WO2022110635A1 - 一种基于病灶区域的电极针布针装置及方法 - Google Patents
一种基于病灶区域的电极针布针装置及方法 Download PDFInfo
- Publication number
- WO2022110635A1 WO2022110635A1 PCT/CN2021/090008 CN2021090008W WO2022110635A1 WO 2022110635 A1 WO2022110635 A1 WO 2022110635A1 CN 2021090008 W CN2021090008 W CN 2021090008W WO 2022110635 A1 WO2022110635 A1 WO 2022110635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ablation
- needle
- area
- lesion area
- candidate
- Prior art date
Links
- 230000003902 lesion Effects 0.000 title claims abstract description 261
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000002679 ablation Methods 0.000 claims abstract description 266
- 238000011156 evaluation Methods 0.000 claims abstract description 113
- 230000010354 integration Effects 0.000 claims abstract description 5
- 239000004744 fabric Substances 0.000 claims description 49
- 230000000694 effects Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000013188 needle biopsy Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000011298 ablation treatment Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
- A61B2018/143—Needle multiple needles
Definitions
- the invention belongs to the technical field of medical devices, and in particular relates to an electrode clothing needle device and method based on a lesion area.
- the needle placement scheme used for patients may not be able to completely ablate the patient's lesion area, resulting in poor ablation effect. It is necessary to develop an automatic ablation needle placement scheme to obtain the best ablation effect.
- embodiments of the present invention provide an electrode clothing needle device and method based on a lesion area.
- an electrode clothing needle device based on a lesion area comprising:
- the set acquisition module is used to acquire a set of candidate needle placement points based on the original lesion area, and use the original lesion area as the current lesion area;
- a factor acquisition module configured to acquire, based on the current lesion area, the effective evaluation factor of the ablation needle group composed of any two candidate needle distribution points in the candidate needle distribution point set, and record the ablation needle group corresponding to the maximum effective evaluation factor;
- an area update module configured to update the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor, so that the factor acquisition module can re-acquire the candidate needle placement point set based on the current lesion area
- the effective evaluation factor of the ablation needle group composed of any two candidate needle placement points, and the ablation needle group corresponding to the maximum effective evaluation factor is recorded, and the region update module is again based on the ablation needle group corresponding to the maximum effective evaluation factor. Ablating the area, updating the current lesion area until the current lesion area is zero; and,
- the needle group integration module is used to integrate the ablation needle group corresponding to the maximum effective evaluation factor of all records as the optimal needle cloth combination.
- the set of candidate needle placement points includes: a first needle placement point located within the original lesion area and a second needle placement point located outside the original lesion area that meets the candidate condition.
- the candidate condition includes: being adjacent to the first needle placement point located in the original lesion area and having a distance from the original lesion area within a preset range.
- the criterion for determining that the distance from the original lesion area is within a preset range includes: a line connecting with the adjacent first needle-distributing points, and the distance from the original lesion area is within a predetermined range.
- the length is greater than the length outside the original lesion area, or the ratio of the length inside the original lesion area to the length outside the original lesion area is greater than a threshold.
- the factor acquisition module includes:
- a first acquisition sub-module configured to acquire the ablation area corresponding to the ablation needle group composed of the any two candidate needle placement points
- a second acquisition submodule configured to acquire the overlapping area of the ablation area and the current lesion area
- a third obtaining sub-module configured to obtain an effective ablation ratio based on the area ratio of the overlapping area in the ablation area
- the fourth obtaining sub-module is configured to obtain the effective evaluation factor of the ablation needle group composed of any two candidate needle placement points in the candidate needle placement point set based on the obtained ablation area and the obtained effective ablation ratio.
- the fourth obtaining sub-module obtains, based on the obtained ablation area and the obtained effective ablation ratio, an ablation needle composed of any two candidate needle placement points in the candidate needle placement point set
- the area update module updates the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor, including:
- the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor is deleted from the current lesion area before the update, and the deleted lesion area is used as the updated current lesion area.
- a method for electrode clothing needles based on a lesion area comprising:
- the current lesion area is updated, so as to obtain the ablation needle composed of any two candidate needle placement points in the candidate needle placement point set based on the current lesion area again
- the effective evaluation factor of the group is recorded, and the ablation needle group corresponding to the maximum effective evaluation factor is recorded, and based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor again, the current lesion area is updated until the current lesion area is zero; and ,
- the ablation needle group corresponding to the maximum effective evaluation factor of all records is integrated as the optimal needle cloth combination.
- the set of candidate needle placement points includes: a first needle placement point located within the original lesion area and a second needle placement point located outside the original lesion area that meets the candidate condition.
- the candidate condition includes: being adjacent to the first needle placement point located in the original lesion area and having a distance from the original lesion area within a preset range.
- the criterion for determining that the distance from the original lesion area is within a preset range includes: a line connecting with the adjacent first needle-distributing points, and the distance from the original lesion area is within a predetermined range.
- the length is greater than the length outside the original lesion area, or the ratio of the length inside the original lesion area to the length outside the original lesion area is greater than a threshold.
- obtaining the effective evaluation factor of the ablation needle group composed of any two candidate needle points in the candidate needle point set includes:
- an effective evaluation factor of the ablation needle group composed of any two candidate needle placement points in the candidate needle placement point set is obtained.
- the updating of the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor includes:
- the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor is deleted from the current lesion area before the update, and the deleted lesion area is used as the updated current lesion area.
- the device and method for electrode clothing needles based on the lesion area proposed by the embodiments of the present invention can achieve the effect of completely ablating the lesion area, with the minimum number of needles and the smallest additional ablation area.
- FIG. 1 shows a schematic structural diagram of an electrode clothing needle device based on a lesion area proposed by an embodiment of the present invention
- Fig. 2a shows a reference diagram of an example of an example original lesion area in the electrode clothing needle scheme based on the lesion area proposed by the embodiment of the present invention
- Fig. 2b shows a schematic diagram of determining candidate needle cloth points in the lesion area-based electrode cloth needle scheme proposed by an embodiment of the present invention
- FIG. 3 shows a schematic diagram of the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor in the lesion area-based electrode clothing needle scheme proposed by the embodiment of the present invention
- FIG. 4 shows a flowchart of a method for electrode clothing needles based on a lesion area proposed by an embodiment of the present invention.
- FIG. 5 shows another flowchart of the method for electrode clothing needles based on the lesion area provided by the embodiment of the present invention.
- the term “including” and its various variants can be understood as open-ended terms meaning “including but not limited to”.
- the term “based on” may be understood as “based at least in part on”.
- the term “one embodiment” may be understood to mean “at least one embodiment.”
- the term “another embodiment” may be understood to mean “at least one other embodiment.”
- the embodiment of the present invention proposes A lesion area-based electrode clothing needle device and method are provided.
- Fig. 1 shows a schematic structural diagram of a lesion area-based electrode clothing needle device according to an embodiment of the present invention, the device includes:
- the set acquisition module is used to acquire a set of candidate needle placement points based on the original lesion area, and use the original lesion area as the current lesion area;
- a factor acquisition module configured to acquire, based on the current lesion area, the effective evaluation factor of the ablation needle group composed of any two candidate needle distribution points in the candidate needle distribution point set, and record the ablation needle group corresponding to the maximum effective evaluation factor;
- an area update module configured to update the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor, so that the factor acquisition module can re-acquire the candidate needle placement point set based on the current lesion area
- the effective evaluation factor of the ablation needle group composed of any two candidate needle placement points, and the ablation needle group corresponding to the maximum effective evaluation factor is recorded, and the region update module is again based on the ablation needle group corresponding to the maximum effective evaluation factor. Ablating the area, updating the current lesion area until the current lesion area is zero; and,
- the needle group integration module is used to integrate the ablation needle group corresponding to the maximum effective evaluation factor of all records as the optimal needle distribution combination.
