WO2022110513A1 - 车辆的制动控制系统、车辆和列车 - Google Patents

车辆的制动控制系统、车辆和列车 Download PDF

Info

Publication number
WO2022110513A1
WO2022110513A1 PCT/CN2021/070219 CN2021070219W WO2022110513A1 WO 2022110513 A1 WO2022110513 A1 WO 2022110513A1 CN 2021070219 W CN2021070219 W CN 2021070219W WO 2022110513 A1 WO2022110513 A1 WO 2022110513A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
air
pressure
gas
port
Prior art date
Application number
PCT/CN2021/070219
Other languages
English (en)
French (fr)
Inventor
王小飞
李政
桑兴华
张建峰
董一多
孟宪玖
李响响
Original Assignee
中车山东机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车山东机车车辆有限公司 filed Critical 中车山东机车车辆有限公司
Priority to GB2210760.1A priority Critical patent/GB2615845B/en
Publication of WO2022110513A1 publication Critical patent/WO2022110513A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/18Triple or other relay valves which allow step-wise application or release and which are actuated by brake-pipe pressure variation to connect brake cylinders or equivalent to compressed air or vacuum source or atmosphere
    • B60T15/24Triple or other relay valves which allow step-wise application or release and which are actuated by brake-pipe pressure variation to connect brake cylinders or equivalent to compressed air or vacuum source or atmosphere controlled by three fluid pressures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • B61H11/06Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types of hydrostatic, hydrodynamic, or aerodynamic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/021Railway control or brake valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • B61H11/06Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types of hydrostatic, hydrodynamic, or aerodynamic brakes
    • B61H11/10Aerodynamic brakes with control flaps, e.g. spoilers, attached to the vehicles

