WO2022110409A1 - 水声通信探测信号处理方法、装置、设备及存储介质 - Google Patents

水声通信探测信号处理方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022110409A1
WO2022110409A1 PCT/CN2020/138105 CN2020138105W WO2022110409A1 WO 2022110409 A1 WO2022110409 A1 WO 2022110409A1 CN 2020138105 W CN2020138105 W CN 2020138105W WO 2022110409 A1 WO2022110409 A1 WO 2022110409A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication
detection
target
processed
Prior art date
Application number
PCT/CN2020/138105
Other languages
English (en)
French (fr)
Inventor
吴金秋
齐晓飞
周佳琼
张爱东
李胜全
张翼
陈明
Original Assignee
鹏城实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹏城实验室 filed Critical 鹏城实验室
Publication of WO2022110409A1 publication Critical patent/WO2022110409A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of underwater acoustic communication, and in particular, to a method, device, device and storage medium for processing a detection signal of underwater acoustic communication.
  • Underwater target detection is mainly through acoustic means, which can use active and passive working modes, use target reflected echo or target radiation noise, and use acoustic element array and time correlation operation to obtain space and time gain, so as to improve underwater target detection.
  • the purpose of the action distance uses sound waves as the carrier to realize the transmission of information in the ocean.
  • Underwater detection and underwater communication are necessary means of underwater information acquisition, and they are the research fields that have received much attention in underwater acoustic information technology.
  • underwater detection and underwater communication are often designed and used as independent equipment, which brings great pressure on volume occupation and power consumption.
  • the underwater acoustic detection and underwater acoustic communication are combined for detection on one device, there is a problem of difficulty in the detection and separation of the detection signal of the underwater acoustic communication, which makes it difficult to combine the underwater acoustic detection and the underwater acoustic communication.
  • the detection effect is poor.
  • the main purpose of this application is to propose a method, device, equipment and storage medium for processing underwater acoustic communication detection signals, aiming to solve the difficulties in the detection and separation of underwater acoustic communication detection signals in the prior art, and it is difficult to combine underwater acoustic detection and underwater acoustic detection. Communication is combined to detect technical problems with poor results.
  • the present application provides a method for processing a detection signal of underwater acoustic communication, and the method for processing a detection signal of underwater acoustic communication includes the following steps:
  • the weak target echo signal is modeled based on a preset active sonar equation to determine the echo signal in the communication signal to be processed;
  • the echo signal is detected by a preset cross-correlation search method to obtain a detection result
  • a preset optimization algorithm is used to separate the echo signal and the communication signal in the communication signal to be processed to obtain the target echo signal and the target communication signal;
  • the detection demodulation is performed according to the target echo signal to obtain the detection result
  • the communication demodulation is performed on the target communication signal according to the parameter information in the detection and demodulation process to assist in obtaining the target communication result.
  • the weak target echo signal is modeled based on a preset active sonar equation to determine the echo in the communication signal to be processed.
  • the signal also include:
  • the to-be-transmitted signal is reflected to the communication node for underwater communication.
  • the adding a preamble sequence to the initial OFDM communication signal to generate the signal to be transmitted includes:
  • the preamble sequence is combined with the OFDM symbol according to the guard interval to generate a signal to be transmitted.
  • the detection of the echo signal by a preset cross-correlation search method to obtain a detection result includes:
  • the echo signal is detected by a preset cross-correlation search method based on the preamble sequence to obtain a detection result.
  • the weak target echo signal is modeled based on the preset active sonar equation to determine the echo signal in the communication signal to be processed, including:
  • a weak target echo signal is modeled based on a preset active sonar equation to determine an echo signal in the communication signal to be processed.
  • the detection and demodulation is performed according to the target echo signal to obtain a detection result
  • the communication demodulation is performed on the target communication signal according to the parameter information in the detection and demodulation process to assist in obtaining the target.
  • Communication results including:
  • Communication demodulation is performed based on the Doppler information and the target communication signal to assist in obtaining target communication results.
  • the preset optimization algorithm is a DCD-RLS algorithm
  • the DCD-RLS algorithm is used to separate the echo signal and the communication signal in the communication signal to be processed to obtain the target communication signal;
  • the to-be-processed communication signal is removed according to the multi-path information, so as to separate the target echo signal from the to-be-processed communication signal.
  • the present application also proposes an underwater acoustic communication detection signal processing device, the underwater acoustic communication detection signal processing device includes:
  • the echo signal module is used to model the weak target echo signal based on the preset active sonar equation when receiving the communication signal to be processed in the underwater communication process, so as to determine the echo signal in the communication signal to be processed ;
  • a signal detection module configured to detect the echo signal by a preset cross-correlation search method to obtain a detection result
  • a signal separation module configured to separate the echo signal and the communication signal in the communication signal to be processed through a preset optimization algorithm based on the detection result, so as to obtain the target echo signal and the target communication signal;
  • a signal demodulation module configured to perform detection and demodulation according to the target echo signal to obtain detection results, and to perform communication demodulation on the target communication signal according to the parameter information in the detection and demodulation process to assist in obtaining target communication result.
  • the present application also proposes an underwater acoustic communication detection signal processing device.
  • the underwater acoustic communication detection signal processing device includes: a memory, a processor, and a device stored in the memory and available in the processor.
  • the underwater acoustic communication detection signal processing program running on the processor implements the steps of the underwater acoustic communication detection signal processing method as described above when the underwater acoustic communication detection signal processing program is executed by the processor.
  • the present application also proposes a storage medium, which stores an underwater acoustic communication detection signal processing program, and the underwater acoustic communication detection signal processing program is executed by the processor to achieve the above-mentioned The steps of the underwater acoustic communication detection signal processing method.
  • the weak target echo signal is modeled based on a preset active sonar equation, so as to determine the communication signal to be processed.
  • the echo signal in the signal; the echo signal is detected by a preset cross-correlation search method to obtain a detection result; the echo signal in the communication signal to be processed is analyzed by a preset optimization algorithm based on the detection result Separate the communication signal from the communication signal to obtain the target echo signal and the target communication signal; perform detection and demodulation according to the target echo signal to obtain the detection result, and perform detection and demodulation on the target communication signal according to the parameter information in the detection and demodulation process.
  • Communication demodulation is performed to assist in obtaining target communication results.
  • the underwater detection and underwater communication are combined in this application, and the weak target is returned based on the preset sonar equation.
  • the echo signal is modeled, the echo signal is detected by the preset cross-correlation search method, and the echo signal and the communication information in the communication signal to be processed are separated based on the preset optimization algorithm to obtain the target echo signal and target.
  • the communication signal is then demodulated to obtain the detection result and the target communication result, so that the detection and separation of the underwater acoustic communication detection signal can be conveniently and accurately performed, so as to realize the communication between nodes and complete the underwater communication within the coverage of the communication node. Object detection to achieve better detection results.
