采样管420设置在节流段104的出口端处。在节流段104的入口端和出口端分别采集样本,由于该位置的数据代表性较强,进而将第一采样管410设置在节流段104的入口端处且将第二采样管420设置在节流段104的出口端处,能够进一步提高本实施例中的压差式流量传感器的测量精度。
本申请一实施例还提供了一种呼吸机,本实施例中的呼吸机包括如上任一实施例中的压差式流量传感器,由于上述实施例中的压差式流量传感器的线性度更佳,有效解决了低流量下压差分辨率与压差式流量传感器气阻之间的矛盾,提高了低流量下的测量精度。进而使安装压差式流量传感器的呼吸机的监测性能更佳,使用更加安全,性能更佳。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种压差式流量传感器,其特征在于,包括主体,所述主体具有用于流通气流的流道,所述流道包括流入段、流出段以及连通所述流入段与所述流出段的节流段,所述节流段内壁朝向所述节流段轴线延伸形成若干长肋板和若干短肋板,若干所述长肋板环绕所述节流段轴线间隔设置,若干所述短肋板环绕所述节流段轴线间隔设置,所述长肋板与所述短肋板环绕所述节流段轴线间隔设置;
    其中,在垂直于所述节流段轴线的任一截面上,所述长肋板与所述节流段轴线之间的距离均大于所述短肋板与所述节流段轴线之间的距离。
  2. 根据权利要求1所述的压差式流量传感器,其特征在于,所述长肋板与所述短肋板环绕所述节流段轴线均匀间隔设置。
  3. 根据权利要求1所述的压差式流量传感器,其特征在于,沿所述节流段轴向的任一方向,所述长肋板朝向所述节流段轴线的距离逐渐变小后再逐渐变大。
  4. 根据权利要求3所述的压差式流量传感器,其特征在于,沿所述节流段轴向的任一方向,所述短肋板朝向所述节流段轴线的距离逐渐变小后再逐渐变大。
  5. 根据权利要求4所述的压差式流量传感器,其特征在于,在垂直于所述节流段轴线的任一截面上,所述长肋板和所述节流段轴线之间的距离与所述短肋板和所述节流段轴线之间的距离之差相等。
  6. 根据权利要求1所述的压差式流量传感器,其特征在于,还包括第一采样管和第二采样管,所述第一采样管具有第一采样通道,所述第二采样管具有第二采样通道,所述第一采样通道与所述流入段连通,所述第二采样通道与所述流出段连通。
  7. 根据权利要求6所述的压差式流量传感器,其特征在于,所述第一采样管设置在所述节流段的入口端处,所述第二采样管设置在所述节流段的出口端处。
  8. 根据权利要求1所述的压差式流量传感器,其特征在于,所述节流段为拉法尔流道。
  9. 根据权利要求8所述的压差式流量传感器,其特征在于,所述节流段的各位置的壁厚是相等的,所述节流段外壁朝向远离其轴线的方向延伸形成若干加强筋,若干所述加强筋环绕所述节流段轴线间隔设置。
  10. 一种呼吸机,其特征在于,包括如上权利要求1-9中任一项所述的压差式流量传感器。
PCT/CN2021/096580 2020-11-30 2021-05-28 压差式流量传感器及呼吸机 WO2022110715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011369906.2 2020-11-30
CN202011369906.2A CN112546368B (zh) 2020-11-30 2020-11-30 压差式流量传感器及呼吸机

Publications (1)

Publication Number Publication Date
WO2022110715A1 true WO2022110715A1 (zh) 2022-06-02

Family

ID=75045225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096580 WO2022110715A1 (zh) 2020-11-30 2021-05-28 压差式流量传感器及呼吸机

Country Status (2)

