WO2022110700A1 - 冲击试验设备 - Google Patents

冲击试验设备 Download PDF

Info

Publication number
WO2022110700A1
WO2022110700A1 PCT/CN2021/095745 CN2021095745W WO2022110700A1 WO 2022110700 A1 WO2022110700 A1 WO 2022110700A1 CN 2021095745 W CN2021095745 W CN 2021095745W WO 2022110700 A1 WO2022110700 A1 WO 2022110700A1
Authority
WO
WIPO (PCT)
Prior art keywords
test equipment
impact
impact test
guide rail
rod
Prior art date
Application number
PCT/CN2021/095745
Other languages
English (en)
French (fr)
Inventor
崔春阳
齐庆新
Original Assignee
煤炭科学研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 煤炭科学研究总院 filed Critical 煤炭科学研究总院
Publication of WO2022110700A1 publication Critical patent/WO2022110700A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/313Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by explosives

Definitions

  • the present application relates to the technical field of impact testing, and in particular, to an impact testing device.
  • the main frequency component of the output of the impact test equipment does not correspond to the main frequency component of the real energy wave downhole in the frequency domain range, and the tested coal-rock medium under the dynamic load of different frequencies, its dynamic response, dynamic
  • the mechanical performances such as parameters and failure modes are completely different, which makes the traditional impact test equipment have serious theoretical defects.
  • the present application aims to solve one of the technical problems in the related art at least to a certain extent.
  • one purpose of the present application is to propose an impact test equipment to solve the problem that the main frequency components output by the impact test equipment do not correspond to the main frequency components of the real downhole energy wave in the frequency domain. Test equipment to avoid the serious theoretical defects of impact test equipment.
  • an embodiment of the first aspect of the present application provides an impact test device, comprising: an impact bullet, the elastic modulus of the impact bullet is determined according to the target frequency, and the elastic modulus is positively correlated with the target frequency.
  • the impact test equipment of the embodiment of the present application selects materials with suitable elastic modulus according to the target frequency to customize the impact warhead, and can output the required main frequency components, which solves the problem that the main frequency components output by the impact test equipment and the real energy wave in the well are not in the same range. Problems that do not correspond to the frequency domain range. Because the tested coal and rock mediums have completely different mechanical performances such as dynamic responses, dynamic parameters, and failure modes under the action of dynamic loads of different frequencies, the impact test equipment with appropriate frequency is customized to avoid the serious existence of impact test equipment. theoretical flaws.
  • the impact test equipment further includes: an incident rod and a transmission rod; the incident rod and the transmission rod have the same length and are greater than the target wavelength, and the target wavelength is determined according to the target frequency.
  • the impact test equipment further includes: a support system, the length of the support system is greater than the theoretical length of the equipment, and the theoretical length of the equipment is the sum of twice the target wavelength and a preset additional equipment length.
  • the support system includes: a steel base; a guide rail, the guide rail is arranged above the steel base, and the guide rail is rigidly connected to the steel base; a center support, the center support is arranged above the guide rail, and the center support is rigidly connected to the guide rail ; Gas-liquid mechanical three-stage buffer, the gas-liquid mechanical three-stage buffer is arranged on the side of the steel base, and the gas-liquid mechanical three-stage buffer is rigidly connected to the steel base.
  • the impact test equipment further includes: a sample and an absorption rod; the incident rod, the sample, the transmission rod and the absorption rod are arranged in sequence and maintained on the same horizontal axis under the action of the central support, and Can be moved left and right.
  • the impact test equipment further includes a launching system, the launching system is arranged on the guide rail and is located in the incident direction of the incident rod, and the launching system includes an impact warhead.
  • the launching system includes: a launcher, a launch tube and a speedometer; the launcher, the launch tube and the speedometer are arranged in sequence, and the launcher includes an impact warhead.
  • the impact test equipment further includes: a power source, and the power source provides a working power source for the impact test equipment.