  • FIG. 1 is a schematic structural diagram of an underwater acoustic communication detection signal processing device of a hardware operating environment involved in a solution of an embodiment of the present application;
  • FIG. 2 is a schematic flowchart of the first embodiment of the method for processing a detection signal of underwater acoustic communication according to the present application;
  • FIG. 3 is a schematic flowchart of a second embodiment of a method for processing a detection signal of underwater acoustic communication according to the present application
  • FIG. 4 is a schematic flowchart of a third embodiment of a method for processing a detection signal for underwater acoustic communication according to the present application;
  • FIG. 5 is a structural block diagram of an integrated system for underwater acoustic communication detection according to an embodiment of an underwater acoustic communication detection signal processing method of the present application;
  • FIG. 6 is a schematic structural diagram of a power inversion filter according to an embodiment of an underwater acoustic communication detection signal processing method of the present application
  • FIG. 7 is a schematic flowchart of the realization of the DCD-RLS algorithm according to an embodiment of an underwater acoustic communication detection signal processing method of the present application;
  • FIG. 8 is a schematic diagram of functional modules of the first embodiment of the underwater acoustic communication detection signal processing apparatus of the present application.
  • FIG. 1 is a schematic structural diagram of an underwater acoustic communication detection signal processing device of the hardware operating environment involved in the solution of the embodiment of the present application.
  • the underwater acoustic communication detection signal processing device may include: a processor 1001, such as a central processing unit (Central Processing Unit) Processing Unit, CPU), communication bus 1002 , user interface 1003 , network interface 1004 , memory 1005 .
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a button, and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (eg, a WI-FI interface).
  • the memory 1005 may be a high-speed random access memory (Random Access Memory, RAM) memory, or may be a stable memory (non-volatile memory), such as a disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the device structure shown in FIG. 1 does not constitute a limitation on the underwater acoustic communication detection signal processing device, and may include more or less components than the one shown, or combine some components, or different component layout.
  • the memory 1005 as a storage medium may include an operating system, a network communication module, a user interface module, and an underwater acoustic communication detection signal processing program.
  • the network interface 1004 is mainly used to connect to the external network and perform data communication with other network devices;
  • the user interface 1003 is mainly used to connect user equipment and perform data communication with the user equipment.
  • Communication; the apparatus of the present application invokes the underwater acoustic communication detection signal processing program stored in the memory 1005 through the processor 1001, and executes the underwater acoustic communication detection signal processing method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for processing a detection signal of underwater acoustic communication according to the present application.
  • the underwater acoustic communication detection signal processing method includes the following steps:
  • Step S10 when the communication signal to be processed is received during the underwater communication, the weak target echo signal is modeled based on a preset active sonar equation to determine the echo signal in the communication signal to be processed.
  • the execution body of this embodiment may be an underwater acoustic communication detection signal processing device, wherein the underwater acoustic communication detection signal processing device may be an underwater acoustic communication detection device, or other devices that can achieve the same or similar functions
  • This embodiment does not limit this device.
  • an underwater acoustic communication detection device is used as an example for description.
  • the underwater acoustic communication detection device may be an integrated underwater acoustic communication detection device, and has functions of both underwater acoustic communication and underwater acoustic detection. Since underwater acoustic communication and underwater acoustic detection are similar in working principle, system structure, signal processing and operating frequency, in this embodiment, the two are organically integrated to form an integrated communication detection, which can reduce the volume of the platform , reducing power consumption and enhancing concealment, these advantages are especially suitable for underwater environments.
  • the integrated technology of underwater communication and detection can realize a variety of resource sharing, reduce platform volume, reduce power consumption, improve concealment and other advantages. It is an important research direction and development trend in the future underwater acoustic information technology. Maritime national defense security has far-reaching significance.
  • the communication signal to be processed may be an integrated communication detection signal, which may include both communication signals and detection signals.
  • the detection signal may be an echo signal, and the echo signal is a signal to be transmitted that returns after touching an underwater object. signal of.
  • the signal to be transmitted touches an underwater object, the signal will be reflected back, and in this embodiment, the signal is called a target echo.
  • the underwater objects may be objects that can reflect signals, such as rocks, animals, plants, and submarines, and may also be other objects, which are not limited in this embodiment.
  • the preset active sonar equation is a relationship that integrates the functions of underwater acoustic channels, targets and equipment, and the sonar equation comprehensively considers the effects of various phenomena unique to underwater sound on the design and application of sonar equipment.
  • the resulting influence is mainly used for sonar performance prediction and sonar parameter design.
  • DT detection threshold
  • SL sound source level
  • TL propagation loss
  • TS target intensity
  • NL background noise
  • DI directivity index
  • RI reverberation level
  • This embodiment is developed based on the receiving end of the communication detection device, wherein the weak target echo modeling is based on the active sonar equation, and there is no related research on the target to model the echo signal based on this equation.
  • the modeling of the weak target echo signal is based on the active sonar equation, and the channel through which the echo signal passes is based on the underwater acoustic time-varying channel, so that the system can be better used in the underwater acoustic field.
  • step S20 the echo signal is detected by a preset cross-correlation search method to obtain a detection result.
  • the Fourier transform method is generally used in the existing radar echo signal detection technology. power density at different frequencies and further get the spectrum. Due to the large amount of calculation, long calculation time and poor real-time performance, the underwater acoustic system has a low transmission speed in the water medium, resulting in a large inherent delay in signal transmission and a large amount of calculation in the receiving system, which will further reduce the real-time performance of the system.
  • the advantage of directly adopting the cross-correlation search method in this embodiment is that there is no need to calculate the correlation between the sinusoidal signal and the signal at other frequencies within the quist frequency. Directly search for the location of the signal with the same frequency as the excitation information in the echo.
  • the cross-correlation search method of the present application is based on the OFDM preamble sequence, which can save most of the calculation amount in the Fourier method, save the operation time and the system. Energy consumption improves the signal detection time.
  • Step S30 based on the detection result, separate the echo signal and the communication signal in the communication signal to be processed by using a preset optimization algorithm to obtain the target echo signal and the target communication signal.
  • the preset optimization algorithm may be a DCD-RLS algorithm, or may be other algorithms that can implement the same or similar functions, which is not limited in this embodiment, and in this embodiment, DCD-RLS is preferred
  • the algorithm is illustrated as an example.
  • the present embodiment adopts the optimization algorithm-DCD-RLS (Dichotomous Coordinated Descent Method) algorithm based on the strong interference suppression based on power inversion (when extracting the detection signal, the communication signal, that is, the direct wave signal is regarded as the strong interference signal),
  • This algorithm teaches other algorithms to be fast and easy to implement. Therefore, based on the detection result, the echo signal and the communication signal in the communication signal to be processed are separated by a preset optimization algorithm to obtain the target echo signal and the target communication signal, which can make the system have better real-time performance and improve signal detection. efficiency and effectiveness.
  • Step S40 performing detection demodulation according to the target echo signal to obtain a detection result, and performing communication demodulation on the target communication signal according to the parameter information in the detection and demodulation process to assist in obtaining the target communication result.
  • the parameter information can be Doppler information.
  • the signal After obtaining the target echo signal and the target communication signal, the signal can be divided into two paths, one for the demodulation of the detection process, the other for the demodulation of the communication process, and the detection process. After estimating the distance of the target and the speed of the target, the Doppler information is fed back to the communication process to eliminate the influence of Doppler on the system, so as to obtain more accurate detection results and communication results.
  • the target communication result is the communication result between two terminals, and by assisting communication demodulation with parameter information, a more accurate communication result can be obtained, thereby improving the communication effect.
  • the target c in the process of communication between terminal a and terminal b, if target c is found, the target c can be detected and estimated during the communication.