Definitions

  • the present application relates to vehicle braking technology, and in particular, to a vehicle braking control system, a vehicle and a train.
  • the application provides a braking control system for a vehicle, a vehicle and a train, which are used to solve the problem that when the vehicle runs on a national railway line and a subway line, two different braking systems need to be installed, which increases the cost of vehicle manufacturing and maintenance. question.
  • the present application provides a brake control system for a vehicle, comprising: a relay valve, a distribution valve, a switch structure and a conversion device; wherein, a first air port of the relay valve is connected to an air cylinder through a distribution valve, The second air port of the relay valve is connected to the brake pipe through the switch structure; the third air port of the relay valve is connected to the air cylinder, and the fourth air port of the relay valve is connected to the brake cylinder ; the conversion device is connected with the distribution valve; the conversion device is connected with the switch structure;
  • the air cylinder is used to input gas to the third gas port of the distribution valve and the relay valve when the brake pipe is exhausted;
  • the brake pipe for exhausting air to the switch structure
  • the conversion device is used to control the distribution valve to output gases of different pressures to the first gas port of the relay valve when the conversion device is located in different gears, and to control the switch structure to operate in the conversion device. When in different gears, output gas of different pressure to the second gas port of the relay valve;
  • the relay valve is used for controlling the first gas of the relay valve according to the gas of different pressure from the first gas port of the relay valve and the gas of different pressure from the second gas port of the relay valve.
  • the pressure of the gas circulating between the third gas port and the fourth gas port of the relay valve is large, so as to input gas with different pressures to the brake cylinder.
  • the switch structure includes a shut-off switch and a one-way valve; the first gas port of the shut-off switch is connected to the second gas port of the relay valve, and the second gas port of the shut-off switch is connected to the The brake pipe is connected; the air outlet of the one-way valve is connected to the third air port of the cut-off switch, and the air inlet of the one-way valve is connected to the brake pipe; the conversion device is connected to the cut-off switch connection; the first air port of the cut-off switch is adjacent to the third air port of the cut-off switch;
  • the conversion device is specifically used to control the shut-off switch to open or close when the conversion device is in different gears, so that the brake pipe passes through the switch structure to the second of the relay valve.
  • the gas ports output gases of different pressures.
  • the conversion device is specifically configured to control the cut-off switch to close when the conversion device is in the first gear of the different gears; when the conversion device is in the different gears When the second gear is in position, the cut-off switch is controlled to open.
  • the relay valve includes a first valve body, a second valve body and a balance beam; the first valve body and the second valve body are located at both ends of the balance beam;
  • the third air port of the relay valve and the fourth air port of the relay valve are located on the first valve body, and the second air port of the relay valve is located on the second valve body;
  • the valve body is communicated with the second valve body through a first communication pipe, and the first air port of the relay valve is located on the first communication pipe;
  • the second valve body is used to transmit gas of different pressures to the first gas port of the relay valve and gas of different pressures to the second gas port of the relay valve.
  • the first valve body applies different pressures, so as to change the pressure of the gas circulating between the third gas port of the relay valve and the fourth gas port of the relay valve.
  • a pressure-limiting valve and a first control valve are arranged in the first valve body; the bottom end of the first control valve is arranged on the first end of the balance beam, and the pressure-limiting valve on top of the first control valve;
  • the distribution valve is used for inputting gas of a first pressure to the first gas port of the relay valve when the conversion device is in the first gear of the different gears; when the conversion device is in the In the second gear of different gears, input gas of a second pressure to the first gas port of the relay valve, and the first pressure is greater than the second pressure;
  • the switch structure is used to input the gas of the first air pressure to the second gas port of the relay valve when the conversion device is in the first gear of the different gears; when the conversion device is in the different gears
  • the air pressure of the brake pipe is the third pressure
  • the air pressure at the second air port of the relay valve is controlled to be the second air pressure, and the second air pressure is lower than the first air pressure
  • the air pressure at the second air port of the control valve is the third air pressure
  • the third air pressure is smaller than the second air pressure
  • the fourth pressure is smaller than the third pressure
  • the second valve body is used for applying a first force to the first control valve through the balance beam based on the gas of the first pressure and the gas of the first pressure; the gas based on the second pressure the gas and the gas of the second pressure, apply a second force to the first control valve through the balance beam, the second force is greater than the first force; the gas based on the second pressure and the The gas of the third pressure applies a third force to the first control valve through the balance beam, and the third force is greater than the second force;
  • the first control valve is used to raise the pressure limiting valve based on the first pressure, so that the third air port of the relay valve and the fourth air port of the relay valve are communicated, and all the The size of the cavity between the third air port of the relay valve and the fourth air port of the relay valve in the first valve body is the first size; based on the second pressure, the pressure limiting The valve is raised so that the third air port of the relay valve and the fourth air port of the relay valve communicate with each other, and the third air port of the relay valve and the relay valve are located in the first valve body.
  • the size of the cavity between the fourth air ports of the valve is a second size, and the second size is larger than the first size; based on the third pressure, the pressure limiting valve is raised to make the middle
  • the third air port of the relay valve is communicated with the fourth air port of the relay valve, and the cavity in the first valve body is located between the third air port of the relay valve and the fourth air port of the relay valve
  • the size of the body is a third size that is larger than the second size.
  • the second valve body is provided with a first cavity and a second cavity; the second air port of the relay valve is located on the first cavity, and the first cavity A first piston is arranged in the cavity, a first port is arranged on the first cavity, and the first port is communicated with the atmosphere;
  • the second cavity is provided with an upper template, a lower template and a second control valve; the lower template is penetrated on the second control valve, and the upper template is located at the top of the second control valve;
  • the lower end of the second cavity is provided with a second port, and the second port is communicated with the atmosphere; the bottom end of the second control valve is provided on the second end of the balance beam;
  • a second communication pipe and a third communication pipe are connected between the first cavity and the second cavity; the first communication pipe is communicated with the second communication pipe, and one end of the third communication pipe Adjacent to the first port, the other end of the third communication pipe is located between the upper template and the lower template;
  • the first piston does not move based on the gas of the first pressure and the gas of the first air pressure, so that the gas of the lower end of the upper template passes through the third communication pipe, the first The port is communicated with the atmosphere, so that the upper die plate applies a first force to the second control valve; the gas based on the second pressure and the gas based on the second air pressure do not move, so that the upper die plate moves toward the second control valve.
  • the second control valve applies a second force, and the second force is greater than the first force; the gas at the second pressure and the gas at the third pressure move, so that the second communication pipe and the gas are moved.
  • the third communication pipe is connected, so that the lower die plate applies a third force to the second control valve, and the third force is greater than the second force;
  • the second control valve for applying the first force to the first control valve through the balance beam based on the first force; and applying the first force to the first control valve through the balance beam based on the second force
  • the first control valve applies the second force; the third force is applied to the first control valve through the balance beam based on the third force.
  • the relay valve further includes a support point for supporting the balance, and a second piston; the support point is connected with one end of the second piston, and the other end of the second piston is connected to the second piston. One end is connected with the empty-weight truck adjustment device.
  • the first air port of the distribution valve is connected to the first air port of the relay valve, the second air port of the distribution valve is connected to the air cylinder, and the third air port of the distribution valve is connected to the air cylinder. connected to the brake pipe;
  • the distribution valve is specifically used for, when the conversion device is located in the first gear of the different gears, according to the output gas of the air cylinder through the first air port of the distribution valve, to the relay valve
  • the gas of the first pressure is input into the first air port of the air cylinder; when the conversion device is in the second gear position of the different gears, the output gas of the air cylinder passes through the first air port of the distribution valve and is sent to the The first gas port of the relay valve inputs gas of the second pressure.
  • an embodiment of the present application provides a vehicle, and the vehicle is provided with the brake control system according to the first aspect.
  • the vehicle is also provided with an air cylinder and a brake pipe; the brake pipe is connected to the air cylinder through the distribution valve;
  • the brake pipe is used for charging air to the air cylinder.
  • the vehicle is also provided with an air cylinder, a brake pipe and a main air pipe; the main air pipe is connected to the air cylinder;
  • the main air duct is used for charging air to the air cylinder.
  • embodiments of the present application provide a train, where the train includes a locomotive and the vehicle according to the second aspect; the locomotive is used to provide power to the vehicle.
  • the first air port of the relay valve is connected to the air cylinder through the distribution valve, and the second air port of the relay valve is connected to the brake pipe through the switch structure;
  • the third air port of the valve is connected to the air cylinder, the fourth air port of the relay valve is connected to the brake cylinder;
  • the conversion device is connected to the distribution valve;
  • the conversion device is connected to the switch structure; when the conversion device is in different gears, the distribution valve will
  • the first air port of the relay valve inputs gases of different pressures, and the switch structure is controlled to input gases of different pressures to the second air ports of the relay valve, so that the relay valve controls the air cylinder to the relay under the action of the distribution valve and the switch structure.
  • the pressure of the gas circulating between the third air port of the valve and the fourth air port of the relay valve is used to input gases of different pressures to the brake cylinder, so that the vehicle can meet the braking requirements on two different lines.
  • FIG. 1 is a schematic structural diagram of a vehicle brake control system provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of another vehicle brake control system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a relay valve according to an embodiment of the present application.
  • the embodiments of the present application are applied to braking control systems of vehicles, vehicles and trains. It should be noted that when the solutions of the embodiments of the present application are applied to the brake control system of the current vehicle or the brake control system of the vehicle that may appear in the future, the names of the various structures may change, but this does not affect the implementation of the present application. implementation of the case.
  • Vehicles are an important means of transportation for human beings to travel long distances, and they are also one of the important tools for transporting goods.
  • national railway lines or subway lines can usually be used for transportation.
  • the track of the national railway line Since the track of the national railway line is longer, it can provide the vehicle with a longer braking distance, and the deceleration of the vehicle when braking is small; while the subway line has a shorter track compared with the national railway line, so it can provide the vehicle with a longer braking distance.
  • the braking distance is shorter and the deceleration of the vehicle is higher when braking. Therefore, for vehicles that can run on subway lines and national railway lines at the same time, the braking system on the vehicle needs to adapt to the different requirements of the two lines at the same time.
  • two different brake control systems may be installed on the vehicle to adapt to different requirements for vehicle braking by different circuits.
  • directly installing two different brake control systems in the vehicle will increase the manufacturing cost of the vehicle, and will waste more manpower and material resources in the later maintenance process, and the maintenance cost will also increase accordingly.
  • the present application provides a vehicle braking control system, vehicle and train, aiming at solving the above technical problems in the prior art.
  • FIG. 1 is a schematic structural diagram of a vehicle brake control system according to an embodiment of the present application. As shown in Figure 1, the brake control system of the vehicle includes:
  • the brake pipe 6 is connected; the third air port 13 of the relay valve is connected to the air cylinder 5, the fourth air port 14 of the relay valve is connected to the brake cylinder 7; the conversion device 4 is connected to the distribution valve 2; the conversion device 4 is connected to the switch structure 3 connections.
  • the air cylinder 5 is used to input gas to the third gas port 13 of the distribution valve 2 and the relay valve when the brake pipe 6 is exhausted.
  • the brake pipe 6 is used to exhaust air to the switch structure 3 .
  • the conversion device 4 is used to control the distribution valve 2 to output gases of different pressures to the first air port 11 of the relay valve when the conversion device 4 is located in different gears, and to control the switch structure 3 when the conversion device 4 is located in different gears, Gases of different pressures are output to the second gas port 12 of the relay valve.
  • the relay valve 1 is used to control the third air port 13 of the relay valve and the middle valve according to the different pressure gases from the first air port 11 of the relay valve and the different pressure gases from the second air port 12 of the relay valve.
  • the pressure of the gas circulating between the fourth gas ports 14 of the follower valve is used to input gas with different pressures to the brake cylinder 6 .
  • the vehicle braking control system In order to meet the requirements of vehicle braking on two lines (subway line and national railway line), the vehicle braking control system provided in this embodiment is provided with: relay valve 1, distribution valve 2, switch structure 3 and Conversion device 4.
  • the relay valve 1 at least includes the following air ports: a first air port 11 of the relay valve, a second air port 12 of the relay valve, a third air port 13 of the relay valve, and a fourth air port 14 of the relay valve.
  • the first air port 11 of the relay valve needs to be connected to the air cylinder 3 through the distribution valve 2, and the air cylinder 3 may store gas in advance.
  • the air cylinder 3 can provide pressure to the first air port 11 of the relay valve through the distribution valve 2; the second air port 12 of the relay valve is connected to the brake pipe 6 through the switch structure 3, that is, the gas in the brake pipe 6 A certain pressure can be applied to the switch structure 3, and a certain pressure can be applied to the second air port 12 of the relay valve through the switch structure 3; the third air port 13 of the relay valve is connected to the air cylinder 5, and the fourth air port of the relay valve is connected.
  • the air port 14 is connected with the brake cylinder 7; the conversion device 4 is connected with the distribution valve 2; the conversion device 4 is connected with the switch structure 3;
  • a third control valve is arranged on the brake pipe 6 of the vehicle, and the third control valve is used for controlling the exhaust and charging process of the brake pipe 6 .
  • the user can control the third control valve to exhaust the brake pipe 6.
  • the first air port 11 of the relay valve passes through the distribution valve 2 and the air cylinder 5. Therefore, the gas in the air cylinder 5 can flow to the distribution valve 2 and then to the first air port 11 of the relay valve; and the air in the air cylinder 5 also flows to the third air port 13 of the relay valve.
  • the conversion device 4 is an adjustment device with different gears.
  • the conversion device 4 is connected with the handle for adjusting the output pressure in the distribution valve 2 through a connecting rod, and by adjusting the gear of the conversion device 4, the connecting rod is driven to change the distribution valve 2 The position of the handle to adjust the output pressure in the middle, so that the distribution valve 2 outputs gas with different pressures.
  • the distribution valve 2 can output gas with different pressures.
  • the brake pipe 6 is exhausted, and the brake pipe 6 is exhausted.
  • the pressure in the moving pipe 6 drops, at this time, the passage between the distribution valve 2 and the first air port 11 of the relay valve is opened, so that the gas in the air cylinder 5 flows to the distribution valve 2, and flows through the distribution valve 2 to the relay valve.
  • the gas at the first gas port 11 is gas with different pressures.
  • the conversion device 4 and the switch structure 3 are also connected by a connecting rod.
  • the brake pipe 6 When the vehicle is braked, the brake pipe 6 is exhausted and the pressure drops, so one end of the switch structure 3 connected with the brake pipe 6 provides pressure,
  • the gear position of the switching device 4 is adjusted, the air communication between one end and the other end of the switch structure 3 will change, so that the air pressure generated by one end of the switch structure 3 to the other end of the switch structure 3 will also change.
  • the second gas port 12 of the relay valve connected to the other end of the switch structure also outputs gas with different pressures.
  • the third air port 13 of the relay valve and the air outlet of the relay valve are communicated according to the gases of different pressures in the first air port 11 of the relay valve and the gases of different pressures in the second air port 12 of the relay valve.
  • the passage between the fourth air ports 14 enables the gas in the air cylinder 5 to flow into the brake cylinder through the third air port 13 of the relay valve and the fourth air port 14 of the relay valve in sequence, and because the conversion device is in different gears , the pressure at the first air port 11 of the relay valve will be different, and the pressure at the second air port 12 of the relay valve will also be different, so that the air cylinder 5 is input to the brake cylinder 7 through the relay valve 1 The gas pressure will also be different.
  • the brake cylinder 7 and the vehicle wheels are connected through the connection structure, when the gas in the brake cylinder 7 is at different pressures, the brake cylinder 7 will exert different forces on the wheels through the connection structure, so that the wheels act in different ways. Under the action of the force, different decelerations are used for braking, so that the braking system in the vehicle can be applied to different line requirements at the same time.
  • a vehicle brake control system wherein the first air port 11 of the relay valve is connected to the air cylinder 5 through the distribution valve 2 , and the second air port 12 of the relay valve is connected to the brake control system through the switch structure 3 .
  • the moving pipe 6 is connected; the third air port 13 of the relay valve is connected with the air cylinder 5, the fourth air port 14 of the relay valve is connected with the brake cylinder 7; the conversion device 4 is connected with the distribution valve 2; the conversion device 4 is connected with the switch structure 3 Connection; when the conversion device 4 is in different gears, the distribution valve 2 will input gas of different pressures to the first air port 11 of the relay valve, and control the switch structure 3 to input the gas of different pressures to the second air port 12 of the relay valve, Under the action of the distribution valve 2 and the switch structure 3, the relay valve 1 controls the pressure of the gas flowing between the air cylinder 5 and the third air port 13 of the relay valve and the fourth air port 14 of the relay valve, so that the The brake cylinder 7 inputs gases with different pressures,
