WO2022110215A1 - 一种小区的测量方法以及相关装置 - Google Patents

一种小区的测量方法以及相关装置 Download PDF

Info

Publication number
WO2022110215A1
WO2022110215A1 PCT/CN2020/132936 CN2020132936W WO2022110215A1 WO 2022110215 A1 WO2022110215 A1 WO 2022110215A1 CN 2020132936 W CN2020132936 W CN 2020132936W WO 2022110215 A1 WO2022110215 A1 WO 2022110215A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
serving cell
serving
reference signal
virtual
Prior art date
Application number
PCT/CN2020/132936
Other languages
English (en)
French (fr)
Inventor
王燕春
周全
乐国军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20963103.5A priority Critical patent/EP4236473A4/en
Priority to KR1020237020373A priority patent/KR20230107340A/ko
Priority to CN202080106466.3A priority patent/CN116349307A/zh
Priority to PCT/CN2020/132936 priority patent/WO2022110215A1/zh
Publication of WO2022110215A1 publication Critical patent/WO2022110215A1/zh
Priority to US18/325,793 priority patent/US20230300701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/13Cell handover without a predetermined boundary, e.g. virtual cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a cell measurement method and related devices.
  • NR New Radio
  • two adjacent cells may support different standards.
  • the same frequency measurement and handover in the same communication system ensures that the mobile terminal can always be in the cell with the strongest signal in the same communication system, and the terminal device cannot perform crossover without additional power consumption.
  • Standard co-frequency measurement In the LTE and NR communication systems, the same frequency measurement and handover in the same communication system ensures that the mobile terminal can always be in the cell with the strongest signal in the same communication system, and the terminal device cannot perform crossover without additional power consumption. Standard co-frequency measurement.
  • the adjacent cell signal sent by the adjacent different-standard and same-frequency cell is stronger than the service signal provided by the serving cell
  • the adjacent cell signal will cause strong interference to the service signal received by the terminal device; in addition, in order to ensure that the serving cell can
  • the terminal device will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device to interfere with the uplink signal sent by other terminal devices in the serving cell.
  • far-near interference the problem of how to avoid the far-near interference of terminal equipment in the same-frequency and different-system networking is an urgent problem to be solved by those skilled in the art.
  • the present application provides a cell measurement method and a related device, which can prevent terminal equipment from being interfered by near and far.
  • the present application provides a cell measurement method, the method includes: a first access network device sends first measurement control information to a terminal device through a first serving cell, where the first measurement control information is used to indicate The terminal device measures the quality of the downlink reference signal of the virtual cell, the center frequency of the downlink reference signal of the first serving cell and the downlink reference signal of the virtual cell are the same, and the frequency range of the virtual cell is the same.
  • the first access network device receives the first measurement report from the terminal device, and the The first measurement report indicates the quality of the downlink reference signal of the virtual cell; when the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell, the first The access network device migrates the terminal device to a third serving cell; wherein the standard of the second serving cell is different from the standard of the first serving cell, or the standard of the second serving cell is different from the standard of the second serving cell.
  • the standard of the first serving cell is the same, and the center frequency of the downlink reference signal of the second serving cell and the downlink reference signal of the first serving cell are different; the virtual cell and the second serving cell have different center frequencies;
  • the cell is a cell of the first access network device, or the virtual cell and the second serving cell are cells of the second access network device; and the third serving cell and the first serving cell
  • the standard is the same, and the center frequency of the downlink reference
  • the first access network device migrating the terminal device to a third serving cell includes: the first access network device sends to the terminal device second measurement control information, where the second measurement control information is used to instruct the terminal device to measure the quality of the downlink reference signal of the third serving cell; the first access network device receives the second a measurement report, the second measurement report indicates the quality of the downlink reference signal of the third serving cell; the first access network device migrates the terminal device to the third service according to the second measurement report community.
  • the first access network device stores cell identifiers of one or more serving cells adjacent to the first serving cell, and the one or more serving cells
  • the cell identifier of the serving cell includes the cell identifier of the third serving cell
  • the first access network device migrating the terminal device to the third serving cell includes: the first access network device from the stored and stored
  • the third serving cell is selected from one or more serving cells adjacent to the first serving cell; the first access network device migrates the terminal device to the third serving cell.
  • the first access network device stores the cell identifier of the virtual cell, and the first measurement result includes the cell identifier of the virtual cell.
  • the first access network device stores cell identifiers of one or more serving cells adjacent to the first serving cell, and the first measurement result Including the cell identifier of the virtual cell, where the cell identifier of the virtual cell is different from the cell identifier of the one or more serving cells.
  • the virtual cell does not provide access services for terminal equipment.
  • the difference between the standard of the second serving cell and the standard of the first serving cell includes: the standard supported by the first serving cell is Long Term Evolution LTE standard, the standard supported by the second serving cell is the standard in new wireless NR; or, the standard supported by the first serving cell is the standard in NR, and the standard supported by the second serving cell is LTE format in .
  • the virtual cell and the second serving cell are cells of the first access network device, and the method further includes: the first access network The device sends a downlink signal of the virtual cell, where the downlink signal includes the downlink reference signal of the virtual cell.
  • the downlink reference signal includes a cell reference signal CRS.
  • the downlink signal further includes one or more of a primary synchronization signal PSS, a secondary synchronization signal SSS, and a system information block, where the system information block includes instructions indicating the The virtual cell does not provide indication information for terminal equipment to access services.
  • the downlink reference signal is a demodulation reference signal DMRS
  • the downlink signal is a synchronization signal and a physical broadcast channel block SSB
  • the SSB includes the DMRS.
  • the method further includes: the first access network device sends indication information to a terminal device accessing the second serving cell through the second serving cell ; wherein, the indication information is used to indicate the available time-frequency resources of the terminal equipment accessing the second serving cell, the available time-frequency resources and the time-frequency occupied by the downlink signal of the virtual cell The resources are different; or it is used to instruct the terminal equipment accessing the second serving cell not to use the time-frequency resources occupied by the virtual cell to send the downlink signal.
  • an embodiment of the present application provides a communication apparatus, the communication apparatus includes a sending unit, a receiving unit, and a relocation unit, wherein: the sending unit is configured to send a first measurement to a terminal device through a first serving cell Control information, where the first measurement control information is used to instruct the terminal device to measure the quality of the downlink reference signal of the virtual cell, the downlink reference signal of the first serving cell and the downlink reference signal of the virtual cell
  • the center frequency of the virtual cell is the same, the frequency range of the virtual cell is included in the frequency range of the second serving cell, and the frequency range of the second serving cell and the first serving cell overlaps;
  • the standard is different from the standard of the first serving cell, or the standard of the second serving cell is the same as the standard of the first serving cell, and the downlink reference signal of the second serving cell is the same as the standard of the first serving cell.
  • the center frequencies of the downlink reference signals of a serving cell are different; the virtual cell and the second serving cell are cells of the first access network device, or the virtual cell and the second serving cell
  • the cell is a cell of the second access network device;
  • the receiving unit is configured to receive a first measurement report from the terminal device, where the first measurement report indicates the quality of the downlink reference signal of the virtual cell;
  • the migration a unit configured to migrate the terminal device to a third serving cell when the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell, and the third serving cell
  • the standard of the cell is the same as that of the first serving cell, and the center frequency of the downlink reference signal of the third serving cell and the first serving cell is different, or the third serving cell is different from the first serving cell
  • the community system is different.
  • the migration unit is specifically configured to: send second measurement control information to the terminal device, where the second measurement control information is used to instruct the terminal device to measure the the quality of the downlink reference signal of the third serving cell; receiving a second measurement report from the terminal device, the second measurement report indicating the quality of the downlink reference signal of the third serving cell; according to the second measurement report Migrating the terminal equipment to the third serving cell.
  • the first access network device stores cell identifiers of one or more serving cells adjacent to the first serving cell, and the one or more serving cells
  • the cell identifier of the serving cell includes the cell identifier of the third serving cell
  • the migrating unit is specifically configured to: select the third serving cell from one or more serving cells stored adjacent to the first serving cell cell; migrating the terminal device to the third serving cell.
  • the first access network device stores the cell identifier of the virtual cell, and the first measurement result includes the cell identifier of the virtual cell.
  • the first access network device stores cell identifiers of one or more serving cells adjacent to the first serving cell, and the first measurement result Including the cell identifier of the virtual cell, where the cell identifier of the virtual cell is different from the cell identifier of the one or more serving cells.
  • the virtual cell does not provide access services for terminal equipment.
  • the difference between the standard of the second serving cell and the standard of the first serving cell includes: the standard supported by the first serving cell is Long Term Evolution LTE standard, the standard supported by the second serving cell is the standard in new wireless NR; or, the standard supported by the first serving cell is the standard in NR, and the standard supported by the second serving cell is LTE format in .
  • the virtual cell and the second serving cell are cells of the first access network device, and the sending unit is further configured to: send the virtual cell
  • the downlink signal includes the downlink reference signal of the virtual cell.
  • the downlink reference signal includes a cell reference signal CRS.
  • the downlink signal further includes one or more of PSS, SSS, and a system information block, where the system information block includes an indication that the virtual cell is not a terminal device Provides instructions for accessing services.
  • the downlink reference signal is a DMRS
  • the downlink signal is an SSB
  • the SSB includes the DMRS
  • the sending unit is further configured to: send indication information to a terminal device accessing the second serving cell through the second serving cell; wherein the indication The information is used to indicate the available time-frequency resources of the terminal equipment accessing the second serving cell, where the available time-frequency resources are different from the time-frequency resources occupied by the downlink signal of the virtual cell; or used for Instructing the terminal device accessing the second serving cell not to use the virtual cell to send the time-frequency resources occupied by the downlink signal.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, the processor is coupled with a memory; the memory is used to store program codes; the processor is used to store program codes from the The program code is called in the memory to execute the method described in the first aspect or any possible implementation manner of the first aspect.
  • embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium is used to store instructions, and when the instructions are executed, the first aspect or any one of the first aspect is executed. A possible implementation of the described method is implemented.
  • an embodiment of the present application provides a chip system, where the chip system includes at least one processor and an interface, configured to support the first access network device to implement the functions involved in the first aspect, such as receiving or processing At least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the first access network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the first access network device may determine, according to the first measurement report, that the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell. interference problem.
  • the first access network device migrates the terminal device to the third server cell, which can prevent the terminal device from being subjected to near-far interference.
  • FIGS. 1A-1B are schematic diagrams of some network architectures provided by embodiments of the present application.
  • FIGS. 2A-2B are schematic diagrams of further network architectures provided by embodiments of the present application.
  • FIG. 3-5 are schematic diagrams of further network architectures provided by embodiments of the present application.
  • FIGS. 6A-6B are schematic diagrams of further network architectures provided by embodiments of the present application.
  • FIG. 10 is a flowchart of a method for measuring a cell provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of frequency ranges of a first serving cell, a virtual cell, and a second serving cell according to an embodiment of the present application;
  • FIG. 12 is a schematic diagram of another frequency range of a first serving cell, a virtual cell, and a second serving cell provided by an embodiment of the present application;
  • FIGS. 13-20 are schematic diagrams of further network architectures provided by embodiments of the present application.
  • FIG. 21 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the embodiments of the present application can be applied to the network architecture shown in FIG. 1A .
  • the network architecture shown in FIG. 1A is the network architecture of a wireless communication system.
  • the network architecture usually includes terminal equipment and access network equipment. This constitutes a limitation on the embodiments of the present application.