  • the detection result is the result of the detection and estimation of target c, and the target communication
  • the result is the communication result between terminal a and terminal b.
  • underwater detection and underwater communication are combined together.
  • the sonar equation models the weak target echo signal, detects the echo signal through a preset cross-correlation search method, and separates the echo signal and communication information in the communication signal to be processed based on the preset optimization algorithm to obtain
  • the target echo signal and the target communication signal are then demodulated to obtain the detection result and the target communication result respectively, so that the detection and separation of the underwater acoustic communication detection signal can be conveniently and accurately detected, so as to realize the communication between the nodes and complete the communication between the communication nodes.
  • the detection of underwater objects within the coverage area can achieve better detection results.
  • a second embodiment of the method for processing an underwater acoustic communication detection signal of the present application is proposed. Before the step S10, the method further includes:
  • Step S01 adding a preamble sequence to an initial OFDM communication signal to generate a signal to be transmitted.
  • a preamble sequence may be added to the initial OFDM communication signal to generate a signal to be transmitted with the preamble sequence.
  • step S01 includes:
  • OFDM symbols are extracted from the initial OFDM communication signal; a preamble sequence and a guard interval corresponding to the preamble sequence are obtained; and the preamble sequence and the OFDM symbol are combined according to the guard interval to generate a signal to be transmitted.
  • the OFDM symbol can be extracted from the initial OFDM communication signal, and the preamble sequence and the guard interval corresponding to the preamble sequence can be obtained.
  • the preamble sequence can be selected according to the actual situation in the form of signals such as LFM, HFM, CW and any combination thereof, which is not limited in this embodiment.
  • the preamble sequence can be combined with the OFDM symbols according to the guard interval to generate the signal to be transmitted.
  • Step S02 the to-be-transmitted signal is reflected to the communication node for underwater communication.
  • the underwater acoustic communication detection device can determine the communication node that needs to perform information communication according to the communication information, and transmit the signal to be transmitted to the communication node for underwater communication.
  • the communication node may be one or multiple, which is not limited in this embodiment.
  • the detection of the echo signal by a preset cross-correlation search method to obtain a detection result includes:
  • the echo signal is detected by a preset cross-correlation search method based on the preamble sequence to obtain a detection result.
  • the echo signal can be detected by the cross-correlation search method based on the preamble sequence, and the good autocorrelation characteristics of the preamble sequence can be fully utilized to obtain a better detection effect.
  • a preamble sequence is added to the initial orthogonal frequency division multiplexing OFDM communication signal to generate a signal to be transmitted; the signal to be transmitted is reflected to the communication node to perform underwater communication, so that by using the initial OFDM
  • the way of adding the preamble sequence to the communication signal can utilize the good autocorrelation feature of the preamble sequence to obtain better detection effect.
  • a third embodiment of the method for processing an underwater acoustic communication detection signal of the present application is proposed.
  • the description is based on the first embodiment.
  • the step S10 includes:
  • Step S101 when a communication signal to be processed is received during the underwater communication process, it is detected whether there is a target echo in the communication signal to be processed.
  • the underwater objects may be objects that can reflect signals, such as rocks, animals, plants, and submarines, and may also be other objects, which are not limited in this embodiment.
  • the returned communication signal to be processed can be received, and the communication signal to be processed can be detected to determine whether there is a target in the communication signal to be processed. echo.
  • the to-be-processed communication signal When there is no target echo in the to-be-processed communication signal, it means that the to-be-processed communication signal is a pure communication signal. Therefore, the to-be-processed communication signal can be directly demodulated by the normal communication terminal to obtain the communication result.
  • Step S102 when there is a target echo in the communication signal to be processed, model the weak target echo signal based on a preset active sonar equation to determine the echo signal in the communication signal to be processed.
  • the weak target echo signal is modeled based on the preset active sonar equation, so as to determine the echo signal in the communication signal to be processed, and then obtain the target.
  • the echo signal and the target communication signal are divided into two channels, one for the detection process demodulation, and the other for the communication process demodulation.
  • the target echo and target communication signal can be extracted from the signal to be processed, the detection process demodulation is performed based on the target echo, and the communication process demodulation is performed based on the target communication signal.
  • the subsequent signal demodulation can be more targeted, and a better signal solution can be obtained. adjustment effect.
  • Figure 5 is a block diagram of the integrated system of underwater acoustic communication detection.
  • the underwater acoustic communication detection equipment is provided with a transmitter and a receiver, and the receiver can be divided into a communication receiver and a detection receiver.
  • the transmitter transmits the signal to be transmitted through the transmitter, receives the target communication signal through the communication receiver, and receives the target echo through the detection receiver, so that underwater communication and underwater detection can be simultaneously performed on one device.
  • the receiving end detects whether there is a target echo in the communication signal to be processed, and performs normal communication terminal demodulation if no target echo is detected. If the target echo is detected, as shown in FIG.
  • the signal is divided into two paths, the detection process demodulation is performed based on the target echo, and the communication process demodulation is performed based on the target communication signal. After the detection process estimates the target distance and target speed, the Doppler information is fed back to the communication process to eliminate the influence of Doppler on the system.
  • the multi-path information can be fed back to the receiving end, and the purpose of feeding back the multi-path information is to separate the multi-path signal and the sounding signal.
  • the communication signal is transmitted at the transmitting end and the receiving end, due to the arriving sound waves of different paths, the sound waves will have an impact on the separation of the detection signal.
  • the arrival time of the multi-channel signal can be accurately determined, and then the signal can be removed by a filter to separate the detection signal, so that the obtained detection signal is more accurate.
  • performing detection and demodulation according to the target echo signal to obtain a detection result, and performing communication demodulation on the target communication signal according to the parameter information in the detection and demodulation process to assist in obtaining the target communication result include:
  • detection and demodulation can be performed according to the target echo signal to determine the target distance and movement speed, and then the detection result can be determined according to the target distance and movement speed.
  • the target distance and movement speed may be obtained by performing Doppler estimation on the target echo signal, or may be obtained by other methods, which are not limited in this embodiment.
  • the Doppler information corresponding to the target distance and movement speed can be searched, and communication demodulation can be performed based on the Doppler information and the target communication signal, so as to eliminate the Doppler effect on the system here. Therefore, more accurate detection results and communication results can be obtained.
  • the preset optimization algorithm is a DCD-RLS algorithm
  • the echo signal and the communication signal in the communication signal to be processed are separated by the DCD-RLS algorithm to obtain the target communication signal; the channel estimation is performed on the target communication signal to obtain the multi-channel communication signal. information; performing removal processing on the communication signal to be processed according to the multiplex information, so as to separate the target echo signal from the communication signal to be processed.
  • the separation technology of the echo signal and the communication signal adopts the strong interference suppression based on power inversion (when extracting the detection signal, the communication signal, that is, the direct wave signal, is regarded as a strong interference signal) optimization algorithm-DCD-RLS (Dichotomous Collaboration) Coordinate descent method) algorithm, which has the advantages of fast operation speed and easy implementation.
  • power inversion when extracting the detection signal, the communication signal, that is, the direct wave signal, is regarded as a strong interference signal
  • DCD-RLS Dichotomous Collaboration
  • the target communication signal can be extracted from the to-be-processed communication signal, and after channel estimation is performed, the multi-path information can be fed back to the receiving end.