  • FIG. 2 is a schematic structural diagram of another vehicle brake control system according to an embodiment of the present application.
  • the switch structure 3 further includes: a cut-off switch 8 and a one-way valve 9 ; a first air port 81 of the cut-off switch and a second air port of the relay valve 12 is connected, the second air port 82 of the cut-off switch is connected with the brake pipe 6; the air outlet of the one-way valve 9 is connected with the third air port 83 of the cut-off switch, and the air inlet of the one-way valve 9 is connected with the brake pipe 6;
  • the device 4 is connected to the cut-off switch 8; the first air port 81 of the cut-off switch is adjacent to the third air port 83 of the cut-off switch;
  • the conversion device 4 is specifically used to control the cut-off switch 8 to open or close when the conversion device 4 is in different gears, so that the brake pipe 6 outputs gas of different pressures to the second air port 12 of the relay valve through the switch structure 3 .
  • the conversion device 4 is specifically configured to control the cut-off switch 8 to close when the conversion device 4 is located in the first gear position of different gear positions; when the conversion device 4 is located in the second gear position of the different gear positions, control the cut-off switch. 8 open.
  • the first air port 21 of the distribution valve is connected to the first air port 11 of the relay valve
  • the second air port 22 of the distribution valve is connected to the air cylinder 5
  • the third air port 23 of the distribution valve is connected to the brake pipe 6 .
  • the distribution valve 2 is specifically used to input the first air port 11 of the relay valve through the first air port 21 of the distribution valve according to the output gas of the air cylinder 5 when the conversion device 4 is located in the first gear position of different gears.
  • the gas of the second pressure is input to the first gas port 11 of the relay valve through the first gas port 21 of the distribution valve according to the output gas of the air cylinder 5 .
  • the switch structure 3 may specifically include: a cut-off switch 8 and a one-way valve 9 , wherein the cut-off switch 8 includes the following air ports: The gas port 81, the second gas port 82 of the shut-off switch, and the third gas port 83 of the shut-off switch.
  • the one-way valve 9 includes the following several air ports: an air inlet of the one-way valve 9 and an air outlet of the one-way valve 9 .
  • the distribution valve 2 mainly includes the following air ports: a first air port 21 of the distribution valve, a second air port 22 of the distribution valve, and a third air port 23 of the distribution valve.
  • the second air port 12 of the relay valve When the switch 8 is turned on, the second air port 12 of the relay valve is connected to the brake pipe 6 through the cut-off switch 8, so that the pressure at the second air port 12 of the relay valve will decrease with the decrease of the pressure in the brake pipe 6;
  • the air outlet of the check valve 9 is connected to the third air port 83 of the cut-off switch, and the air inlet of the check valve 9 is connected to the brake pipe 6, that is, the gas in the brake pipe 6 can flow to the relay valve through the check valve 9
  • the pressure of the brake pipe 6 drops, the gas at the second gas port 12 of the relay valve will not flow to the brake pipe 6 through the one-way valve 9; Switch 8 is connected.
  • the conversion device 4 has two different gears, a first gear and a second gear, where the first gear is suitable for the national railway line, and the second gear is suitable for the subway line.
  • the conversion device 4 drives the connecting rod connected to the shut-off switch 8, so that the shut-off switch 8 is closed, that is, the first air port 81 of the shut-off switch and the shut-off switch are now closed.
  • the air path between the second air ports 82 is closed, and when the vehicle is running, the gas in the brake pipe 6 can pass through the air inlet of the one-way valve 9, the air outlet of the one-way valve 9, and the third air port 83 of the cut-off switch.
  • the first air port 81 of the cut-off switch is transmitted to the second air port 12 of the relay valve, providing a kind of air pressure for the second air port 12 of the relay valve, and when the vehicle brakes, the pressure of the brake pipe 6 drops, and the relay valve The gas at the second gas port 12 will not flow out, that is, the pressure at the second gas port 12 of the relay valve will remain unchanged at this time.
  • the conversion device 4 drives the connecting rod connected to the shut-off switch 8 to open the shut-off switch 8, that is, at this time, the first air port 81 of the shut-off switch and the shut-off switch are connected to each other.
  • the air paths between the second air ports 82 are connected.
  • the gas in the brake pipe 6 can also be transmitted to the second port of the relay valve through the air inlet of the one-way valve 9, the air outlet of the one-way valve 9, the third air port 83 of the cut-off switch, and the first air port 81 of the cut-off switch.
  • Flow to the brake pipe 6 so that the air pressure at the second air port 12 of the relay valve decreases as the pressure of the brake pipe 6 decreases.
  • the first air port 21 of the distribution valve is connected to the first air port 11 of the relay valve
  • the second air port 22 of the distribution valve is connected to the air cylinder 5
  • the third air port 23 of the distribution valve is connected to the brake pipe 6;
  • the conversion device 4 is connected with the distribution valve 2 through a connecting rod.
  • the conversion device 4 drives the connecting rod to further enable the distribution valve 2 to output a pressure, that is, When the vehicle is braking, the gas in the air cylinder 5 enters the gas of the first pressure to the first gas port 11 of the relay valve through the second gas port 22 of the distribution valve and the third gas port 23 of the distribution valve in turn; when the switching device 4 switches When the second gear is reached, at this time, the conversion device 4 further enables the distribution valve 2 to output another pressure by driving the connecting rod, that is, when the vehicle is braking, the gas in the air cylinder 5 sequentially passes through the second air port of the distribution valve. 22.
  • the third gas port 23 of the distribution valve inputs the gas of the second pressure to the first gas port 11 of the relay valve.
  • the relay valve 1 includes a first valve body, a second valve body and a balance beam 17 ; the first valve body and the second valve body are located at two ends of the balance beam 17 .
  • the third air port 13 of the relay valve and the fourth air port 14 of the relay valve are located on the first valve body, and the second air port 12 of the relay valve is located on the second valve body; between the first valve body and the second valve body
  • the first communication pipe 161 communicates with each other, and the first air port 11 of the relay valve is located on the first communication pipe 161 .
  • the second valve body is used to apply different pressures to the first valve body through the balance beam 17 when the first gas port 11 of the relay valve is input with gas of different pressures, and the second gas port 12 of the relay valve is inputted with gas of different pressures.
  • the pressure changes the pressure of the gas flowing between the third gas port 13 of the relay valve and the fourth gas port 14 of the relay valve.
  • the pressure limiting valve 18 and the first control valve 191 are arranged in the first valve body; the bottom end of the first control valve 191 is arranged on the first end of the balance beam 17, and the pressure limiting valve 18 is located at the first control valve. top of 191;
  • the distribution valve 2 is used to input the gas of the first pressure to the first gas port 11 of the relay valve when the conversion device 4 is in the first gear of different gears; when the conversion device 4 is in the second gear of different gears When , input the gas of the second pressure to the first gas port 11 of the relay valve, and the first pressure is greater than the second pressure;
  • the switch structure 3 is used to input the gas of the first air pressure to the second gas port 12 of the relay valve when the conversion device 4 is in the first gear of different gears; when the conversion device 4 is in the second gear of different gears , and when the air pressure of the brake pipe 6 is the third pressure, the air pressure at the second air port 12 of the control relay valve is the second air pressure, and the second air pressure is smaller than the first air pressure; When the gear is in the gear position and the air pressure of the brake pipe 6 is the fourth pressure, the air pressure at the second air port 12 of the control relay valve is the third air pressure, the third air pressure is less than the second air pressure, and the fourth pressure is less than the third pressure;
  • the second valve body for the gas based on the first pressure and the gas of the first pressure, applies the first force to the first control valve 191 through the balance beam 17; the gas based on the second pressure and the gas of the second pressure, through the balance
  • the beam 17 applies a second force to the first control valve 191, and the second force is greater than the first force; based on the gas of the second pressure and the gas of the third pressure, a third force is applied to the first control valve 191 through the balance beam 17, and the third force is applied to the first control valve 191 through the balance beam 17.
  • the third force is greater than the second force;
  • the first control valve 191 is used to raise the pressure limiting valve 18 based on the first pressure, so that the third air port 13 of the relay valve and the fourth air port 14 of the relay valve are communicated, and the first valve body is located in the middle
  • the size of the cavity between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is the first size; based on the second pressure, the pressure limiting valve 18 is raised to make the third air port of the relay valve 13 communicates with the fourth air port 14 of the relay valve, and the size of the cavity in the first valve body between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is the second size, the second The size is larger than the first size; based on the third pressure, the pressure limiting valve 18 is raised so that the third air port 13 of the relay valve and the fourth air port 14 of the relay valve are communicated, and the relay valve is located in the first valve body
  • the size of the cavity between the third air port 13 and the fourth air port 14 of the relay valve is the third size
  • FIG. 3 is a schematic structural diagram of a relay valve provided in an embodiment of the application.
  • the relay valve 1 includes a first valve body, a second valve body and a balance beam 17
  • the first valve body 1 includes a balance beam 17 .
  • a valve body is located on one side of the balance beam 17
  • a second valve body is located on the other side of the balance beam 17 .
  • the first valve body and the second valve body communicate with each other through a first communication pipe 161 .
  • the first valve body is provided with the third air port 13 of the relay valve and the fourth air port 14 of the relay valve
  • the second valve body is provided with the second air port 12 of the relay valve
  • the first valve body is provided with the third air port 13 of the relay valve and the fourth air port 14 of the relay valve.
  • the first air port 11 of the relay valve is provided on the first communication pipe 161 between the valve body and the second valve body.
  • the air cylinder 5 When the vehicle is braking, the air cylinder 5 will input gas of different pressure to the first gas port 11 of the relay valve in the second valve body through the distribution valve 2, and due to the on-off of the cut-off switch 8 and the pressure of the brake pipe 6 The change will input gases of different pressures to the second air port 12 of the relay valve in the second valve body. Under the combined action of the pressures of the two air ports, different forces are applied to the first valve body through the balance beam 17, so that in the first valve body In a valve body, the air cylinder 5 inputs gases of different pressures to the fourth air port 14 of the relay valve through the third air port 13 of the relay valve, so that the brake cylinder 7 connected to the fourth air port 14 of the relay valve can enter the Enter gases of different pressures.
  • a pressure limiting valve 18 and a first control valve 191 are also provided in the first valve body.
  • the bottom end of the first control valve 191 is in contact with a section of the balance beam 17 .
  • the brake pipe 6 in the brake pipe 6 When the conversion device 4 is in the first gear (that is, when the vehicle is on the national railway line), when the vehicle is under normal braking or emergency braking, under the action of the third control valve, the brake pipe 6 in the brake pipe 6 The gas pressure begins to drop. Since the brake pipe 6 is connected to the third air port 23 of the distribution valve, the pressure at the third air port 23 of the distribution valve also decreases with the pressure in the brake pipe 6. At this time, the distribution The first air port 21 of the valve is opened, and the gas in the air cylinder 5 can input the gas of the first pressure to the first air port 11 of the relay valve through the second air port 22 of the distribution valve and the first air port 21 of the distribution valve in sequence.
  • the gas in the brake pipe 6 connected with the switch structure 3 can flow to the relay connected with the switch structure 3 through the switch structure 3
  • the second air port 12 of the valve makes its pressure equal to the first air pressure, and the gas at the second air port 12 of the relay valve will not flow back to the brake pipe 6;
  • the gas pressure in the brake pipe 6 drops , the pressure at the second air port 12 of the relay valve remains unchanged, and is still the first air pressure;
  • the second valve body under the combined action of the gas based on the first pressure and the gas of the first air pressure, passes the balance beam 17 to
  • the first control valve 191 in the first valve body exerts a first force, and the first control valve 191 lifts the pressure limiting valve 18 under the action of the first force, so that the third air port 13 originally located in the relay valve and the relay valve
  • the template between the fourth air port 14 of the relay valve rises, and then the air path between the third air port 13 of the relay valve and the
  • the size of the cavity between the fourth air ports 14 is the first size.
  • the air cylinder 5 since the air cylinder 5 is connected to the third air port 13 of the relay valve, the gas in the air cylinder 5 flows through the third air port 13 of the relay valve to the fourth air port 14 of the relay valve, thereby making it connect with the relay valve.
  • the brake cylinder 7 connected to the fourth air port 14 is filled with air, so that the brake cylinder 7 exerts the first force on the wheel.
  • a template on the control valve 191, and the pressure limiting valve 18 at the upper end of the first control valve 191 also moves downward, thereby closing the air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve , the charging process of the brake cylinder 7 ends.
  • the pressure of the brake pipe 6 is under the action of the third control valve, and the gas pressure in the brake pipe 6 begins to drop.
  • the pressure at the third air port 23 of the distribution valve is It also decreases with the decrease of the pressure in the brake pipe 6.
  • the first air port 21 of the distribution valve is opened, and the air in the air cylinder 5 can pass through the second air port 22 of the distribution valve and the first air port 21 of the distribution valve in turn.
  • the gas of the second pressure is input into the first gas port 11 of the relay valve, wherein the second pressure is greater than the first pressure.
  • the gas in the brake pipe 6 connected with the switch structure 3 can flow through the switch structure 3 to the relay connected with the switch structure 3
  • the second air port 12 of the valve, and the gas at the second air port 12 of the relay valve can flow back to the brake pipe 6 through the switch structure 3; when the vehicle is braked and the gas pressure in the brake pipe 6 drops, the relay valve
  • the gas at the second air port 12 of the relay valve will flow out into the brake pipe 6 through the switch structure 3 connected to it, so that the air pressure at the second air port 12 of the relay valve changes to the second air pressure, wherein the second air pressure is smaller than the first air pressure Air pressure; under the combined action of the gas based on the second pressure and the gas based on the second air pressure, the second valve body presses down one end of the balance beam, and moves to the first control valve in the first valve body through
  • the template between the fourth air ports 14 rises, and then the air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is communicated, and the third air port 13 of the relay valve and the third air port 13 of the relay valve are connected.
  • the size of the cavity between the four air ports 14 is the second size, wherein the second size is larger than the first size.
  • the brake cylinder 7 connected to the fourth air port 14 of the valve is charged with air, so that the brake cylinder 7 exerts a second force on the wheel, wherein the second force is greater than the first force.
  • the template provided on the first control valve 191 is pressed down, and the pressure limiting valve 18 at the upper end of the first control valve 191 is also moved downward, thereby making the The air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is closed, and the charging process of the brake cylinder 7 ends.
  • the pressure of the brake pipe 6 is under the action of the third control valve, and the gas pressure in the brake pipe 6 begins to drop.
  • the fourth pressure is less than the third pressure; since the brake pipe 6 is connected to the third air port 23 of the distribution valve, Therefore, the pressure at the third air port 23 of the distribution valve also decreases as the pressure in the brake pipe 6 decreases.
  • the first air port 21 of the distribution valve is opened, and the air in the air cylinder 5 can pass through the first air port of the distribution valve in sequence.
  • the second gas port 22 and the first gas port 21 of the distribution valve input gas of a second pressure to the first gas port 11 of the relay valve, wherein the second pressure is greater than the first pressure.
  • the gas in the brake pipe 6 connected with the switch structure 3 can flow to the relay valve connected with the switch structure 3 through the switch structure 3
  • the second air port 12 of the relay valve, and the gas at the second air port 12 of the relay valve can flow back to the brake pipe 6 through the switch structure 3;
  • the gas pressure in the brake pipe 6 drops to the fourth air pressure
  • the gas at the second air port 12 of the relay valve will flow out into the brake pipe 6 through the switch structure 3 connected to it, so that the air pressure at the second air port 12 of the relay valve changes to the third air pressure, wherein the third air pressure is less than the second air pressure; the second valve body presses down one end of the balance beam under the combined action of the gas based on the second pressure and the gas based on the third
  • a control valve 191 applies a third force, wherein the third force is greater than the second force; the first control valve 191 lifts the pressure limiting valve 18 under the action of the third force, so that the third air port 13 originally located in the relay valve and the The template between the fourth air port 14 of the relay valve rises, so that the air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is communicated, and the third air port 13 of the relay valve is connected to the relay valve.
  • the size of the cavity between the fourth air ports 14 of the relay valve is a third size, wherein the third size is larger than the second size.
  • the air cylinder 5 since the air cylinder 5 is connected to the third air port 13 of the relay valve, the gas in the air cylinder 5 can flow to the fourth air port 14 of the relay valve through the third air port 13 of the relay valve, thereby making it connect with the relay valve.
  • the brake cylinder 7 connected to the fourth air port 14 of the valve is charged with air, so that the brake cylinder 7 exerts a third force on the wheel, wherein the third force is greater than the second force.
  • the template provided on the first control valve 191 is pressed down, and the pressure limiting valve 18 at the upper end of the first control valve 191 is also moved downward, thereby making the The air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is closed, and the charging process of the brake cylinder 7 ends.
  • the second valve body is provided with a first cavity and a second cavity; the second air port 12 of the relay valve is located on the first cavity, the first piston 101 is provided in the first cavity, the first The cavity is provided with a first port, and the first port is communicated with the atmosphere;
  • the second cavity is provided with an upper template 102, a lower template 103 and a second control valve 192; the lower template 103 is penetrated on the second control valve 192, and the upper template 102 is located at the top of the second control valve 192; the second cavity
  • the lower end of the valve is provided with a second port, which is communicated with the atmosphere; the bottom end of the second control valve 192 is provided on the second end of the balance beam 17;
  • a second communication pipe 162 and a third communication pipe 163 are connected between the first cavity and the second cavity; the first communication pipe 161 and the second communication pipe 162 are connected, and one end of the third communication pipe 163 is connected to the first port. Adjacent, the other end of the third communication pipe 163 is located between the upper template 102 and the lower template 103;