- the effect of completely ablating the lesion area can be achieved with the minimum number of needles and the smallest additional ablation area.
- the original lesion area may be acquired by existing means such as ultrasound, magnetic resonance, and needle biopsy.
- the original lesion area can be determined by combining the ultrasound images with the magnetic resonance data and the results of the needle biopsy.
- the original lesion area may be mapped to a reference coordinate system marked with needle placement points, and each needle placement point has a fixed coordinate position and coordinate name. Therefore, the original The lesion area is mapped to the reference coordinate system marked with the needle placement points, and the needle placement points covered by the original lesion area can be obtained accurately and conveniently.
- the distance between any two stitch points can be known, or the stitch points can be set at equal intervals, so that the distance between adjacent stitch points is equal, and the same
- the distance between any two needle placement points can be known, and based on this, the adjacent needle placement points outside the original lesion area can be accurately obtained.
- the distance D between any two needle points can be expressed as: Among them, d is the distance between two adjacent cloth needle points, N y represents the number of interval points between any two needle cloth points in the y direction, and N x represents the number of interval points between any two needle cloth points in the x direction.
- the distance d of two adjacent needle cloth points is not known in advance, then only the coordinates of any two needle cloth points need to be calibrated, and the number of points N y and any number of points in the y direction between any two needle cloth points in the y direction need to be calibrated.
- the distance d between two adjacent needle points can be calculated according to the expression of distance D, and then according to the distance d between two adjacent needle points, the distance d between two adjacent needle points can be Get the coordinate value of any stitch point.
- the reference coordinate system may be an XY coordinate system, or may be other coordinate systems that can clearly express the needle placement point.
- Figure 2a shows an example of mapping the original lesion area to the reference coordinate system. It can be seen from the figure that the coordinate name of the needle cloth point in the lower left corner can be A1, and the coordinates of the needle cloth point in the first column from left to right The names are A1, A1.5, A2, A2.5, A3, ... from bottom to top.
- the coordinate position or coordinate value of the needle cloth point, or the relative coordinate position or relative coordinate value can also be known through the coordinate name of the needle cloth point.
- the expression of D can obtain the relative coordinate position or relative coordinate value.
- the coordinate value and coordinate position of any needle cloth point can be obtained. It can be understood that those skilled in the art can also adopt other ways to characterize the coverage of the original lesion area.
- the set acquisition module may acquire a set of candidate needle placement points according to the needle placement points covered by the original lesion area and the adjacent needle placement points outside the original lesion area.
- the set of candidate needle placement points includes: a first needle placement point located in the original lesion area.
- the first needle distribution point located in the original lesion area includes the needle distribution point completely located in the original lesion area, and also includes the needle distribution point that overlaps with the boundary of the original lesion area. Therefore, the first needle distribution point It can also be understood as a needle-distribution point covered by the original lesion area. Since the position of the first needle-distribution point is closely related to the original lesion area, the first needle-distribution point can be used as a candidate needle-distribution point.
- the first needle placement point it can be judged by whether the coordinates of the needle placement point are within the original lesion area. If the coordinates of the current needle placement point are within the original lesion area, the current needle placement point is determined as the first needle placement point. Points can be stored as candidate needle points in the set of candidate needle points. To determine whether the coordinates of the needle placement point are located in the original lesion area, those skilled in the art can use known techniques to determine, because it is not the main aspect of the present invention, so it will not be repeated here. Referring to the example of Figure 2a, the part surrounded by solid lines in the figure represents the original lesion area, the black dots represent the marked needle placement points, A, a, B, b, ... etc.
- the needle placement points a1.5, B1.5, b1.5, a2, B2, a2.5, B2.5, a3, B3, and b3 are all located in the original lesion area and belong to the first
- the needle point can be stored in the candidate needle point set as a candidate needle point, then the candidate needle point set A including the first needle point can be expressed as ⁇ a1.5,B1.5,b1.5,a2 ,B2,a2.5,B2.5,a3,B3,b3 ⁇ , a total of 10 first needle points.
- the candidate needle placement point set may also include: those located in the original lesion that meet the candidate conditions Second stitch point outside the area.
- the candidate condition includes: being adjacent to the first needle placement point located in the original lesion area and having a distance from the original lesion area within a preset range.
- the criterion for determining that the distance from the original lesion area is within a preset range includes: the length of the connecting line with the adjacent first needle placement point in the original lesion area is greater than The length of the length outside the original lesion area, or the ratio of the length of the connecting line to the adjacent first needle placement point located in the original lesion area to the length outside the original lesion area is greater than threshold.
- the second needle distribution point is exemplarily described, but these descriptions should not be construed as limiting the embodiments of the present invention.
- the four cloth needle points above, below, left and right can be The needle point is regarded as the adjacent needle point of the needle point, and the four needle points of the upper left, upper right, lower left and lower right of the needle point can also be regarded as the four needle points on this basis.
- the adjacent stitch point of the stitch point can also be expanded or reduced according to the actual situation.
- the method for determining the second needle-distribution point may include: selecting a first needle-distribution point from the set of candidate needle-distribution points, taking it as the current first needle-distribution point, and judging each adjacent first needle-distribution point of the current first needle-distribution point. Whether the stitch point is in the candidate stitch point set, if so, discard the adjacent stitch point; if not, use the adjacent stitch point and the current first stitch point
- the line segments are connected to determine whether the length of the line segment within the original lesion area is greater than the length outside the original lesion area, or to determine whether the length of the line segment within the original lesion area is the same as the length of the line segment located in the original lesion area.
- the ratio of the outer length is greater than the threshold value, if so, it indicates that the distance between the certain adjacent needle placement point and the original lesion area is within the preset range, and at this time, the certain adjacent needle placement point is determined. It is the second needle-distribution point, which can be stored as a candidate needle-distribution point in the candidate needle-distribution point set. If not, it indicates that the distance between the adjacent needle-distribution point and the original lesion area is not within the preset range. When it is, it will give up one of the adjacent needle cloth points;
- Another unjudged stitch point is selected from the set of candidate stitch points as the current first stitch point. Judgment operation until all the first needle placement points are traversed.
- the length of the line segment within the original lesion area and the length of the line segment outside the original lesion area can both be measured in pixels, by how many pixels in the line segment belong to The original lesion area is used to represent the length within the original lesion area, and the number of pixels that do not belong to the original lesion area is used to represent the length outside the original lesion area. If the number of pixels belonging to the original lesion area is greater than the number of pixels that do not belong to the original lesion area, or the ratio of the two numbers is greater than the threshold, then the certain adjacent needle placement point belongs to an external needle placement point that is particularly close to the original lesion area, and may It is determined as the second stitching point, and is stored in the candidate stitching point set as a candidate stitching point. At this time, all the stitching points stored in the candidate stitching point set can be used as candidate stitching points.
- the first stitch point b3 is used as the current first stitch point
- the four stitch points above, below, left and right of the current first stitch point are used as adjacent cloth stitches.
- the 4 adjacent cloth needle points of the first cloth needle point b3 are the cloth needle points B3, b2.5, C3 and b3.5.
- the needle point B3 It already belongs to the set of needle points, so the needle point B3 is abandoned; the needle point b2.5 belongs to the outer needle point of the original lesion area, and the needle point b2.5 and the first needle point as the current first needle point Point b3 is connected, and the pixels on the connection line are counted.
- the needle cloth point b2.5 is abandoned, and so on, the needle cloth point is abandoned.
- C3 the needle cloth point b3.5 is determined as the second needle cloth point, which can be stored in the candidate cloth needle point set as a candidate cloth needle point. Then continue to judge another first needle point according to the above rules.
- the second cloth needle points stored in the candidate cloth needle point set are cloth needle points A2, A2.5, a1, B1, B3.5, b2, b2.5, b3.5, as shown in Figure 2b
- the black dots with the dotted box in the middle there are a total of 8 second stitching points, plus the aforementioned 10 first stitching points, then the set of candidate stitching points at this time has a total of 18 stitching points.