  • the purpose of feeding back the multi-path information is to separate the multi-path signal and the sounding signal.
  • the communication signal is transmitted at the transmitting end and the receiving end, due to the arriving sound waves of different paths, the sound waves will have an impact on the separation of the detection signal.
  • the arrival time of the multi-path signal can be accurately determined, and then the signal can be removed through the filter to separate the detection signal, that is, the target echo, so that the target echo is more accurate.
  • Figure 6 is the structure of the power inversion filter
  • Figure 7 is the implementation flow of the DCD-RLS algorithm
  • the structure settings in Figure 6 and the algorithm flow in Figure 7 can achieve a more efficient good detection effect.
  • Fig. 7 the left part of Fig. 7 is a recursive algorithm flow for solving the original normal equation for the LS algorithm.
  • the LS original normal equation is transformed into a series of auxiliary normal equation problems.
  • Nu in FIG. 7 represents the maximum number of incremental updates to the transversal filter coefficients in the process of solving the first auxiliary normal equation. It can be seen from the right part of Fig. 7 that, by judging whether the value of the condition shown in the box and the number of cycles k is less than Nu, it is determined whether the DCD algorithm solution process ends.
  • the communication signal to be processed when received in the underwater communication process, it is detected whether there is a target echo in the communication signal to be processed; when there is a target echo in the communication signal to be processed, based on The preset active sonar equation models the weak target echo signal to determine the echo signal in the communication signal to be processed, so as to first detect whether there is a target echo in the communication signal to be processed, and perform follow-up according to the detection result
  • the operation mode can make the subsequent signal demodulation more targeted, and obtain a better signal demodulation effect.
  • an embodiment of the present application also proposes a storage medium, where an underwater acoustic communication detection signal processing program is stored, and when the underwater acoustic communication detection signal processing program is executed by a processor, the underwater sound as described above is implemented The steps of a communication probe signal processing method.
  • the storage medium adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.
  • an embodiment of the present application also proposes an underwater acoustic communication detection signal processing device, where the underwater acoustic communication detection signal processing device includes:
  • the echo signal module 10 is used to model the weak target echo signal based on the preset active sonar equation when receiving the communication signal to be processed during the underwater communication process, so as to determine the echo in the communication signal to be processed Signal.
  • the signal detection module 20 is configured to detect the echo signal through a preset cross-correlation search method to obtain a detection result.
  • the signal separation module 30 is configured to separate the echo signal and the communication signal in the communication signal to be processed by using a preset optimization algorithm based on the detection result, so as to obtain the target echo signal and the target communication signal.
  • the signal demodulation module 40 is configured to perform detection and demodulation according to the target echo signal to obtain a detection result, and to perform communication demodulation on the target communication signal according to the parameter information in the detection and demodulation process to assist in obtaining the target Communication results.
  • underwater detection and underwater communication are combined in this application, based on preset sonar
  • the equation models the weak target echo signal, detects the echo signal through a preset cross-correlation search method, and separates the echo signal and communication information in the communication signal to be processed based on a preset optimization algorithm to obtain the target.
  • the echo signal and the target communication signal are demodulated respectively to obtain the detection result and the target communication result, so that the detection and separation of the underwater acoustic communication detection signal can be conveniently and accurately detected, so as to realize the communication between nodes and complete the coverage at the communication node. Detection of underwater objects within the range to achieve better detection results.
  • the underwater acoustic communication detection signal processing device further includes a signal transmission module for adding a preamble sequence to the initial orthogonal frequency division multiplexing OFDM communication signal to generate a signal to be transmitted; the signal to be transmitted for underwater communication.