  • the first piston 101 is used to not move the gas based on the first pressure and the first air pressure, so that the gas at the lower end of the upper template 102 communicates with the atmosphere through the third communication pipe 163 and the first port, so that the upper template 102 A first force is applied to the second control valve 192; the gas based on the second pressure and the gas of the second air pressure do not move, so that the upper template 102 applies a second force to the second control valve 192, and the second force is greater than the first force ; Move based on the gas of the second pressure and the gas of the third pressure, so that the second communication pipe 162 is communicated with the third communication pipe 163, so that the lower template 103 applies a third force to the second control valve 192, and the third force is greater than the second strength;
  • the second control valve 192 is used for applying a first force to the first control valve 191 through the balance beam 17 based on the first force; applying a second force to the first control valve 191 through the balance beam 17 based on the second force; Three force, the third force is applied to the first control valve 191 through the balance beam 17 .
  • the second valve body of the relay valve 1 includes a first cavity and a second cavity, and the first cavity includes the second air port 12 of the relay valve and the first piston 101 .
  • the first piston 101 is also provided with a first port, and the first port is communicated with the atmosphere, so that the piston can communicate with the atmosphere through the first port.
  • the second cavity includes: an upper template 102 , a lower template 103 and a second control valve 192 , the bottom end of the second control valve 192 is in contact with the other end of the balance beam 17 , and the upper template 102 is located at the second control valve 192
  • the bottom plate 103 passes through the second control valve 192, and the lower end of the second cavity is provided with a second port, the second port is open to the atmosphere, so that the lower surface of the lower template 103 communicates with the atmosphere.
  • first cavity and the second cavity are communicated with the third communication pipe 163 through the second communication pipe 162 .
  • One end of the third communication pipe 163 is adjacent to the first port on the first cavity, and the other end of the third communication pipe 163 is located between the upper template 102 and the lower template 103 .
  • the conversion device 4 When the conversion device 4 is in the first gear (that is, when the vehicle is on the national railway line), when the vehicle is under normal braking or emergency braking, the pressure of the brake pipe 6 is under the action of the third control valve, and the brake pipe 6 is under the action of the third control valve.
  • the gas pressure in the brake pipe 6 begins to drop. Since the brake pipe 6 is connected to the third air port 23 of the distribution valve, the pressure at the third air port 23 of the distribution valve also decreases as the pressure in the brake pipe 6 decreases.
  • the gas in the air cylinder 5 can input the gas of the first pressure to the first air port 11 of the relay valve through the second air port 22 of the distribution valve and the first air port 21 of the distribution valve in sequence.
  • the gas in the brake pipe 6 connected with the switch structure 3 can flow to the relay valve connected with the switch structure 3 through the switch structure 3
  • the pressure of the second air port 12 of the relay valve is the first air pressure, and the gas at the second air port 12 of the relay valve will not flow back to the brake pipe 6; when the vehicle is braked, the gas pressure in the brake pipe 6 drops, The pressure at the second air port 12 of the relay valve remains unchanged and is still the first air pressure; in the second valve body, because the second air port 12 of the relay valve is connected to the first piston 101, and the The pressure at the second air port 12 remains unchanged, so under the action of the first air pressure, the first piston 101 makes the gas at the lower end of the upper template 102 communicate with the first port through the third communication pipe 163 to the atmosphere, and the upper template 102 Since the upper end of the upper plate 102 is connected to the first air port 11 of the relay valve that communicates with the first communication pipe 161, the air pressure at the upper
  • the upper template 102 The pressure at the upper end of the lower template 103 is different from that of the lower end of the upper template 102; and the gas at the upper end of the lower template 103 communicates with the first port through the third communication pipe 163 to the atmosphere, and the gas at the lower end of the lower template 103 passes through the second port of the second cavity At this time, the air pressure of the upper end of the lower template 103 is the same as that of the lower end of the lower template 103.
  • the upper The second control valve 192 exerts a first force, presses down one end of the balance beam 17, and applies a first force to the first control valve 191 in the first valve body through the lever action of the balance beam 17.
  • the first control valve 191 is in the first valve body. Under the action of a force, the pressure limiting valve 18 is raised, so that the template originally located between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve rises, and then the third air port 13 of the relay valve is connected to the relay valve.
  • the air paths between the fourth air ports 14 of the valve are communicated, and the size of the cavity between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is the first size.
  • the air cylinder 5 since the air cylinder 5 is connected to the third air port 13 of the relay valve, the gas in the air cylinder 5 flows through the third air port 13 of the relay valve to the fourth air port 14 of the relay valve, thereby making it connect with the relay valve.
  • the brake cylinder 7 connected to the fourth air port 14 is charged with air, so that the brake cylinder 7 exerts a first force on the wheel.
  • the template provided on the first control valve 191 is pressed down, and the pressure limiting valve 18 at the upper end of the first control valve 191 is also moved downward, thereby making the The air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is closed, and the charging process of the brake cylinder 7 ends.
  • the pressure of the brake pipe 6 is under the action of the third control valve, and the gas pressure in the brake pipe 6 begins to drop.
  • the pressure at the third air port 23 of the distribution valve is It also decreases with the decrease of the pressure in the brake pipe 6.
  • the first air port 21 of the distribution valve is opened, and the air in the air cylinder 5 can pass through the second air port 22 of the distribution valve and the first air port 21 of the distribution valve in turn.
  • the gas of the second pressure is input into the first gas port 11 of the relay valve, wherein the second pressure is greater than the first pressure.
  • the gas in the brake pipe 6 connected with the switch structure 3 can flow through the switch structure 3 to the relay valve connected with the switch structure 3
  • the second air port 12 of the relay valve makes the first piston 101 connected to the second air port 12 of the relay valve move to the left.
  • the air pressure at the air port 12 drops to the second air pressure, wherein the second air pressure is smaller than the first air pressure; in the second valve body, since the second air port 12 of the relay valve is connected to the first piston 101, and the The pressure at the second air port 12 will decrease to the second air pressure as the pressure of the brake pipe 6 connected to it through the switch device decreases to the second air pressure. At this time, the pressure at the first piston 101 which is in communication with the second air port 12 of the relay valve It also drops to the second air pressure, but the pressure drop at the first piston 101 is not enough to make the first piston 101 move.
  • the first piston 101 makes the The gas communicates with the first port through the third communication pipe 163 to the atmosphere, and the upper end of the upper template 102 is connected to the first gas port 11 of the relay valve which is communicated with the first communication pipe 161, and the air pressure at the upper end of the upper template 102 is the same as that of the medium.
  • the pressure of the first air port 11 of the follower valve is the second pressure, and the pressure of the upper end of the upper template 102 and the lower end of the upper template 102 are different at this time; and the gas at the upper end of the lower template 103 passes through the third communication pipe 163 and the first port It is connected to the atmosphere, and the gas at the lower end of the lower template 103 is communicated to the atmosphere through the second port of the second cavity.
  • the upper end of the lower template 103 and the lower end of the lower template 103 have the same air pressure.
  • the second control valve 192 presses down one end of the balance beam, and applies a second force to the first control valve 191 in the first valve body through the lever action of the balance beam 17, wherein the second force is greater than The first force; the first control valve 191 lifts the pressure limiting valve 18 under the action of the second force, so that the template originally located between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve rises, and then The air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is in communication, and the size of the cavity between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is a second size, where the second size is larger than the first size.
  • the air cylinder 5 since the air cylinder 5 is connected to the third air port 13 of the relay valve, the gas in the air cylinder 5 can flow to the fourth air port 14 of the relay valve through the third air port 13 of the relay valve, thereby making it connect with the relay valve.
  • the brake cylinder 7 connected to the fourth air port 14 of the valve is charged with air, so that the brake cylinder 7 exerts a second force on the wheel, wherein the second force is greater than the first force, so that the vehicle can be braked commonly on subway lines.
  • the speed is greater than the braking speed of the vehicle on the national railway line.
  • the template provided on the first control valve 191 is pressed down, and the pressure limiting valve 18 at the upper end of the first control valve 191 is also moved downward, thereby making the The air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is closed, and the charging process of the brake cylinder 7 ends.
  • the pressure of the brake pipe 6 is under the action of the third control valve, and the gas pressure in the brake pipe 6 begins to drop.
  • the fourth pressure is less than the third pressure; since the brake pipe 6 is connected with the third air port 23 of the distribution valve, the third air port 23 of the distribution valve is The pressure of the air cylinder 5 also decreases with the decrease of the pressure in the brake pipe 6.
  • the first air port 21 of the distribution valve is opened, and the air in the air cylinder 5 can pass through the second air port 22 of the distribution valve and the first air port 22 of the distribution valve.
  • the gas port 21 inputs gas of a second pressure to the first gas port 11 of the relay valve, wherein the second pressure is greater than the first pressure.
  • the gas in the brake pipe 6 connected with the switch structure 3 can flow through the switch structure 3 to the relay valve connected with the switch structure 3
  • the second air port 12 of the relay valve makes the first piston 101 connected to the second air port 12 of the relay valve move to the left; when the vehicle brakes, the gas pressure in the brake pipe 6 drops to the fourth air pressure, the relay valve
  • the gas at the second air port 12 will flow out into the brake pipe 6 through the switch structure 3 connected thereto, so that the air pressure at the second air port 12 of the relay valve changes to a third air pressure, wherein the third air pressure is smaller than the second air pressure
  • the second air port 12 of the relay valve since the second air port 12 of the relay valve is connected to the first piston 101, and the pressure at the second air port 12 of the relay valve will follow the brake pipe 6 connected to it through the switch device The pressure drops to
  • the pressure at the first piston 101 communicating with the second air port 12 of the relay valve also drops to the third air pressure, the first piston 101 moves to the right, and the first piston 101 Move to between one end of the third communication pipe 163 and the first port.
  • the air path between the first communication pipe 161 , the second communication pipe 162 and the third communication pipe 163 is in communication, because it communicates with the first communication pipe 161 Therefore, the air pressure in the first communication pipe 161, the second communication pipe 162 and the third communication pipe 163 are all the second pressure, that is, at this time, the upper end of the upper template 102 and the The lower end of the upper template 102 is communicated with the third communication pipe 163 through the second communication pipe 162, and the air pressures at the upper end of the upper template 102 and the lower end of the upper template 102 are both the second pressure; The lower end of 102 is connected, so the air pressure at the upper end of the lower template 103 is also the second pressure, and the lower end of the lower template 103 is communicated with the
  • the third force is greater than the third force.
  • Second strength pressing down one end of the balance beam, applies a third force to the first control valve 191 in the first valve body through the lever action of the balance beam 17, wherein the third force is greater than the second force; the first control The valve 191 lifts the pressure limiting valve 18 under the action of the third force, so that the template originally located between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve rises, and then the third air port of the relay valve rises 13 and the fourth air port 14 of the relay valve are in communication, and the size of the cavity between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is the third size, wherein the third The size is larger than the second size.
  • the air cylinder 5 since the air cylinder 5 is connected to the third air port 13 of the relay valve, the gas in the air cylinder 5 can flow to the fourth air port 14 of the relay valve through the third air port 13 of the relay valve, thereby making it connect with the relay valve.
  • the brake cylinder 7 connected to the fourth air port 14 of the valve is inflated, so that the brake cylinder 7 exerts a third force on the wheel, wherein the third force is greater than the second force, so that the speed of the emergency braking of the vehicle on the subway Greater than the speed at which the vehicle normally brakes on the subway.
  • the template provided on the first control valve 191 is pressed down, and the pressure limiting valve 18 at the upper end of the first control valve 191 is also moved downward, thereby making the The air path between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is closed, and the charging process of the brake cylinder 7 ends.
  • the relay valve 1 further includes a support point for supporting the balance beam 17 and a second piston; the support point is connected with one end of the second piston, and the other end 15 of the second piston is connected with the empty-weight truck adjusting device.
  • the lower end of the balance beam 17 of the relay valve 1 is also provided with a movable support point and a second piston.
  • One end of the second piston is connected to the support point, and the other end 15 of the second piston can be connected to an empty truck adjustment device (eg, a weighing valve).
  • an empty-weight vehicle adjustment device can be connected to the other end 15 of the second piston of the relay valve 1.
  • the air car adjustment device will push the second piston to the left due to the increase of the vehicle load, which further makes the second piston move to the left.
  • the support point connected at one end of the two pistons moves to the left.
  • the force exerted by the second control valve 192 on one end of the support beam is the first force
  • the second control valve 192 The distance between the bottom end and the support point becomes longer, so that the fourth force exerted by the support beam on the first control valve 191 is greater than the original first force, further making the third air port 13 of the relay valve and the fourth port of the relay valve 191 larger.
  • the air port 14 is connected, and the size of the cavity between the third air port 13 of the relay valve and the fourth air port 14 of the relay valve is a fourth size, wherein the fourth size is larger than the first size, so that the third air port 13 of the relay valve is connected to the third air port 14 of the relay valve.
  • More air in the air cylinder 5 connected to the air port 13 can flow to the brake cylinder 7 through the third air port 13 of the relay valve and the fourth air port 14 of the relay valve in sequence, and the brake cylinder 7 then exerts a fourth effect on the wheels. force, wherein the fourth force is greater than the first force, which ensures that when the vehicle load increases, the same deceleration can be achieved when braking on the same line.
  • a vehicle brake control system is provided, and the brake system includes a conversion device 4 .
  • the distribution valve 2 connected to it can output different pressures, thereby affecting the pressure at the first air port 11 of the relay valve connected to the third air port 23 of the distribution valve; at the same time, the conversion device 4 It is also possible to control the opening and closing of the shut-off switch 8 connected to it to further affect the air pressure at the second gas port 12 of the relay valve connected to the first gas port 81 of the shut-off switch, thereby making the second gas port 12 of the relay valve.
  • the pistons are in different positions, and the upper and lower surfaces of the upper template 102 and the lower template 103 in the second cavity generate different air pressures, so that the upper template 102 or the lower template 103 drives the second control valve 192 through the support
  • the beam applies different forces to the first control valve 191, and the first control valve 191 applies different forces to the pressure limiting valve 18 on the first control valve 191 under the action of different forces, so that the third air port 13 of the relay valve Connected with the fourth air port 14 of the relay valve, the air cylinder 5 can input different air pressures to the brake cylinder 7 through the third air port 13 of the relay valve and the fourth air port 14 of the relay valve, so that the brake cylinder 7
  • the wheels exert different forces so that the vehicle can meet the braking requirements of different routes.
  • the other end 15 of the second piston of the relay valve 1 can also be connected with an empty-heavy vehicle adjusting device, so that when the load of the vehicle increases and the vehicle runs on the same line, it can have the same deceleration, thereby ensuring the connection of the vehicle
  • the vehicle braking control system provided by the embodiments of the present application does not require power control, can meet the needs of uncharged vehicles, and can reduce the cost of electricity consumption of the vehicle, and also avoid the need for power supply in the vehicle. Installing two different brake control systems at the same time reduces the manufacturing cost and maintenance cost of the vehicle.
  • the brake control system can also connect multiple relay valves 1 and multiple brake cylinders 7 at the same time.
  • the embodiment of the present application provides a vehicle, and the vehicle is provided with the brake control system provided in any of the above embodiments.
  • the vehicle is also provided with an air cylinder 5 and a brake pipe 6; the brake pipe 6 is connected to the air cylinder 5 through the distribution valve 2;
  • the brake pipe 6 is used to charge the air cylinder 5 with air.
  • the vehicle is further provided with an air cylinder 5 , a brake pipe 6 and a main air duct; the main air duct is connected with the air cylinder 5 ; the main air duct is used for charging the air cylinder 5 with air.
  • the air cylinder 5 needs to be charged before the vehicle is braked.
  • the gas in the air cylinder 5 can come from the brake pipe 6.
  • the first gas port 21 of the distribution valve is closed at this time, and the The second air port 22 is open to the third air port 23 of the distribution valve, and the gas in the brake pipe 6 can flow to the second air port 22 of the distribution valve through the third air port 23 of the distribution valve connected to it, and further pass through the second air port 22 of the distribution valve.
  • the air port 22 flows to the air cylinder 5 connected to it to inflate the air cylinder 5 .
  • the gas in the air cylinder 5 can also come from the main air duct.
  • the vehicle is provided with a main air duct, which can be connected to one end of the pressure reducing valve, and the other end of the pressure reducing valve is connected to the wind.
  • the pressure reducing valve can be controlled artificially so that the main air pipe, the pressure reducing valve and the air cylinder 5 communicate with each other, and then the main air pipe can inflate the air cylinder 5 .
  • Embodiments of the present application further provide a train, where the train includes a locomotive and the vehicle provided by the above embodiments, and the locomotive is used to provide power to the vehicle.
  • first When used in this application, although the terms “first,” “second,” etc. may be used in this application to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, without changing the meaning of the description, a first element could be termed a second element, and similarly, a second element could be termed a first element, so long as all occurrences of "the first element” were consistently renamed and all occurrences of "the first element” were named consistently The “second element” can be renamed consistently. The first element and the second element are both elements, but may not be the same element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种车辆的制动控制系统,其中,中继阀(1)的第一气口(11)通过分配阀(2)与风缸(5)连接,中继阀的第二气口(12)通过开关结构与制动管(6)连接;中继阀的第三气口(13)与风缸(5)连接,中继阀的第四气口(14)与制动缸(7)连接;转换装置(4)与分配阀(2)连接;转换装置(4)与开关结构(3)连接;当转换装置(4)处于不同档位时,分配阀(2)会向中继阀第一气口(11)输入不同的压力的气体,并且控制开关结构(3)向中继阀第二气口(12)输入不同压力的气体,使得中继阀(1)在分配阀(2)、开关结构(3)的作用下,控制风缸(5)向中继阀的第三气口(13)与中继阀的第四气口(14)之间的流通气体的压力大小,以向制动缸(7)输入不同压力的气体,使车辆可以满足两种不同线路上的制动要求。以及一种车辆和列车。