  • FIG. 1A it includes an access network device 1, an access network device 2, and one or more terminal devices (in the figure, terminal device 1 and terminal device 2 are used as examples, terminal device 1 camps in LTE cell 1, and terminal device 2 Camped in NR cell 1).
  • the LTE cell 1 corresponds to the access network device 1, and it can be understood that the access network device 1 provides the LTE cell 1, and provides communication services for the terminal device 1 through the LTE cell 1.
  • the NR cell 1 corresponds to the access network device 2, and it can be understood that the access network device 2 provides the NR cell 1, and provides the terminal device 2 with a communication service through the NR cell 1.
  • the dotted line in FIG. 1A represents the coverage of the cell, and the description can be referred to for the same labels in the following figures.
  • the LTE cell is a cell using the LTE communication standard
  • the NR cell is a cell using the NR communication standard.
  • the frequency ranges of the LTE cell 1 and the NR cell 1 overlap.
  • the access network device 1 can send a signal to one or more terminal devices (an example is terminal device 1) camping in the LTE cell 1 through the LTE cell 1, and the access network device 2 can send a signal through the LTE cell 1 NR cell 1 transmits a signal to one or more terminal devices (eg, terminal device 2 ) camped in NR cell 1 .
  • the terminal device 1 may receive the signal sent by the access network device 2, which is very important for the communication between the terminal device 1 and the access network device 1. cause interference, so that the signal can be considered as an interfering signal.
  • the terminal device 1 will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device to interfere with other accesses in the LTE cell 1.
  • the uplink signal sent by the terminal equipment is not limited to
  • FIG. 1B it is a schematic diagram of still another network architecture provided by an embodiment of the present application.
  • FIG. 1B it includes an access network device 4, an access network device 5 and one or more terminal devices (in the figure, the terminal device 6 and the terminal device 5 are taken as examples, the terminal device 6 is camped in the LTE cell 6, and the terminal device 5 Camped in LTE cell 7).
  • the LTE cell 6 corresponds to the access network device 4
  • the access network device 4 provides the LTE cell 6 and provides communication services for the terminal device 6 through the LTE cell 6 .
  • the LTE cell 7 corresponds to the access network device 5 , and it can be understood that the access network device 5 provides the LTE cell 7 and provides communication services for the terminal device 5 through the LTE cell 7 .
  • the LTE cell 6 and the LTE cell 7 are cells of the same standard, but the center frequencies of the downlink reference signals of the LTE cell 6 and the LTE cell 7 are different, and the frequency ranges of the LTE cell 6 and the LTE cell 7 overlap.
  • the frequency range of LTE cell 6 is 2010MHz-2020MHz, and the center frequency of its downlink reference signal is 2015MHz
  • the frequency range of LTE cell 7 is 2010MHz-2040MHz
  • the center frequency of its downlink reference signal is 2020MHz.
  • cells with the same standard but different center frequencies of downlink reference signals may be called same-standard and inter-frequency cells; that is, LTE cell 6 and LTE cell 7 are of the same standard Inter-frequency cell.
  • Two cells with the same center frequency of the downlink reference signal may be called intra-frequency cells.
  • the access network device 4 can send a signal to one or more terminal devices (an example is the terminal device 6 ) camping in the LTE cell 6 through the LTE cell 6 , and the access network device 5 can send a signal through the LTE cell 6 .
  • the LTE cell 7 transmits a signal to one or more terminal devices (eg terminal device 5 ) camped in the LTE cell 7 .
  • the terminal device 6 may receive the signal sent by the access network device 5.
  • the communication between the terminal device 6 and the access network device 4 is interfered, so that the signal can be regarded as an interference signal.
  • the terminal device 6 will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device to interfere with other accesses in the LTE cell 6.
  • the uplink signal sent by the terminal equipment may also be both NR cells, and the two NR cells are the same standard and different frequency cells.
  • the formation method of the near-far interference suffered by the terminal device 6 may refer to the above-mentioned method, which will not be repeated here.
  • FIG. 2A it is a schematic diagram of another network architecture provided by an embodiment of the present application.
  • the access network device 3 and one or more terminal devices are included (in the figure, the terminal device 3 and the terminal device 4 are taken as examples, the terminal device 3 is camped in the LTE cell 2, and the terminal device 4 is camped in the NR cell 2) .
  • the LTE cell 2 corresponds to the access network device 3, and it can be understood that the access network device 3 provides the LTE cell 2, and provides communication services for the terminal device 3 through the LTE cell 2.
  • the NR cell 2 corresponds to the access network device 3, and it can be understood that the access network device 3 provides the NR cell 2, and provides a communication service for the terminal device 4 through the NR cell 2.
  • the access network device 3 can send a signal to one or more terminal devices (an example is the terminal device 3 ) camping in the LTE cell 2 through the LTE cell 2 , and the access network device 3 can send a signal through the LTE cell 2 .
  • NR cell 2 transmits a signal to one or more terminal devices (eg terminal device 4 ) camped in NR cell 2 .
  • the terminal device 3 may receive the signal sent by the access network device 3, and the signal may affect the transmission between the terminal device 3 and the access network device 3.
  • the communication of the LTE cell 2 causes interference, so the signal can be regarded as an interference signal.
  • the terminal device 3 will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device to interfere with other accesses in the LTE cell 2.
  • the uplink signal sent by the terminal equipment is not limited to
  • FIG. 2B it is a schematic diagram of still another network architecture provided by an embodiment of the present application.
  • the access network device 6 and one or more terminal devices are included (in the figure, the terminal device 7 and the terminal device 8 are taken as examples, the terminal device 7 is camped on the NR cell 3, and the terminal device 8 is camped on the NR cell 4) .
  • the NR cell 3 corresponds to the access network device 7 , and it can be understood that the access network device 6 provides the NR cell 3 and provides communication services for the terminal device 7 through the NR cell 3 .
  • the NR cell 4 corresponds to the access network device 6 , and it can be understood that the access network device 6 provides the NR cell 4 and provides the terminal device 8 with a communication service through the NR cell 4 .
  • NR cell 3 and NR cell 4 are cells of the same standard, but the center frequencies of the downlink reference signals of NR cell 3 and NR cell 4 are different, and the frequency ranges of NR cell 3 and NR cell 4 overlap.
  • NR cell 3 and NR cell 4 are the same standard and different frequency cells.
  • the access network device 6 can send a signal to one or more terminal devices (an example is the terminal device 7 ) camping in the NR cell 3 through the NR cell 3 , and the access network device 6 can send a signal through the NR cell 3 .
  • the NR cell 4 transmits a signal to one or more terminal devices (eg terminal device 8 ) camped in the NR cell 4 .
  • the terminal device 7 may receive a signal sent by the access network device 6, and the signal may affect the transmission between the terminal device 7 and the access network device 6.
  • the communication of the NR cell 3 causes interference, so that the signal can be regarded as an interference signal.
  • the terminal device 7 will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device to interfere with other accesses in the NR cell 3.
  • the uplink signal sent by the terminal equipment is not limited to the terminal equipment.
  • the two cells provided by the access network device 6 may also be both LTE cells, and the two LTE cells are the same standard and different frequency cells.
  • the formation method of the near-far interference suffered by the terminal device 7 may refer to the method described above, and details are not described herein again.
  • the wireless communication systems mentioned in the embodiments of the present application include, but are not limited to: a narrowband Internet of Things (narrow band-internet of things, NB-IoT), a global system for mobile communications (GSM) , Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 (code division multiple access, CDMA2000), Time division-synchronization code division multiple access (TD-SCDMA), long term evolution (LTE), 5th-generation (5G) systems and future mobile communications system.
  • GSM narrowband Internet of Things
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time division-synchronization code division multiple access
  • LTE long term evolution
  • 5G 5th-generation
  • the access network device involved in the embodiments of the present application may be a base station (Base Station, BS).
  • the base station may provide communication services to multiple terminal devices, and multiple base stations may also provide communication services to the same terminal device.
  • a base station is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the base station equipment can be a base station, a relay station or an access point.
  • the base station can be a base transceiver station (Base Transceiver Station, BTS) in a Global System for Mobile Communication (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) network, or a broadband code division
  • BTS Base Transceiver Station
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • the NB NodeB in the Multiple Access (Wideband Code Division Multiple Access, WCDMA) may also be the eNB or the eNodeB (Evolutional NodeB) in the Long Term Evolution (Long Term Evolution, LTE).
  • the base station device may also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario.
  • CRAN Cloud Radio Access Network
  • the base station equipment may also be the base station equipment in the future 5G network or the access network equipment in the future evolved PLMN network.
  • the base station device may also be a wearable device or a vehicle-mounted device.
  • the device for implementing the function of the access network device may be the access network device; it may also be a device capable of supporting the access network device to realize the function, such as a chip system, and the device may be installed in the access network device. in the network device.
  • the terminal device involved in the embodiments of the present application may also be referred to as a terminal, which may be a device with a wireless transceiver function.
  • the terminal devices involved in the embodiments of the present application may include various user equipment (UE) with wireless communication functions, access terminals, UE units, UE stations, mobile stations, mobile stations, remote stations, and remote terminals , mobile device, UE terminal, terminal, wireless communication device, UE proxy or UE device, etc.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or terminal devices in future evolved PLMN networks, etc.
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a communication standard (or simply a standard) is a network standard adopted by a mobile terminal for data communication.
  • the communication standard includes GSM and CDMA.
  • the communication standards include Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), WCDMA, CDMA2000 (Code Division Multiple Access 2000).
  • the communication standards include Time Division Duplex Long Term Evolution (Long Term Evolution, Time-Division Duplex, LTE-TDD) and Frequency Division Duplex Long Term Evolution (Long Term Evolution, Frequency -division duplex, LTE-FDD) two standards, of which LTE-TDD is also called TD-LTE.
  • LTE-TDD Time Division Duplex Long Term Evolution
  • LTE-FDD Frequency Division Duplex Long Term Evolution
  • LTE-FDD Frequency Division Duplex Long Term Evolution
  • SA standalone
  • two adjacent cells may support different communication standards.
  • FIG. 3 it is a schematic diagram of still another network architecture provided by an embodiment of the present application.
  • a plurality of communication cells may be included in the area shown in FIG. 3 , and these communication cells use the LTE communication standard, and the LTE network has full coverage.
  • DSS Dynamic Spectrum Sharing
  • the cell deployment range of the NR communication standard will be gradually increased.
  • FIG. 3 it is a schematic diagram of still another network architecture provided by an embodiment of the present application.
  • the area shown in FIG. 4 includes multiple communication cells, some of which use the LTE communication standard.
  • FIG. 5 it is a schematic diagram of still another network architecture provided by an embodiment of the present application.
  • the area shown in FIG. 5 includes multiple communication cells. Among these communication cells, the communication cells in the left area use the LTE communication standard, and the communication cells in the right area use the NR communication standard.
  • the evolution of NR through the LTE concession spectrum method that is to say, the frequency occupied range of the LTE communication standard is gradually reduced, and the frequency occupied range of the NR communication standard is gradually increased.
  • FIG. 1A and FIG. 2A for the network architecture composed of adjacent LTE cells and NR cells in FIG. 5 .
  • FIG. 6A-FIG. 6B it is a schematic diagram of still other network architectures provided by the embodiments of the present application.
  • the area shown in FIG. 6A-FIG. 6B includes multiple communication cells, and these communication cells deploy the full coverage LTE network and NR network through the function of DSS.
  • the LTE network can be dynamically selected based on the load (it can be understood as not using the LTE communication standard for communication, as shown in Figure 6A) or closed.