- the factor obtaining module obtains the effective evaluation factor of the ablation needle group composed of any two candidate needle placement points in the candidate needle placement point set based on the current lesion area, and records the corresponding maximum effective evaluation factor to find the optimal ablation needle group for the current lesion area. If there are multiple maximum effective evaluation factors, one may be randomly selected, and then the ablation needle group corresponding to the randomly selected largest effective evaluation factor is recorded.
- the effective evaluation factor is used to characterize the ablation effectiveness of the ablation needle group, and is a quantifiable parameter. Specifically, for the same current lesion area, the degree of matching between the ablation area formed by the ablation needle group composed of two candidate needle points and the current lesion area can be characterized. If the effective evaluation factor is large, it indicates the ablation efficiency of the ablation needle group. higher, the ablation area formed by the ablation needle group has a greater degree of matching with the current lesion area.
- the effective ablation ratio and/or the ablation area can be used to obtain the effective evaluation factor, wherein the effective ablation ratio is used to characterize the ablation efficiency of the ablation area relative to the current lesion area, usually electrodes arranged at small intervals Needles have a larger effective ablation ratio, but this means that more electrode needles need to be deployed, which may increase patient pain and the risk of complications, as well as cause economic waste.
- the ablation area directly reflects the ablation situation of the ablation needle group. If the ablation area is large, many normal areas other than the current lesion area may be eliminated, resulting in excessive treatment.
- the effective ablation ratio and the ablation area are used to obtain the effective evaluation factor.
- the factor acquisition module includes:
- a first acquisition sub-module configured to acquire the ablation area corresponding to the ablation needle group composed of the any two candidate needle placement points
- a second acquisition submodule configured to acquire the overlapping area of the ablation area and the current lesion area
- a third obtaining sub-module configured to obtain an effective ablation ratio based on the area ratio of the overlapping area in the ablation area
- the fourth obtaining sub-module is configured to obtain the effective evaluation factor of the ablation needle group composed of any two candidate needle placement points in the candidate needle placement point set based on the obtained ablation area and the obtained effective ablation ratio.
- the first acquisition sub-module acquires an ablation area corresponding to an ablation needle group composed of any two candidate needle points selected from the candidate needle point set after the candidate needle point set is acquired.
- the corresponding ablation area can be obtained according to the coordinates (or the needle spacing) of the two candidate needle placement points of the ablation needle group.
- the ablation area may be represented by pixels
- the second acquisition sub-module may count how many pixels in the ablation area are in the current lesion area and how many pixels are outside the current lesion area, thereby: Obtain the size of the ablation area and the size of the overlapping area between the ablation area and the current lesion area; the third obtaining sub-module obtains the effective ablation ratio according to the proportion of the overlapping area in the ablation area , the expression of the effective ablation ratio is: Among them, r represents the effective ablation ratio, s in represents the number of pixels in the ablation area within the current lesion area, and s out represents the number of pixels in the ablation area outside the current lesion area.
- the value range of the weight factor w is [0, 1].
- the weight factor w is greater than 0.5, the effective ablation ratio will be considered; if the weight factor w is less than 0.5, the ablation area will be considered.
- the default value of the weighting factor w may be set to 0.5, that is, the effective ablation ratio and the ablation area have the same weight. In the actual use process, the value of the weighting factor w may be reset according to the actual situation.
- an effective evaluation factor corresponding to each ablation needle group may be recorded, or further a weighting factor corresponding to each effective evaluation factor may be recorded.
- the factor acquisition module After obtaining the effective evaluation factor of the ablation needle group composed of any two candidate needle placement points based on the current lesion area, it can be sorted according to the size of the effective evaluation factor, and the factor acquisition module records the ablation needle group corresponding to the largest effective evaluation factor, For example, record as ablation needle group 1.
- the area updating module updates the current lesion area according to the ablation area formed by the ablation needle group 1 .
- the factor acquisition module re-acquires the effective evaluation factor of the ablation needle group composed of any two candidate needle deployment points in the candidate needle deployment point set based on the current lesion area again, And record the ablation needle group 2 corresponding to the maximum effective evaluation factor, and the area update module re-updates the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor, and this cycle operates until the current lesion
- the ablation needle group 1, the ablation needle group 2, . . . , and the ablation needle group n can be gradually obtained.
- n is greater than or equal to 1.
- the needle group integration module integrates the recorded ablation needle group 1, ablation needle group 2, ..., ablation needle group n as an optimal needle cloth combination.
- the area updating module updates the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor, including: deleting the maximum effective evaluation factor in the current lesion area before updating For the ablation area formed by the corresponding ablation needle group, the deleted lesion area is used as the updated current lesion area.
- the deletion here can also be understood as the overlapping part of the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor in the current lesion area before the update is updated as the non-lesion area, and the remaining lesion area is used as the updated area. the current lesion area.
- FIG. 3 For ease of understanding, please refer to FIG. 3 .
- the dotted circle frame filled with horizontal lines in the figure shows the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor. It is assumed that the situation shown in FIG. 3 is the first
- the original lesion area is the current lesion area.
- the remaining area of the original lesion area is the updated current lesion area, or it can also be considered as the original lesion area.
- the part that overlaps with the area shown by the dotted circle in the figure is updated as the non-lesion area, and the remaining lesion area is used as the updated current lesion area.
- the next operation of factor acquisition and area update is continued until the current lesion area is zero.
- the ablation area of a certain group of ablation needles overlaps with the ablation area (if any) formed by the ablation needle group corresponding to the previous maximum effective evaluation factor, then after updating the current lesion area, the ablation area of the certain group will be changed.
- the value of the number of pixels in the ablation area of the ablation needle group in the current lesion area, s in will become smaller, which will lead to a smaller value of the effective ablation ratio r.
- the weight factor w does not change, it will be effective.
- the evaluation factor will also be reduced accordingly, so the possibility of the certain group of ablation needles being selected into the optimal arrangement combination is also low.
- the embodiment of the present invention also provides an electrode clothing needle method based on the lesion area, as shown in FIG. 4 , including:
- the current lesion area is updated, so as to obtain the ablation needle composed of any two candidate needle placement points in the candidate needle placement point set based on the current lesion area again
- the effective evaluation factor of the group is recorded, and the ablation needle group corresponding to the maximum effective evaluation factor is recorded, and based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor again, the current lesion area is updated until the current lesion area is zero; and ,
- the ablation needle group corresponding to the maximum effective evaluation factor of all records is integrated as the optimal needle cloth combination.
- the electrode needle cloth needle method provided by the embodiment of the present invention starts from the original lesion area and candidate needle cloth points, and uses effective evaluation factors to gradually select the current best ablation needle group, so that the effect of completely ablating the lesion area can be achieved. Minimal and additional ablation area.
- the step of updating the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor if it is determined that the current lesion area is not zero, return to the method based on the current lesion area. area, obtain the effective evaluation factor of the ablation needle group composed of any two candidate needle points in the candidate needle point set, and record the ablation needle group corresponding to the maximum effective evaluation factor.
- Needle group as the optimal needle cloth combination steps, can refer to Figure 5.
- the set of candidate needle placement points includes: a first needle placement point located within the original lesion area and a second needle placement point located outside the original lesion area that meets the candidate condition.
- the candidate condition includes: being adjacent to the first needle distribution point located in the original lesion area and having a distance from the original lesion area within a preset range.
- the criterion for judging that the distance from the original lesion area is within a preset range includes: a connecting line with the adjacent first needle placement point located in the original lesion area The length inside is greater than the length outside the original lesion area, or the ratio of the length inside the original lesion area to the length outside the original lesion area is greater than a threshold.