  • the power supply is an AC power supply of a single-phase three-wire system or a three-phase four-wire system.
  • the material of the impact bullet includes at least one of the following materials: silicon-manganese steel, rolled copper, rolled aluminum, lead, epoxy resin and asbestos phenolic resin.
  • Figure 1 is a schematic diagram of the relationship between the bullet modulus and the stress waveform of the impact test equipment
  • FIG. 2 is a schematic structural diagram of an impact test device according to an embodiment of the present application.
  • the frequency, amplitude, strain rate and carrying energy of the stress wave will be significantly reduced when the power source such as blasting and impact is from near to far.
  • the excitation device in the corresponding frequency range should be used to excite and test the coal and rock materials.
  • SHPB Split Hopkinson Pressure Bar
  • the length of the warhead is generally between 0.2-0.4 meters (m)
  • the duration of the formed stress wave is about 0.2-1.0 milliseconds (ms)
  • the output frequency range is between 1-5 kilohertz (kHz).
  • the main frequency component of the output does not correspond to the main frequency component of the real energy wave in the downhole in the frequency domain range, and the tested coal and rock medium under the dynamic load of different frequencies, its dynamic response, dynamic parameters, failure mode and other mechanics
  • the performance is completely different, which makes the traditional SHPB have serious theoretical defects.
  • Figure 1 is a schematic diagram of the relationship between the bullet modulus and the stress waveform of the impact test equipment.
  • the elastic modulus of the impact warhead gradually decreases, the duration of the first rectangular wave of the stress wave time-history curve increases significantly, and the corresponding frequency and strain rate decrease significantly. Therefore, by reducing the elastic modulus of the impact bullet, when it hits the incident rod of the impact test equipment under the same other boundary conditions, the duration of the first stress wave generated increases, thereby reducing the frequency of the stress wave. , so that it is closer to the stress wave frequency in the common dynamic disasters in the field of geotechnical engineering, so that the real dynamic failure process of coal and rock can be simulated in the laboratory environment, and the scientificity of the impact test system can be enhanced.
  • FIG. 2 is a schematic structural diagram of an impact test apparatus according to an embodiment of the present application.
  • the impact test equipment of the embodiment of the present application includes an impact bullet (not shown in FIG. 2 ), the elastic modulus of the impact bullet is determined according to the target frequency, and the elastic modulus has a positive correlation with the target frequency.
  • the target frequency is the frequency that the user needs to output from the impact test equipment. Since the impact warheads made of materials with different elastic moduli have different incident wave frequencies, as shown in Table 1, in order to obtain the impact test equipment of the target frequency, the impact warhead can be customized by selecting the material with the elastic modulus according to the target frequency.
  • the elastic modulus of the material is positively correlated with the target frequency, that is, the elastic modulus of the material increases with the increase of the target frequency.
  • the material of the impact bullet may specifically include, but is not limited to, at least one of the following materials: silicon-manganese steel, rolled copper, rolled aluminum, lead, epoxy resin, asbestos phenolic resin, and the like.
  • the impact test equipment of the embodiments of the present application customizes the impact bullet by selecting appropriate materials to reduce the elastic modulus of the impact bullet from about 220 gigapascals (GPa) to about 10 GPa, which can effectively reduce the shock wave frequency of the traditional impact test equipment.
  • GPa gigapascals
  • the original 1-5kHz stress wave characteristic frequency is reduced to about 500Hz, which corresponds to the real downhole energy wave main frequency component in the frequency domain range, avoiding serious theoretical defects in the shock test equipment.
  • the impact test equipment of the embodiment of the present application selects materials with suitable elastic modulus to customize the impact warhead according to the target frequency, and can output the required main frequency components, which solves the problem that the main frequency components output by the impact test equipment and the real energy wave in the well are in frequency. Domain-wide mismatch. Because the tested coal and rock mediums have completely different mechanical performances such as dynamic responses, dynamic parameters, and failure modes under the action of dynamic loads of different frequencies, the impact test equipment with appropriate frequency is customized to avoid the serious existence of impact test equipment. theoretical flaws.