  • the NR network (which can be understood as not using the NR communication standard for communication, as shown in Figure 6B), forms a scene where LTE discontinuous flower arrangement or NR discontinuous flower arrangement occurs in some areas, some access network equipment, or some time.
  • LTE discontinuous flower arrangement or NR discontinuous flower arrangement occurs in some areas, some access network equipment, or some time.
  • FIG. 6B reference may be made to the network architectures shown in FIG. 1A and FIG. 2A for the network architecture composed of the adjacent NR cells that support DSS and the LTE cells that do not support DSS.
  • FIG. 7 it is a schematic diagram of still another network architecture provided by an embodiment of the present application.
  • the network architecture shown in FIG. 7 may take the network architecture shown in FIG. 1A as an example.
  • the network architecture shown in FIG. 7 includes the antenna 1 of the access network device (refer to the access network device 1 in FIG. 1A ) and the antenna of the access network device (refer to the access network device 2 in FIG. 1A ) 2, and terminal device 1 (refer to terminal device 1 in FIG. 1A ).
  • antenna 1 provides communication signals for terminal equipment accessing the LTE cell
  • antenna 2 provides communication signals for terminal equipment accessing the NR cell.
  • the access network devices to which the antenna 1 and the antenna 2 belong may be the same access network device, or may be different access network devices.
  • both the LTE cell and the NR cell are located in the frequency band F1, and the terminal device 1 is originally connected to the LTE cell.
  • Antenna 1 sends a signal (ie, a service signal) to terminal equipment 1 accessing the LTE cell through the LTE cell, and antenna 2 can send a signal to one or more terminal equipment accessing the NR cell through the NR cell.
  • antenna 2 sends a signal to one or more terminal devices through an NR cell
  • terminal device 1 may receive a signal sent by antenna 2, which is a neighboring cell signal received by terminal device 1.
  • the communication between the antennas 1 causes interference, so that the signal can be regarded as an interfering signal.
  • the service signal sent by the LTE cell received by the terminal equipment 1 is getting weaker and weaker, and the service signal sent by the NR cell (which can be understood as an interference signal )stronger.
  • the same frequency measurement and handover in the same communication system ensures that the mobile terminal can always be in the cell with the strongest signal in the same communication system, and the terminal device cannot perform cross-mode without additional power consumption. of the same frequency measurement. Therefore, the terminal device will keep camping on the LTE cell until a certain condition is met (for example, the signal quality of the serving cell is higher than the preset value).
  • the LTE cell where it camps is the far point
  • the adjacent NR cell is the near point, which will cause a near-far effect, that is, the service signal strength provided by the LTE cell is weaker than the signal strength of the neighboring cell of the NR cell.
  • the signal of the neighboring cell of the cell will cause strong interference to the service signal received by the terminal device.
  • the terminal device 1 in order to ensure that the antenna 1 of the LTE cell can normally receive the uplink signal sent by the terminal device 1, the terminal device 1 will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device to interfere with other terminals accessing the LTE cell.
  • the upstream signal sent by the device in order to ensure that the antenna 1 of the LTE cell can normally receive the uplink signal sent by the terminal device 1, the terminal device 1 will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device to interfere with other terminals accessing the LTE cell.
  • the carrier network that provides communication is a multi-frequency network.
  • the same-frequency signal received by the terminal equipment is poor, it will trigger inter-frequency/inter-system measurement and switch to other frequency points, so the problem of the near-far effect of the terminal will remain. It will be released after measurement and switching between different frequencies/different systems.
  • FIG. 8 it is a schematic diagram of still another network architecture provided by an embodiment of the present application.
  • the LTE cell 1 the LTE cell 2
  • the LTE cell 3 the LTE cell 3
  • the NR cell 1 the terminal device 1 .
  • the LTE cell 1 and the NR cell 1 are both located in the frequency band F1, and the E cell 2 and the LTE cell 3 are both located in the frequency band F2.
  • the terminal equipment accesses the LTE cell 1.
  • the communication signals sent through LTE cell 2, LTE cell 3 and NR cell 1 are all neighbor cell signals for terminal device 1, but because the signals sent through LTE cell 2 and LTE cell 3 are not the same as the signals sent through LTE cell 1
  • the frequency band, the signals sent through LTE cell 2 and LTE cell 3 are not interference signals for terminal device 1; the communication signal sent through NR cell 1 is in the same frequency band as that sent through LTE cell 1, so the communication signal sent through NR cell 1 is in the same frequency band.
  • the signal is an interfering signal for the terminal device 1 .
  • the service signal sent by LTE cell 1 received by terminal equipment 1 is getting weaker and weaker, and the neighboring cell signal ( It can be understood as the interference signal) is getting stronger and stronger.
  • the signal quality of the NR cell 1 received by the terminal device 1 is stronger than that of the LTE cell 1, which will trigger a near-far effect.
  • the terminal device 1 since the signal quality of the serving cell (LTE cell 1) is higher than or equal to the preset value, the terminal device 1 will remain camped in LTE cell 1, on the right of the intra-frequency boundary, intra-system inter-frequency/inter-system Within this area to the left of the handover boundary, the terminal device 1 will continue to be affected by the near-far effect.
  • the signal quality received by the terminal device 1 in the LTE cell 1) is lower than the preset value, and the access network device (the access network device corresponding to the LTE cell 1) will trigger the The terminal device 1 performs intra-system inter-frequency/inter-system switching.
  • the terminal device 1 may be handed over to the LTE cell 3 . After the handover, since the LTE cell 3 and the NR cell 1 are located in different frequency bands, the terminal device 1 will no longer be affected by the near-far effect.
  • terminal equipment is also easily affected by near-far interference.
  • LTE cell 6 and the LTE cell 7 in FIG. 1B as an example, in the process of performing the same-frequency measurement by the terminal device 6, since the center frequencies of the downlink reference signals of the LTE cell 6 and the LTE cell 7 are different, the terminal device 6 cannot. The downlink reference signal of the LTE cell 7 is detected. Therefore, the terminal device 6 will keep camping on the LTE cell 6 until a certain condition is satisfied (for example, the signal quality of the LTE cell 6 is higher than a preset value).
  • the LTE cell 6 where it is stationed is the far point, and the adjacent LTE cell 7 is the near point, which will cause a near-far effect, that is, the service signal strength provided by the LTE cell 6 is weaker than that of the neighboring cells of the LTE cell 7.
  • the strength of the signal, the neighboring cell signal of the LTE cell 7 will cause strong interference to the service signal received by the terminal device 6 .
  • the terminal device 6 in order to ensure that the LTE cell 6 can normally receive the uplink signal sent by the terminal device 6, the terminal device 6 will increase the power of its own transmitted signal, which will cause the uplink signal sent by the terminal device 6 to interfere with other terminals accessing the LTE cell 6.
  • the upstream signal sent by the device is the upstream signal sent by the device.
  • an LTE cell 4 will be newly built in the NR cell 1 (refer to the network architecture shown in FIG. 9 ).
  • the LTE cell 4 occupies part of the time-frequency resources originally belonging to the NR cell 1, and sends a downlink reference signal to the terminal device.
  • the terminal device can detect the existence of the LTE cell 4 and the signal quality of the LTE cell 4 through the downlink reference signal sent by the LTE cell 4 .
  • the signal quality of the LTE cell 4 can be regarded as the signal quality of the NR cell 1 .
  • the signal quality of the LTE cell 4 When the signal quality of the LTE cell 4 is higher than the signal quality of the LTE cell 1, the information of the LTE cell 4 will be included in the intra-frequency measurement report fed back by the terminal device to the first access network device. Among them, the signal quality of LTE cell 4 is higher than the signal quality of LTE cell 1, indicating that the signal quality of neighboring NR cell 1 with the same frequency and different standards as LTE cell 1 is stronger than the service signal of LTE cell 1. interference problem.
  • the access network device 1 may determine, according to the information of the LTE cell 4 in the intra-frequency measurement report, that the adjacent cell signals of the same frequency and different standards in the current environment where the mobile terminal is located are stronger than the serving signals. Next, the access network device 1 migrates the terminal device 1 to a cell of the same standard and a different frequency or a cell of a different standard, which can avoid the problem of near-far interference.
  • the first access network device in the following content may be the access network device 1 in FIG. 9
  • the first serving cell may be the LTE cell 1 in FIG. 9
  • the virtual cell may be the LTE cell in FIG. 9
  • the cell 4 and the second serving cell may be the NR cell 1 in FIG. 9
  • the terminal device may be the terminal device 1 in FIG. 9 .
  • the serving cell is a cell that can provide services such as access and uplink and downlink data transmission for the terminal device, and may also be referred to as a normal cell or a cell.
  • a virtual cell is a cell that only sends downlink signals to terminal equipment to facilitate the terminal equipment to perform cell measurement, and does not provide access or uplink and downlink data transmission services for terminal equipment.
  • a virtual cell may also be referred to as a virtual cell, a simulated cell, or the like.
  • the above names are only used to distinguish these two types of cells, and other names may also exist in the actual application process, which is not limited in this embodiment.
  • a first access network device sends first measurement control information to a terminal device through a first serving cell.
  • the first serving cell is a communication cell currently accessed (or referred to as camping) by the terminal device.
  • the first access network device sends the first measurement control information to the terminal device through the first serving cell. It should be noted that, during the process of camping on the first serving cell, the terminal equipment will continue to perform intra-frequency measurement according to the first measurement control information, and the intra-frequency measurement will not cause additional function consumption of the terminal equipment.
  • the first measurement control information includes indication information, where the indication information is used to indicate the type of the measurement event.
  • the types of measurement events may include A1 event (indicating that the signal quality of the serving cell is higher than a certain threshold), A2 event (indicating that the signal quality of the serving cell is lower than a certain threshold), and A3 event (indicating that the signal quality of the same-frequency neighbor cell is higher than a certain threshold) serving cell signal quality), etc.
  • the first measurement control information includes indication information indicating an A3 event.
  • the first measurement control information is used to instruct the terminal device to feed back the first measurement control information to the first access network device when the signal quality of the same-frequency neighboring cell is higher than the signal quality of the serving cell. measurement report.
  • the signal quality may also be understood as signal strength, and the reference signal receiving power (Reference Signal Receiving Power, RSRP) of a cell may be a reference indicator of signal quality.
  • RSRP Reference Signal Receiving Power
  • the signal quality may also have other reference indicators, which are not limited in this application.
  • the first measurement control information is used to instruct the terminal device to measure the quality of the downlink reference signal of the virtual cell.
  • the center frequency of the downlink reference signal of the first serving cell and the downlink reference signal of the virtual cell is the same. In this way, the terminal device can be instructed to perform intra-frequency detection according to the center frequency point of the downlink reference signal of the virtual cell, so that the terminal device can detect the virtual cell.
  • the frequency range of the virtual cell is included in the frequency range of the second serving cell, and the frequency range of the second serving cell and the first serving cell overlaps; the standard of the second serving cell is the same as that of the second serving cell.
  • the systems of the first serving cells are different (exemplarily, corresponding to the situation shown in FIG. 9 ).
  • the standard of the second serving cell is the same as the standard of the first serving cell, and the center frequency of the downlink reference signal of the second serving cell and the downlink reference signal of the first serving cell is the same points are different (exemplarily, corresponding to the situation shown in FIG. 1B ).
  • the communication standard supported by the first serving cell is the communication standard in LTE
  • the communication standard supported by the second serving cell is the communication standard in NR
  • the first measurement control information may include the center frequency and measurement bandwidth of the downlink reference signal of the cell.