  • the signal transmitting module is further configured to extract an OFDM symbol from an initial OFDM communication signal; obtain a preamble sequence and a guard interval corresponding to the preamble sequence; and compare the preamble sequence with the guard interval according to the guard interval.
  • the OFDM symbols are combined to generate the signal to be transmitted.
  • the signal transmitting module is further configured to detect the echo signal by a preset cross-correlation search method based on the preamble sequence to obtain a detection result.
  • the echo signal module 10 is further configured to detect whether there is a target echo in the to-be-processed communication signal when receiving the to-be-processed communication signal during the underwater communication process; When there is a target echo in the communication signal, the weak target echo signal is modeled based on a preset active sonar equation to determine the echo signal in the communication signal to be processed.
  • the signal demodulation module 40 is further configured to perform detection and demodulation according to the target echo signal to determine the target distance and movement speed; determine the detection result according to the target distance and the movement speed , and search for the Doppler information corresponding to the target distance and the moving speed; perform communication demodulation based on the Doppler information and the target communication signal to assist in obtaining the target communication result.
  • the signal separation module 30 is further configured to separate the echo signal and the communication signal in the communication signal to be processed by the DCD-RLS algorithm based on the detection result, so as to obtain the target communication. signal; perform channel estimation on the target communication signal to obtain multi-way information; perform removal processing on the to-be-processed communication signal according to the multi-way information to separate the target echo signal from the to-be-processed communication signal .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本申请公开了一种水声通信探测信号处理方法、装置、设备及存储介质,本申请将水下探测和水下通信结合在一起,基于预设声呐方程对弱目标回波信号进行建模,通过预设互相关搜索法对回波信号进行检测,并基于预设优化算法将待处理通信信号中的回波信号和通信信息进行分离,以获得目标回波信号和目标通信信号,进而分别进行解调得到探测结果和目标通信结果。

Description

水声通信探测信号处理方法、装置、设备及存储介质
本申请要求于2020年11月25日申请的、申请号为202011339792.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及水声通信技术领域,尤其涉及一种水声通信探测信号处理方法、装置、设备及存储介质。
背景技术
水下目标探测主要通过声学手段,可采用主、被动两种工作模式,利用目标反射回波或者目标辐射噪声,采用声基元阵列和时间相关运算获得空间和时间增益,达到提高水下目标探测作用距离的目的。水下通信技术是以声波为载体实现信息在海洋中的传输,随着科学技术的发展,无论水下勘探、作业等民用领域还是水下作战等军用领域,水下设备正向着信息化、系统化和集成化的方向发展。水下探测及水下通信是水下信息获取的必要手段,是水声信息技术中备受重视的研究领域。现有的水下信息系统中,水下探测和水下通信往往作为独立的设备单独设计和使用,给体积占用、功率消耗方面带来很大压力。并且,由于水声环境的特殊性,如果将水声探测和水声通信结合起来在一个设备上进行检测的话,存在水声通信探测信号检测和分离存在困难的问题,导致难以将水声探测和水声通信进行结合,检测效果较差。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术解决方案
本申请的主要目的在于提出一种水声通信探测信号处理方法、装置、设备及存储介质,旨在解决现有技术中水声通信探测信号检测和分离存在困难,难以将水声探测和水声通信进行结合,检测效果较差的技术问题。
为实现上述目的,本申请提供一种水声通信探测信号处理方法,所述水声通信探测信号处理方法包括以下步骤:
在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号;
通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果;
基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号;
根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果。
在一实施例中,所述在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号之前,还包括:
在初始正交频分复用OFDM通信信号中添加前导序列,以生成待发射信号;
向通信节点反射所述待发射信号,以进行水下通信。
在一实施例中,所述在初始正交频分复用OFDM通信信号中添加前导序列,以生成待发射信号,包括:
从初始OFDM通信信号中提取OFDM符号;
获取前导序列以及所述前导序列对应的保护间隔;
根据所述保护间隔将所述前导序列与所述OFDM符号进行组合,以生成待发射信号。
在一实施例中,所述通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果,包括:
基于所述前导序列通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果。
所述在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号,包括:
在水下通信过程中接收到待处理通信信号时,检测所述待处理通信信号中是否存在目标回波;
在所述待处理通信信号中存在目标回波时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号。
在一实施例中,所述根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果,包括:
根据所述目标回波信号进行探测解调,以确定目标距离和运动速度;
根据所述目标距离和所述运动速度确定探测结果,并查找所述目标距离和所述运动速度对应的多普勒信息;
基于所述多普勒信息和所述目标通信信号进行通信解调,以辅助获得目标通信结果。
在一实施例中,所述预设优化算法为DCD-RLS算法;
所述基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号,包括:
基于所述检测结果通过所述DCD-RLS算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标通信信号;
对所述目标通信信号进行信道估计,以获得多途信息;
根据所述多途信息对所述待处理通信信号进行去除处理,以从所述待处理通信信号中分离出目标回波信号。
此外,为实现上述目的,本申请还提出一种水声通信探测信号处理装置,所述水声通信探测信号处理装置包括:
回波信号模块,用于在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号;
信号检测模块,用于通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果;
信号分离模块,用于基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号;
信号解调模块,用于根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果。
此外,为实现上述目的,本申请还提出一种水声通信探测信号处理设备,所述水声通信探测信号处理设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的水声通信探测信号处理程序,所述水声通信探测信号处理程序被处理器执行时实现如上所述的水声通信探测信号处理方法的步骤。
此外,为实现上述目的,本申请还提出一种存储介质,所述存储介质上存储有水声通信探测信号处理程序,所述水声通信探测信号处理程序被处理器执行时实现如上文所述的水声通信探测信号处理方法的步骤。