- the obtaining the effective evaluation factor of the ablation needle group composed of any two candidate needle points in the candidate needle point set includes:
- an effective evaluation factor of the ablation needle group composed of any two candidate needle placement points in the candidate needle placement point set is obtained.
- the updating of the current lesion area based on the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor includes:
- the ablation area formed by the ablation needle group corresponding to the maximum effective evaluation factor is deleted from the current lesion area before the update, and the deleted lesion area is used as the updated current lesion area.
- the electrode clothing needle method based on the lesion area provided by the embodiment of the present invention has the same or similar technical content as the aforementioned electrode clothing needle device based on the lesion area, and reference may be made to the aforementioned electrode clothing needle device based on the lesion area.
- a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
- computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
- the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.
- various parts of the present invention may be implemented in hardware, software, firmware or a combination thereof.
- various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种基于病灶区域的电极针布针装置及方法,装置包括:集合获取模块用于基于原始病灶区域获取候选布针点集合;因子获取模块用于基于当前病灶区域获取候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,记录最大有效评价因子对应的消融针组;区域更新模块用于基于最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,以供获取有效评价因子并记录其对应的消融针组,以及更新当前病灶区域的操作继续执行,直到当前病灶区域为零;以及,针组整合模块用于整合所有记录的消融针组,作为最优的布针组合。可达到完全消融病灶区域的效果,同时针数最少且额外消融面积最小。
Description
本发明属于医疗器械技术领域,具体涉及一种基于病灶区域的电极针布针装置及方法。
研究发现,癌症已成为危害人类健康的主要疾病之一。采用脉冲电场消融技术对病灶区域进行消融治疗,已经取得了可喜的进展。在进行消融治疗时,在病灶区域较大时,仅采用两根电极针(即一组电极针)无法做到完全消融,此时需要采用多根电极针进行联合消融,即在病灶区域插上多根电极针,然后以两根电极针为一组进行消融。对于采用多根电极针进行联合消融的情况,当前传统的病灶消融布针有两种方案:一种采用环绕中心式布针方案,主要适用于较大病灶,具体来说:病灶中心布一根电极针,然后围绕这根电极针布置3-4根电极针,这3-4根外围的电极针要在病灶边缘附近;另一种采用填充式布针方案,主要适用于较小病灶或条形病灶,填充式布针方案一般是紧贴病灶将电极针均布在病灶内。
然而,由于患者的病灶各异,而且布针一般依赖医生的经验,且主观性较强,可能会导致针对患者采用的布针方案无法完全消融患者的病灶区域,使得消融效果不佳,因此有必要研究出一种自动消融布针方案,以获得最佳消融效果。
发明内容
为了解决上述消融效果不佳的技术问题,本发明实施例提供了一种基于病灶区域的电极针布针装置及方法。
在本发明的第一方面,提供一种基于病灶区域的电极针布针装置,包括:
集合获取模块,用于基于原始病灶区域,获取候选布针点集合,将原始病灶区域作为当前病灶区域;
因子获取模块,用于基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组;
区域更新模块,用于基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,以供所述因子获取模块基于当前病灶区域,重新获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组,以及所述区域更新模块再次基于所述最大有效评价因子对应的消融针组形成的消融区 域,更新当前病灶区域,直到当前病灶区域为零;以及,
针组整合模块,用于整合所有记录的最大有效评价因子对应的消融针组,作为最优的布针组合。
在某些实施例中,所述候选布针点集合包括:位于所述原始病灶区域内的第一布针点和符合候选条件的位于所述原始病灶区域外的第二布针点。
在某些实施例中,所述候选条件包括:与所述位于所述原始病灶区域内的第一布针点相邻且与所述原始病灶区域的距离在预设范围内。
在某些实施例中,所述与所述原始病灶区域的距离在预设范围内的判断标准包括:与相邻的第一布针点之间的连线,位于所述原始病灶区域内的长度大于位于所述原始病灶区域外的长度,或者,位于所述原始病灶区域内的长度与位于所述原始病灶区域外的长度的比值大于阈值。
在某些实施例中,所述因子获取模块,包括:
第一获取子模块,用于获取所述任意两个候选布针点组成的消融针组对应的消融区域;
第二获取子模块,用于获取所述消融区域与所述当前病灶区域的重叠区域;
第三获取子模块,用于基于所述重叠区域位于所述消融区域中的区域占比,获取有效消融比;以及,
第四获取子模块,用于基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子。
在某些实施例中,所述第四获取子模块基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:采用公式c=w*r+(1-w)*s来获取所述有效评价因子,其中,c表示有效评价因子,w表示权重因子,r表示有效消融比,s表示消融区域。
在某些实施例中,所述区域更新模块基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,包括:
在更新前的当前病灶区域中删除所述最大有效评价因子对应的消融针组形成的消融区域,删除后的病灶区域作为更新后的当前病灶区域。
在本发明的第二方面,提供一种基于病灶区域的电极针布针方法,包括:
基于原始病灶区域,获取候选布针点集合,将原始病灶区域作为当前病灶区域;
基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组;
基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,以供 再次基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组,以及再次基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,直到当前病灶区域为零;以及,
整合所有记录的最大有效评价因子对应的消融针组,作为最优的布针组合。
在某些实施例中,所述候选布针点集合包括:位于所述原始病灶区域内的第一布针点和符合候选条件的位于所述原始病灶区域外的第二布针点。
在某些实施例中,所述候选条件包括:与所述位于所述原始病灶区域内的第一布针点相邻且与所述原始病灶区域的距离在预设范围内。
在某些实施例中,所述与所述原始病灶区域的距离在预设范围内的判断标准包括:与相邻的第一布针点之间的连线,位于所述原始病灶区域内的长度大于位于所述原始病灶区域外的长度,或者,位于所述原始病灶区域内的长度与位于所述原始病灶区域外的长度的比值大于阈值。
在某些实施例中,所述获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:
获取所述任意两个候选布针点组成的消融针组对应的消融区域;
获取所述消融区域与所述当前病灶区域的重叠区域;
基于所述重叠区域位于所述消融区域中的区域占比,获取有效消融比;以及,
基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子。