  • the center frequency of the downlink reference signal of the cell is the same as the center frequency of the downlink reference signal of the first serving cell and the virtual cell
  • the measurement bandwidth is the bandwidth of the virtual cell.
  • the bandwidth of the virtual cell is one of 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, and 20MHz.
  • the first frequency range can be determined according to the center frequency point and the measurement bandwidth of the downlink reference signal of the cell, and the first frequency range is the same as the frequency range of the virtual cell.
  • FIG. 11 it is a schematic diagram of frequency ranges of a first serving cell, a virtual cell, and a second serving cell according to an embodiment of the present application.
  • the center frequencies of the downlink reference signals of the first serving cell and the virtual cell are the same.
  • the frequency ranges of the second serving cell and the first serving cell overlap.
  • the frequency ranges of the first serving cell and the second serving cell may be the same, for example, both may be 2600MHz-2620MHz.
  • the frequency range of the first serving cell may also be different from the frequency range of the second serving cell, for example, the frequency range of the first serving cell is 2600MHz-2620MHz, and the frequency range of the second serving cell is 2600MHz-2640MHz.
  • the communication standard supported by the first serving cell is the communication standard in NR
  • the communication standard supported by the second serving cell is the communication standard in LTE.
  • the first measurement control information may include a synchronization signal and a center frequency of a downlink reference signal (which may be specifically a demodulation reference signal (Demodulation Reference Signal, DMRS)) in a physical broadcast channel block (SSB).
  • the center frequency of the downlink reference signal in the included SSB is the same as the center frequency of the downlink reference signal in the SSB of the first serving cell and the center frequency of the downlink reference signal in the SSB of the virtual cell.
  • the measurement bandwidth for intra-frequency measurement is 20 resource blocks (Resource Block, RB)
  • the first measurement control information may not need to include measurement bandwidth information.
  • the SSB of the virtual cell is 20 RBs, and the bandwidth of the virtual cell may have various values, which are not limited in this embodiment of the present application.
  • the first frequency range can be determined according to the center frequency point of the downlink reference signal in the SSB, and the first frequency range is the same as the frequency range of the virtual cell.
  • FIG. 12 it is a schematic diagram of another frequency range of a first serving cell, a virtual cell, and a second serving cell provided by an embodiment of the present application.
  • the center frequency of the downlink reference signal in the SSB of the first serving cell is the same as the center frequency of the downlink reference signal in the SSB of the virtual cell.
  • the frequency ranges of the second serving cell and the first serving cell overlap.
  • the frequency ranges of the first serving cell and the second serving cell may be the same, for example, both may be 2600MHz-2620MHz.
  • the frequency range of the first serving cell may also be different from the frequency range of the second serving cell, for example, the frequency range of the second serving cell is 2600MHz-2620MHz, and the frequency range of the first serving cell is 2600MHz-2640MHz.
  • the first access network device may generate the first measurement control information according to the center frequency (possibly also including the measurement bandwidth) of the downlink reference signal of the virtual cell sent by the second access network device.
  • the second access network device when constructing a virtual cell, may construct the virtual cell according to the center frequency and measurement bandwidth of the downlink reference signal of the first serving cell; or may construct the virtual cell according to the SSB of the first serving cell.
  • the center frequency of the downlink reference signal constructs a virtual cell.
  • the second access network device sends a signal to the terminal device through the virtual cell and the second serving cell.
  • the virtual cell may be understood as a virtual cell or a simulated cell constructed by the second access network device.
  • the purpose of constructing the virtual cell is mainly to enable the terminal equipment to discover the virtual cell and measure the signal quality of the virtual cell in the process of performing intra-frequency measurement.
  • the existence of the virtual cell may approximately represent the existence of the second serving cell of the same frequency and different standards.
  • the signal quality of the virtual cell may approximately represent the signal quality of the second serving cell of the same frequency and different standards.
  • the purpose of constructing a virtual cell is not to provide access services (or communication services) to terminal equipment.
  • the second access network device sends a downlink signal through the virtual cell, where the downlink signal includes the downlink reference signal of the virtual cell.
  • the downlink signal is to enable the terminal equipment to discover the virtual cell and to detect the signal quality of the virtual cell.
  • the second access network device sends a communication signal through the second serving cell, and the communication signal is for providing a communication service to other terminal devices accessing the second serving cell.
  • the signals sent by the second access network device through the virtual cell and the second serving cell are all neighbor cell signals.
  • the second serving cell is a communication cell of a different standard (or a different-frequency cell of the same standard)
  • the terminal device cannot detect the signal sent by the second access network device through the second serving cell.
  • the time-frequency resources occupied by the signals (eg, downlink reference signals) sent by the second access network device through the virtual cell and the time-frequency resources occupied by the signals sent through the second serving cell different. In this way, it can be avoided that the communication signal sent through the second serving cell interferes with the downlink reference signal sent through the virtual cell, thereby affecting the measurement result of the intra-frequency measurement.
  • the signals eg, downlink reference signals
  • the second access network device sends indication information to a terminal device accessing the second serving cell through the second serving cell, where the indication information is used to instruct the access to the second serving cell
  • Available time-frequency resources of the terminal equipment of the serving cell are different from the time-frequency resources occupied by the downlink signal of the virtual cell; or used to indicate the access to the second serving cell.
  • the terminal device does not use the time-frequency resources occupied by the virtual cell to send the downlink signal.
  • the indication manner of the indication information may include dynamic scheduling indication and semi-static resource indication.
  • the dynamic scheduling indication means that the second access network device sends DCI (Downlink Control Information) information (that is, it is understood as indication information) through a physical downlink control channel (Physical Downlink Control Channel, PDCCH) in the second serving cell.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the DCI information It is used to indicate the available time-frequency resources of the terminal equipment accessing the second serving cell, where the available time-frequency resources are different from the time-frequency resources occupied by the virtual cell for sending the downlink signal.
  • the semi-static resource indication means that the second access network device sends an RRC reconfiguration message (that is, it is understood as indication information) in the second serving cell, and the RRC reconfiguration message is used to instruct the access to the second serving cell.
  • the terminal equipment does not use the time-frequency resources occupied by the virtual cell to transmit the downlink signal.
  • the second access network device may use any indication manner, and may also employ different indication manners for different channels of the virtual cell.
  • the virtual cell does not provide access services for terminal devices.
  • the second access network device does not need to allocate more time-frequency resources for the virtual cell to support the communication service of the terminal device, and can reserve as many time-frequency resources as possible for the second serving cell to support access to the first The communication service of the terminal equipment of the two serving cells.
  • the downlink signal sent through the virtual cell is further introduced below.
  • the communication standard supported by the virtual cell is the communication standard in LTE.
  • the downlink signal includes a downlink reference signal of the virtual cell.
  • the downlink reference signal includes a cell reference signal (Cell-specific Reference Signal, CRS).
  • CRS Cell-specific Reference Signal
  • the CRS is used by the terminal equipment to detect the signal quality of the virtual cell.
  • the downlink signal also includes a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), a physical broadcast channel (Physical Broadcast Channel, PBCH) and a system information block (System Information) One or more items of Block, SIB)1 information.
  • PSS and SSS are used by terminal equipment to discover (or detect) virtual cells.
  • the physical broadcast channel is used by end devices to detect system information blocks.
  • the system information block carries indication information (for example, a "Barred" identifier), where the indication information is used to indicate that the virtual cell does not provide access services for the terminal device.
  • the system information block includes system information, and there may be multiple system information blocks in one cell, and the information carried by these system information blocks is different, for example, SIB1.
  • SIB1 mainly carries the configuration information of some cells, such as random access related information, PDCCH related information, other information block related information, UE access cell information, cell identification information and other information.
  • the second access network device only sends PSS, SSS, and CRS through the virtual cell, so as to realize the purpose of not providing access services for the terminal in the virtual cell.
  • the communication standard supported by the virtual cell is the communication standard in NR.
  • the downlink reference signal in the downlink signal is a demodulation reference signal (DMRS)
  • the downlink signal is a synchronization signal and a physical broadcast channel block (SSB)
  • the SSB includes the DMRS.
  • the SSB is used for the terminal equipment to discover (or detect) the virtual cell, and to detect the signal quality of the virtual cell.
  • the radio frequency of the terminal equipment searches the PSS and SSS in the SSB at the center frequency point of the SSB to discover the cell, and detects the signal quality of the virtual cell through the demodulation reference signal in the SSB.
  • step S101 and step S102 are not limited in sequence.
  • the terminal device measures the neighbor cell signal according to the first measurement control information.
  • the terminal device may determine, according to the first measurement control information, the measurement event and the first frequency range where the neighbor cell signal to be measured is located.
  • the terminal device measures adjacent cell signals in the first frequency range, determines the cell identity and signal quality of the measured adjacent cells, and obtains one or more measurement results.
  • the terminal device generates a first measurement report according to the measurement result.
  • the first measurement report includes information of one or more cells detected by the terminal device, and the quality of the downlink reference signal of the one or more cells is higher than that of the first serving cell. the quality of. In some embodiments, the first measurement report includes information about all cells whose quality of downlink reference signals is higher than that of the first serving cell.
  • the first measurement control information includes indication information indicating the maximum value (eg, N) of the number of neighbor cells in the first measurement report. Then, the first measurement report contains information of N cells at most. The signal quality of the included N cells is stronger than the signal quality of the remaining measured neighboring cells.
  • the first measurement report indicates the quality of the downlink reference signal of the virtual cell.
  • the first measurement report includes the measurement result of the virtual cell, indicating that the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell.
  • the signal quality of the virtual cell may be regarded as the signal quality of the second serving cell. In this case, the signal sent through the second serving cell will affect the communication between the terminal device and the first network device, which is likely to cause a problem of near-far interference.
  • the terminal device sends the first measurement report to the first access network device.
  • the first access network device migrates the terminal device to a third serving cell.
  • the third serving cell and the first serving cell have the same standard, and the center frequency of the downlink reference signal of the third serving cell and the first serving cell is different, or the third serving cell
  • the cell is of a different standard from the first serving cell. That is to say, the third serving cell and the first serving cell are the same standard and different frequency cells, or are different standard cells. It should be noted that the third serving cell may be the second serving cell, or may be another serving cell.
  • the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell
  • the above-mentioned first measurement report includes the information of the virtual cell, that is, the virtual cell
  • the quality of the downlink reference signal of the first serving cell is higher than the quality of the downlink reference signal of the first serving cell
  • the terminal equipment reports the information of the virtual cell
  • the first measurement report can implicitly indicate the downlink reference signal of the virtual cell.
  • the quality of the downlink reference signal is higher than the quality of the downlink reference signal of the first serving cell.
  • the preconditions for the first access network device to migrate the terminal device to the third serving cell may also exist in other situations. Some possible preconditions are described below.
  • the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell, and the quality of the downlink reference signal of the virtual cell is higher than that of the first measurement report.
  • the first access network device relocates the terminal device to the third serving cell. The above situation shows that the neighboring signal of the second serving cell with the same frequency and different standards as the first serving cell is the strongest among the detected neighboring signals, and the neighboring signal of the second serving cell has the greatest effect on the signal of the first serving cell.
  • the interference of the service signal is strong, and in this case, it is very easy to cause the problem of near and far interference.
  • the first access network device migrates the terminal device to a third serving cell.
  • the preset value may be a preset relative threshold value relative to the signal quality of the camped cell, or may be a preset absolute threshold value.
  • the relocation of the terminal device to the third serving cell by the first access network device may be: the first access network device switches the terminal device to the third serving cell.