本申请提出的水声通信探测信号处理方法,通过在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号;通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果;基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号;根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果。相较于现有技术中将水下探测和水下通信作为独立的设备单独设计和使用的方式,本申请中将水下探测和水下通信结合在一起,基于预设声呐方程对弱目标回波信号进行建模,通过预设互相关搜索法对回波信号进行检测,并基于预设优化算法将待处理通信信号中的回波信号和通信信息进行分离,以获得目标回波信号和目标通信信号,进而分别进行解调得到探测结果和目标通信结果,从而可方便准确地对水声通信探测信号进行检测和分离,以实现在节点间通信的同时完成在通信节点覆盖范围内的水下物体的探测,达到更好的检测效果。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的水声通信探测信号处理设备结构示意图;
图2为本申请水声通信探测信号处理方法第一实施例的流程示意图;
图3为本申请水声通信探测信号处理方法第二实施例的流程示意图;
图4为本申请水声通信探测信号处理方法第三实施例的流程示意图;
图5为本申请水声通信探测信号处理方法一实施例的水声通信探测一体化系统结构框图;
图6为本申请水声通信探测信号处理方法一实施例的功率倒置滤波器结构示意图;
图7为本申请水声通信探测信号处理方法一实施例的DCD-RLS算法实现流程示意图;
图8为本申请水声通信探测信号处理装置第一实施例的功能模块示意图。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的水声通信探测信号处理设备结构示意图。
如图1所示,该水声通信探测信号处理设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如按键,可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的设备结构并不构成对水声通信探测信号处理设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及水声通信探测信号处理程序。
在图1所示的水声通信探测信号处理设备中,网络接口1004主要用于连接外网,与其他网络设备进行数据通信;用户接口1003主要用于连接用户设备,与所述用户设备进行数据通信;本申请设备通过处理器1001调用存储器1005中存储的水声通信探测信号处理程序,并执行本申请实施例提供的水声通信探测信号处理方法。
基于上述硬件结构,提出本申请水声通信探测信号处理方法实施例。
参照图2,图2为本申请水声通信探测信号处理方法第一实施例的流程示意图。
在第一实施例中,所述水声通信探测信号处理方法包括以下步骤:
步骤S10,在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号。
需要说明的是,本实施例的执行主体可为水声通信探测信号处理设备,其中,所述水声通信探测信号处理设备可为水声通信探测设备,还可为其他可实现相同或相似功能的设备,本实施例对此不作限制,在本实施例中,以水声通信探测设备为例进行说明。
在本实施例中,水声通信探测设备可为水声通信探测一体化设备,同时具备水声通信和水声探测的功能。由于水声通信和水声探测在工作原理、系统结构、信号处理以及工作频率上的相似,在本实施例中,将两者有机的结合集成,形成通信探测一体化,可减小平台的体积,降低功耗,增强隐蔽性,这些优点对水下环境尤为适用。水下通信探测一体化技术可实现多种资源共享,减小平台体积、降低功耗、提高隐蔽性等优点,是未来水声信息技术中重要的研究方向和发展趋势,对海洋的利用开发和海洋国防安全有着深远的意义。
目前并未有针对OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)水声通信探测一体化系统的研究,水声环境的特殊性给通信探测一体化的实现带来了困难,本申请基于声呐方程建立回波信号模型,采用具有多途和多普勒的水声信道为背景研究水声通信探测一体化信号的检测和分离技术。其中,前导序列在通信系统中用于同步的序列,与探测中使用的序列相似。
应当理解的是,在水下通信过程中接收到待处理通信信号时,可基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号,其中,待处理通信信号可为通信探测一体化信号,既可包含通信信号,又可包含探测信号,所述探测信号可为回波信号,回波信号为待发射信号接触到水下物体后返回的信号。在水下通信过程中,在通信范围内,如果待发射信号接触到水下物体后,会反射回信号,在本实施例中,将该信号称之为目标回波。其中,水下物体可为岩石、动物、植物以及潜艇等可以反射信号的物体,还可为其他物体,本实施例对此不作限制。
应当理解的是,预设主动声呐方程式是将水声信道、目标和设备的作用综合在一起的关系式,声呐方程综合考虑了水声所特有的各种现象的效应对声呐设备的设计和应用所产生的影响,主要用于声呐性能预报和声呐参数设计,声呐方程式根据当信号刚好能从背景干扰中被辨认出来时,即声呐的检测目的刚好达到,从而确立“信号级=背景掩蔽级”这一关系式得出来的。
对于主动声呐,当背景干扰主要为环境噪声时,其表达式为:
DT=SL-2TL+TS-(NL-DI)
对于主动声呐,当背景干扰主要是混响时,其表达式为:
DT=SL-2TL+TS-RI
DT:检测阈;SL:声源级;TL:传播损失;TS:目标强度;NL:背景噪声;DI:指向性指数;RI:混响级。
本实施例基于通信探测设备的接收端展开,其中弱目标回波建模是基于主动声呐方程进行的,目标未有相关研究基于此方程建模回波信号。弱目标回波信号的建模以主动声呐方程为依据,回波信号经过的信道以水声时变信道为基础,使该系统可更好的使用于水声领域。
步骤S20,通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果。
应当理解的是,现有雷达回波信号检测技术中一般采用傅里叶变换方法,其实质就是让信号和不同频率的正弦信号相关,以计算信号和回波信号的相似度,从而得到信号在不同频率的功率密度,并进一步得到频谱。运算量大,计算时间长,实时性差,水声系统由于声速在水介质中传输速度较低,导致信号传输固有延迟大,接收系统运算量大,会进一步降低系统的实时性。
本实施例直接采用互相关搜索法的优势在于,不需要计算奎斯特频率以内其他频率正弦信号和信号的相关。直接搜索回波中和激励信息频率相同的信号所在位置,本申请的互相关搜索法是基于OFDM前导序列进行的,可以省去傅里叶方法中大部分的计算量,节省运算时间和系统的能量消耗,提高了信号检测时效。
步骤S30,基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号。
需要说明的是,所述预设优化算法可为DCD-RLS算法,还可为其他可实现相同或相似功能的算法,本实施例对此不做限制,在本实施例中,优选DCD-RLS算法为例进行说明。
应当理解的是,本实施例采用基于功率倒置的强干扰抑制(在提取探测信号时,通信信号即直达波信号视为强干扰信号)优化算法-DCD-RLS(二分协同坐标下降法)算法,该算法教其他算法具有运算速度快,易于实现的优点。因此,基于检测结果通过预设优化算法将待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号,可使系统具有更好的实时性,提高信号检测的效率和效果。
步骤S40,根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果。
应当理解的是,参数信息可为多普勒信息,在获得目标回波信号和目标通信信号后,可将信号分为两路,一路进行探测流程解调,一路进行通信流程解调,探测流程估计玩目标距离和目标运动速度后,将多普勒信息反馈到通信流程,以消除此处多普勒对系统的影响,从而得到更为准确的探测结果和通信结果。
需要说明的是,目标通信结果为两个终端之间的通信结果,通过参数信息辅助通信解调的方式,可获得更为准确的通信结果,从而提高通信效果。
在具体实现中,在终端a和终端b进行通信的过程中,如果发现了目标c,在通信的同时可对目标c进行探测估计,探测结果为对目标c进行的探测估计的结果,目标通信结果为终端a和终端b之间的通信结果。
本实施例中,相较于现有技术中将水下探测和水下通信作为独立的设备单独设计和使用的方式,本实施例中将水下探测和水下通信结合在一起,基于预设声呐方程对弱目标回波信号进行建模,通过预设互相关搜索法对回波信号进行检测,并基于预设优化算法将待处理通信信号中的回波信号和通信信息进行分离,以获得目标回波信号和目标通信信号,进而分别进行解调得到探测结果和目标通信结果,从而可方便准确地对水声通信探测信号进行检测和分离,以实现在节点间通信的同时完成在通信节点覆盖范围内的水下物体的探测,达到更好的检测效果。
在一实施例中,如图3所示,基于第一实施例提出本申请水声通信探测信号处理方法第二实施例,所述步骤S10之前,还包括:
步骤S01,在初始正交频分复用OFDM通信信号中添加前导序列,以生成待发射信号。
应当理解的是,为了提高检测的准确性,可在初始OFDM通信信号中添加前导序列,以生成带有前导序列的待发射信号。
进一步地,所述步骤S01,包括:
从初始OFDM通信信号中提取OFDM符号;获取前导序列以及所述前导序列对应的保护间隔;根据所述保护间隔将所述前导序列与所述OFDM符号进行组合,以生成待发射信号。
可以理解的是,可从初始OFDM通信信号中提取OFDM符号,并获取前导序列和前导序列对应的保护间隔。其中,前导序列可根据实际情况选择LFM,HFM,CW等信号及其任何组合等形式,本实施例对此不作限制。可根据保护间隔将前导序列与OFDM符号进行组合,以生成待发射信号。
步骤S02,向通信节点反射所述待发射信号,以进行水下通信。
可以理解的是,水声通信探测设备在生成待发射信号后,可根据通信信息确定需要进行信息通信的通信节点,并向通信节点发射待发射信号,以进行水下通信。其中,通信节点可为一个,也可为多个,本实施例对此不作限制。
进一步地,所述通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果,包括:
基于所述前导序列通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果。
应当理解的是,由于在信号中添加了前导序列,可基于前导序列通过互相关搜索法对回波信号进行检测,充分利用前导序列的良好自相关特性,以获得更好的检测效果。
在本实施例中,通过在初始正交频分复用OFDM通信信号中添加前导序列,以生成待发射信号;向通信节点反射所述待发射信号,以进行水下通信,从而通过在初始OFDM通信信号中添加前导序列的方式,可利用前导序列的良好自相关特征,获得更好的检测效果。
在一实施例中,如图4所示,基于第一实施例或第二实施例提出本申请水声通信探测信号处理方法第三实施例,在本实施例中,基于第一实施例进行说明,所述步骤S10,包括:
步骤S101,在水下通信过程中接收到待处理通信信号时,检测所述待处理通信信号中是否存在目标回波。
应当理解的是,在水下通信过程中,在通信范围内,如果待发射信号接触到水下物体后,会反射回信号,在本实施例中,将该信号称之为目标回波。其中,水下物体可为岩石、动物、植物以及潜艇等可以反射信号的物体,还可为其他物体,本实施例对此不作限制。
可以理解的是,在水声通信探测设备与通信节点进行水下通信的过程中,可接收到返回的待处理通信信号,可对待处理通信信号进行检测,以判断待处理通信信号中是否存在目标回波。