在某些实施例中,所述基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:采用公式c=w*r+(1-w)*s来获取所述有效评价因子,其中,c表示有效评价因子,w表示权重因子,r表示有效消融比,s表示消融区域。
在某些实施例中,所述基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,包括:
在更新前的当前病灶区域中删除所述最大有效评价因子对应的消融针组形成的消融区域,删除后的病灶区域作为更新后的当前病灶区域。
本发明的有益效果:本发明实施例提出的基于病灶区域的电极针布针装置及方法,可以达到完全消融病灶区域的效果,同时针数最少且额外消融面积最小。
图1示出本发明实施例提出的基于病灶区域的电极针布针装置的结构示意图;
图2a示出本发明实施例提出的基于病灶区域的电极针布针方案中示例原始病灶区域示例的参考图;
图2b示出本发明实施例提出的基于病灶区域的电极针布针方案中确定候选布针点的示意图;
图3示出本发明实施例提出的基于病灶区域的电极针布针方案中最大有效评价因子对应的消融针组形成的消融区域的示意图;
图4示出本发明实施例提出的基于病灶区域的电极针布针方法的流程图;以及,
图5示出本发明实施例提出的基于病灶区域的电极针布针方法的另一流程图。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
如本文中所述,术语“包括”及其各种变体可以被理解为开放式术语,其意味着“包括但不限于”。术语“基于”可以被理解为“至少部分地基于”。术语“一个实施例”可以被理解为“至少一个实施例”。术语“另一实施例”可以被理解为“至少一个其它实施例”。
如前所述,由于患者的病灶各异,而且布针一般依赖医生的经验,且主观性较强,可能会导致采用的布针方案无法完全消融患者的病灶,基于此,本发明实施例提出了一种基于病灶区域的电极针布针装置及方法。
下面结合附图对本发明实施例作进一步描述。图1示出了根据本发明的一个实施例的基于病灶区域的电极针布针装置的结构示意图,所述装置包括:
集合获取模块,用于基于原始病灶区域,获取候选布针点集合,将原始病灶区域作为当前病灶区域;
因子获取模块,用于基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组;
区域更新模块,用于基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,以供所述因子获取模块基于当前病灶区域,重新获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组,以及所述区域更新模块再次基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,直到当前病灶区域为零;以及,
针组整合模块,用于整合所有记录的最大有效评价因子对应的消融针组,作为最优的布 针组合。
本发明实施例通过从原始病灶区域和候选布针点入手,利用有效评价因子逐步选取当前最佳的消融针组,从而可以达到完全消融病灶区域的效果,同时针数最少且额外消融面积最小。
在本发明实施例中,原始病灶区域可以通过超声波、磁共振、穿刺活检等现有手段获取。例如,通过超声图像结合磁共振数据和穿刺活检的结果,确定原始病灶区域。为了表征原始病灶区域的覆盖范围,在一个实施例中,可以将原始病灶区域映射到标注了布针点的参照坐标系中,每个布针点具有固定的坐标位置和坐标名称,因此,原始病灶区域映射到标注了布针点的参照坐标系中,可以准确便捷地获取原始病灶区域覆盖的布针点。同时,由于每个布针点具有固定的坐标位置,因此任意两个布针点之间的间距可以获知,或者可以将布针点等间距设置,这样相邻布针点的间距相等,同样也可以获知任意两个布针点的距离,基于此,可以准确地获取原始病灶区域外的邻近布针点。以布针点等间距设置为例,任意两个布针点的距离D可以表达为:
其中,d为两个相邻布针点的距离,N
y表示任意两个布针点在y方向的间隔点个数,N
x表示任意两个布针点在x方向的间隔点个数。可以理解,如果事先不知晓两个相邻布针点的距离d,那么只需要标定任意两个布针点的坐标,利用任意两个布针点在y方向的间隔点个数N
y和任意两个布针点在x方向的间隔点个数N
x,就可以根据距离D的表达式求出两个相邻布针点的距离d,进而根据两个相邻布针点的距离d可以获知任意布针点的坐标值。可以理解,参照坐标系可以为XY坐标系,也可以为其他能够清楚表达出布针点的坐标系。可见,原始病灶区域映射到标注了布针点的参照坐标系中,可以获取任意布针点的坐标值,从而可以获取任意布针点的坐标位置,并且也可以获取任意两个布针点之间的距离。图2a给出了原始病灶区域映射到参照坐标系中的示例,从图中可知,左下角的布针点的坐标名称可以为A1,从左向右数的第一列的布针点的坐标名称从下而上分别为A1、A1.5、A2、A2.5、A3、…。可以理解,在某些情况下,通过布针点的坐标名称也可以知晓布针点的坐标位置或者坐标值,或者相对坐标位置或者相对坐标值,例如在布针点等间距设置时,根据距离D的表达式,可以求出相对坐标位置或者相对坐标值,在任意两个布针点的坐标被标定时,就可以获取任意布针点的坐标值和坐标位置。可以理解,本领域技术人员还可以采用其他表征原始病灶区域的覆盖范围的方式。
根据原始病灶区域覆盖的布针点和原始病灶区域外的邻近布针点,所述集合获取模块可以获取候选布针点集合。在一个实施例中,所述候选布针点集合包括:位于所述原始病灶区域内的第一布针点。位于所述原始病灶区域内的第一布针点,包含完全位于原始病灶区域内 的布针点,也包含与原始病灶区域的边界有重合的布针点,因此,所述第一布针点也可以理解为被原始病灶区域覆盖到的布针点,由于第一布针点所在的位置与原始病灶区域的关系非常密切,因此第一布针点均可以作为候选布针点。在确定第一布针点时,可以通过布针点的坐标是否位于原始病灶区域内来判断,如果当前布针点的坐标位于原始病灶区域内,则当前布针点被确定为第一布针点,可以作为候选布针点存入候选布针点集合中。判断布针点的坐标是否位于原始病灶区域内,本领域技术人员可以采用已知技术进行判断,因不是本发明的主要方面,因此在此不赘述。参考图2a的示例,图中实线线条所围成的部分表示原始病灶区域,黑色圆点代表标注的布针点,A、a、B、b、……等标示出x方向的坐标名称,1、2、3、……等标示出y方向的坐标名称,为避免混乱,数字1和2之间的坐标名称1.5未标注,其余数字之间的坐标名称亦如此处理。对于图2a所示的情况,布针点a1.5、B1.5、b1.5、a2、B2、a2.5、B2.5、a3、B3、b3均位于原始病灶区域内,属于第一布针点,可以作为候选布针点存入候选布针点集合中,那么包含第一布针点的候选布针点集合A可以表达为{a1.5,B1.5,b1.5,a2,B2,a2.5,B2.5,a3,B3,b3},共计10个第一布针点。
为了保证病灶被彻底的消融,可以将靠近病灶轮廓的外部布针点也包含在候选布针点集合中,因此,所述候选布针点集合还可以包括:符合候选条件的位于所述原始病灶区域外的第二布针点。在一个实施例中,所述候选条件包括:与所述位于所述原始病灶区域内的第一布针点相邻且与所述原始病灶区域的距离在预设范围内。在确定第二布针点时,可以通过所述候选条件来判断。在一可选实施例中,与所述原始病灶区域的距离在预设范围内的判断标准包括:与相邻的第一布针点之间的连线位于所述原始病灶区域内的长度大于位于所述原始病灶区域外的长度,或者,与相邻的第一布针点之间的所述连线位于所述原始病灶区域内的长度与位于所述原始病灶区域外的长度的比值大于阈值。
为了便于理解,示例性地说明确定第二布针点的一种实现方式,但这些说明不应理解为是对本发明实施例的限制。在进行描述之前,需要说明布针点的相邻布针点表示的含义,在图2a所示的示意图中,可以将所述布针点的上方、下方、左侧和右侧这四个布针点视为所述布针点的相邻布针点,也可以在此基础上还将所述布针点的左上方、右上方、左下方和右下方这四个布针点也视为所述布针点的相邻布针点。当然,在实际应用中,还可以根据实际情况扩大或缩小所述布针点的相邻布针点涵盖的范围。
所述确定第二布针点的方法,可以包括:从候选布针点集合中选取一个第一布针点,将其作为当前第一布针点,判断当前第一布针点的各个相邻布针点是否在候选布针点集合中,如果是,此时则放弃所述某个相邻布针点;如果否,将所述某个相邻布针点和当前第一布针点用线段进行连接,判断所述线段位于所述原始病灶区域内的长度是否大于位于所述原始病 灶区域外的长度,或者判断所述线段位于所述原始病灶区域内的长度与位于所述原始病灶区域外的长度的比值是否大于阈值,如果是,表明所述某个相邻布针点与所述原始病灶区域的距离在预设范围内,此时则将所述某个相邻布针点确定为第二布针点,可以作为候选布针点存入候选布针点集合中,如果否,表明所述某个相邻布针点与所述原始病灶区域的距离不在预设范围内,此时则放弃所述某个相邻布针点;
在当前第一布针点的所有相邻布针点判断完毕后,从候选布针点集合中选取另一个未经判断的第一布针点,将其作为当前第一布针点,进行上述判断操作,直到遍历所有第一布针点。
在一可选实施例中,所述线段位于所述原始病灶区域内的长度,以及所述线段位于所述原始病灶区域外的长度,都可以采用像素来衡量,通过线段中有多少个像素属于原始病灶区域来表征位于所述原始病灶区域内的长度,有多少个像素不属于原始病灶区域来表征位于所述原始病灶区域外的长度。若属于原始病灶区域的像素数量大于不属于原始病灶区域的像素数量,或二者数量的比值大于阈值,则所述某个相邻布针点属于特别接近原始病灶区域的外部布针点,可以被确定为第二布针点,作为候选布针点存入候选布针点集合中。此时,存入候选布针点集合中的所有布针点均可以作为候选布针点。