  • this manner may be that the first access network device redirects the terminal device to the third serving cell.
  • the first access network device to migrate the terminal device to the third serving cell.
  • the first access network device sends second measurement control information to the terminal device, where the second measurement control information is used to instruct the terminal device to measure the downlink reference of the third serving cell signal quality; the first access network device receives a second measurement report from the terminal device, the second measurement report indicates the quality of the downlink reference signal of the third serving cell; the first access network The device relocates the terminal device to the third serving cell according to the second measurement report.
  • the second measurement report includes information about one or more cells of the same standard and different frequencies or cells of different standard systems that meet the measurement conditions.
  • the first access network device selects the third serving cell from the one or more same-standard and different-frequency cells or different-standard cells.
  • the first access network device stores cell identifiers of one or more serving cells adjacent to the first serving cell, and the cell identifiers of the one or more serving cells include the The cell identifier of the third serving cell, the first access network device migrating the terminal device to the third serving cell includes: the first access network device changing from the stored adjacent to the first serving cell
  • the third serving cell is selected from one or more serving cells of the first access network device; the first access network device migrates the terminal device to the third serving cell.
  • cell identifiers of one or more serving cells adjacent to the first serving cell may be stored in a neighbor cell list.
  • the cell identifier may be a physical cell identifier (Physical Cell Identifier, PCI).
  • the first access network device determines that the information of the virtual cell is included in the first measurement report are introduced.
  • the first access network device stores the cell identifier of the virtual cell, and the first measurement result includes the cell identifier of the virtual cell.
  • the first access network device may store a virtual cell list, where the virtual cell list includes cell identifiers of multiple preset virtual cells.
  • the first access network device stores cell identifiers of one or more serving cells adjacent to the first serving cell, and the first measurement result includes the cell identifiers of the virtual cells , the cell identifier of the virtual cell is different from the cell identifier of the one or more serving cells.
  • cell identifiers of one or more serving cells adjacent to the first serving cell may be stored in a neighbor cell list.
  • the preset cell identifiers of one or more cells that are adjacent to the first serving cell and that can support the communication service of the terminal device are stored in the neighbor cell list.
  • the cell identifier is different from the cell identifiers of the one or more serving cells, indicating that the virtual cell is not a serving cell.
  • the foregoing embodiment takes the network architecture corresponding to FIG. 1A as an example to introduce the implementation steps of a cell measurement method provided by the embodiment of the present application.
  • the method may also be applied to the network architecture corresponding to FIG. 1B .
  • an LTE cell 8 is newly built in the LTE cell 7 (refer to the network architecture shown in FIG. 13 ).
  • the LTE cell 8 can be regarded as the virtual cell described in the above content
  • the LTE cell 6 can be regarded as the first serving cell described in the above content
  • the LTE cell 7 can be regarded as the second serving cell described in the above content
  • the terminal equipment 6 can be regarded as the terminal equipment introduced in the above content.
  • the LTE cell 6 corresponds to the access network device 4
  • both the LTE cell 7 and the LTE cell 7 correspond to the access network device 5 .
  • the method may also be applied to the network architecture corresponding to FIG. 2A .
  • an LTE cell 5 is newly built in the NR cell 2 (refer to the network architecture shown in FIG. 14 ).
  • the LTE cell 5 can be regarded as the virtual cell introduced in the above content
  • the LTE cell 2 can be regarded as the first serving cell introduced in the above content
  • the NR cell 2 can be regarded as the second serving cell introduced in the above content
  • the terminal equipment 3 can be regarded as the terminal equipment introduced in the above content.
  • the LTE cell 5 , the LTE cell 2 and the NR cell 2 all correspond to the access network device 3 .
  • the operations performed by the first access network device (that is, the access network device 1 ) described above and the operations performed by the second access network device (that is, the access network device 2 ) are both performed by the access network device 3 .
  • the access network device 3 also sends downlink signals through the virtual cell.
  • the access network device 3 also sends a communication signal through the second serving cell.
  • the access network device 3 further sends, through the second serving cell, indication information to a terminal device accessing the second serving cell, where the indication information is used to indicate the access to the second serving cell.
  • indication information is used to indicate the access to the second serving cell.
  • Available time-frequency resources of the terminal equipment in the second serving cell where the available time-frequency resources are different from the time-frequency resources occupied by the downlink signal sent by the virtual cell; or used to instruct the access to the second serving cell
  • the terminal equipment does not use the time-frequency resources occupied by the downlink signals sent by the virtual cell.
  • the method may also be applied to the network architecture corresponding to FIG. 2B .
  • an NR cell 5 is newly built in the NR cell 4 (refer to the network architecture shown in FIG. 15 ).
  • the NR cell 5 can be regarded as the virtual cell described in the above content
  • the NR cell 3 can be regarded as the first serving cell described in the above content
  • the NR cell 4 can be regarded as the second serving cell described in the above content
  • the terminal equipment 7 can be regarded as the terminal equipment introduced in the above content.
  • the NR cell 4 , the NR cell 3 and the NR cell 5 all correspond to the access network device 6 .
  • the access network device 6 not only needs to perform the operations performed by the first access network device (that is, the access network device 1) described above, but also needs to perform the second access network device (that is, the access network device 2) described above. ) performed.
  • a virtual cell 1 can be deployed in an LTE cell adjacent to an NR cell supporting DSS (refer to the network architecture shown in FIG. 16 ), and the communication standard of the virtual cell 1 is the NR communication standard. That is to say, the LTE cell adjacent to the NR cell supporting DSS can be regarded as the second serving cell described above, and the NR cell supporting DSS adjacent to the LTE cell can be regarded as the first serving cell described above. service area.
  • a virtual cell 2 can be deployed in an NR cell adjacent to an LTE cell supporting DSS (see the network architecture shown in FIG. 17 ), and the communication standard of the virtual cell 2 is the LTE communication standard. That is to say, the DSS-supporting LTE cell adjacent to the NR cell can be regarded as the first serving cell described above, and the NR cell adjacent to the DSS-supporting LTE cell can be regarded as the second serving cell described above. service area.
  • a virtual cell 1 may be deployed in an LTE cell adjacent to the NR cell, and the communication standard of the virtual cell 1 is the NR communication standard.
  • a virtual cell 2 is deployed in the NR cell adjacent to the LTE cell, and the communication standard of the virtual cell 2 is the LTE communication standard (refer to the network architecture shown in FIG. 18 ). That is to say, for virtual cell 1, the LTE cell adjacent to the NR cell can be regarded as the second serving cell described above, and the NR cell adjacent to the LTE cell can be regarded as the first serving cell described above.
  • a service area for virtual cell 2, the LTE cell adjacent to the NR cell may be regarded as the first serving cell described in the above content, and the NR cell adjacent to the LTE cell may be regarded as the second serving cell described in the above content.
  • a virtual cell 2 can be deployed in an NR cell adjacent to an LTE cell supporting DSS (refer to the network architecture shown in FIG. 19 ), and the communication standard of the virtual cell 2 is the LTE communication standard. That is to say, the NR cell adjacent to the LTE cell supporting DSS can be regarded as the second serving cell described above, and the LTE cell supporting DSS adjacent to the NR cell can be regarded as the first serving cell described above. service area.
  • a virtual cell 1 can be deployed in an LTE cell adjacent to an NR cell supporting DSS (refer to the network architecture shown in FIG. 20 ), and the communication standard of the virtual cell 1 is the NR communication standard. That is to say, the LTE cell adjacent to the NR cell supporting DSS can be regarded as the second serving cell described above, and the NR cell supporting DSS adjacent to the LTE cell can be regarded as the first serving cell described above. service area.
  • the first access network device and the second access network device may include a hardware structure and a software module, and a hardware structure, a software module, or a hardware structure plus a software module form to achieve the above functions.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device 210 may be an access network device, a device in an access network device, or a device that can be matched with a terminal device.
  • the communication apparatus 210 includes a sending unit 2101, a receiving unit 2102 and a migrating unit 2103, wherein: the sending unit 2101 is configured to send first measurement control information to a terminal device through a first serving cell, the first measurement control information It is used to instruct the terminal device to measure the quality of the downlink reference signal of the virtual cell, and the center frequency point of the downlink reference signal of the first serving cell and the downlink reference signal of the virtual cell is the same.
  • the frequency range of the virtual cell is included in the frequency range of the second serving cell, and the frequency range of the second serving cell and the first serving cell overlaps; the standard of the second serving cell is the same as that of the second serving cell.
  • the standard of the first serving cell is different, or the standard of the second serving cell is the same as the standard of the first serving cell, and the downlink reference signal of the second serving cell is the same as the standard of the first serving cell.
  • the center frequencies of the downlink reference signals are different; the virtual cell and the second serving cell are cells of the communication device, or the virtual cell and the second serving cell are second access network equipment 's district.
  • the receiving unit 2102 is configured to receive a first measurement report from the terminal device, where the first measurement report indicates the quality of the downlink reference signal of the virtual cell. Specifically, for the operations performed by the receiving unit 2102, reference may be made to the description in step S105 in the method shown in FIG. 10 above.
  • the relocation unit 2103 is configured to relocate the terminal device to a third serving cell when the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell.
  • the third serving cell and the first serving cell have the same standard, and the center frequency of the downlink reference signal of the third serving cell and the first serving cell is different, or the third serving cell
  • the cell is of a different standard from the first serving cell.
  • the operations performed by the migration unit 2103 reference may be made to the description in step S106 in the method shown in FIG. 10 above.
  • the relocation unit 2103 is specifically configured to: send second measurement control information to the terminal device, where the second measurement control information is used to instruct the terminal device to measure the downlink of the third serving cell quality of the reference signal; receiving a second measurement report from the terminal device, the second measurement report indicating the quality of the downlink reference signal of the third serving cell; migrating the terminal device to the the third serving cell.
  • the communication device stores cell identities of one or more serving cells adjacent to the first serving cell, and the cell identities of the one or more serving cells include the third serving cell
  • the migrating unit 2103 is specifically configured to: select the third serving cell from one or more serving cells stored adjacent to the first serving cell; migrate the terminal equipment to the The third service area.
  • the communication device stores a cell identity of the virtual cell, and the first measurement result includes the cell identity of the virtual cell.
  • the communication device stores cell identities of one or more serving cells adjacent to the first serving cell, the first measurement result includes the cell identities of the virtual cells, the virtual cell The cell identity of the cell is different from the cell identity of the one or more serving cells.
  • the virtual cell does not provide access services for terminal devices.
  • the standard of the second serving cell is different from the standard of the first serving cell includes: the standard supported by the first serving cell is a standard in Long Term Evolution LTE, the second serving cell The supported standard is the standard in the new wireless NR; or, the standard supported by the first serving cell is the standard in NR, and the standard supported by the second serving cell is the standard in LTE.
  • the virtual cell and the second serving cell are cells of the communication device, and the sending unit 2101 is further configured to: send a downlink signal of the virtual cell, where the downlink signal includes the the downlink reference signal of the virtual cell.
  • the downlink reference signal includes a cell reference signal CRS.
  • the downlink signal further includes one or more of PSS, SSS, and a system information block, where the system information block includes indication information indicating that the virtual cell does not provide access services for terminal equipment.
  • the downlink reference signal is a DMRS
  • the downlink signal is an SSB
  • the SSB includes the DMRS
  • the sending unit 2101 is further configured to: send indication information to a terminal device accessing the second serving cell through the second serving cell; wherein the indication information is used to indicate the access available time-frequency resources of the terminal equipment entering the second serving cell, the available time-frequency resources are different from the time-frequency resources occupied by the downlink signals of the virtual cell; or used to indicate the access to the The terminal equipment of the second serving cell does not use the time-frequency resources occupied by the virtual cell to transmit the downlink signal.