Description

车辆的制动控制系统、车辆和列车 技术领域
本申请涉及车辆制动技术,尤其涉及一种车辆的制动控制系统、车辆和列车。
背景技术
随着轨道交通运输的发展,目前货物的运输可以采用国铁线路或者地铁线路进行运输。
由于国铁线路与地铁线路对车辆制动的减速度以及制动距离要求不同,现有技术中,可以在车辆中安装两种不同要求的制动控制系统,以适应不同线路对车辆制动的不同要求。
然而,直接在车辆中安装两种制动控制系统,会提高车辆的制造成本与后期维护成本的提高。
发明内容
本申请提供的一种车辆的制动控制系统、车辆和列车,用于解决当车辆运行在国铁线路和地铁线路时,需要安装两种不同的制动系统,使得车辆制造与维护成本提高的问题。
第一方面,本申请提供一种车辆的制动控制系统,包括:中继阀、分配阀、开关结构和转换装置;其中,所述中继阀的第一气口通过分配阀与风缸连接,所述中继阀的第二气口通过所述开关结构与制动管连接;所述中继阀的第三气口与所述风缸连接,所述中继阀的第四气口与制动缸连接;所述转换装置与所述分配阀连接;所述转换装置与所述开关结构连接;
所述风缸,用于在所述制动管排气时,向所述分配阀、所述中继阀的第三气口输入气体;
所述制动管,用于向所述开关结构排气;
所述转换装置,用于控制所述分配阀在所述转换装置位于不同档位时,向所述中继阀的第一气口输出不同压力的气体,并控制所述开关结构在所述转换装置位于不同档位时,向所述中继阀的第二气口输出不同压力的气体;
所述中继阀,用于依据来自所述中继阀的第一气口的不同压力的气体、和来自所述中继阀的第二气口的不同压力的气体,控制所述中继阀的第三气口与所述中继阀的第四气口之间的流通气体的压力大小,以向所述制动缸输入不同压力的气体。
一种可能的设计中,所述开关结构包括截断开关和单向阀;所述截断开关的第一气口与所述中继阀的第二气口连接,所述截断开关的第二气口与所述制动管连接;所述单向阀的出气口与所述截断开关的第三气口连接,所述单向阀的进气口与所述制动管连接;所述转换装置与所述截断开关连接;所述截断开关的第一气口与所述截断开关的第三气口相邻;
所述转换装置,具体用于控制所述截断开关在所述转换装置位于不同档位时,进行打开或关闭,以使所述制动管通过所述开关结构向所述中继阀的第二气口输出不同压力的气体。
一种可能的设计中,所述转换装置,具体用于在所述转换装置位于所述不同档位的第一档位时,控制所述截断开关关闭;在所述转换装置位于所述不同档位的第二档位时,控制所述截断开关打开。
一种可能的设计中,所述中继阀包括第一阀体、第二阀体和平衡梁;所述第一阀体、所述第二阀体位于所述平衡梁的两端;
所述中继阀的第三气口与所述中继阀的第四气口位于所述第一阀体上,所述中继阀的第二气口位于所述第二阀体上;所述第一阀体与所述第二阀体之间通过第一连通管连通,所述中继阀的第一气口位于所述第一连通管上;
所述第二阀体,用于在所述中继阀的第一气口被输入不同压力的气体、所述中继阀的第二气口被输入不同压力的气体时,通过所述平衡梁向所述第一阀体施加不同压力,以使所述中继阀的第三气口与所述中继阀的第四气口之间的流通气体的压力产生变化。
一种可能的设计中,所述第一阀体中设置有限压阀和第一控制阀;所述第一控制阀的底端设置在所述平衡梁的第一端上,所述限压阀位于在所述第一控制阀的顶部;
所述分配阀,用于在所述转换装置位于所述不同档位的第一档位时,向所述中继阀的第一气口输入第一压力的气体;在所述转换装置位于所述不同档位的第二档位时,向所述中继阀的第一气口输入第二压力的气体,所述第一压力大于所述第二压力;
所述开关结构,用于在所述转换装置位于所述不同档位的第一档位时,向中继阀的第二气口输入第一气压的气体;在所述转换装置位于所述不同档位的第二档位、且所述制动管的气压为第三压力时,控制所述中继阀的第二气口处的气压为第二气压,所述第二气压小于所述第一气压;在所述转换装置位于所述不同档位的第二档位、且所述制动管的气压为第四压力时,控制所述中继阀的第二气口处的气压为第三气压,所述第三气压小于所述第二气压,所述第四压力小于所述第三压力;
所述第二阀体,用于基于所述第一压力的气体和所述第一气压的气体,通过所述平衡梁向所述第一控制阀施加第一力;基于所述第二压力的气体和所述第二气压的气体,通过所述平衡梁向所述第一控制阀施加第二力,所述第二力大于所述第一力;基于所述第二压力的气体和所述第三气压的气体,通过所述平衡梁向所述第一控制阀施加第三力,所述第三力大于所述第二力;
所述第一控制阀,用于基于所述第一压力,将所述限压阀抬高,以使所述中继阀的第三气口和所述中继阀的第四气口连通、且所述第一阀体中位于所述中继阀的第三气口和所述中继阀的第四气口之间的腔体的大小为第一大小;基于所述第二压力,将所述限压阀抬高,以使所述中继阀的第三气口和所述中继阀的第四气口连通、且所述第一阀体中位于所述中继阀的第三气口和所述中继阀的第四气口之间的腔体的大小为第二大小,所述第二大小大于所述第一大小;基于所述第三压力,将所述限压阀抬高,以使所述中继阀的第三气口和所述中继阀的第四气口连通、且所述第一阀体中位于所述中继阀的第三气口和所述中继阀的第四气口之间的腔体的大小为第三大小,所 述第三大小大于所述第二大小。
一种可能的设计中,所述第二阀体中设置有第一腔体和第二腔体;所述中继阀的第二气口位于所述第一腔体上,所述第一腔体中设置有第一活塞,所述第一腔体上设置有第一口,所述第一口与大气连通;
所述第二腔体中设置有上模板、下模板和第二控制阀;所述下模板穿设在所述第二控制阀上,所述上模板位于所述第二控制阀的顶端;所述第二腔体的下端设置有第二口,所述第二口与大气连通;所述第二控制阀的底端设置在所述平衡梁的第二端上;
所述第一腔体与所述第二腔体之间连接有第二连通管、第三连通管;所述第一连通管和所述第二连通管连通,所述第三连通管的一端与所述第一口相邻,所述第三连通管的另一端位于所述上模板与所述下模板之间;
所述第一活塞,用于基于所述第一压力的气体和所述第一气压的气体不进行移动,以使所述上模板的下端的气体通过所述第三连通管、所述第一口与大气连通,使得所述上模板向所述第二控制阀施加第一力度;基于所述第二压力的气体和所述第二气压的气体不进行移动,以使所述上模板向所述第二控制阀施加第二力度,所述第二力度大于所述第一力度;基于所述第二压力的气体和所述第三气压的气体进行移动,以使所述第二连通管与所述第三连通管连通,使得所述下模板向所述第二控制阀施加第三力度,所述第三力度大于所述第二力度;
所述第二控制阀,用于基于所述第一力度,通过所述平衡梁向所述第一控制阀施加所述第一力;基于所述第二力度,通过所述平衡梁向所述第一控制阀施加所述第二力;基于所述第三力度,通过所述平衡梁向所述第一控制阀施加所述第三力。
一种可能的设计中,所述中继阀还包括用于支撑所述平衡的支撑点、以及第二活塞;所述支撑点与所述第二活塞的一端连接,所述第二活塞的另一端与空重车调整装置连接。
一种可能的设计中,所述分配阀的第一气口与所述中继阀的第一气口连接,所述分配阀的第二气口与所述风缸连接,所述分配阀的第三气口与制动管连接;
所述分配阀,具体用于在所述转换装置位于所述不同档位的第一档位时,根据所述风缸的输出气体通过所述分配阀的第一气口,向所述中继阀的第一气口输入第一压力的气体;在所述转换装置位于所述不同档位的第二档位时,根据所述风缸的输出气体通过所述分配阀的第一气口,向所述中继阀的第一气口输入第二压力的气体。
第二方面,本申请实施例提供一种车辆,所述车辆上设置有如第一方面所述的制动控制系统。
一种可能的设计中,所述车辆上还设置有风缸和制动管;所述制动管通过所述分配阀与所述风缸连接;
所述制动管,用于向所述风缸充风。
一种可能的设计中,所述车辆上还设置有风缸、制动管和主风管;所述主风管与所述风缸连接;
所述主风管,用于向所述风缸充风。
第三方面,本申请实施例提供一种列车,所述列车包括机车和如第二方面所述的车辆;所述机车用于向所述车辆提供动力。
本申请提供的车辆的制动控制系统、车辆和列车,其中,中继阀的第一气口通过分配阀与风缸连接,中继阀的第二气口通过开关结构与制动管连接;中继阀的第三气口与风缸连接,中继阀的第四气口与制动缸连接;转换装置与分配阀连接;转换装置与开关结构连接;当转换装置处于不同档位时,分配阀会向中继阀第一气口输入不同的压力的气体,并且控制开关结构向中继阀第二气口输入不同压力的气体,使得中继阀在分配阀、开关结构的作用下,控制风缸向中继阀的第三气口与中继阀的第四气口之间的流通气体的压力大小,以向制动缸输入不同压力的气体,从而使得车辆可以满足两种不同线路上的制动要求。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请实施例提供的一种车辆的制动控制系统的结构示意图;
图2为本申请实施例提供的另一种车辆的制动控制系统的结构示意图;
图3为本申请实施例提供的一种中继阀的结构示意图。
附图标记:
1:中继阀;
11:中继阀的第一气口;
12:中继阀的第二气口;
13:中继阀的第三气口;
14:中继阀的第四气口;
15:第二活塞的另一端;
161:第一连通管;
162:第二连通管;
163:第三连通管;
17:平衡梁;
18:限压阀;
191:第一控制阀;
192:第二控制阀;
101:第一活塞;
102:上模板;
103:下模板;
2:分配阀;
21:分配阀的第一气口;
22:分配阀的第二气口;
23:分配阀的第三气口;
3:开关结构;
4:转换装置;
5:风缸;
6:制动管;
7:制动缸;
8:截断开关;
81:截断开关的第一气口;
82:截断开关的第二气口;
83:截断开关的第三气口;
9:单向阀。
具体实施方式
本申请实施例应用于车辆的制动控制系统、车辆和列车中。需要说明的是,当本申请实施例的方案应用于现在车辆的制动控制系统或未来可能出现的车辆的制动控制系统时,各个结构的名称可能发生变化,但这并不影响本申请实施例方案的实施。
车辆是人类远距离出行的重要交通工具,此外也是货物运输的重要工具之一。在远距离运输货物时,通常可以采用国铁线路或者地铁线路进行运输。
由于国铁线路的轨道较长,因此可以提供给车辆较长的制动距离,车辆制动时的减速度较小;而地铁线路相对于国铁线路而言,轨道较短,因此提供给车辆的制动距离较短,车辆制动时的减速度更高。所以对于可以同时在地铁线路和国铁线路运行的车辆而言,车辆上的制动系统需要同时适应与两种线路的不同要求。
一个示例中,可以在车辆上安装有两种不同的制动控制系统,以适应不同线路对车辆制动的不同要求。然而直接在车辆中安装两种不同的制动控制系统,会增加车辆的制造成本,并且在后期检修维护的过程中,也会浪费更多的人力物力,检修维护成本也相应的提高。
本申请提供一种车辆的制动控制系统、车辆和列车,旨在解决现有技术的如上技术问题。
图1为本申请实施例提供的一种车辆的制动控制系统的结构示意图。如图1所示,该车辆的制动控制系统中包括:
中继阀1、分配阀2、开关结构3和转换装置4;其中,中继阀的第一气口11通过分配阀2与风缸5连接,中继阀的第二气口12通过开关结构3与制动管6连接;中继阀的第三气口13与风缸5连接,中继阀的第四气口14与制动缸7连接;转换装置4与分配阀2连接;转换装置4与开关结构3连接。
风缸5,用于在制动管6排气时,向分配阀2、中继阀的第三气口13输入气体。
制动管6,用于向开关结构3排气。
转换装置4,用于控制分配阀2在转换装置4位于不同档位时,向中继阀的第一气口11输出不同压力的气体,并控制开关结构3在转换装置4位于不同档位时,向中继阀的第二气口12输出不同压力的气体。
中继阀1,用于依据来自中继阀的第一气口11的不同压力的气体、和来自中继阀的第二气口12的不同压力的气体,控制中继阀的第三气口13与中继阀的第四气口14之间的流通气体的压力大小,以向制动缸6输入不同压力的气体。
示例性地,由于不同的线路对于车辆制动的减速度要求不同,因此需要提供一种车辆 的制动控制系统,使得其可以同时满足不同线路上车辆制动的需求。
为了实现满足两种线路(地铁线路和国铁线路)车辆制动的需求,在本实施例所提供的车辆的制动控制系统中设置有:中继阀1、分配阀2、开关结构3和转换装置4。中继阀1,至少包括以下几个气口:中继阀的第一气口11、中继阀的第二气口12、中继阀的第三气口13、中继阀的第四气口14。为了完成本实施例提供的车辆制动的控制过程,需要将中继阀的第一气口11通过分配阀2与风缸3连接,且风缸3中可以预先存储有气体,当车辆制动时,风缸3可以通过分配阀2为中继阀的第一气口11处提供压力;将中继阀的第二气口12通过开关结构3与制动管6连接,即制动管6中的气体可以通过对开关结构3施加一定的压力,并经过开关结构3向中继阀的第二气口12施加一定的压力;中继阀的第三气口13与风缸5连接,中继阀的第四气口14与制动缸7连接;转换装置4与分配阀2连接;转换装置4与开关结构3连接;
在车辆的制动管6上设置有一个第三控制阀,第三控制阀用于控制制动管6的排气与充气过程。当车辆需要制动时,用户可以通过控制第三控制阀,使得制动管6排气,当制动管6排气时,由于中继阀的第一气口11通过分配阀2与风缸5连通,所以风缸5中的气体可以流向分配阀2进而流向中继阀的第一气口11;并且风缸5中的气体也会流向中继阀的第三气口13。
此外,转换装置4为具有不同档位的一个调节装置,转换装置4与分配阀2中调节输出压力的把手通过连杆连接,并且通过调节转换装置4的档位,带动连杆改变分配阀2中调节输出压力的把手位置,从而使得分配阀2输出不同压力的气体。在车辆运行时,通过调节转换装置4的档位,进而使分配阀2输出不同压力的气体,进一步的,当车辆制动时,通过调节第三控制阀,使得制动管6排气,制动管6中的压力下降,此时分配阀2与中继阀的第一气口11处的通路打开,使得风缸5中的气体流向分配阀2,并且使得通过分配阀2流向中继阀的第一气口11处的气体为不同压力的气体。
此外,转换装置4与开关结构3之间也通过一个连杆连接,当车辆制动时,制动管6排气且压力下降,所以与制动管6连接的开关结构3的一端提供压力,在调节转换装置4的档位时,开关结构3中的一端与另一端之间气路连通会发生变化,进而使得开关结构3中的一端对开关结构3的另一端产生的气压也会发生变化,进而导致与开关结构另一端连接的中继阀的第二气口12处也会输出不同压力的气体。
在中继阀1中,根据中继阀的第一气口11的不同压力的气体以及中继阀的第二气口12的不同压力的气体,连通中继阀的第三气口13与中继阀的第四气口14之间的通路,使得风缸5中的气体可以依次通过中继阀的第三气口13和中继阀的第四气口14流向制动缸中,并且由于转换装置处于不同档位时,中继阀的第一气口11处的压力会有所不同,中继阀的第二气口12处的压力也会有所不同,从而导致风缸5通过中继阀1输入制动缸7中的气体压力也会不同。由于制动缸7与车辆车轮之间通过连接结构进行连接,当制动缸7中的气体处于不同压力时,制动缸7会通过连接结构对车轮施加不同的作用力,使得车轮在不同作用力的作用下,采用不同的减速度进行制动,进而使得车辆中的制动系统可以同时适用于不同的线路要求。
本实施例中,提供了一种车辆的制动控制系统,其中,中继阀的第一气口11通过分配阀2与风缸5连接,中继阀的第二气口12通过开关结构3与制动管6连接;中 继阀的第三气口13与风缸5连接,中继阀的第四气口14与制动缸7连接;转换装置4与分配阀2连接;转换装置4与开关结构3连接;当转换装置4处于不同档位时,分配阀2会向中继阀第一气口11输入不同的压力的气体,并且控制开关结构3向中继阀第二气口12输入不同压力的气体,使得中继阀1在分配阀2、开关结构3的作用下,控制风缸5向中继阀的第三气口13与中继阀的第四气口14之间的流通气体的压力大小,以向制动缸7输入不同压力的气体,从而使得车辆可以满足两种不同线路上的制动要求,此外可以避免在车辆上同时安装两种不同的制动控制系统,降低了车辆的制造成本与维修成本,而且,该车辆的制动控制系统不需要电源供电,节省的用电成本。
图2为本申请实施例提供的另一种车辆的制动控制系统的结构示意图。如图2所示,在图1所示的实施例的基础上,开关结构3中,还包括:截断开关8和单向阀9;截断开关的第一气口81与中继阀的第二气口12连接,截断开关的第二气口82与制动管6连接;单向阀9的出气口与截断开关的第三气口83连接,单向阀9的进气口与制动管6连接;转换装置4与截断开关8连接;截断开关的第一气口81与截断开关的第三气口83相邻;
转换装置4,具体用于控制截断开关8在转换装置4位于不同档位时,进行打开或关闭,以使制动管6通过开关结构3向中继阀的第二气口12输出不同压力的气体。
一个示例中,转换装置4,具体用于在转换装置4位于不同档位的第一档位时,控制截断开关8关闭;在转换装置4位于不同档位的第二档位时,控制截断开关8打开。
一个示例中,分配阀的第一气口21与中继阀的第一气口11连接,分配阀的第二气口22与风缸5连接,分配阀的第三气口23与制动管6连接。
分配阀2,具体用于在转换装置4位于不同档位的第一档位时,根据风缸5的输出气体通过分配阀的第一气口21,向中继阀的第一气口11输入第一压力的气体;在转换装置4位于不同档位的第二档位时,根据风缸5的输出气体通过分配阀的第一气口21,向中继阀的第一气口11输入第二压力的气体。
示例性地,在图1所示的实施例的基础上,开关结构3中可具体包括:截断开关8与单向阀9,其中,截断开关8包括有以下几个气口:截断开关的第一气口81、截断开关的第二气口82、截断开关的第三气口83。单向阀9包括以下几个气口:单向阀9的进气口、单向阀9的出气口。分配阀2主要包括以下几个气口:分配阀的第一气口21、分配阀的第二气口22、分配阀的第三气口23。
为了完成本实施例的车辆制动的控制过程,需要将截断开关的第一气口81与中继阀的第二气口12连接,截断开关的第二气口82与制动管6连接,进而在截断开关8打开时,中继阀的第二气口12通过截断开关8与制动管6连接,使得中继阀的第二气口12处的压力会随着制动管6中压力的下降而降低;单向阀9的出气口与截断开关的第三气口83连接,单向阀9的进气口与制动管6连接,即制动管6中的气体可以通过单向阀9流向中继阀的第二气口12,而当制动管6的压力下降时,中继阀的第二气口12处的气体不会通过单向阀9流向制动管6;转换装置4通过一个连杆与截断开关8连接。
其中,转换装置4具有两种不同的档位,第一档位与第二档位,在这里第一档位适合于国铁线路,第二档位适合于地铁线路。当转换装置4调节至第一档位时,此时转换装置4通过带动与截断开关8连接的连杆,从而使得截断开关8关闭,即,此时截断开关的第 一气口81与截断开关的第二气口82之间的气路关闭,在车辆运行时,制动管6中的气体中能够通过单向阀9的进气口、单向阀9的出气口、截断开关的第三气口83、截断开关的第一气口81传输至中继阀的第二气口12,为中继阀的第二气口12提供一种气压,并且当车辆制动时,制动管6压力下降,中继阀的第二气口12处的气体不会流出,即此时中继阀的第二气口12处的压力会保持不变。
当转换装置4调节至第二档位时,此时转换装置4通过带动与截断开关8连接的连杆,从而使得截断开关8打开,即,此时截断开关的第一气口81与截断开关的第二气口82之间的气路连通,在车辆运行时,制动管6中的气体可以依次通过截断开关的第二气口82、截断开关的第一气口81流向中继阀的第二气口12,制动管6中的气体也可以通过单向阀9的进气口、单向阀9的出气口、截断开关的第三气口83、截断开关的第一气口81传输至中继阀的第二气口12,并且当车辆制动时,此时制动管6压力下降,中继阀的第二气口12处的气体会依次通过截断开关的第一气口81、截断开关8的第二气口82流向制动管6,使得中继阀的第二气口12处的气压随着制动管6压力的下降而降低。
并且,分配阀的第一气口21与中继阀的第一气口11连接,分配阀的第二气口22与风缸5连接,分配阀的第三气口23与制动管6连接;当车辆制动时,制动管6中的压力降低,与制动管6连接的分配阀的第三气口23处的压力也随着降低,此时分配阀的第一气口21打开,由于风缸5与分配阀的第二气口22相连接,所以,风缸5中的气体可以依次通过分配阀的第二气口22、分配阀的第一气口21流向中继阀的第一气口11。
此外,转换装置4与分配阀2通过一个连杆相连接,当转换装置4切换到第一档位时,此时,转换装置4通过带动连杆进一步使得分配阀2可以输出一种压力,即在车辆制动时,风缸5中的气体依次通过分配阀的第二气口22、分配阀的第三气口23向中继阀的第一气口11输入第一压力的气体;当转换装置4切换到第二档位时,此时,转换装置4通过带动连杆进一步使得分配阀2可以输出另一种压力,即在车辆制动时,风缸5中的气体依次通过分配阀的第二气口22、分配阀的第三气口23向中继阀的第一气口11输入第二压力的气体。
一个示例中,中继阀1包括第一阀体、第二阀体和平衡梁17;第一阀体、第二阀体位于平衡梁17的两端。
中继阀的第三气口13与中继阀的第四气口14位于第一阀体上,中继阀的第二气口12位于第二阀体上;第一阀体与第二阀体之间通过第一连通管161连通,中继阀的第一气口11位于第一连通管161上。
第二阀体,用于在中继阀的第一气口11被输入不同压力的气体、中继阀的第二气口12被输入不同压力的气体时,通过平衡梁17向第一阀体施加不同压力,以使中继阀的第三气口13与中继阀的第四气口14之间的流通气体的压力产生变化。
一个示例中,第一阀体中设置有限压阀18和第一控制阀191;第一控制阀191的底端设置在平衡梁17的第一端上,限压阀18位于在第一控制阀191的顶部;
分配阀2,用于在转换装置4位于不同档位的第一档位时,向中继阀的第一气口11输入第一压力的气体;在转换装置4位于不同档位的第二档位时,向中继阀的第一气口11输入第二压力的气体,第一压力大于第二压力;
开关结构3,用于在转换装置4位于不同档位的第一档位时,向中继阀的第二气口12 输入第一气压的气体;在转换装置4位于不同档位的第二档位、且制动管6的气压为第三压力时,控制中继阀的第二气口12处的气压为第二气压,第二气压小于第一气压;在转换装置4位于不同档位的第二档位、且制动管6的气压为第四压力时,控制中继阀的第二气口12处的气压为第三气压,第三气压小于第二气压,第四压力小于第三压力;
第二阀体,用于基于第一压力的气体和第一气压的气体,通过平衡梁17向第一控制阀191施加第一力;基于第二压力的气体和第二气压的气体,通过平衡梁17向第一控制阀191施加第二力,第二力大于第一力;基于第二压力的气体和第三气压的气体,通过平衡梁17向第一控制阀191施加第三力,第三力大于第二力;
第一控制阀191,用于基于第一压力,将限压阀18抬高,以使中继阀的第三气口13和中继阀的第四气口14连通、且第一阀体中位于中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第一大小;基于第二压力,将限压阀18抬高,以使中继阀的第三气口13和中继阀的第四气口14连通、且第一阀体中位于中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第二大小,第二大小大于第一大小;基于第三压力,将限压阀18抬高,以使中继阀的第三气口13和中继阀的第四气口14连通、且第一阀体中位于中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第三大小,第三大小大于第二大小。
示例性的,图3为本申请实施例提供的一种中继阀的结构示意图,如图3所示,中继阀1中包括有第一阀体、第二阀体和平衡梁17,第一阀体位于平衡梁17的一侧,第二阀体位于平衡梁17的另一侧。第一阀体与第二阀体之间通过一个第一连通管161连通。
其中,在第一阀体上设置有中继阀的第三气口13与中继阀的第四气口14,在第二阀体上设置有中继阀的第二气口12,在第一阀体与第二阀体之间的第一连通管161上设置有中继阀的第一气口11。
在车辆制动时,风缸5会通过分配阀2给第二阀体中的中继阀的第一气口11输入不同压力的气体,并且由于截断开关8的通断以及制动管6压力的变化会给第二阀体中的中继阀的第二气口12输入不同压力的气体,在两个气口压力的共同作用下,通过平衡梁17向第一阀体施加不同的力,从而在第一阀体中,风缸5通过中继阀的第三气口13向中继阀的第四气口14输入不同压力的气体,以使与中继阀的第四气口14连接的制动缸7中输入不同压力的气体。