  • the impact test equipment of the embodiment of the present application may also include an incident rod 1 and a transmission rod 2; the incident rod 1 and the transmission rod 2 have the same length and are greater than the target wavelength, and the target wavelength is determined according to the target frequency. .
  • the material of the incident rod 1 and the transmission rod 2 should keep the silicon-manganese steel material used in the traditional SHPB system, so as to ensure that the propagation speed of the stress wave is basically unchanged.
  • the impact warhead with the appropriate elastic modulus is selected.
  • the stress wave that the projectile excites the incident rod 1 is determined, including the incident wave frequency (equal to the target frequency), the incident wave duration (equal to the inverse of the target frequency) and the wavelength of the incident wave (the incident wave duration is multiplied by the wave velocity of the incident rod, and the wave velocity of the incident rod made of silicon-manganese steel is a constant 5400m/s).
  • the stress wave duration increase corresponds to the increase of the theoretical minimum length of the incident rod and the transmission rod. It is necessary to select the incident rod 1 and the transmission rod 2 larger than this incident wave wavelength (ie, the target wavelength).
  • the straightness is less than 0.05mm/m, the verticality of the end face is 0.02, and the surface finish is 0.8.
  • the impact test equipment of the embodiment of the present application may further include: a support system 3, and the length of the support system 3 is greater than the theoretical length of the equipment, so as to meet the requirements of the energy-absorbing rods at both ends of the support system and the end device.
  • the theoretical length of the device is the sum of twice the target wavelength and the preset additional device length.
  • the support system 3 may specifically include: a steel base 31; a guide rail 32, the guide rail 32 is arranged above the steel base 31, and the guide rail 32 is rigidly connected to the steel base 31; a center support 33, the center support 33 is arranged on the guide rail Above 32, the center bracket 33 is rigidly connected with the guide rail 32; the gas-liquid mechanical three-stage buffer 34, the gas-liquid mechanical three-stage buffer 34 is arranged on the side of the steel base 31, and the gas-liquid mechanical three-stage buffer 34 is connected with the steel base 31. Rigid connection as energy absorber.
  • the impact test equipment of the embodiment of the present application may further include: a sample 4 and an absorption rod 5 ; the incident rod 1 , the sample 4 , the transmission rod 2 and the absorption rod 5 are arranged in sequence, and the The center bracket 33 is maintained on the same horizontal axis, and can move left and right lubricated.
  • the impact test equipment of the embodiment of the present application may further include a launching system 6 , which is arranged on the guide rail 32 and is located in the incident direction of the incident rod 1 , and includes an impact warhead.
  • the launch system 6 may specifically include: a launcher 61, a launch tube 62 and a speedometer 63; the launcher 61, the launch tube 62 and the speedometer 63 are arranged in sequence, and the launcher 61 includes an impact warhead.
  • the inside of the launcher 61 can be inflated, and opening the valve in the launcher 61 allows the gas to spew out from the launch tube 62, pushing the impact warhead to shoot out at a high speed.
  • the impact test equipment in the embodiments of the present application may further include: a power source, and the power source provides a working power source for the impact test equipment.
  • the power supply may specifically include, but is not limited to, an alternating current power supply (AC) of a single-phase three-wire system or a three-phase four-wire system.
  • AC alternating current power supply
  • single-phase three-wire AC 220V 10A equipment must be grounded for protection
  • AC (380 ⁇ 5%) 50HZ three-phase four-wire + protective ground wire, capacity 10KW (equipment must be grounded for protection).
  • the ambient temperature should be kept at 0-40 degrees Celsius (°C)
  • the ambient humidity should be kept at 5%-90% RH (Relative Humidity)
  • the electromagnetic compatibility should be kept at the industrial level 3 Class (10-100HZ AC frequency equipment, such as generators, high-power substations, induction heating equipment, etc.) cannot be located within 10 meters.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plurality means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种冲击试验设备,包括:冲击弹头,冲击弹头的弹性模量根据目标频率确定,弹性模量与目标频率呈正相关关系。冲击试验设备根据目标频率挑选合适弹性模量的材料定制冲击弹头,可输出需要的主频成分,解决了冲击试验设备输出主频成分与井下真实的能量波主频成分在频域范围上不对应的问题。通过定制合适频率的冲击试验设备,避免冲击试验设备存在较为严重的理论缺陷。