可以参考图2b所示,假设第一布针点b3作为当前第一布针点,将当前第一布针点的上方、下方、左侧和右侧这四个布针点作为相邻布针点,第一布针点b3的4个相邻布针点为布针点B3、b2.5、C3和b3.5,根据前述的确定第二布针点的方法可知,由于布针点B3已经属于布针点集合,因此放弃布针点B3;布针点b2.5属于原始病灶区域的外部布针点,将布针点b2.5和作为当前第一布针点的第一布针点b3连接,统计连线上的像素,发现不属于原始病灶区域的像素数量的外部像素多于属于原始病灶区域的像素数量,因此放弃布针点b2.5,以此类推,放弃布针点C3,将布针点b3.5确定为第二布针点,可以作为候选布针点存入候选布针点集合中。然后根据如上的规则继续判断另一个第一布针点。由此可以得到,存入候选布针点集合中的第二布针点为布针点A2、A2.5、a1、B1、B3.5、b2、b2.5、b3.5,如图2b中带有虚线方框的黑色圆点所示,共8个第二布针点,加上前述的10个第一布针点,那么此时候选布针点集合一共有18个布针点,可以表达为:{a1.5,B1.5,b1.5,a2,B2,a2.5,B2.5,a3,B3,b3,A2,A2.5,a1,B1,B3.5,b2,b2.5,b3.5}。
在本发明实施例中,所述因子获取模块基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组,从而寻找到对于当前病灶区域来说最优的消融针组。若存在多个最大有效评价因子,则随机选择其中一个即可,那么随机选择的最大有效评价因子对应的消融针组被记录。所述 有效评价因子用来表征消融针组的消融有效性,属于可量化的参数。具体来说,可以表征针对同一当前病灶区域,两个候选布针点组成的消融针组形成的消融区域与当前病灶区域的匹配程度,如果有效评价因子较大,说明该消融针组的消融效率更高,该消融针组形成的消融区域与当前病灶区域的匹配程度较大。
在一实施例中,可以采用有效消融比和/或消融区域来获取有效评价因子,其中所述有效消融比用来表征消融区域相对于当前病灶区域的消融效率,通常以较小间隔布置的电极针具有较大的有效消融比,但是这就意味着需要布置的电极针较多,可能会增加病人的痛苦和并发症的风险,并且会造成经济浪费。所述消融区域直观体现消融针组的消融情况,如果消融区域较大,可能会消除到当前病灶区域之外的较多正常区域,造成过度治疗。在评判一个消融针组的消融效率时,如果仅仅考虑消融区域的大小,可能会消除过多的当前病灶区域之外的正常区域,造成过度治疗;如果仅仅考虑有效消融比,可能会造成过度布针,进而增加并发症的可能和经济浪费。
为了更科学合理地布针,在一个实施例中,采用有效消融比和消融区域来获取有效评价因子。所述因子获取模块,包括:
第一获取子模块,用于获取所述任意两个候选布针点组成的消融针组对应的消融区域;
第二获取子模块,用于获取所述消融区域与所述当前病灶区域的重叠区域;
第三获取子模块,用于基于所述重叠区域位于所述消融区域中的区域占比,获取有效消融比;以及,
第四获取子模块,用于基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子。
所述第一获取子模块在所述候选布针点集合被获取后,获取从候选布针点集合中选取的任意两个候选布针点组成的消融针组对应的消融区域。在一可选实施例中,可以根据消融针组的两个候选布针点的坐标(或者是针间距),获取其对应的消融区域,具体获取方法可参考已有技术或者本申请人的在先技术,例如申请号为202010302357.0和202010301885.4的在先申请,即在获得患者的电导率比率R之后,代入在先申请中的拟合函数Eth=a1*E+b1*N+c1*R+d1*E*N+e1*E*R+f1*N*R+g1*E*N*R+h1或者拟合函数Eth=a2*U+b2*N+c2*D+d2*R+e2*U*N+f2*U*D+g2*U*R+h2*N*D+i2*N*R+j2*D*R+k2*N*D*R+l2*U*N*D+m2*U*N*R+n2*U*D*R+o2*U*N*D*R+p2中,以求出当前患者的电场强度消融阈值Eth,然后基于Eth确定当前患者的消融区域。因具体获取方法不是本发明实施例的主要方面,因此在此不赘述。
在一可选实施例中,所述消融区域可以采用像素来表示,所述第二获取子模块可以统计 消融区域中有多少像素在当前病灶区域内,有多少像素在当前病灶区域外,由此获取所述消融区域的大小,以及所述消融区域与所述当前病灶区域的重叠区域的大小;所述第三获取子模块根据所述重叠区域位于消融区域中的区域占比,获取有效消融比,所述有效消融比的表达式为:
其中,r表示有效消融比,s
in表示消融区域在当前病灶区域内的像素个数,s
out为消融区域在当前病灶区域外的像素个数,如果用s表示消融区域,那么s
in+s
out=s,因此可以通过重叠区域和消融区域的大小比值,可以获取有效消融比;所述第四获取模块基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:采用公式c=w*r+(1-w)*s来获取所述有效评价因子,其中,c表示有效评价因子,w表示权重因子,r表示有效消融比,s表示消融区域。权重因子w的取值范围为[0,1],若权重因子w大于0.5,则偏向于考虑有效消融比;若权重因子w小于0.5,则偏向于考虑消融面积。在一可选实施例中,可以将权重因子w的默认值设置为0.5,即有效消融比和消融面积的权重相同,在实际使用过程中,可以根据实际情况重新设置权重因子w的值。另外,可以记录每个消融针组对应的有效评价因子,或者进一步地还记录每个有效评价因子对应的权重因子。
在基于当前病灶区域获取任意两个候选布针点组成的消融针组的有效评价因子后,可以按照有效评价因子的大小进行排序,所述因子获取模块记录最大有效评价因子对应的消融针组,例如记录为消融针组1。所述区域更新模块根据消融针组1形成的消融区域更新当前病灶区域。在所述区域更新模块更新当前病灶区域后,所述因子获取模块再次基于当前病灶区域,重新获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组2,以及所述区域更新模块再次基于所述最大有效评价因子对应的消融针组形成的消融区域,重新更新当前病灶区域,如此循环操作,直到当前病灶区域为零,就可以逐步得到消融针组1、消融针组2、……、消融针组n,一般来说,n大于等于1。所述针组整合模块将记录的消融针组1、消融针组2、……、消融针组n进行整合,作为最优的布针组合。
在一个实施例中,所述区域更新模块基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,包括:在更新前的当前病灶区域中删除所述最大有效评价因子对应的消融针组形成的消融区域,删除后的病灶区域作为更新后的当前病灶区域。这里的删除也可以理解为,所述更新前的当前病灶区域中与所述最大有效评价因子对应的消融针组形成的消融区域重叠的部分被更新为非病灶区域,余下的病灶区域作为更新后的当前病灶区域。为了便于理解,可以参考图3所示,图中内部填充横线的虚线圆框所示为所述最大有效评价因子对应的消融针组形成的消融区域,假设图3所示的情形为第一次更新,那么原始病 灶区域作为当前病灶区域,在删除图中虚线圆框所示的区域后,原始病灶区域余下的区域即为更新后的当前病灶区域,或者也可以认为是将原始病灶区域中与图中虚线圆框所示的区域重叠的部分更新为非病灶区域,余下的病灶区域作为更新后的当前病灶区域。在当前病灶区域更新后,继续下一次的因子获取和区域更新的操作,直到当前病灶区域为零。可以理解,若某组消融针组的消融面积和前一次的所述最大有效评价因子对应的消融针组形成的消融区域(如果有的话)重叠,则更新当前病灶区域后,所述某组消融针组的消融区域在当前病灶区域内的像素个数s
in值将会变小,进而导致其有效消融比r的值也会变小,那么在权重因子w不改变的情况下,其有效评价因子也会相应的减小,那么所述某组消融针组被选入最优布阵组合的可能性也较低。
本发明实施例还提供了一种基于病灶区域的电极针布针方法,可参考图4所示,包括:
基于原始病灶区域,获取候选布针点集合,将原始病灶区域作为当前病灶区域;
基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组;
基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,以供再次基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组,以及再次基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,直到当前病灶区域为零;以及,
整合所有记录的最大有效评价因子对应的消融针组,作为最优的布针组合。
本发明实施例提供的电极针布针方法通过从原始病灶区域和候选布针点入手,利用有效评价因子逐步选取当前最佳的消融针组,从而可以达到完全消融病灶区域的效果,同时针数最少且额外消融面积最小。
在一个实施例中,执行所述基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域的步骤后,如果判断当前病灶区域不为零,则返回所述基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组的步骤继续执行,以及再次执行所述基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域的步骤,直到当前病灶区域为零,则结束循环操作,之后执行所述整合所有记录的最大有效评价因子对应的消融针组,作为最优的布针组合的步骤,可以参考图5所示。
在一个实施例中,所述候选布针点集合包括:位于所述原始病灶区域内的第一布针点和符合候选条件的位于所述原始病灶区域外的第二布针点。