在待处理通信信号中不存在目标回波时,说明待处理通信信号是单纯的通信信号,因此,可直接对所述待处理通信信号进行正常的通信端解调,以得到通信结果。
步骤S102,在所述待处理通信信号中存在目标回波时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号。
应当理解的是,在待处理通信信号中存在目标回波时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号,进而获得目标回波信号和目标通信信号,将信号分为两路,一路进行探测流程解调,一路进行通信流程解调。可从待处理信号中提取目标回波和目标通信信号,基于所述目标回波进行探测流程解调,并基于所述目标通信信号进行通信流程解调。
在本实施例中,通过先检测待处理通信信号中是否存在目标回波,并根据检测结果来进行后续操作的方式,可使后续的信号解调更具有针对性,并且得到更好的信号解调效果。
在具体实现中,如图5所示,图5为水声通信探测一体化系统结构框图,水声通信探测设备上设置有发射端和接收端,接收端又可分为通信接收端和探测接收端,通过发射端发射待发射信号,通过通信接收端接收目标通信信号,并通过探测接收端接收目标回波,从而在一个设备上可实现同时进行水下通信和水下探测。接收端在接收到待处理通信信号后,检测待处理通信信号中是否存在目标回波,若未检测到目标回波,则进行正常的通信端解调。若检测到目标回波,则如图5所示,将信号分为两路,基于目标回波进行探测流程解调,并基于目标通信信号进行通信流程解调。探测流程估计完目标距离和目标运动速度后,将多普勒信息反馈到通信流程,以消除此处多普勒对系统的影响。
应当理解的是,在图5中,进行信道估计后,可反馈多途信息给接收端,反馈多途信息的目的是为了分离多途信号和探测信号。通信信号在发射端和接收端传输时,由于有不同路径的到达声波,因此,这个声波会对分离探测信号产生影响。在通信端对信道进行估计,能够准确地确定多途信号的到达时间,进而可通过滤波器对信号进行去除处理,分离出探测信号,从而使得到的探测信号更加准确。
进一步地,所述根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果,包括:
根据所述目标回波信号进行探测解调,以确定目标距离和运动速度;根据所述目标距离和所述运动速度确定探测结果,并查找所述目标距离和所述运动速度对应的多普勒信息;基于所述多普勒信息和所述目标通信信号进行通信解调,以辅助获得目标通信结果。
应当理解的是,可根据目标回波信号进行探测解调,以确定目标距离和运动速度,进而可根据目标距离和运行速度确定探测结果。其中,目标距离和运动速度可为对目标回波信号进行多普勒估计获得,还可为通过其他方式获得,本实施例对此不做限制。
可以理解的是,可查找探测解调过程中,与目标距离和运动速度对应的多普勒信息,并基于多普勒信息和目标通信信号进行通信解调,以消除此处多普勒对系统的影响,从而得到更为准确的探测结果和通信结果。
进一步地,所述预设优化算法为DCD-RLS算法;
所述基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号,包括:
基于所述检测结果通过所述DCD-RLS算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标通信信号;对所述目标通信信号进行信道估计,以获得多途信息;根据所述多途信息对所述待处理通信信号进行去除处理,以从所述待处理通信信号中分离出目标回波信号。
可以理解的是,回波信号与通信信号的分离技术采用基于功率倒置的强干扰抑制(在提取探测信号时,通信信号即直达波信号视为强干扰信号)优化算法-DCD-RLS(二分协同坐标下降法)算法,该算法具有运算速度快,易于实现的优点。
应当理解的是,可从待处理通信信号中提取目标通信信号,进行信道估计后,可反馈多途信息给接收端,反馈多途信息的目的是为了分离多途信号和探测信号。通信信号在发射端和接收端传输时,由于有不同路径的到达声波,因此,这个声波会对分离探测信号产生影响。在通信端对信道进行估计,能够准确地确定多途信号的到达时间,进而可通过滤波器对信号进行去除处理,分离出探测信号,即目标回波,从而使得到的目标回波更加准确。
在具体实现中,如图6、图7所示,图6为功率倒置滤波器结构,图7为DCD-RLS算法实现流程,通过图6中的结构设置和图7中的算法流程可达到更好的检测效果。
其中,图7的左边部分是一个针对LS算法求解原始正规方程的一个递归算法流程。利用该算法,将LS原始正规方程转化为了一系列辅助正规方程问题。其中求解R△h=β0时,其中R为已知的N*N对称正矩阵,β0是已知的N维实向量。首先初始化残余误差r(n),步长α,迭代次数k。进入循环后,首先执行,α=α/2,进而比较|r(n)|与α*Rn*n,若满足|r(n)|>α*Rn*n则更新残余误差r(n)与△h(n),否则就判断k的值是否小于Nu。图7中Nu表示一次辅助正规方程求解过程中,对横向滤波器系数增量更新的最大次数。从图7的右边部分可以看出,通过判断框中所示条件与循环次数k的值是否小于Nu,决定DCD算法求解过程是否结束。
在本实施例中,通过在水下通信过程中接收到待处理通信信号时,检测所述待处理通信信号中是否存在目标回波;在所述待处理通信信号中存在目标回波时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号,从而先检测待处理通信信号中是否存在目标回波,并根据检测结果来进行后续操作的方式,可使后续的信号解调更具有针对性,并且得到更好的信号解调效果。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有水声通信探测信号处理程序,所述水声通信探测信号处理程序被处理器执行时实现如上文所述的水声通信探测信号处理方法的步骤。
由于本存储介质采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
此外,参照图8,本申请实施例还提出一种水声通信探测信号处理装置,所述水声通信探测信号处理装置包括:
回波信号模块10,用于在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号。
信号检测模块20,用于通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果。
信号分离模块30,用于基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号。
信号解调模块40,用于根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果。
本实施例中,相较于现有技术中将水下探测和水下通信作为独立的设备单独设计和使用的方式,本申请中将水下探测和水下通信结合在一起,基于预设声呐方程对弱目标回波信号进行建模,通过预设互相关搜索法对回波信号进行检测,并基于预设优化算法将待处理通信信号中的回波信号和通信信息进行分离,以获得目标回波信号和目标通信信号,进而分别进行解调得到探测结果和目标通信结果,从而可方便准确地对水声通信探测信号进行检测和分离,以实现在节点间通信的同时完成在通信节点覆盖范围内的水下物体的探测,达到更好的检测效果。
在一实施例中,所述水声通信探测信号处理装置还包括信号发射模块,用于在初始正交频分复用OFDM通信信号中添加前导序列,以生成待发射信号;向通信节点反射所述待发射信号,以进行水下通信。
在一实施例中,所述信号发射模块,还用于从初始OFDM通信信号中提取OFDM符号;获取前导序列以及所述前导序列对应的保护间隔;根据所述保护间隔将所述前导序列与所述OFDM符号进行组合,以生成待发射信号。
在一实施例中,所述信号发射模块,还用于基于所述前导序列通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果。
在一实施例中,所述回波信号模块10,还用于在水下通信过程中接收到待处理通信信号时,检测所述待处理通信信号中是否存在目标回波;在所述待处理通信信号中存在目标回波时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号。
在一实施例中,所述信号解调模块40,还用于根据所述目标回波信号进行探测解调,以确定目标距离和运动速度;根据所述目标距离和所述运动速度确定探测结果,并查找所述目标距离和所述运动速度对应的多普勒信息;基于所述多普勒信息和所述目标通信信号进行通信解调,以辅助获得目标通信结果。
在一实施例中,所述信号分离模块30,还用于基于所述检测结果通过所述DCD-RLS算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标通信信号;对所述目标通信信号进行信道估计,以获得多途信息;根据所述多途信息对所述待处理通信信号进行去除处理,以从所述待处理通信信号中分离出目标回波信号。
在本申请所述水声通信探测信号处理装置的其他实施例或具体实现方法可参照上述各方法实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该估算机软件产品存储在如上所述的一个估算机可读存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台智能设备(可以是手机,估算机,水声通信探测信号处理设备,空调器,或者网络水声通信探测信号处理设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种水声通信探测信号处理方法,其中,所述水声通信探测信号处理方法包括以下步骤:
    在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号;
    通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果;
    基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号;
    根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果。
  2. 如权利要求1所述的水声通信探测信号处理方法,其中,所述在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号之前,还包括:
    在初始正交频分复用OFDM通信信号中添加前导序列,以生成待发射信号;
    向通信节点反射所述待发射信号,以进行水下通信。
  3. 如权利要求2所述的水声通信探测信号处理方法,其中,所述在初始正交频分复用OFDM通信信号中添加前导序列,以生成待发射信号,包括:
    从初始OFDM通信信号中提取OFDM符号;
    获取前导序列以及所述前导序列对应的保护间隔;
    根据所述保护间隔将所述前导序列与所述OFDM符号进行组合,以生成待发射信号。
  4. 如权利要求3所述的水声通信探测信号处理方法,其中,所述通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果,包括:
    基于所述前导序列通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果。
  5. 如权利要求1所述的水声通信探测信号处理方法,其中,所述在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号,包括:
    在水下通信过程中接收到待处理通信信号时,检测所述待处理通信信号中是否存在目标回波;