Description

冲击试验设备
相关申请的交叉引用
本申请要求煤炭科学研究总院于2020年11月25日提交的、发明名称为“冲击试验设备”的、中国专利申请号为“202011345489.8”的优先权。
技术领域
本申请涉及冲击试验技术领域,尤其涉及一种冲击试验设备。
背景技术
相关技术中,冲击试验设备输出主频成分与井下真实的能量波主频成分在频域范围上不对应,而被测试的煤岩介质在不同频率的动力荷载作用下,其动力响应、动力学参量、破坏模式等力学表现完全不同,这使得传统的冲击试验设备存在较为严重的理论缺陷。
申请内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种冲击试验设备,以解决冲击试验设备输出主频成分与井下真实的能量波主频成分在频域范围上不对应的问题,通过定制合适频率的冲击试验设备,避免冲击试验设备存在较为严重的理论缺陷。
为达上述目的,本申请第一方面实施例提供了一种冲击试验设备,包括:冲击弹头,冲击弹头的弹性模量根据目标频率确定,弹性模量与目标频率呈正相关关系。
本申请实施例的冲击试验设备,根据目标频率挑选合适弹性模量的材料定制冲击弹头,可输出需要的主频成分,解决了冲击试验设备输出主频成分与井下真实的能量波主频成分在频域范围上不对应的问题。由于被测试的煤岩介质在不同频率的动力荷载作用下,其动力响应、动力学参量、破坏模式等力学表 现完全不同,因此通过定制合适频率的冲击试验设备,避免了冲击试验设备存在较为严重的理论缺陷。
根据本申请上述实施例的冲击试验设备,还包括:入射杆和透射杆;入射杆和透射杆的长度相同,且大于目标波长,目标波长根据目标频率确定。
根据本申请上述实施例的冲击试验设备,还包括:支架系统,支架系统的长度大于设备理论长度,设备理论长度为目标波长的2倍与预设的附加设备长度的和值。
根据本申请上述实施例的冲击试验设备,支架系统包括:钢底座;导轨,导轨设置在钢底座上方,导轨与钢底座刚性连接;中心支架,中心支架设置在导轨上方,中心支架与导轨刚性连接;气液机械三级缓冲器,气液机械三级缓冲器设置在钢底座的侧方,气液机械三级缓冲器与钢底座刚性连接。
根据本申请上述实施例的冲击试验设备,还包括:试样和吸收杆;入射杆、试样、透射杆和吸收杆依次排列设置,且在中心支架的作用下保持在同一水平轴线上,且可左右移动。
根据本申请上述实施例的冲击试验设备,还包括:发射系统,发射系统设置在导轨上,且位于入射杆的入射方向,发射系统包括冲击弹头。
根据本申请上述实施例的冲击试验设备,发射系统包括:发射器、发射管和测速仪;发射器、发射管和测速仪依次排列设置,发射器包括冲击弹头。
根据本申请上述实施例的冲击试验设备,还包括:电源,电源为冲击试验设备提供工作电源。
根据本申请上述实施例的冲击试验设备,电源为单相三线制或三相四线制的交流电源。
根据本申请上述实施例的冲击试验设备,所述冲击弹头的材料包括以下材料中的至少一种:硅锰钢、轧制铜、轧制铝、铅、环氧树脂和石棉酚醛树脂。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是冲击试验设备的弹头模量与应力波形关系的示意图;
图2是根据本申请一个实施例的冲击试验设备的结构示意图;
附图标号:
1-入射杆,2-透射杆,3-支架系统,31-钢底座,32-导轨,33-中心支架,34-气液机械三级缓冲器,4-试样,5-吸收杆,6-发射系统,61-发射器,62-发射管,63-测速仪。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
一般而言,爆破、冲击等动力源由近及远,其应力波的频率、波幅、应变率、携带能量都会显著减小,因此研究临近点、近场、中场、远场的岩石动力学问题,应采用相应频率范围的激励装置对煤岩材料进行激发与测试,才能获得准确的煤岩动力响应与参数结果。
在矿井尺度下,上述动力源的传播距离大多数不超过10千米(km)量级,能量波经历了煤岩介质的传播与衰减后,作用于井下结构的应力波主频成分大部分处在1-500赫兹(Hz)。因此,研究井下动力灾害需要定制能够输出相应频率的冲击测试装备。
目前,岩石动力学最主流的冲击试验设备为SHPB(Split Hopkinson Pressure Bar,分离式霍普金斯压杆),其采用硅锰钢制冲击弹头、钢制入射杆与透射杆 对试样进行冲击测试,其弹头长度一般在0.2-0.4米(m)之间,形成的应力波持时在0.2-1.0毫秒(ms)左右,则其输出频率范围在1-5千赫兹(kHz)之间。其输出主频成分与井下真实的能量波主频成分在频域范围上不对应,而被测试的煤岩介质在不同频率的动力荷载作用下,其动力响应、动力学参量、破坏模式等力学表现完全不同,这使得传统的SHPB存在较为严重的理论缺陷。