在一个可选实施例中,所述候选条件包括:与所述位于所述原始病灶区域内的第一布针 点相邻且与所述原始病灶区域的距离在预设范围内。
进一步地,在一个实施例中,所述与所述原始病灶区域的距离在预设范围内的判断标准包括:与相邻的第一布针点之间的连线,位于所述原始病灶区域内的长度大于位于所述原始病灶区域外的长度,或者,位于所述原始病灶区域内的长度与位于所述原始病灶区域外的长度的比值大于阈值。
在一个实施例中,所述获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:
获取所述任意两个候选布针点组成的消融针组对应的消融区域;
获取所述消融区域与所述当前病灶区域的重叠区域;
基于所述重叠区域位于所述消融区域中的区域占比,获取有效消融比;以及,
基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子。
在一个可选实施例中,所述基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:采用公式c=w*r+(1-w)*s来获取所述有效评价因子,其中,c表示有效评价因子,w表示权重因子,r表示有效消融比,s表示消融区域。
在一个实施例中,所述基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,包括:
在更新前的当前病灶区域中删除所述最大有效评价因子对应的消融针组形成的消融区域,删除后的病灶区域作为更新后的当前病灶区域。
为了节约篇幅,本发明实施例提供的基于病灶区域的电极针布针方法与前述基于病灶区域的电极针布针装置相同或相类似的技术内容,可参考前述基于病灶区域的电极针布针装置的描述,同样,前述基于病灶区域的电极针布针装置也可以参考本发明实施例提供的基于病灶区域的电极针布针方法的描述,在此不在赘述。
本领域技术人员可以理解,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或它们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (14)
- 一种基于病灶区域的电极针布针装置,其特征在于,包括:集合获取模块,用于基于原始病灶区域,获取候选布针点集合,将原始病灶区域作为当前病灶区域;因子获取模块,用于基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组;区域更新模块,用于基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,以供所述因子获取模块基于当前病灶区域,重新获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组,以及所述区域更新模块再次基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,直到当前病灶区域为零;以及,针组整合模块,用于整合所有记录的最大有效评价因子对应的消融针组,作为最优的布针组合。
- 根据权利要求1所述的装置,其特征在于,所述候选布针点集合包括:位于所述原始病灶区域内的第一布针点和符合候选条件的位于所述原始病灶区域外的第二布针点。
- 根据权利要求2所述的装置,其特征在于,所述候选条件包括:与所述位于所述原始病灶区域内的第一布针点相邻且与所述原始病灶区域的距离在预设范围内。
- 根据权利要求3所述的装置,其特征在于,所述与所述原始病灶区域的距离在预设范围内的判断标准包括:与相邻的第一布针点之间的连线,位于所述原始病灶区域内的长度大于位于所述原始病灶区域外的长度,或者,位于所述原始病灶区域内的长度与位于所述原始病灶区域外的长度的比值大于阈值。
- 根据权利要求1所述的装置,其特征在于,所述因子获取模块,包括:第一获取子模块,用于获取所述任意两个候选布针点组成的消融针组对应的消融区域;第二获取子模块,用于获取所述消融区域与所述当前病灶区域的重叠区域;第三获取子模块,用于基于所述重叠区域位于所述消融区域中的区域占比,获取有效消融比;以及,第四获取子模块,用于基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子。
- 根据权利要求5所述的装置,其特征在于,所述第四获取子模块基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:采用公式c=w*r+(1-w)*s来获取所述有效评价因子,其中,c表示有效评价因子,w表示权重因子,r表示有效消融比,s表示消融区域。
- 根据权利要求1所述的装置,其特征在于,所述区域更新模块基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,包括:在更新前的当前病灶区域中删除所述最大有效评价因子对应的消融针组形成的消融区域,删除后的病灶区域作为更新后的当前病灶区域。
- 一种基于病灶区域的电极针布针方法,其特征在于,包括:基于原始病灶区域,获取候选布针点集合,将原始病灶区域作为当前病灶区域;基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组;基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,以供再次基于当前病灶区域,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,并记录最大有效评价因子对应的消融针组,以及再次基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,直到当前病灶区域为零;以及,整合所有记录的最大有效评价因子对应的消融针组,作为最优的布针组合。
- 根据权利要求8所述的方法,其特征在于,所述候选布针点集合包括:位于所述原始病灶区域内的第一布针点和符合候选条件的位于所述原始病灶区域外的第二布针点。
- 根据权利要求9所述的方法,其特征在于,所述候选条件包括:与所述位于所述原始病灶区域内的第一布针点相邻且与所述原始病灶区域的距离在预设范围内。
- 根据权利要求10所述的方法,其特征在于,所述与所述原始病灶区域的距离在预设范围内的判断标准包括:与相邻的第一布针点之间的连线,位于所述原始病灶区域内的长度 大于位于所述原始病灶区域外的长度,或者,位于所述原始病灶区域内的长度与位于所述原始病灶区域外的长度的比值大于阈值。
- 根据权利要求8所述的方法,其特征在于,所述获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:获取所述任意两个候选布针点组成的消融针组对应的消融区域;获取所述消融区域与所述当前病灶区域的重叠区域;基于所述重叠区域位于所述消融区域中的区域占比,获取有效消融比;以及,基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子。
- 根据权利要求12所述的方法,其特征在于,所述基于所述获取的消融区域和所述获取的有效消融比,获取所述候选布针点集合中任意两个候选布针点组成的消融针组的有效评价因子,包括:采用公式c=w*r+(1-w)*s来获取所述有效评价因子,其中,c表示有效评价因子,w表示权重因子,r表示有效消融比,s表示消融区域。
- 根据权利要求8所述的方法,其特征在于,所述基于所述最大有效评价因子对应的消融针组形成的消融区域,更新当前病灶区域,包括:在更新前的当前病灶区域中删除所述最大有效评价因子对应的消融针组形成的消融区域,删除后的病灶区域作为更新后的当前病灶区域。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011345756.1 | 2020-11-25 | ||
CN202011345756.1A CN112315579B (zh) | 2020-11-25 | 2020-11-25 | 一种基于病灶区域的电极针布针装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022110635A1 true WO2022110635A1 (zh) | 2022-06-02 |
Family
ID=74308812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/090008 WO2022110635A1 (zh) | 2020-11-25 | 2021-04-26 | 一种基于病灶区域的电极针布针装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112315579B (zh) |
WO (1) | WO2022110635A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116077178A (zh) * | 2023-04-04 | 2023-05-09 | 浙江伽奈维医疗科技有限公司 | 陡脉冲肿瘤治疗仪的模拟布针方法、系统及治疗仪 |
CN118021420A (zh) * | 2024-04-15 | 2024-05-14 | 杭州睿笛生物科技有限公司 | 一种脉冲电热复合场消融治疗系统 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112315579B (zh) * | 2020-11-25 | 2021-07-02 | 上海睿刀医疗科技有限公司 | 一种基于病灶区域的电极针布针装置及方法 |