  • each unit of the communication apparatus shown in FIG. 21 may be related to the foregoing method embodiments. It will not be described in detail here.
  • the above-mentioned units may be implemented in hardware, software or a combination of software and hardware.
  • the functions of the sending unit 2101 , the receiving unit 2102 and the migrating unit 2103 in the above contents may be implemented by one or more processors in the communication device 210 .
  • the communication device can determine, according to the first measurement report, that the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell, which may cause the problem of near-far interference .
  • the communication apparatus relocates the terminal device to the third server cell, which can prevent the terminal device from being subjected to near-far interference.
  • the communication device 220 may be an access network device, a device in an access network device, or a device that can be used in combination with a terminal device. It may also be a chip, a chip system, or a processor that supports the access network device to implement the above method.
  • the communication device 220 may be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the communication device 220 may include one or more processors 2201 .
  • the processor 2201 may be a general-purpose processor or a dedicated processor or the like.
  • the processor 2201 may be used to control communication devices (eg, access network equipment, access network equipment chips, etc.), execute software programs, and process data of the software programs.
  • the communication apparatus 220 may include one or more memories 2202, and instructions 2204 may be stored thereon, and the instructions may be executed on the processor 2201, so that the communication apparatus 220 executes the above method methods described in the examples.
  • the memory 2202 may also store data.
  • the processor 2201 and the memory 2202 can be provided separately or integrated together.
  • the communication device 220 may further include a transceiver 2205 and an antenna 2206 .
  • the transceiver 2205 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 2205 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the processor 2201 is configured to perform the following operations:
  • the transceiver 2205 sends first measurement control information to the terminal device through the first serving cell, where the first measurement control information is used to instruct the terminal device to measure the quality of the downlink reference signal of the virtual cell.
  • the center frequency of the downlink reference signal and the downlink reference signal of the virtual cell are the same.
  • the frequency range of the virtual cell is included in the frequency range of the second serving cell, and the frequency range of the second serving cell and the first serving cell overlaps; the standard of the second serving cell is the same as that of the second serving cell.
  • the standard of the first serving cell is different, or the standard of the second serving cell is the same as the standard of the first serving cell, and the downlink reference signal of the second serving cell is the same as the standard of the first serving cell.
  • the center frequencies of the downlink reference signals are different; the virtual cell and the second serving cell are cells of the communication device, or the virtual cell and the second serving cell are second access network equipment 's district.
  • a first measurement report is received from the terminal device through the transceiver 2205, and the first measurement report indicates the quality of the downlink reference signal of the virtual cell.
  • the terminal device is migrated to a third serving cell.
  • the third serving cell and the first serving cell have the same standard, and the center frequency of the downlink reference signal of the third serving cell and the first serving cell is different, or the third serving cell
  • the cell is of a different standard from the first serving cell.
  • the operations performed by the processor 2201 may be related to the foregoing method embodiments. It will not be described in detail here.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 2201 may store an instruction 2203, and the instruction 2203 runs on the processor 2201, so that the communication apparatus 220 can execute the method described in the above method embodiments.
  • the instructions 2203 may be hardened in the processor 2201, in which case the processor 2201 may be implemented by hardware.
  • the communication apparatus 220 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • ICs integrated circuits
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuit board
  • electronic equipment etc.
  • the communication device described in the above embodiments may be an access point or a station, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 22 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • a set with one or more ICs may also include a storage component for storing data and instructions;
  • ASIC such as modem (Modem);
  • Receivers smart terminals, wireless devices, handsets, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.;
  • the communication device may be a chip or a chip system
  • the chip 2300 shown in FIG. 23 includes a processor 2301 and an interface 2302 .
  • the number of processors 2301 may be one or more, and the number of interfaces 2302 may be multiple.
  • the interface 2302 is configured to send first measurement control information to the terminal device through the first serving cell, where the first measurement control information is used to instruct the terminal device to measure the quality of the downlink reference signal of the virtual cell, and the first measurement control information is used to instruct the terminal device to measure the quality of the downlink reference signal of the virtual cell.
  • the center frequency of the downlink reference signal of the serving cell and the downlink reference signal of the virtual cell is the same.
  • the frequency range of the virtual cell is included in the frequency range of the second serving cell, and the frequency range of the second serving cell and the first serving cell overlaps; the standard of the second serving cell is the same as that of the second serving cell.
  • the standard of the first serving cell is different, or the standard of the second serving cell is the same as the standard of the first serving cell, and the downlink reference signal of the second serving cell is the same as the standard of the first serving cell.
  • the center frequencies of the downlink reference signals are different; the virtual cell and the second serving cell are cells of the first access network device, or the virtual cell and the second serving cell are the second serving cell The cell of the access network equipment.
  • the interface 2302 receives a first measurement report from the terminal device, where the first measurement report indicates the quality of the downlink reference signal of the virtual cell.