为解决上述冲击试验设备输出的主频成分与井下真实的能量波主频成分在频域范围上不对应的问题,需要定制合适频率的冲击试验设备,以避免冲击试验设备存在较为严重的理论缺陷。
图1是冲击试验设备的弹头模量与应力波形关系的示意图。如图1所示,随着冲击弹头的弹性模量逐步降低,其应力波时程曲线的第一个矩形波的持时显著增大,对应的频率与应变率显著降低。因此,可以通过降低冲击弹头的弹性模量,使之在相同的其它边界条件作用下,撞击到冲击试验设备入射杆时,所产生的首个应力波的持时增长,从而降低应力波的频率,使之与岩土工程领域中常见的动力灾害中的应力波频率更加接近,从而能够在实验室环境下模拟真实的煤岩动力破坏过程,增强冲击试验系统的科学性。
图2是根据本申请一个实施例的冲击试验设备的结构示意图。如图2所示,本申请实施例的冲击试验设备包括:冲击弹头(图2中未示出),冲击弹头的弹性模量根据目标频率确定,弹性模量与目标频率呈正相关关系。
具体的,目标频率为用户需要冲击试验设备输出的频率。由于不同弹性模量的材料制成的冲击弹头对应的入射波频率不同,如表1所示,因此,为获取目标频率的冲击试验设备,可以根据目标频率选择弹性模量的材料定制冲击弹头。材料的弹性模量与目标频率呈正相关关系,即材料的弹性模量随目标频率的增加而增加。冲击弹头的材料具体可包括但不限于以下材料中的至少一种:硅锰钢、轧制铜、轧制铝、铅、环氧树脂和石棉酚醛树脂等。
表1 冲击弹头的弹性模量与弹头材料、应力波的对应关系表
Figure PCTCN2021095745-appb-000001
Figure PCTCN2021095745-appb-000002
本申请实施例的冲击试验设备通过选择合适的材料定制冲击弹头,以降低冲击弹头的弹性模量,从220吉帕(GPa)左右降至10GPa左右,可有效降低传统的冲击试验设备的冲击波频率与冲击波应变率,使原有的1-5kHz应力波特征频率降至500Hz左右,与井下真实的能量波主频成分在频域范围上对应,避免冲击试验设备存在较为严重的理论缺陷。
本申请实施例的冲击试验设备根据目标频率挑选合适弹性模量的材料定制冲击弹头,可输出需要的主频成分,解决了冲击试验设备输出主频成分与井下真实的能量波主频成分在频域范围上不对应的问题。由于被测试的煤岩介质在不同频率的动力荷载作用下,其动力响应、动力学参量、破坏模式等力学表现完全不同,因此通过定制合适频率的冲击试验设备,避免了冲击试验设备存在较为严重的理论缺陷。
进一步的,如图2所示,本申请实施例的冲击试验设备还可以包括入射杆1和透射杆2;入射杆1和透射杆2的长度相同,且大于目标波长,目标波长根据目标频率确定。
具体的,入射杆1与透射杆2的材质应保持传统SHPB系统所采用的硅锰钢材质,以保证应力波的传播速度基本不变。根据目标频率来选取合适弹性模量的冲击弹头,冲击弹头的弹性模量一旦选定,那么弹头激发入射杆1的应力波就确定了,包括入射波频率(等于目标频率)、入射波持时(等于目标频率的倒数)和入射波波长(入射波持时乘以入射杆的波速,采用硅锰钢材质的入射杆的波速为定常数5400m/s)。为保证生成的应力波在入射杆1与透射杆2中都能够被应变片完整地监测到完整波形,应力波持时增长对应着的是入射杆与透 射杆理论最小长度的增大,因此还需要选择大于这个入射波波长(即目标波长)的入射杆1和透射杆2。
需要说明的是,在实际应用中,以试样长度50毫米(mm)、压力室长度550mm计,可以计算出冲击试验设备理论最小长度=2*入射波波长(即目标波长)+预设的附加设备长度(例如0.5m),如表1所示,也就是按设备理论最小长度设计整体设备尺寸。直线度小于0.05mm/m,端面垂直度0.02,表面光洁度0.8。
进一步的,如图2所示,本申请实施例的冲击试验设备还可以包括:支架系统3,支架系统3的长度大于设备理论长度,以满足支架系统两端吸能杆系与端头装置的搭建,设备理论长度为目标波长的2倍与预设的附加设备长度的和值。
其中,如图2所示,支架系统3具体可包括:钢底座31;导轨32,导轨32设置在钢底座31上方,导轨32与钢底座31刚性连接;中心支架33,中心支架33设置在导轨32上方,中心支架33与导轨32刚性连接;气液机械三级缓冲器34,气液机械三级缓冲器34设置在钢底座31的侧方,气液机械三级缓冲器34与钢底座31刚性连接,作为吸能装置。