Country Link
CN (1) CN112546368B (zh)
WO (1) WO2022110715A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546368B (zh) * 2020-11-30 2022-12-23 深圳市科曼医疗设备有限公司 压差式流量传感器及呼吸机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164144A (en) * 1977-10-26 1979-08-14 Eaton Corporation Fluid flowmeter
JPH08285645A (ja) * 1995-04-13 1996-11-01 Mitsubishi Heavy Ind Ltd ダブルベンチュリ型流速計
CN101311683A (zh) * 2007-12-29 2008-11-26 北京谊安医疗系统股份有限公司 呼吸机及其低差压式流量检测机构
EP2072971A1 (en) * 2007-12-17 2009-06-24 Services Pétroliers Schlumberger Variable throat venturi flow meter
CN107817026A (zh) * 2017-11-29 2018-03-20 吉林大学 基于同步共振的高分辨率差压式流量传感器及检测方法
CN108332807A (zh) * 2018-02-23 2018-07-27 南京亿准纳自动化控制技术有限公司 节流组件、整流及流量测量装置
US20180299304A1 (en) * 2014-02-28 2018-10-18 Breas Medical Ab Flow sensor for ventilator
CN111351532A (zh) * 2020-04-29 2020-06-30 南京润楠医疗电子研究院有限公司 一种双向双压差式呼吸流量检测传感装置及方法
CN111426354A (zh) * 2020-04-15 2020-07-17 江苏鑫亚达仪表制造有限公司 一种流量测量机构及测量装置
CN112546368A (zh) * 2020-11-30 2021-03-26 深圳市科曼医疗设备有限公司 压差式流量传感器及呼吸机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204864416U (zh) * 2015-05-08 2015-12-16 濡新(北京)科技发展有限公司 一种节流装置
US9597476B1 (en) * 2015-06-09 2017-03-21 Event Medical Ltd. Flow sensor and method
CN208059950U (zh) * 2018-02-23 2018-11-06 南京亿准纳自动化控制技术有限公司 节流组件、整流及流量测量装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164144A (en) * 1977-10-26 1979-08-14 Eaton Corporation Fluid flowmeter
JPH08285645A (ja) * 1995-04-13 1996-11-01 Mitsubishi Heavy Ind Ltd ダブルベンチュリ型流速計
EP2072971A1 (en) * 2007-12-17 2009-06-24 Services Pétroliers Schlumberger Variable throat venturi flow meter
CN101311683A (zh) * 2007-12-29 2008-11-26 北京谊安医疗系统股份有限公司 呼吸机及其低差压式流量检测机构
US20180299304A1 (en) * 2014-02-28 2018-10-18 Breas Medical Ab Flow sensor for ventilator
CN107817026A (zh) * 2017-11-29 2018-03-20 吉林大学 基于同步共振的高分辨率差压式流量传感器及检测方法
CN108332807A (zh) * 2018-02-23 2018-07-27 南京亿准纳自动化控制技术有限公司 节流组件、整流及流量测量装置
CN111426354A (zh) * 2020-04-15 2020-07-17 江苏鑫亚达仪表制造有限公司 一种流量测量机构及测量装置
CN111351532A (zh) * 2020-04-29 2020-06-30 南京润楠医疗电子研究院有限公司 一种双向双压差式呼吸流量检测传感装置及方法
CN112546368A (zh) * 2020-11-30 2021-03-26 深圳市科曼医疗设备有限公司 压差式流量传感器及呼吸机

Also Published As

Publication number Publication date
CN112546368B (zh) 2022-12-23
CN112546368A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US5379650A (en) Differential pressure sensor for respiratory monitoring
US5535633A (en) Differential pressure sensor for respiratory monitoring
US7243556B2 (en) Airflow sensor
CN108577845B (zh) 节流件、差压式肺功能参数监测装置及流量确定方法
WO2022110715A1 (zh) 压差式流量传感器及呼吸机
US10451461B2 (en) Venturi air flow sensor and control system
US11519839B2 (en) Pressure probe including multiple orfices for measuring air pressure in varying airflow systems
CN204831400U (zh) 稳压式小流量风速风量测量装置
WO2022110710A1 (zh) 压差式流量传感器及呼吸机
CN203772341U (zh) 用于流量检测的稳流装置和检测装置
CN107907168A (zh) 具有防堵功能的流量测量装置和系统
JPH0211091B2 (zh)
CN214502553U (zh) 一种孔板流量计
CN112254774A (zh) 一种高精度矩形风管送风流量在线测量装置
CN105115549A (zh) 一种大口径多喉流量计
CN204944562U (zh) 一种大口径多喉流量计
CN113091838A (zh) 一种孔板流量计
JPH11351651A (ja) 空気調和機
CN207280521U (zh) 一种矩阵式全烟气流量测量装置
CN105698878A (zh) 医疗仪器用喷射式流量检测装置
CN213118492U (zh) 一种矩形风管流量在线测量装置
CN205593559U (zh) 风量风压传感及压力接收器
CN115111691B (zh) 地铁混风室压差测量装置及方法
CN220490140U (zh) 组合式流量计
CN207761846U (zh) 一种发动机进气系统及其进气稳流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896225

Country of ref document: EP

Kind code of ref document: A1