CN113440249B (zh) * | 2021-08-06 | 2022-05-13 | 上海睿刀医疗科技有限公司 | 电极针消融数据的确定方法、装置、电子设备和存储介质 |
CN113662655A (zh) * | 2021-10-25 | 2021-11-19 | 北京微刀医疗科技有限公司 | 穿刺消融针的布针板、布针装置及穿刺消融系统 |
CN114224471B (zh) * | 2021-11-29 | 2024-09-20 | 上海诺生医疗科技有限公司 | 一种电极针布针修正装置及方法、电子设备及存储介质 |
CN114224472B (zh) * | 2021-11-29 | 2024-09-20 | 上海诺生医疗科技有限公司 | 一种电极针布针修正装置及方法、电子设备及存储介质 |
CN114469309B (zh) * | 2022-02-16 | 2022-10-21 | 上海睿刀医疗科技有限公司 | 一种消融装置、电极针布设策略获得方法、电子设备和存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102647956A (zh) * | 2009-12-08 | 2012-08-22 | 皇家飞利浦电子股份有限公司 | 消融处置规划及设备 |
CN103796607A (zh) * | 2011-09-13 | 2014-05-14 | 皇家飞利浦有限公司 | 具有病变覆盖范围反馈的消融规划 |
CN109567939A (zh) * | 2018-12-10 | 2019-04-05 | 艾瑞迈迪科技石家庄有限公司 | 一种经皮穿刺最优路径规划方法及装置 |
US20190175248A1 (en) * | 2008-04-29 | 2019-06-13 | Virginia Tech Intellectual Properties Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
CN110942832A (zh) * | 2019-12-11 | 2020-03-31 | 南京亿高微波系统工程有限公司 | 一种微波消融系统 |
CN111529051A (zh) * | 2020-04-16 | 2020-08-14 | 上海睿刀医疗科技有限公司 | 一种预测电脉冲消融区域的系统 |
CN111787878A (zh) * | 2018-02-05 | 2020-10-16 | 堃博生物科技公司 | 影像引导的肺肿瘤计划和消融系统 |
CN112315579A (zh) * | 2020-11-25 | 2021-02-05 | 上海睿刀医疗科技有限公司 | 一种基于病灶区域的电极针布针装置及方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10402535B2 (en) * | 2014-02-26 | 2019-09-03 | Siemens Healthcare Gmbh | System and method for personalized computation of tissue ablation extent based on medical images |
CN111529052B (zh) * | 2020-04-16 | 2021-05-07 | 上海睿刀医疗科技有限公司 | 一种预测电脉冲消融区域的系统 |
CN111529056A (zh) * | 2020-05-30 | 2020-08-14 | 深圳半岛医疗有限公司 | 射频微针阵列控制装置、方法及射频微针治疗仪 |
-
2020
- 2020-11-25 CN CN202011345756.1A patent/CN112315579B/zh active Active
-
2021
- 2021-04-26 WO PCT/CN2021/090008 patent/WO2022110635A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190175248A1 (en) * | 2008-04-29 | 2019-06-13 | Virginia Tech Intellectual Properties Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
CN102647956A (zh) * | 2009-12-08 | 2012-08-22 | 皇家飞利浦电子股份有限公司 | 消融处置规划及设备 |
CN103796607A (zh) * | 2011-09-13 | 2014-05-14 | 皇家飞利浦有限公司 | 具有病变覆盖范围反馈的消融规划 |
CN111787878A (zh) * | 2018-02-05 | 2020-10-16 | 堃博生物科技公司 | 影像引导的肺肿瘤计划和消融系统 |
CN109567939A (zh) * | 2018-12-10 | 2019-04-05 | 艾瑞迈迪科技石家庄有限公司 | 一种经皮穿刺最优路径规划方法及装置 |
CN110942832A (zh) * | 2019-12-11 | 2020-03-31 | 南京亿高微波系统工程有限公司 | 一种微波消融系统 |
CN111529051A (zh) * | 2020-04-16 | 2020-08-14 | 上海睿刀医疗科技有限公司 | 一种预测电脉冲消融区域的系统 |
CN112315579A (zh) * | 2020-11-25 | 2021-02-05 | 上海睿刀医疗科技有限公司 | 一种基于病灶区域的电极针布针装置及方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116077178A (zh) * | 2023-04-04 | 2023-05-09 | 浙江伽奈维医疗科技有限公司 | 陡脉冲肿瘤治疗仪的模拟布针方法、系统及治疗仪 |
CN118021420A (zh) * | 2024-04-15 | 2024-05-14 | 杭州睿笛生物科技有限公司 | 一种脉冲电热复合场消融治疗系统 |
CN118021420B (zh) * | 2024-04-15 | 2024-07-05 | 杭州睿笛生物科技有限公司 | 一种脉冲电热复合场消融治疗系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112315579B (zh) | 2021-07-02 |
CN112315579A (zh) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022110635A1 (zh) | 一种基于病灶区域的电极针布针装置及方法 | |
JP4124600B2 (ja) | コンピュータ断層撮影画像の画像処理方法及びコンピュータ断層撮影装置 | |
CN107808377A (zh) | 一种肺叶中病灶的定位方法及装置 | |
CN106580368A (zh) | 一种全自动超声波诊断方法 | |
CN108171709A (zh) | 肝占位性病灶区域的检测方法、装置和实现装置 | |
CN112315578B (zh) | 确定电极针布针组合的装置、方法及电极针布针优化系统 | |
CN110223261A (zh) | 医学图像处理方法和系统、存储介质及计算机设备 | |
CN104812306A (zh) | 医用信息处理装置、医用图像诊断装置以及医用信息处理方法 | |
WO2022052443A1 (zh) | 一种组织消融的自动规划方法及装置 | |
CN107341797A (zh) | 信息显示方法、装置及电子设备 | |
WO2023125247A1 (zh) | 基于医学图像的消融区域确定方法、设备及存储介质 | |
CN107103605A (zh) | 一种乳房组织的分割方法 | |
TW202128247A (zh) | 將介電性質與患者模型相關聯的方法,系統和設備 | |
JP5829522B2 (ja) | 腫瘍セグメント化結果のワンクリック訂正 | |
TW202133113A (zh) | 用於影像分割之方法、系統和設備 | |
CN114224471B (zh) | 一种电极针布针修正装置及方法、电子设备及存储介质 | |
CN105678758A (zh) | 一种图像特征自动识别提取方法 | |
CN101506841B (zh) | 感兴趣心肌区域的半自动界定 | |
CN112022345A (zh) | 腹壁缺损重建的三维可视化术前规划方法、系统及终端 | |
CN112842398A (zh) | 用于显示实时位置数据的历史超声数据 | |
CN116580037A (zh) | 一种基于深度学习的鼻咽癌图像分割方法及系统 | |
CN105193383A (zh) | 协议生成系统及方法、协议显示系统、图像生成系统 | |
CN113705807B (zh) | 神经网络的训练装置及方法,消融布针规划装置及方法 | |
CN115568941A (zh) | 一种肿瘤消融路径评价方法 | |
CN114224472B (zh) | 一种电极针布针修正装置及方法、电子设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21896150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21896150 Country of ref document: EP Kind code of ref document: A1 |