进一步的,如图2所示,本申请实施例的冲击试验设备还可以包括:试样4和吸收杆5;入射杆1、试样4、透射杆2和吸收杆5依次排列设置,且在中心支架33的作用下保持在同一水平轴线上,且可左右润滑的移动。
进一步的,如图2所示,本申请实施例的冲击试验设备还可以包括:发射系统6,发射系统6设置在导轨32上,且位于入射杆1的入射方向,发射系统6包括冲击弹头。
其中,如图2所示,发射系统6具体可包括:发射器61、发射管62和测速仪63;发射器61、发射管62和测速仪63依次排列设置,发射器61包括冲击弹头。发射器61内部可以充气,打开发射器61中阀门可以让气体从发射管62中喷涌出来,推动冲击弹头高速射出。
进一步的,本申请实施例的冲击试验设备还可以包括:电源,电源为冲击试验设备提供工作电源。其中,电源具体可以包括但不限于单相三线制或三相四线制的交流电源(AC)等。例如,单相三线制AC 220V 10A(设备必须接地保护);AC(380±5%)50HZ三相四线+保护地线,容量10KW(设备必须接地保护)。
另外,为保证冲击试验设备的准确性,环境温度应保持在0-40摄氏度(℃),环境湿度应保持在5%-90%RH(相对湿度,Relative Humidity),电磁兼容应保持在工业三级(10米范围不能有10-100HZ交频设备,如发电机,大功率变电站,感应加热设备等)。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或 “下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种冲击试验设备,其特征在于,包括:
    冲击弹头,所述冲击弹头的弹性模量根据目标频率确定,所述弹性模量与所述目标频率呈正相关关系。
  2. 根据权利要求1所述的冲击试验设备,其特征在于,还包括:入射杆和透射杆;
    所述入射杆和所述透射杆的长度相同,且大于目标波长,所述目标波长根据所述目标频率确定。
  3. 根据权利要求2所述的冲击试验设备,其特征在于,还包括:
    支架系统,所述支架系统的长度大于设备理论长度,所述设备理论长度为所述目标波长的2倍与预设的附加设备长度的和值。
  4. 根据权利要求3所述的冲击试验设备,其特征在于,所述支架系统包括:
    钢底座;
    导轨,所述导轨设置在所述钢底座上方,所述导轨与所述钢底座刚性连接;
    中心支架,所述中心支架设置在所述导轨上方,所述中心支架与所述导轨刚性连接;
    气液机械三级缓冲器,所述气液机械三级缓冲器设置在所述钢底座的侧方,所述气液机械三级缓冲器与所述钢底座刚性连接。
  5. 根据权利要求4所述的冲击试验设备,其特征在于,还包括:试样和吸收杆;
    所述入射杆、所述试样、所述透射杆和所述吸收杆依次排列设置,且在所述中心支架的作用下保持在同一水平轴线上,且可左右移动。
  6. 根据权利要求4所述的冲击试验设备,其特征在于,还包括:
    发射系统,所述发射系统设置在所述导轨上,且位于所述入射杆的入射方向,所述发射系统包括所述冲击弹头。
  7. 根据权利要求6所述的冲击试验设备,其特征在于,所述发射系统包括:发射器、发射管和测速仪;
    所述发射器、所述发射管和所述测速仪依次排列设置,所述发射器包括所述冲击弹头。
  8. 根据权利要求1所述的冲击试验设备,其特征在于,还包括:
    电源,所述电源为所述冲击试验设备提供工作电源。
  9. 根据权利要求8所述的冲击试验设备,其特征在于,所述电源为单相三线制或三相四线制的交流电源。
  10. 根据权利要求1所述的冲击试验设备,其特征在于,所述冲击弹头的材料包括以下材料中的至少一种:
    硅锰钢、轧制铜、轧制铝、铅、环氧树脂和石棉酚醛树脂。
PCT/CN2021/095745 2020-11-25 2021-05-25 冲击试验设备 WO2022110700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011345489.8A CN112461639A (zh) 2020-11-25 2020-11-25 冲击试验设备
CN202011345489.8 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022110700A1 true WO2022110700A1 (zh) 2022-06-02