并且,在第一阀体中还设置有限压阀18和第一控制阀191,第一控制阀191的底端与平衡梁17的一段相接触,第一控制阀191位于平衡梁17的顶部。
当转换装置4处于第一档位时(即车辆在国铁线路时),在车辆普通制动或者紧急制动时,制动管6在第三控制阀的作用下,制动管6中的气体压力开始下降,由于制动管6与分配阀的第三气口23相连接,因此分配阀的第三气口23处的压力也随着制动管6中的压力的下降而降低,此时分配阀第一气口21打开,风缸5中的气体可以依次通过分配阀的第二气口22、分配阀的第一气口21向中继阀的第一气口11输入第一压力的气体。此外,开关结构3在转换装置4处于第一档位时,且车辆制动前时,与开关结构3连接的制动管6中的气体可以通过开关结构3流向与开关结构3连接的中继阀的第二气口12,使其压力为第一气压,且中继阀的第二气口12处的气体不会逆流回制动管6;当车辆制动,制动管6中的气体压力下降时,中继阀的第二气口12处的压力保持不变,仍为第一气压; 第二阀体在基于第一压力的气体和第一气压的气体的共同作用下,通过平衡梁17向第一阀体中的第一控制阀191施加第一力,第一控制阀191在第一力的作用下抬高限压阀18,使得原本处于中继阀的第三气口13与中继阀的第四气口14之间的模板上升,进而中继阀的第三气口13与中继阀的第四气口14之间的气路连通,并且中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第一大小。此时,由于风缸5与中继阀的第三气口13相连,因此风缸5中的气体通过中继阀的第三气口13流向中继阀的第四气口14,进而使得与中继阀的第四气口14连接的制动缸7中充气,使得制动缸7对车轮施加第一作用力,此时在中继阀的第四气口14处压力的作用下,下压穿设在第一控制阀191上的模板,进而第一控制阀191上端的限压阀18也往下移动,进而使得中继阀的第三气口13和中继阀的第四气口14之间的气路关闭,制动缸7的充气过程结束。
当转换装置4处于第二档位时(即车辆在地铁线路时),在车辆制动时,制动管6的压力在第三控制阀的作用下,制动管6中的气体压力开始下降,当车辆普通制动时,将制动管6中的气压下降至第三压力时,由于制动管6与分配阀的第三气口23相连接,因此分配阀的第三气口23处的压力也随着制动管6中的压力的下降而降低,此时分配阀的第一气口21打开,风缸5中的气体可以依次通过分配阀的第二气口22、分配阀的第一气口21向中继阀的第一气口11输入第二压力的气体,其中第二压力大于第一压力。此外,开关结构3在转换装置4处于第二档位时,且在车辆制动前,与开关结构3连接的制动管6中的气体可以通过开关结构3流向与开关结构3连接的中继阀的第二气口12,并且中继阀的第二气口12处的气体可以通过开关结构3逆流回制动管6;当车辆制动且制动管6中的气体压力下降时,中继阀的第二气口12处的气体会通过与其连接的开关结构3流出至制动管6中,使得中继阀的第二气口12处的气压变化为第二气压,其中,第二气压小于第一气压;第二阀体在基于第二压力的气体和第二气压的气体的共同作用下,下压平衡梁的一端,并通过平衡梁17的杠杆作用向第一阀体中的第一控制阀191施加第二力,其中第二力大于第一力;第一控制阀191在第二力的作用下抬高限压阀18,使得原本处于中继阀的第三气口13与中继阀的第四气口14之间的模板上升,进而中继阀的第三气口13与中继阀的第四气口14之间的气路连通,并且中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第二大小,其中第二大小大于第一大小。此时,由于风缸5与中继阀的第三气口13相连,因此风缸5中的气体可以通过中继阀的第三气口13流向中继阀的第四气口14,进而使得与中继阀的第四气口14连接的制动缸7中充气,使得制动缸7对车轮施加第二作用力,其中第二作用力大于第一作用力。此时在中继阀的第四气口14处压力的作用下,下压穿设在第一控制阀191上的模板,进而第一控制阀191上端的限压阀18也往下移动,进而使得中继阀的第三气口13和中继阀的第四气口14之间的气路关闭,制动缸7的充气过程结束。
当转换装置4处于第二档位时,且车辆制动时,制动管6的压力在第三控制阀的作用下,制动管6中的气体压力开始下降,当车辆紧急制动时,将制动管6中的气压下降至第四压力时(此时第四压力为0),其中,第四压力小于第三压力;由于制动管6与分配阀的第三气口23相连接,因此分配阀的第三气口23处的压力也随着制动管6中的压力的下降而降低,此时分配阀的第一气口21打开,风缸5中的气体可以依次通过分配阀的第二气口22、分配阀的第一气口21向中继阀的第一气口11输入第二压力的气体,其中第二 压力大于第一压力。此外,开关结构3在转换装置4处于第二档位时,在车辆制动前,与开关结构3连接的制动管6中的气体可以通过开关结构3流向与开关结构3连接的中继阀的第二气口12,并且中继阀的第二气口12处的气体可以通过开关结构3逆流回制动管6;当车辆制动,制动管6中的气体压力下降至第四气压时,中继阀的第二气口12处的气体会通过与其连接的开关结构3流出至制动管6中,使得中继阀的第二气口12处的气压变化为第三气压,其中,第三气压小于第二气压;第二阀体在基于第二压力的气体和第三气压的气体的共同作用下,下压平衡梁的一端,并通过平衡梁17的杠杆作用向第一阀体中的第一控制阀191施加第三力,其中,第三力大于第二力;第一控制阀191在第三力的作用下抬高限压阀18,使得原本处于中继阀的第三气口13与中继阀的第四气口14之间的模板上升,进而使得中继阀的第三气口13与中继阀的第四气口14之间的气路连通,并且中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第三大小,其中第三大小大于第二大小。此时,由于风缸5与中继阀的第三气口13相连,因此风缸5中的气体可以通过中继阀的第三气口13流向中继阀的第四气口14,进而使得与中继阀的第四气口14连接的制动缸7中充气,使得制动缸7对车轮施加第三作用力,其中第三作用力大于第二作用力。此时在中继阀的第四气口14处压力的作用下,下压穿设在第一控制阀191上的模板,进而第一控制阀191上端的限压阀18也往下移动,进而使得中继阀的第三气口13和中继阀的第四气口14之间的气路关闭,制动缸7的充气过程结束。
一个示例中,第二阀体中设置有第一腔体和第二腔体;中继阀的第二气口12位于第一腔体上,第一腔体中设置有第一活塞101,第一腔体上设置有第一口,第一口与大气连通;
第二腔体中设置有上模板102、下模板103和第二控制阀192;下模板103穿设在第二控制阀192上,上模板102位于第二控制阀192的顶端;第二腔体的下端设置有第二口,第二口与大气连通;第二控制阀192的底端设置在平衡梁17的第二端上;
第一腔体与第二腔体之间连接有第二连通管162、第三连通管163;第一连通管161和第二连通管162连通,第三连通管163的一端与第一口相邻,第三连通管163的另一端位于上模板102与下模板103之间;
第一活塞101,用于基于第一压力的气体和第一气压的气体不进行移动,以使上模板102的下端的气体通过第三连通管163、第一口与大气连通,使得上模板102向第二控制阀192施加第一力度;基于第二压力的气体和第二气压的气体不进行移动,以使上模板102向第二控制阀192施加第二力度,第二力度大于第一力度;基于第二压力的气体和第三气压的气体进行移动,以使第二连通管162与第三连通管163连通,使得下模板103向第二控制阀192施加第三力度,第三力度大于第二力度;
第二控制阀192,用于基于第一力度,通过平衡梁17向第一控制阀191施加第一力;基于第二力度,通过平衡梁17向第一控制阀191施加第二力;基于第三力度,通过平衡梁17向第一控制阀191施加第三力。
示例性地,在中继阀1的第二阀体中,包含有第一腔体与第二腔体,在第一腔体中,包括有中继阀的第二气口12与第一活塞101。第一活塞101上,还设置有第一口,第一口与大气连通,使得活塞可以与通过第一口连通至大气。
第二腔体中,包括有:上模板102、下模板103与第二控制阀192,第二控制阀192 的底端与平衡梁17的另一端相接触,上模板102位于第二控制阀192的顶端,下模板103穿设在第二控制阀192上,此外第二腔体的下端设置有第二口,第二口敞漏在大气中,使得下模板103的下表面与大气连通。
此外,第一腔体与第二腔体之间通过第二连通管162与第三连通管163连通。第三连通163的一端与第一腔体上的第一口相邻,第三连通管163的另一端处于上模板102与下模板103之间。
当转换装置4处于第一档位时(即车辆在国铁线路时),在车辆普通制动或者紧急制动时,制动管6的压力在第三控制阀的作用下,制动管6中的气体压力开始下降,由于制动管6与分配阀的第三气口23相连接,因此分配阀的第三气口23处的压力也随着制动管6中的压力的下降而降低,此时分配阀的第一气口21打开,风缸5中的气体可以依次通过分配阀的第二气口22、分配阀的第一气口21向中继阀的第一气口11输入第一压力的气体。此外,开关结构3在转换装置4处于第一档位时,且车辆制动前,与开关结构3连接的制动管6中的气体可以通过开关结构3流向与开关结构3连接的中继阀的第二气口12使其压力为第一气压,且中继阀的第二气口12处的气体不会逆流回制动管6;当车辆制动,制动管6中的气体压力下降时,中继阀的第二气口12处的压力保持不变,仍为第一气压;在第二阀体中,由于中继阀的第二气口12与第一活塞101相连通,且中继阀的第二气口12处的压力保持不变,所以第一活塞101在受到第一气压的作用下,使得上模板102下端的气体通过第三连通管163与第一口连通至大气,而上模板102的上端由于与第一连通管161连通的中继阀的第一气口11相连通,上模板102上端的气压与中继阀的第一气口11的压力均为第一压力,此时上模板102的上端与上模板102的下端的压力不同;而下模板103的上端的气体通过第三连通管163与第一口连通至大气,下模板103的下端的气体通过第二腔体的第二口连通至大气,此时下模板103的上端与下模板103的下端的气压相同,因此,在第二腔体中,由于上模板102的上端气压大于上模板102的下端的气压,使得上模板102对第二控制阀192施加第一力度,下压平衡梁17的一端,并通过平衡梁17的杠杆作用向第一阀体中的第一控制阀191施加第一力,第一控制阀191在第一力的作用下抬高限压阀18,使得原本处于中继阀的第三气口13与中继阀的第四气口14之间的模板上升,进而中继阀的第三气口13与中继阀的第四气口14之间的气路连通,并且中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第一大小。此时,由于风缸5与中继阀的第三气口13相连,因此风缸5中的气体通过中继阀的第三气口13流向中继阀的第四气口14,进而使得与中继阀的第四气口14连接的制动缸7中充气,使得制动缸7对车轮施加第一作用力。此时在中继阀的第四气口14处压力的作用下,下压穿设在第一控制阀191上的模板,进而第一控制阀191上端的限压阀18也往下移动,进而使得中继阀的第三气口13和中继阀的第四气口14之间的气路关闭,制动缸7的充气过程结束。
当转换装置4处于第二档位时(即车辆在地铁线路时),在车辆制动时,制动管6的压力在第三控制阀的作用下,制动管6中的气体压力开始下降,当车辆普通制动时,将制动管6中的气压下降至第三压力时,由于制动管6与分配阀的第三气口23相连接,因此分配阀的第三气口23处的压力也随着制动管6中的压力的下降而降低,此时分配阀的第一气口21打开,风缸5中的气体可以依次通过分配阀的第二气口22、分配阀的第一气口 21向中继阀的第一气口11输入第二压力的气体,其中第二压力大于第一压力。此外,开关结构3在转换装置4处于第二档位时,且车辆制动前,与开关结构3连接的制动管6中的气体可以通过开关结构3流向与开关结构3连接的中继阀的第二气口12,使得与中继阀的第二气口12连接的第一活塞101向左移动。当车辆制动,制动管6中的气体压力下降时,中继阀的第二气口12处的气体会通过与其连接的开关结构3流出至制动管6中,使得中继阀的第二气口12处的气压降为第二气压,其中,第二气压小于第一气压;在第二阀体中,由于中继阀的第二气口12与第一活塞101相连通,且中继阀的第二气口12处的压力会随着与其通过开关装置连接的制动管6压力的下降而降低至第二气压,此时与中继阀的第二气口12连通的第一活塞101处的压力也下降至第二气压,但是第一活塞101处压力下降的大小不足以使得第一活塞101移动,因此,此时第一活塞101在受到第二气压的作用下,使得上模板102的下端的气体通过第三连通管163与第一口连通至大气,而上模板102的上端由于与第一连通管161连通的中继阀的第一气口11相连通,上模板102的上端的气压与中继阀的第一气口11的压力均为第二压力,此时上模板102的上端与上模板102的下端的压力不同;而下模板103的上端的气体通过第三连通管163与第一口连通至大气,下模板103的下端的气体通过第二腔体的第二口连通至大气,此时下模板103的上端与下模板103的下端的气压相同,因此,在第二腔体中,由于上模板102的上端的第二压力大于上模板102的下端的气压,使得上模板102在第二压力的作用下对第二控制阀192施加第二力度,由于第二压力大于第一压力,所以第二力度大于第一力度;并且,第二控制阀192下压平衡梁一端,通过平衡梁17的杠杆作用向第一阀体中的第一控制阀191施加第二力,其中第二力大于第一力;第一控制阀191在第二力的作用下抬高限压阀18,使得原本处于中继阀的第三气口13与中继阀的第四气口14之间的模板上升,进而中继阀的第三气口13与中继阀的第四气口14之间的气路连通,并且中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第二大小,其中第二大小大于第一大小。此时,由于风缸5与中继阀的第三气口13相连,因此风缸5中的气体可以通过中继阀的第三气口13流向中继阀的第四气口14,进而使得与中继阀的第四气口14连接的制动缸7中充气,使得制动缸7对车轮施加第二作用力,其中第二作用力大于第一作用力,从而使得车辆在地铁线路上常用的制动速度大于车辆在国铁线路上的制动速度。此时在中继阀的第四气口14处压力的作用下,下压穿设在第一控制阀191上的模板,进而第一控制阀191上端的限压阀18也往下移动,进而使得中继阀的第三气口13和中继阀的第四气口14之间的气路关闭,制动缸7的充气过程结束。
当转换装置4处于第二档位时,且车辆制动时,制动管6的压力在第三控制阀的作用下,制动管6中的气体压力开始下降,当车辆紧急制动时,将制动管6中的气压下降至第四压力时,其中,第四压力小于第三压力;由于制动管6与分配阀的第三气口23相连接,因此分配阀的第三气口23处的压力也随着制动管6中的压力的下降而降低,此时分配阀的第一气口21打开,风缸5中的气体可以依次通过分配阀的第二气口22、分配阀的第一气口21向中继阀的第一气口11输入第二压力的气体,其中第二压力大于第一压力。此外,开关结构3在转换装置4处于第二档位时,且车辆制动前,与开关结构3连接的制动管6中的气体可以通过开关结构3流向与开关结构3连接的中继阀的第二气口12,使得与中继阀的第二气口12连接的第一活塞101向左移动;当车辆制动,制动管6中的气体压力 下降至第四气压时,中继阀的第二气口12处的气体会通过与其连接的开关结构3流出至制动管6中,使得中继阀的第二气口12处的气压变化为第三气压,其中,第三气压小于第二气压;在第二阀体中,由于中继阀的第二气口12与第一活塞101相连通,且中继阀的第二气口12处的压力会随着与其通过开关装置连接的制动管6压力的下降而降低至第三气压,此时与中继阀的第二气口12连通的第一活塞101处的压力也下降至第三气压,第一活塞101向右移动,且第一活塞101移动至第三连通管163的一端与第一口之间,此时第一连通管161、第二连通管162与第三连通管163之间的气路连通,由于与第一连通管161连通的中继阀的第一气口11相连通,因此,第一连通管161、第二连通管162与第三连通管163中的气压均为第二压力,即此时,上模板102的上端与上模板102的下端通过第二连通管162与第三连通管163连通,且上模板102的上端与上模板102的下端的气压均为第二压力;此外,由于下模板103的上端与上模板102的下端连通,所以下模板103的上端的气压也为第二压力,而下模板103的下端由于第二口与大气连通,使得下模板103的下端的气体通过第二口与大气连通,因此下模板103的上端的压力大于下模板103的下端的压力,使得下模板103对第二控制阀192施加第三力度,由于下模板103的表面积大于上模板102的表面积,所以第三力度大于第二力度。并且第二控制阀192,下压平衡梁一端,通过平衡梁17的杠杆作用向第一阀体中的第一控制阀191施加第三力,其中,第三力大于第二力;第一控制阀191在第三力的作用下抬高限压阀18,使得原本处于中继阀的第三气口13与中继阀的第四气口14之间的模板上升,进而中继阀的第三气口13与中继阀的第四气口14之间的气路连通,并且中继阀的第三气口13和中继阀的第四气口14之间的腔体的大小为第三大小,其中第三大小大于第二大小。此时,由于风缸5与中继阀的第三气口13相连,因此风缸5中的气体可以通过中继阀的第三气口13流向中继阀的第四气口14,进而使得与中继阀的第四气口14连接的制动缸7中充气,使得制动缸7对车轮施加第三作用力,其中第三作用力大于第二作用力,从而使得车辆在地铁上紧急制动的速度大于车辆在地铁上常用制动的速度。此时在中继阀的第四气口14处压力的作用下,下压穿设在第一控制阀191上的模板,进而第一控制阀191上端的限压阀18也往下移动,进而使得中继阀的第三气口13和中继阀的第四气口14之间的气路关闭,制动缸7的充气过程结束。
一个示例中,中继阀1还包括用于支撑平衡梁17的支撑点、以及第二活塞;支撑点与第二活塞的一端连接,第二活塞的另一端15与空重车调整装置连接。
示例性地,中继阀1的平衡梁17的下端还设置有可移动的支撑点,和第二活塞。第二活塞的一端与支撑点相连接,第二活塞的另一端15可以与空重车调整装置(例如,称重阀)相连接。
为了保证车辆处于不同载重时,可以以相同的减速度进行制动,因此在中继阀1的第二活塞的另一端15可以连接一个空重车调整装置,当车辆的载重增加时,为了保证车辆在同一线路制动时的减速度相同,需要制动缸7提供更大的作用力给车轮,此时空中车调整装置由于车辆载重的增加会推动第二活塞向左移动,进一步使得与第二活塞一端连接的支撑点向左移动。当车辆制动时,第二控制阀192底端与支撑点之间的距离变长,此时若第二控制阀192向支撑梁一端施加的力度为第一力度时,由于第二控制阀192底端与支撑点之间的距离变长,使得支撑梁对于第一控制阀191施加的第四力大于原先的第一力,进 一步使得中继阀的第三气口13与中继阀的第四气口14连通,中继阀的第三气口13与中继阀的第四气口14之间的腔体大小为第四大小,其中第四大小大于第一大小,从而使得与中继阀的第三气口13连通的风缸5中有更多的气体可以依次通过中继阀的第三气口13、中继阀的第四气口14流向制动缸7,制动缸7再向车轮施加第四作用力,其中第四作用力大于第一作用力,这样保证了车辆载重增加时,可以在同一线路上制动时有相同的减速度。
本实施例中,提供了一种车辆的制动控制系统,该制动系统中包括有一个转换装置4。通过调节转换装置4的档位可以使得与其连接的分配阀2输出不同的压力进而影响与分配阀的第三气口23连接的中继阀的第一气口11处的压力的大小;同时转换装置4还可以控制与其连接的截断开关8的打开与关闭进一步的影响与截断开关的第一气口81处连接的中继阀的第二气口12处的气压,进而使得中继阀的第二气口12处的活塞处于不同的位置,并且使第二腔体中的上模板102与下模板103各自上表面与下表面产生不同的气压,进而使得上模板102或下模板103带动第二控制阀192通过支撑梁向第一控制阀191施加不同的力度,第一控制阀191在不同力度的作用下,向第一控制阀191上的限压阀18施加不同的力,令中继阀的第三气口13与中继阀的第四气口14处连通,风缸5可以通过中继阀的第三气口13与中继阀的第四气口14向制动缸7输入不同气压,从而使得制动缸7对车轮施加不同的作用力,以使车辆可以在满足不同线路的制动要求。此外,在中继阀1的第二活塞的另一端15处还可以连接有空重车调整装置,使得车辆载重增加并且运行在同一线路时,可以有相同的减速度,从而保证了车辆的连接处装置的安全性;并且,本申请实施例提供的车辆的制动控制系统不需要电源控制,可以满足不带电的车辆的需求,并且可以减少车辆的用电成本,此外还避免了在车辆中同时安装两种不同制动控制系统,降低了车辆的制造成本与维修成本。另外,该制动控制系统还可以同时连接多个中继阀1和多个制动缸7。
本申请实施例,提供了一种车辆,车辆上设置有如上述任一实施例所提供的制动控制系统。
一个示例中,车辆上还设置有风缸5和制动管6;制动管6通过分配阀2与风缸5连接;
制动管6,用于向风缸5充风。
一个示例中,车辆上还设置有风缸5、制动管6和主风管;主风管与风缸5连接;主风管,用于向风缸5充风。
示例性地,在车辆制动之前,需要为风缸5充风。在一种可能的方式中,风缸5中的气体可以来自于制动管6,在上述实施例结构的基础上,当车辆运行时,此时分配阀的第一气口21关闭,分配阀的第二气口22与分配阀的第三气口23打开,制动管6中的气体可以通过与其连接的分配阀的第三气口23流向分配阀的第二气口22,进一步的通过分配阀的第二气口22流向与其连接的风缸5,为风缸5充气。
在另一种可能实现的方式中,风缸5中的气体也可以来自于主风管中。在上述实施例结构的基础上,车辆上具有主风管,可以将主风管与减压阀一端连接,减压阀另一端与风连接。在车辆运行时,可以人为的控制减压阀使得主风管、减压阀、风缸5之间连通,进而主风管可以为风缸5充气。
本申请实施例还提供一种列车,列车上包括机车和上述实施例提供的车辆,机车用于向车辆提供动力。
当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样地,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。
上述技术描述可参照附图,这些附图形成了本申请的一部分,并且通过描述在附图中示出了依照所描述的实施例的实施方式。虽然这些实施例描述的足够详细以使本领域技术人员能够实现这些实施例,但这些实施例是非限制性的;这样就可以使用其它的实施例,并且在不脱离所描述的实施例的范围的情况下还可以做出变化。比如,流程图中所描述的操作顺序是非限制性的,因此在流程图中阐释并且根据流程图描述的两个或两个以上操作的顺序可以根据若干实施例进行改变。作为另一个例子,在若干实施例中,在流程图中阐释并且根据流程图描述的一个或一个以上操作是可选的,或是可删除的。另外,某些步骤或功能可以添加到所公开的实施例中,或两个以上的步骤顺序被置换。所有这些变化被认为包含在所公开的实施例以及权利要求中。
另外,上述技术描述中使用术语以提供所描述的实施例的透彻理解。然而,并不需要过于详细的细节以实现所描述的实施例。因此,实施例的上述描述是为了阐释和描述而呈现的。上述描述中所呈现的实施例以及根据这些实施例所公开的例子是单独提供的,以添加上下文并有助于理解所描述的实施例。上述说明书不用于做到无遗漏或将所描述的实施例限制到本申请的精确形式。根据上述教导,若干修改、选择适用以及变化是可行的。在某些情况下,没有详细描述为人所熟知的处理步骤以避免不必要地影响所描述的实施例。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由所附的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (12)