  • the processor 2301 is configured to migrate the terminal device to a third serving cell when the quality of the downlink reference signal of the virtual cell is higher than the quality of the downlink reference signal of the first serving cell.
  • the third serving cell and the first serving cell have the same standard, and the center frequency of the downlink reference signal of the third serving cell and the first serving cell is different, or the third serving cell The cell is of a different standard from the first serving cell.
  • the chip further includes a memory 2303, where the memory 2303 is used to store necessary program instructions and data of the communication device.
  • the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种小区的测量方法以及相关装置,该方法包括:第一接入网设备通过第一服务小区向终端设备发送第一测量控制信息,第一测量控制信息用于指示终端设备测量虚拟小区的下行参考信号的质量,第一服务小区的下行参考信号和虚拟小区的下行参考信号的中心频点相同,虚拟小区的频率范围包含在第二服务小区的频率范围中,第二服务小区与第一服务小区的频率范围有重叠;第一接入网设备从终端设备接收第一测量报告,第一测量报告指示虚拟小区的下行参考信号的质量;在虚拟小区的下行参考信号的质量高于第一服务小区的下行参考信号的质量的情况下,第一接入网设备将终端设备迁移至第三服务小区。通过本方法,可以避免终端设备受到远近干扰。

Description

一种小区的测量方法以及相关装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种小区的测量方法以及相关装置。
背景技术
随着移动通信技术的不断发展,新无线(New Radio,NR)移动通信技术的覆盖范围正在逐步扩大。通信网络中存在长期演进(Long Term Evolution,LTE)技术和NR技术共存的情况。
在一些应用场景中,在同一频段上,相邻的两个小区可能支持不同的制式。在LTE、NR通信系统中,都是通过同一通信制式内的同频测量和切换,保障移动终端能够始终处于同一通信制式内的最强信号的小区上,终端设备无法进行无额外功耗的跨制式的同频测量。
在邻近的异制式同频小区发送的邻区信号强于的服务小区提供的服务信号的情况下,邻区信号会对终端设备接收到的服务信号造成较强干扰;另外,为了确保服务小区能正常接收到终端设备发送的上行信号,终端设备会增大自身发射信号的功率,这样会使得终端设备发送的上行信号干扰服务小区中其他终端设备发送的上行信号。上述这种情况称为远近干扰,如何避免终端设备在同频异制式组网中的远近干扰的问题是本领域技术人员亟待解决的问题。
发明内容
本申请提供了一种小区的测量方法以及相关装置,可以避免终端设备受到远近干扰。
第一方面,本申请提供了一种小区的测量方法,该方法包括:第一接入网设备通过第一服务小区向终端设备发送第一测量控制信息,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下行参考信号的质量,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频点相同,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;所述第一接入网设备从所述终端设备接收第一测量报告,所述第一测量报告指示所述虚拟小区的下行参考信号的质量;在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,所述第一接入网设备将所述终端设备迁移至第三服务小区;其中,所述第二服务小区的制式与所述第一服务小区的制式不同,或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同;所述虚拟小区和所述第二服务小区为所述第一接入网设备的小区,或者,所述虚拟小区和所述第二服务小区为第二接入网设备的小区;且所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。通过本方法,可以避免终端设备受到远近干扰。
结合第一方面,在一种可能的实现方式中,所述第一接入网设备将所述终端设备迁移至第三服务小区,包括:所述第一接入网设备向所述终端设备发送第二测量控制信息,所 述第二测量控制信息用于指示所述终端设备测量所述第三服务小区的下行参考信号的质量;所述第一接入网设备从所述终端设备接收第二测量报告,所述第二测量报告指示所述第三服务小区的下行参考信号的质量;所述第一接入网设备根据所述第二测量报告将所述终端设备迁移至所述第三服务小区。
结合第一方面,在一种可能的实现方式中,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述一个或者多个服务小区的小区标识包括所述第三服务小区的小区标识,所述第一接入网设备将所述终端设备迁移至第三服务小区,包括:所述第一接入网设备从存储的与所述第一服务小区相邻的一个或者多个服务小区中选取所述第三服务小区;所述第一接入网设备将所述终端设备迁移至所述第三服务小区。
结合第一方面,在一种可能的实现方式中,所述第一接入网设备存储有所述虚拟小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识。
结合第一方面,在一种可能的实现方式中,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识,所述虚拟小区的小区标识与所述一个或者多个服务小区的小区标识均不相同。
结合第一方面,在一种可能的实现方式中,所述虚拟小区不为终端设备提供接入服务。
结合第一方面,在一种可能的实现方式中,所述第二服务小区的制式与所述第一服务小区的制式不同包括:所述第一服务小区所支持的制式为长期演进LTE中的制式,所述第二服务小区所支持的制式为新无线NR中的制式;或者,所述第一服务小区所支持的制式为NR中的制式,所述第二服务小区所支持的制式为LTE中的制式。
结合第一方面,在一种可能的实现方式中,所述虚拟小区和所述第二服务小区为所述第一接入网设备的小区,所述方法还包括:所述第一接入网设备发送所述虚拟小区的下行信号,所述下行信号包括所述虚拟小区的所述下行参考信号。
结合第一方面,在一种可能的实现方式中,所述下行参考信号包括小区参考信号CRS。
结合第一方面,在一种可能的实现方式中,所述下行信号还包括主同步信号PSS、辅同步信号SSS和系统信息块中的一项或者多项,所述系统信息块包括指示所述虚拟小区不为终端设备提供接入服务的指示信息。
结合第一方面,在一种可能的实现方式中,所述下行参考信号为解调参考信号DMRS,所述下行信号为同步信号和物理广播信道块SSB,所述SSB包括所述DMRS。
结合第一方面,在一种可能的实现方式中,所述方法还包括:所述第一接入网设备通过所述第二服务小区向接入所述第二服务小区的终端设备发送指示信息;其中,所述指示信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区的所述下行信号所占用的时频资源不同;或者用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送所述下行信号所占用的时频资源。
第二方面,本申请实施例提供了一种通信装置,所述通信装置包括发送单元、接收单元和迁移单元,其中:所述发送单元,用于通过第一服务小区向终端设备发送第一测量控制信息,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下行参考信号的质量,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频 点相同,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;所述第二服务小区的制式与所述第一服务小区的制式不同,或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同;所述虚拟小区和所述第二服务小区为所述第一接入网设备的小区,或者,所述虚拟小区和所述第二服务小区为第二接入网设备的小区;所述接收单元,用于从所述终端设备接收第一测量报告,所述第一测量报告指示所述虚拟小区的下行参考信号的质量;所述迁移单元,用于在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,将所述终端设备迁移至第三服务小区,所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。
结合第二方面,在一种可能的实现方式中,所述迁移单元具体用于:向所述终端设备发送第二测量控制信息,所述第二测量控制信息用于指示所述终端设备测量所述第三服务小区的下行参考信号的质量;从所述终端设备接收第二测量报告,所述第二测量报告指示所述第三服务小区的下行参考信号的质量;根据所述第二测量报告将所述终端设备迁移至所述第三服务小区。
结合第二方面,在一种可能的实现方式中,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述一个或者多个服务小区的小区标识包括所述第三服务小区的小区标识,所述迁移单元具体用于:从存储的与所述第一服务小区相邻的一个或者多个服务小区中选取所述第三服务小区;将所述终端设备迁移至所述第三服务小区。
结合第二方面,在一种可能的实现方式中,所述第一接入网设备存储有所述虚拟小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识。
结合第二方面,在一种可能的实现方式中,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识,所述虚拟小区的小区标识与所述一个或者多个服务小区的小区标识均不相同。
结合第二方面,在一种可能的实现方式中,所述虚拟小区不为终端设备提供接入服务。
结合第二方面,在一种可能的实现方式中,所述第二服务小区的制式与所述第一服务小区的制式不同包括:所述第一服务小区所支持的制式为长期演进LTE中的制式,所述第二服务小区所支持的制式为新无线NR中的制式;或者,所述第一服务小区所支持的制式为NR中的制式,所述第二服务小区所支持的制式为LTE中的制式。
结合第二方面,在一种可能的实现方式中,所述虚拟小区和所述第二服务小区为所述第一接入网设备的小区,所述发送单元还用于:发送所述虚拟小区的下行信号,所述下行信号包括所述虚拟小区的所述下行参考信号。
结合第二方面,在一种可能的实现方式中,所述下行参考信号包括小区参考信号CRS。
结合第二方面,在一种可能的实现方式中,所述下行信号还包括PSS、SSS和系统信息块中的一项或者多项,所述系统信息块包括指示所述虚拟小区不为终端设备提供接入服务的指示信息。
结合第二方面,在一种可能的实现方式中,所述下行参考信号为DMRS,所述下行信号为SSB,所述SSB包括所述DMRS。
结合第二方面,在一种可能的实现方式中,所述发送单元还用于:通过所述第二服务小区向接入所述第二服务小区的终端设备发送指示信息;其中,所述指示信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区的所述下行信号所占用的时频资源不同;或者用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送所述下行信号所占用的时频资源。
第三方面,本申请实施例提供了一种通信装置,该通信装置包括处理器,所述处理器与存储器耦合;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器中调用所述程序代码执行如上述第一方面或者第一方面的任一可能的实现方式所描述的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如上述第一方面或者第一方面的任一可能的实现方式所描述的方法被实现。
第五方面,本申请实施例提供了一种芯片系统,所述芯片系统包括至少一个处理器和接口,用于支持第一接入网设备实现第一方面所涉及的功能,例如,接收或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存第一接入网设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在本申请实施例中,第一接入网设备可以根据第一测量报告,确定虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量,这样很可能会引起远近干扰的问题。在这种情况下,第一接入网设备将所述终端设备迁移至第三服务器小区,可以避免终端设备受到远近干扰。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A-图1B是本申请实施例提供的一些网络架构的示意图;
图2A-图2B是本申请实施例提供的又一些网络架构的示意图;
图3-图5是本申请实施例提供的又一些网络架构的示意图;
图6A-图6B是本申请实施例提供的又一些网络架构的示意图;
图7-图9是本申请实施例提供的又一些网络架构的示意图;
图10是本申请实施例提供的小区的测量方法的流程图;
图11是本申请实施例提供的一种第一服务小区、虚拟小区和第二服务小区的频率范围的示意图;
图12是本申请实施例提供的另一种第一服务小区、虚拟小区和第二服务小区的频率范围的示意图;
图13-图20是本申请实施例提供的又一些网络架构的示意图;
图21是本申请实施例提供的一种通信装置的示意图;
图22是本申请实施例提供的又一种通信装置的结构示意图;
图23是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面对本申请实施例中的技术方案进行更详细地描述。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”“一种”“所述”“上述”“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请实施例可以应用于图1A所示的网络架构,图1A所示的网络架构为无线通信系统的网络架构,该网络架构通常包括终端设备和接入网设备,各个设备数量以及形态并不构成对本申请实施例的限定。在图1A中,包含接入网设备1、接入网设备2和一个或者多个终端设备(图中以终端设备1、终端设备2作为示例,终端设备1驻扎在LTE小区1,终端设备2驻扎在NR小区1)。具体的,LTE小区1与接入网设备1对应,可以理解为,接入网设备1提供LTE小区1,并通过LTE小区1为终端设备1提供通信服务。NR小区1和与接入网设备2对应,可以理解为,接入网设备2提供NR小区1,并通过NR小区1为终端设备2提供通信服务。其中,图1A中的虚线表示小区的覆盖范围,以下图示中相同标注可以参考该说明。LTE小区为采用LTE的通信制式的小区,NR小区为采用NR的通信制式的小区。该LTE小区1和该NR小区1的频率范围有重叠。
在图1A所示的系统中,接入网设备1可以通过LTE小区1向驻扎在LTE小区1中的一个或者多个终端设备(示例为终端设备1)发送信号,接入网设备2可以通过NR小区1向驻扎在NR小区1中的一个或者多个终端设备(示例为终端设备2)发送信号。在接入网设备2通过NR小区1向终端设备2发送信号时,终端设备1可能会接收到接入网设备2发送的信号,该信号对终端设备1与接入网设备1之间的通信造成干扰,从而该信号可以认为是干扰信号。另外,为了确保接入网设备1能正常接收到终端设备1发送的上行信号,终端设备1会增大自身发射信号的功率,这样会使得终端设备发送的上行信号干扰接入LTE小区1中其他终端设备发送的上行信号。