Family

ID=74809177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095745 WO2022110700A1 (zh) 2020-11-25 2021-05-25 冲击试验设备

Country Status (2)

Country Link
CN (1) CN112461639A (zh)
WO (1) WO2022110700A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461639A (zh) * 2020-11-25 2021-03-09 煤炭科学研究总院 冲击试验设备
CN113405928B (zh) * 2021-08-19 2021-11-09 煤炭科学研究总院 冲击弹头和具有它的冲击试验设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254492B2 (en) * 2002-10-11 2007-08-07 Sri Sports Limited Method of computing energy loss generated in viscoelastic material and method for evaluating energy loss of golf ball by using method of computing energy loss
CN103234844A (zh) * 2013-03-29 2013-08-07 东北大学 一种摆锤加载中应变率霍布金森压杆试验装置及方法
CN106644775A (zh) * 2017-03-14 2017-05-10 哈尔滨工业大学 一种用于分离式霍普金森压杆实验的组合式子弹
CN107389476A (zh) * 2017-06-26 2017-11-24 宁波大学 一种材料大变形冲击压缩实验方法
CN108680324A (zh) * 2018-05-14 2018-10-19 江苏白雪电器股份有限公司 振动测试台
CN111006940A (zh) * 2019-12-10 2020-04-14 东北大学 一种满足爆破应力波模拟的变频慢速扰动杆机构
CN111426582A (zh) * 2020-03-03 2020-07-17 天津大学 一种霍普金森压杆中实现单脉冲加载测试的装置
CN112461639A (zh) * 2020-11-25 2021-03-09 煤炭科学研究总院 冲击试验设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833594A (zh) * 2015-05-11 2015-08-12 河海大学 基于霍普金森原理的混凝土轴心动态拉伸断裂试验方法
CN205027614U (zh) * 2015-10-19 2016-02-10 华北理工大学 一种用于材料高应变率试验的装置
KR101727405B1 (ko) * 2015-10-28 2017-05-02 전북대학교산학협력단 Shpb 충격시험 전용 삼축 압축셀 및 이를 이용한 동적 삼축 전단 시험기법
CN105806722A (zh) * 2016-04-13 2016-07-27 四川潮森科技有限公司 一种霍普金森压拉连续加载实验装置
CN107314933B (zh) * 2017-06-20 2019-07-05 山东科技大学 动及动静组合载荷下煤岩组合体中煤的力学特性试验方法
CN108375501B (zh) * 2018-01-25 2021-04-16 南京理工大学 一种基于分离式霍普金森压杆实验技术的数据处理方法
CN110146394A (zh) * 2018-05-23 2019-08-20 谭乃根 材料特性冲击声学响应测试模拟系统
CN210375984U (zh) * 2019-06-10 2020-04-21 河南理工大学 一种分体式三维压力装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254492B2 (en) * 2002-10-11 2007-08-07 Sri Sports Limited Method of computing energy loss generated in viscoelastic material and method for evaluating energy loss of golf ball by using method of computing energy loss
CN103234844A (zh) * 2013-03-29 2013-08-07 东北大学 一种摆锤加载中应变率霍布金森压杆试验装置及方法
CN106644775A (zh) * 2017-03-14 2017-05-10 哈尔滨工业大学 一种用于分离式霍普金森压杆实验的组合式子弹
CN107389476A (zh) * 2017-06-26 2017-11-24 宁波大学 一种材料大变形冲击压缩实验方法
CN108680324A (zh) * 2018-05-14 2018-10-19 江苏白雪电器股份有限公司 振动测试台
CN111006940A (zh) * 2019-12-10 2020-04-14 东北大学 一种满足爆破应力波模拟的变频慢速扰动杆机构
CN111426582A (zh) * 2020-03-03 2020-07-17 天津大学 一种霍普金森压杆中实现单脉冲加载测试的装置
CN112461639A (zh) * 2020-11-25 2021-03-09 煤炭科学研究总院 冲击试验设备