  1. 一种车辆的制动控制系统,其特征在于,所述系统包括:中继阀、分配阀、开关结构和转换装置;其中,所述中继阀的第一气口通过分配阀与风缸连接,所述中继阀的第二气口通过所述开关结构与制动管连接;所述中继阀的第三气口与所述风缸连接,所述中继阀的第四气口与制动缸连接;所述转换装置与所述分配阀连接;所述转换装置与所述开关结构连接;
    所述风缸,用于在所述制动管排气时,向所述分配阀、所述中继阀的第三气口输入气体;
    所述制动管,用于向所述开关结构排气;
    所述转换装置,用于控制所述分配阀在所述转换装置位于不同档位时,向所述中继阀的第一气口输出不同压力的气体,并控制所述开关结构在所述转换装置位于不同档位时,向所述中继阀的第二气口输出不同压力的气体;
    所述中继阀,用于依据来自所述中继阀的第一气口的不同压力的气体、和来自所述中继阀的第二气口的不同压力的气体,控制所述中继阀的第三气口与所述中继阀的第四气口之间的流通气体的压力大小,以向所述制动缸输入不同压力的气体。
  2. 根据权利要求1所述的系统,其特征在于,所述开关结构包括截断开关和单向阀;所述截断开关的第一气口与所述中继阀的第二气口连接,所述截断开关的第二气口与所述制动管连接;所述单向阀的出气口与所述截断开关的第三气口连接,所述单向阀的进气口与所述制动管连接;所述转换装置与所述截断开关连接;所述截断开关的第一气口与所述截断开关的第三气口相邻;
    所述转换装置,具体用于控制所述截断开关在所述转换装置位于不同档位时,进行打开或关闭,以使所述制动管通过所述开关结构向所述中继阀的第二气口输出不同压力的气体。
  3. 根据权利要求2所述的系统,其特征在于,所述转换装置,具体用于在所述转换装置位于所述不同档位的第一档位时,控制所述截断开关关闭;在所述转换装置位于所述不同档位的第二档位时,控制所述截断开关打开。
  4. 根据权利要求1所述的系统,其特征在于,所述中继阀包括第一阀体、第二阀体和平衡梁;所述第一阀体、所述第二阀体位于所述平衡梁的两端;
    所述中继阀的第三气口与所述中继阀的第四气口位于所述第一阀体上,所述中继阀的第二气口位于所述第二阀体上;所述第一阀体与所述第二阀体之间通过第一连通管连通,所述中继阀的第一气口位于所述第一连通管上;
    所述第二阀体,用于在所述中继阀的第一气口被输入不同压力的气体、所述中继阀的第二气口被输入不同压力的气体时,通过所述平衡梁向所述第一阀体施加不同压力,以使所述中继阀的第三气口与所述中继阀的第四气口之间的流通气体的压力产生变化。
  5. 根据权利要求4所述的系统,其特征在于,所述第一阀体中设置有限压阀和第一控制阀;所述第一控制阀的底端设置在所述平衡梁的第一端上,所述限压阀位于在所述第一控制阀的顶部;
    所述分配阀,用于在所述转换装置位于所述不同档位的第一档位时,向所述中继阀的第一气口输入第一压力的气体;在所述转换装置位于所述不同档位的第二档位时,向所述中继阀的第一气口输入第二压力的气体,所述第一压力大于所述第二压力;
    所述开关结构,用于在所述转换装置位于所述不同档位的第一档位时,向中继阀的第二气口输入第一气压的气体;在所述转换装置位于所述不同档位的第二档位、且所述制动管的气压为第三压力时,控制所述中继阀的第二气口处的气压为第二气压,所述第二气压小于所述第一气压;在所述转换装置位于所述不同档位的第二档位、且所述制动管的气压为第四压力时,控制所述中继阀的第二气口处的气压为第三气压,所述第三气压小于所述第二气压,所述第四压力小于所述第三压力;
    所述第二阀体,用于基于所述第一压力的气体和所述第一气压的气体,通过所述平衡梁向所述第一控制阀施加第一力;基于所述第二压力的气体和所述第二气压的气体,通过所述平衡梁向所述第一控制阀施加第二力,所述第二力大于所述第一力;基于所述第二压力的气体和所述第三气压的气体,通过所述平衡梁向所述第一控制阀施加第三力,所述第三力大于所述第二力;
    所述第一控制阀,用于基于所述第一压力,将所述限压阀抬高,以使所述中继阀的第三气口和所述中继阀的第四气口连通、且所述第一阀体中位于所述中继阀的第三气口和所述中继阀的第四气口之间的腔体的大小为第一大小;基于所述第二压力,将所述限压阀抬高,以使所述中继阀的第三气口和所述中继阀的第四气口连通、且所述第一阀体中位于所述中继阀的第三气口和所述中继阀的第四气口之间的腔体的大小为第二大小,所述第二大小大于所述第一大小;基于所述第三压力,将所述限压阀抬高,以使所述中继阀的第三气口和所述中继阀的第四气口连通、且所述第一阀体中位于所述中继阀的第三气口和所述中继阀的第四气口之间的腔体的大小为第三大小,所述第三大小大于所述第二大小。
  6. 根据权利要求5所述的系统,其特征在于,所述第二阀体中设置有第一腔体和第二腔体;所述中继阀的第二气口位于所述第一腔体上,所述第一腔体中设置有第一活塞,所述第一腔体上设置有第一口,所述第一口与大气连通;
    所述第二腔体中设置有上模板、下模板和第二控制阀;所述下模板穿设在所述第二控制阀上,所述上模板位于所述第二控制阀的顶端;所述第二腔体的下端设置有第二口,所述第二口与大气连通;所述第二控制阀的底端设置在所述平衡梁的第二端上;
    所述第一腔体与所述第二腔体之间连接有第二连通管、第三连通管;所述第一连通管和所述第二连通管连通,所述第三连通管的一端与所述第一口相邻,所述第三连通管的另一端位于所述上模板与所述下模板之间;
    所述第一活塞,用于基于所述第一压力的气体和所述第一气压的气体不进行移动,以使所述上模板的下端的气体通过所述第三连通管、所述第一口与大气连通,使得所述上模板向所述第二控制阀施加第一力度;基于所述第二压力的气体和所述第二气压的气体不进行移动,以使所述上模板向所述第二控制阀施加第二力度,所述第二力度大于所述第一力度;基于所述第二压力的气体和所述第三气压的气体进行移动,以使所述第二连通管与所述第三连通管连通,使得所述下模板向所述第二控制阀施加第三力度,所述第三力度大于所述第二力度;
    所述第二控制阀,用于基于所述第一力度,通过所述平衡梁向所述第一控制阀施加所述第一力;基于所述第二力度,通过所述平衡梁向所述第一控制阀施加所述第二力;基于所述第三力度,通过所述平衡梁向所述第一控制阀施加所述第三力。
  7. 根据权利要求4所述的系统,其特征在于,所述中继阀还包括用于支撑所述平衡梁的支撑点、以及第二活塞;所述支撑点与所述第二活塞的一端连接,所述第二活塞的另一端与空重车调整装置连接。
  8. 根据权利要求1-7任一项所述的系统,其特征在于,所述分配阀的第一气口与所述中继阀的第一气口连接,所述分配阀的第二气口与所述风缸连接,所述分配阀的第三气口与制动管连接;
    所述分配阀,具体用于在所述转换装置位于所述不同档位的第一档位时,根据所述风缸的输出气体通过所述分配阀的第一气口,向所述中继阀的第一气口输入第一压力的气体;在所述转换装置位于所述不同档位的第二档位时,根据所述风缸的输出气体通过所述分配阀的第一气口,向所述中继阀的第一气口输入第二压力的气体。
  9. 一种车辆,其特征在于,所述车辆上设置有如权利要求1-8任一项所述的制动控制系统。
  10. 根据权利要求9所述的车辆,其特征在于,所述车辆上还设置有风缸和制动管;所述制动管通过所述分配阀与所述风缸连接;
    所述制动管,用于向所述风缸充风。
  11. 根据权利要求9所述的车辆,其特征在于,所述车辆上还设置有风缸、制动管和主风管;所述主风管与所述风缸连接;
    所述主风管,用于向所述风缸充风。
  12. 一种列车,其特征在于,所述列车包括机车和如权利要求9-11任一项所述的车辆;所述机车用于向所述车辆提供动力。
PCT/CN2021/070219 2020-11-30 2021-01-05 车辆的制动控制系统、车辆和列车 WO2022110513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2210760.1A GB2615845B (en) 2020-11-30 2021-01-05 Vehicle brake control system, vehicle and train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011375950.4A CN114572269A (zh) 2020-11-30 2020-11-30 车辆的制动控制系统、车辆和列车
CN202011375950.4 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110513A1 true WO2022110513A1 (zh) 2022-06-02