    在所述待处理通信信号中存在目标回波时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号。
  6. 如权利要求1~5中任一项所述的水声通信探测信号处理方法,其中,所述根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果,包括:
    根据所述目标回波信号进行探测解调,以确定目标距离和运动速度;
    根据所述目标距离和所述运动速度确定探测结果,并查找所述目标距离和所述运动速度对应的多普勒信息;
    基于所述多普勒信息和所述目标通信信号进行通信解调,以辅助获得目标通信结果。
  7. 如权利要求1~5中任一项所述的水声通信探测信号处理方法,其中,所述预设优化算法为DCD-RLS算法;
    所述基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号,包括:
    基于所述检测结果通过所述DCD-RLS算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标通信信号;
    对所述目标通信信号进行信道估计,以获得多途信息;
    根据所述多途信息对所述待处理通信信号进行去除处理,以从所述待处理通信信号中分离出目标回波信号。
  8. 一种水声通信探测信号处理装置,其中,所述水声通信探测信号处理装置包括:
    回波信号模块,用于在水下通信过程中接收到待处理通信信号时,基于预设主动声呐方程对弱目标回波信号进行建模,以确定所述待处理通信信号中的回波信号;
    信号检测模块,用于通过预设互相关搜索法对所述回波信号进行检测,以获得检测结果;
    信号分离模块,用于基于所述检测结果通过预设优化算法将所述待处理通信信号中的回波信号和通信信号进行分离,以获得目标回波信号和目标通信信号;
    信号解调模块,用于根据所述目标回波信号进行探测解调,以获得探测结果,并根据探测解调过程中的参数信息对所述目标通信信号进行通信解调,以辅助获得目标通信结果。
  9. 一种水声通信探测信号处理设备,其中,所述水声通信探测信号处理设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的水声通信探测信号处理程序,所述水声通信探测信号处理程序被处理器执行时实现如权利要求1至7中任一项所述的水声通信探测信号处理方法的步骤。
  10. 一种存储介质,其中,所述存储介质上存储有水声通信探测信号处理程序,所述水声通信探测信号处理程序被处理器执行时实现如权利要求1至7中任一项所述的水声通信探测信号处理方法的步骤。
PCT/CN2020/138105 2020-11-25 2020-12-21 水声通信探测信号处理方法、装置、设备及存储介质 WO2022110409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011339792.7 2020-11-25
CN202011339792.7A CN112152959B (zh) 2020-11-25 2020-11-25 水声通信探测信号处理方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022110409A1 true WO2022110409A1 (zh) 2022-06-02

Family

ID=73887215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138105 WO2022110409A1 (zh) 2020-11-25 2020-12-21 水声通信探测信号处理方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112152959B (zh)
WO (1) WO2022110409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941084A (zh) * 2023-03-09 2023-04-07 北京理工大学 基于时频图模板匹配的水声通信前导信号检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107864020A (zh) * 2017-11-07 2018-03-30 哈尔滨工程大学 水下小目标单分量声散射回波的变换域提取方法
US20190007145A1 (en) * 2017-06-28 2019-01-03 Teledyne Instruments, Inc. Transmitter-receiver separation system for full-duplex underwater acoustic communication system
CN110535537A (zh) * 2019-09-25 2019-12-03 哈尔滨工程大学 一种水下通信探测一体化方法
CN110826166A (zh) * 2018-08-06 2020-02-21 中国科学院声学研究所 一种模型驱动的水下探测体系仿真系统
CN111342949A (zh) * 2020-02-19 2020-06-26 西北工业大学 一种水声移动通信的同步检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632649B (zh) * 2019-09-16 2022-04-19 中国船舶重工集团公司第七一五研究所 一种用于光纤水听器振动噪声抵消的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190007145A1 (en) * 2017-06-28 2019-01-03 Teledyne Instruments, Inc. Transmitter-receiver separation system for full-duplex underwater acoustic communication system
CN107864020A (zh) * 2017-11-07 2018-03-30 哈尔滨工程大学 水下小目标单分量声散射回波的变换域提取方法
CN110826166A (zh) * 2018-08-06 2020-02-21 中国科学院声学研究所 一种模型驱动的水下探测体系仿真系统
CN110535537A (zh) * 2019-09-25 2019-12-03 哈尔滨工程大学 一种水下通信探测一体化方法
CN111342949A (zh) * 2020-02-19 2020-06-26 西北工业大学 一种水声移动通信的同步检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU JUN, ZHANG QUN-FEI;SHI WEN-TAO: "Analysis on the Key Technology of Integrated Underwater Detection and Communication", JOURNAL OF UNMANNED UNDERSEA SYSTEMS, vol. 26, no. 5, 1 January 2018 (2018-01-01), pages 470 - 479, XP055933226, ISSN: 1673-1948, DOI: 10.11993/j.issn.2096-3920.2018.05.015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941084A (zh) * 2023-03-09 2023-04-07 北京理工大学 基于时频图模板匹配的水声通信前导信号检测方法及装置

Also Published As

Publication number Publication date
CN112152959A (zh) 2020-12-29
CN112152959B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Zhang et al. Underwater source localization using TDOA and FDOA measurements with unknown propagation speed and sensor parameter errors
CN109509465B (zh) 语音信号的处理方法、组件、设备及介质
CN102317808B (zh) 用于确定相干源抵达的方位角和仰角的方法
CN110554357B (zh) 声源定位方法和装置
CN112152951B (zh) 水声通信探测方法、装置、设备及存储介质
CN104678372B (zh) 正交频分复用雷达超分辨距离与角度值联合估计方法
JP2934426B1 (ja) 到来波推定方法
Li et al. Super-resolution time delay estimation for narrowband signal
CN107505596B (zh) 基于双扩展水声信道环境下的mimo主动探测信号设计与检测系统和方法
CN103176166A (zh) 一种用于水声被动定位的信号到达时延差跟踪算法
CN103546221A (zh) 一种宽带相干信号波达角估计方法
CN103323815A (zh) 一种基于等效声速的水下声学定位方法
WO2022110409A1 (zh) 水声通信探测信号处理方法、装置、设备及存储介质
JP5192463B2 (ja) 信号処理装置
CN103513249B (zh) 一种宽带相干模基信号处理方法及系统
CN105978833A (zh) 一种改进的sage信道参数估计方法
CN105138743B (zh) 一种基于单矢量水听器的相干信号源方位估计方法
CN112187697B (zh) 水声通信探测信号生成方法、装置、设备及存储介质
WO2022107195A1 (ja) ドップラー補償システム及びドップラー補償方法
Ma et al. Further results on maximal ratio combining under correlated noise for multi-carrier underwater acoustic communication using vector sensors
Velickovic et al. The performance of the modified GCC technique for differential time delay estimation in the cooperative sensor network
Mizutani et al. Fast and accurate ultrasonic 3D localization using the TSaT-MUSIC algorithm
KR20200033571A (ko) Sml 비용함수 및 가설검증을 고려한 신호개수 추정 방법 및 장치
Kozick et al. Tracking moving acoustic sources with a network of sensors
CN102508202B (zh) 基于模糊模式识别的水声定位测量装置和测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963297

Country of ref document: EP

Kind code of ref document: A1