Also Published As

Publication number Publication date
CN112461639A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022110700A1 (zh) 冲击试验设备
WO2020098351A1 (zh) 一种用于研究高温下应力波在节理岩体中传播特性的试验装置
Shen et al. Thermal deterioration of high-temperature granite after cooling shock: multiple-identification and damage mechanism
CN103335902B (zh) 真实管道弯曲疲劳试验系统及方法
CN109827735B (zh) 一种高温振动模拟设备
WO2020098350A1 (zh) 一种用于研究弹性纵波在节理岩体中传播特征的试验装置
KR20120010339A (ko) 초고속 튜브 트레인 아진공 열차주행 시험 장치
Chen et al. Protective effect of polymer coating on the circular steel plate response to near-field underwater explosions
CN102841145A (zh) 用于爬波探伤的探头和爬波探伤方法
Jun-hua et al. Model of rock blasting-induced damage considering integrity of rock mass and its application
Zhai et al. Experimental study on the noise characteristics regarding axial auxiliary fans and the noise reduction performance of mufflers
Lu et al. Detonation driver for enhancing shock tube performance
CN110414822A (zh) 一种根据管道裂纹渐进扩展距离计算内部爆炸载荷速率的方法
Wu et al. Full‐scale experiments to study shock waves generated by the rupture of a high‐pressure pipeline
CN113866214A (zh) 一种电流作用下损耗因子测试装置及测试方法
Gang et al. Experimental study on the failure characteristics and charge law of coal samples with large scale single pre-crack
Zeng et al. Analysis on Time-frequency Characteristics and Delay Time Identification for Blasting Vibration Signal by Hilbert-Huang Transform in Fangchenggang Nuclear Power Station.
Liu et al. Numerical simulation analysis of real-time high-temperature impact test technique of rock materials
CN106932163A (zh) 固支边界条件的深水爆炸冲击波等效加载实验装置
CN108005643A (zh) 胶囊充油承压式声波测井仪注油量计算方法
Petr et al. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging
CN113702214A (zh) 一种用于成层式组合材料进行一维应力波传播的试验方法
Toyoda et al. Metallugical Design and Performance of ERW Linepipe With High-Quality Weld Seam Suitable for Extra-Low-Temperature Services
Williams et al. Evaluating blast wave overpressure from non‐spherical charges using time of arrival from high‐speed video
Johnson The hustrulid bar-a dynamic strength test and its application to the cautious blasting of rock

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896210

Country of ref document: EP

Kind code of ref document: A1