Family

ID=81753694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070219 WO2022110513A1 (zh) 2020-11-30 2021-01-05 车辆的制动控制系统、车辆和列车

Country Status (3)

Country Link
CN (1) CN114572269A (zh)
GB (1) GB2615845B (zh)
WO (1) WO2022110513A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2558723A1 (en) * 2000-06-28 2001-12-28 Westinghouse Air Brake Technologies Corporation Apparatus and method for pneumatically controlled graduated brake pressure release for freight train brake system
CN102951173A (zh) * 2012-11-07 2013-03-06 北京纵横机电技术开发公司 一种轨道车辆制动系统紧急制动装置及其制动方法
JP2017159742A (ja) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 鉄道車両のブレーキ制御方法、ブレーキ制御装置及びブレーキ制御プログラム
CN107697095A (zh) * 2017-10-17 2018-02-16 中车唐山机车车辆有限公司 风缸模组和地铁车辆
CN108382417A (zh) * 2018-03-01 2018-08-10 中车株洲电力机车有限公司 一种轨道车辆及其自适应列车管定压的控制系统与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2558723A1 (en) * 2000-06-28 2001-12-28 Westinghouse Air Brake Technologies Corporation Apparatus and method for pneumatically controlled graduated brake pressure release for freight train brake system
CN102951173A (zh) * 2012-11-07 2013-03-06 北京纵横机电技术开发公司 一种轨道车辆制动系统紧急制动装置及其制动方法
JP2017159742A (ja) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 鉄道車両のブレーキ制御方法、ブレーキ制御装置及びブレーキ制御プログラム
CN107697095A (zh) * 2017-10-17 2018-02-16 中车唐山机车车辆有限公司 风缸模组和地铁车辆
CN108382417A (zh) * 2018-03-01 2018-08-10 中车株洲电力机车有限公司 一种轨道车辆及其自适应列车管定压的控制系统与方法

Also Published As

Publication number Publication date
GB2615845A (en) 2023-08-23
CN114572269A (zh) 2022-06-03
GB2615845B (en) 2024-03-20
GB202210760D0 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
RU2362692C2 (ru) Электропневматическая тормозная система рельсового транспортного средства
USRE36036E (en) Electropneumatic brake control system
CN201882072U (zh) 电空制动系统
CN107298111B (zh) 一种用于货运列车的空电制动系统
CA1264789A1 (en) Truck mounted pneumatic brake control system
CN105501247B (zh) 一种用于货运列车的制动系统
US6820944B2 (en) Digital multi-point electronic load weigh system
WO2015064751A1 (ja) 車両用ブレーキ装置
CN209241054U (zh) 轨道动力平车及其制动系统
WO2022110513A1 (zh) 车辆的制动控制系统、车辆和列车
CN103010198B (zh) 铁路货车集成操控式制动系统
CN109435927A (zh) 轨道动力平车及其制动系统以及制动控制方法
JPS6233106B2 (zh)
RU2524751C1 (ru) Блок адаптивного управления тормозом тележки
CN108944990A (zh) 一种用于铁路工程车的驻车制动控制模块
US5971498A (en) Electro-pneumatic valve control
CN111717233B (zh) 一种集成式制动系统
RU97313U1 (ru) Электропневматическая тормозная система железнодорожного транспортного средства
JPS582863B2 (ja) 扉の気密保持装置
CN104608755B (zh) 客货车电控气刹器
CN219031554U (zh) 一种起重机上车操控制动系统
CN220742991U (zh) 一种根据载重调节制动力的制动系统
CN113844490B (zh) 空气后备制动系统、制动方法及轨道交通车辆
JP2020001629A (ja) 鉄道車両の簡易耐雪ブレーキ構造
CN209566904U (zh) 一种jz-7系列制动机自阀遥控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202210760

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210105

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896033

Country of ref document: EP

Kind code of ref document: A1