参见图1B,是本申请实施例提供的又一种网络架构的示意图。在图1B中,包含接入网设备4、接入网设备5和一个或者多个终端设备(图中以终端设备6、终端设备5作为示例,终端设备6驻扎在LTE小区6,终端设备5驻扎在LTE小区7)。具体的,LTE小区6与接入网设备4对应,可以理解为,接入网设备4提供LTE小区6,并通过LTE小区6为终端设备6提供通信服务。LTE小区7和与接入网设备5对应,可以理解为,接入网设备5提供LTE小区7,并通过LTE小区7为终端设备5提供通信服务。可选的,LTE小区6与LTE小区7为相同制式的小区,但是LTE小区6与LTE小区7的下行参考信号的中心 频点不相同,且LTE小区6与LTE小区7的频率范围有重叠。举例而言,LTE小区6的频率范围为2010MHz~2020MHz,其下行参考信号的中心频点为2015MHz;LTE小区7的频率范围为2010MHz~2040MHz,其下行参考信号的中心频点为2020MHz。需要说明的是,在本申请实施例中,制式相同但是下行参考信号的中心频点不同的小区,可以称为同制式异频小区;也即是说,LTE小区6与LTE小区7为同制式异频小区。下行参考信号的中心频点相同的两个小区可以称为同频小区。
在图1B所示的系统中,接入网设备4可以通过LTE小区6向驻扎在LTE小区6中的一个或者多个终端设备(示例为终端设备6)发送信号,接入网设备5可以通过LTE小区7向驻扎在LTE小区7中的一个或者多个终端设备(示例为终端设备5)发送信号。在接入网设备5通过LTE小区7向终端设备5发送信号时,由于LTE小区6与LTE小区7的频率范围有重叠,终端设备6可能会接收到接入网设备5发送的信号,该信号对终端设备6与接入网设备4之间的通信造成干扰,从而该信号可以认为是干扰信号。另外,为了确保接入网设备4能正常接收到终端设备6发送的上行信号,终端设备6会增大自身发射信号的功率,这样会使得终端设备发送的上行信号干扰接入LTE小区6中其他终端设备发送的上行信号。在另一些实施例中,接入网设备5提供两个的小区也可以均为NR小区,这两个NR小区为同制式异频小区。这种情况下,终端设备6所受到远近干扰的形成方式可以参照上述介绍的方式,此处不再赘述。
参见图2A,是本申请实施例提供的又一种网络架构的示意图。在图2A中,包含接入网设备3和一个或者多个终端设备(图中以终端设备3、终端设备4作为示例,终端设备3驻扎在LTE小区2,终端设备4驻扎在NR小区2)。具体的,LTE小区2与接入网设备3对应,可以理解为,接入网设备3提供LTE小区2,并通过LTE小区2为终端设备3提供通信服务。NR小区2和与接入网设备3对应,可以理解为,接入网设备3提供NR小区2,并通过NR小区2为终端设备4提供通信服务。
在图2A所示的系统中,接入网设备3可以通过LTE小区2向驻扎在LTE小区2中的一个或者多个终端设备(示例为终端设备3)发送信号,接入网设备3可以通过NR小区2向驻扎在NR小区2中的一个或者多个终端设备(示例为终端设备4)发送信号。在接入网设备3通过NR小区2向终端设备4发送信号时,终端设备3可能会接收到接入网设备3发送的信号,该信号对终端设备3与接入网设备3之间的通过LTE小区2的通信造成干扰,从而该信号可以认为是干扰信号。另外,为了确保接入网设备3能正常接收到终端设备3发送的上行信号,终端设备3会增大自身发射信号的功率,这样会使得终端设备发送的上行信号干扰接入LTE小区2中其他终端设备发送的上行信号。
参见图2B,是本申请实施例提供的又一种网络架构的示意图。在图2B中,包含接入网设备6和一个或者多个终端设备(图中以终端设备7、终端设备8作为示例,终端设备7驻扎在NR小区3,终端设备8驻扎在NR小区4)。具体的,NR小区3与接入网设备7对应,可以理解为,接入网设备6提供NR小区3,并通过NR小区3为终端设备7提供通信服务。NR小区4和与接入网设备6对应,可以理解为,接入网设备6提供NR小区4,并通过NR小区4为终端设备8提供通信服务。其中,NR小区3和NR小区4为相同制式的小区,但是NR小区3和NR小区4的下行参考信号的中心频点不相同,且NR小区3和 NR小区4的频率范围有重叠。NR小区3和NR小区4为同制式异频小区。
在图2B所示的系统中,接入网设备6可以通过NR小区3向驻扎在NR小区3中的一个或者多个终端设备(示例为终端设备7)发送信号,接入网设备6可以通过NR小区4向驻扎在NR小区4中的一个或者多个终端设备(示例为终端设备8)发送信号。在接入网设备6通过NR小区4向终端设备8发送信号时,终端设备7可能会接收到接入网设备6发送的信号,该信号对终端设备7与接入网设备6之间的通过NR小区3的通信造成干扰,从而该信号可以认为是干扰信号。另外,为了确保接入网设备6能正常接收到终端设备7发送的上行信号,终端设备7会增大自身发射信号的功率,这样会使得终端设备发送的上行信号干扰接入NR小区3中其他终端设备发送的上行信号。
在另一些实施例中,接入网设备6提供两个的小区也可以均为LTE小区,这两个LTE小区为同制式异频小区。这种情况下,终端设备7所受到远近干扰的形成方式可以参照上述介绍的方式,此处不再赘述。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、第五代移动通信(5th-generation,5G)系统以及未来移动通信系统。
本申请实施例涉及到的接入网设备可以是基站(Base Station,BS),基站可以向多个终端设备提供通信服务,多个基站也可以向同一个终端设备提供通信服务。在本申请实施例中,基站是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。基站设备可以是基站、中继站或接入点。基站可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolutional NodeB)。基站设备还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。基站设备还可以是未来5G网络中的基站设备或者未来演进的PLMN网络中的接入网设备。基站设备还可以是可穿戴设备或车载设备等。本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在接入网设备中。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备。本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电 话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
以下对本申请实施例涉及到的一些概念进行介绍。
通信制式(或者简称为制式),是移动终端进行数据通信所采用的网络标准。比如,对于第二代移动通信技术(the 2nd generation mobile communication technology,2G)而言,通信制式包括GSM,CDMA。对于3G第三代移动通信技术(the 3rd generation mobile communication technology,3G)而言,通信制式包括时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA),WCDMA,CDMA2000(Code Division Multiple Access 2000)。对于第四代移动通信技术(the 4th generation mobile communication technology,4G)而言,通信制式包括时分双工长期演进(LongTermEvolution,Time-DivisionDuplex,LTE-TDD)和频分双工长期演进(LongTermEvolution,Frequency-division duplex,LTE-FDD)两种制式,其中LTE-TDD又称为TD-LTE。对于第五代移动通信技术(the 5th generation mobile communication technology,5G)而言,通信制式包括非独立组网(NSA)和独立组网(SA)。在本申请实施例中,在同一频段上,相邻的两个小区可能支持不同的通信制式。
在移动通信的演进过程中,示例性的,从4G演进到5G的过程中,通信系统中常出现LTE和NR同频组网的情况。以下对几种常见的网络架构进行介绍。
参见图3,是本申请实施例提供的又一种网络架构的示意图。可以对应于图1A和图2A在图3所示区域范围内包含多个通信小区,这些通信小区采用LTE的通信制式,LTE网络为全覆盖。在演进过程中,选择部分通信小区所在的接入网设备新建采用NR的通信制式的小区(简称为NR小区),新建的NR小区与同覆盖的采用LTE的通信制式的小区(简称为LTE小区)通过动态频谱共享(Dynamic Spectrum Sharing,DSS)的功能共享使用部分频率资源。后续演进过程中,逐渐增大NR的通信制式小区部署范围。需要说明的是,图3中的一个六边形区域表示一个小区的覆盖范围,以下图示中相同标注可以参考该说明。需要说明的是,图3中邻近的支持DSS的NR小区和不支持DSS的LTE小区组成的网络架构可以参照图1A和图2A所示的网络架构。参见图4,是本申请实施例提供的又一种网络架构的示意图。在图4所示的区域范围内包含多个通信小区,其中部分通信小区采用LTE通信制式。在演进过程中,选择部分LTE通信制式小区所在的接入网设备中新建NR小区,新建的NR小区与同覆盖的LTE小区通过DSS的功能共享使用部分频率资源。其他通信小区所在的接入网设备直接新建NR制式小区,以使得NR网络为全覆盖。后续演进过程中,逐渐减小LTE的通信制式小区部署范围。需要说明的是,图4中邻近的支持DSS的LTE小区和不支持DSS的NR小区组成的网络架构可以参照图1A和图2A所示的网络架构。
参见图5,是本申请实施例提供的又一种网络架构的示意图。在图5所示的区域范围内包含多个通信小区,这些通信小区中左边区域的通信小区采用LTE的通信制式,右边区域的通信小区采用NR的通信制式。通过LTE退让频谱方式的演进NR,也即是说,逐渐减小LTE的通信制式的频率占用范围,逐渐增大NR的通信制式的频率占用范围。需要说明的是,图5中邻近的LTE小区和NR小区组成的网络架构可以参照图1A和图2A所示的网络架构。
参见图6A-图6B,是本申请实施例提供的又一些种网络架构的示意图。在图6A-图6B所示的区域范围内包含多个通信小区,这些通信小区通过DSS的功能部署了全覆盖的LTE网络和NR网络。但在一些实现场景中,在接入网设备的某些功能开启后,可以基于负载动态地选择关闭LTE网络(可理解为不使用LTE的通信制式进行通信,可参照图6A所示)或者关闭NR网络(可理解为不使用NR的通信制式进行通信,可参照图6B所示),形成部分区域、部分接入网设备或者部分时间出现LTE不连续插花或者NR不连续插花的场景。需要说明的是,图6A中邻近的支持DSS的LTE小区和不支持DSS的NR小区组成的网络架构可以参照图1A和图2A所示的网络架构。图6B中邻近的支持DSS的NR小区和不支持DSS的LTE小区组成的网络架构可以参照图1A和图2A所示的网络架构。
在LTE和NR同频组网的边界区域,终端设备容易受到远近干扰的影响。以下对远近效应的形成原因作出介绍。参见图7,是本申请实施例提供的又一种网络架构的示意图。示例性的,图7所示的网络架构可以以图1A所示的网络架构为例。在图7所示的网络架构中包括接入网设备(可参照图1A中的接入网设备1)的天线1和接入网设备(可参照图1A中的接入网设备2)的天线2,以及终端设备1(可参照图1A中的终端设备1)。其中,天线1为接入LTE小区的终端设备提供通信信号,天线2为接入NR小区的终端设备提供通信信号。天线1与天线2所属的接入网设备可以是同一个接入网设备,也可以是不同的接入网设备。
在图7所示的网络架构中,LTE小区和NR小区均位于F1这个频段上,终端设备1原本接入在LTE小区中。天线1通过LTE小区向接入LTE小区中终端设备1发送信号(即服务信号),天线2可以通过NR小区向接入NR小区中的一个或者多个终端设备发送信号。在天线2通过NR小区向一个或者多个终端设备发送信号时,终端设备1可能会接收到天线2发送的信号,该信号为终端设备1接收到的邻区信号,该信号对终端设备1与天线1之间的通信造成干扰,从而该信号可以认为干扰信号。在终端设备1从LTE小区的覆盖范围向NR小区的覆盖范围移动的过程中,终端设备1接收到的LTE小区发送的服务信号越来越弱,NR小区发送的服务信号(可理解为干扰信号)越来越强。
由于LTE和NR通信系统中,都是通过同一通信制式内的同频测量和切换保障移动终端能够始终处于同一通信制式内的最强信号的小区上,终端设备无法进行无额外功耗的跨制式的同频测量。因此终端设备在满足一定条件(例如,服务小区的信号质量高于预设值)前会一直保持驻扎在LTE小区。相对于终端设备而言,自身驻扎的LTE小区是远点,相邻的NR小区是近点,会造成远近效应,即LTE小区提供的服务信号强度弱于NR小区的邻区信号的强度,NR小区的邻区信号会对终端设备接收到的服务信号造成较强干扰。另外, 为了确保LTE小区的天线1能正常接收到终端设备1发送的上行信号,终端设备1会增大自身发射信号的功率,这样会使得终端设备发送的上行信号干扰接入LTE小区中其他终端设备发送的上行信号。
一般提供通信的运营商网络是多频组网,在终端设备接收到的同频信号较差时,会触发异频/异系统测量和切换到其他频点,因此该终端的远近效应问题会维持到异频/异系统测量和切换后才会解除。参见图8,是本申请实施例提供的又一种网络架构的示意图。在图8所示的网络架构中LTE小区1、LTE小区2、LTE小区3和NR小区1,以及终端设备1。其中,LTE小区1和NR小区1均位于频段F1,E小区2和LTE小区3均位于频段F2。终端设备接入LTE小区1。通过LTE小区2、LTE小区3和NR小区1发送的通信信号对于终端设备1而言均为邻区信号,但由于通过LTE小区2、LTE小区3发送的信号通过LTE小区1发送的信号不在同一频段,通过LTE小区2、LTE小区3发送的信号对于终端设备1而言不是干扰信号;通过NR小区1发送的通信信号与通过LTE小区1发送的在同一频段,因此通过NR小区1发送的通信信号对于终端设备1而言是干扰信号。
在终端设备1从LTE小区1的覆盖范围向NR小区1的覆盖范围移动的过程中,终端设备1接收到的LTE小区1发送的服务信号越来越弱,NR小区1发送的邻区信号(可理解为干扰信号)越来越强。在图8中所示的同频边界上,终端设备1接收到的NR小区1的信号质量强于LTE小区1的信号质量,将触发远近效应。在这个情况下,由于服务小区(LTE小区1)的信号质量高于或等于预设值,因此终端设备1将保持驻扎在LTE小区1,在同频边界右方,系统内异频/异系统切换边界左方的这个区域范围内,终端设备1将持续受到远近效应的影响。在图8中系统内异频/异系统切换边界上,终端设备1接收到LTE小区1)的信号质量低于预设值,接入网设备(LTE小区1对应的接入网设备)将触发终端设备1进行系统内异频/异系统切换。示例性的,终端设备1可以切换到LTE小区3中。切换之后,由于LTE小区3和NR小区1位于不同的频段,终端设备1将不再受到远近效应的影响。
与LTE和NR同频组网的情况相似的,临近的同制式异频小区,但频率范围有重叠的情况下,终端设备也容易受到远近干扰的影响。以图1B中的LTE小区6和LTE小区7为例,终端设备6在进行同频测量的过程中,由于LTE小区6和LTE小区7的下行参考信号的中心频点不相同,终端设备6不能检测到LTE小区7的下行参考信号。因此终端设备6在满足一定条件(例如,LTE小区6的信号质量高于预设值)前会一直保持驻扎在LTE小区6。相对于终端设备6而言,自身驻扎的LTE小区6是远点,相邻的LTE小区7是近点,会造成远近效应,即LTE小区6提供的服务信号强度弱于LTE小区7的邻区信号的强度,LTE小区7的邻区信号会对终端设备6接收到的服务信号造成较强干扰。另外,为了确保LTE小区6能正常接收到终端设备6发送的上行信号,终端设备6会增大自身发射信号的功率,这样会使得终端设备6发送的上行信号干扰接入LTE小区6中其他终端设备发送的上行信号。
下面基于上述内容中介绍的网络架构、终端设备以及接入网设备,对本申请实施例提供的一种小区的测量方法进行介绍。为了便于理解,以图1A所示的网络结构为例。在本 申请实施例中,将在NR小区1中新建一个LTE小区4(可参照图9所示的网络架构)。LTE小区4占用了原属于NR小区1的部分时频资源,向终端设备发送下行参考信号。在终端设备1在同一通信制式内进行同频测量的过程中,终端设备可以通过LTE小区4发送的下行参考信号,检测到LTE小区4的存在,以及LTE小区4的信号质量。其中,由于LTE小区4占用的原NR小区1的部分时频资源发送下行参考信号,LTE小区4的信号质量可以视为NR小区1的信号质量。
在LTE小区4的信号质量高于LTE小区1的信号质量的情况下,终端设备向第一接入网设备反馈的同频测量报告中将包含LTE小区4的信息。其中,LTE小区4的信号质量高于LTE小区1的信号质量,表明与LTE小区1同频异制式的NR小区1的邻区信号强于LTE小区1的服务信号,这种情况下会引发远近干扰的问题。
之后,接入网设备1可以根据同频测量报告中的LTE小区4的信息,确定当前移动终端所处环境中的同频异制式的邻区信号强于服务信号。接着,接入网设备1将终端设备1迁移至同制式异频小区或者异制式的小区,可以避免远近干扰的问题。
参见图10,是本申请实施例提供的小区的测量方法的流程图。该方法包括以下步骤。需要说明的是,以下内容中的第一接入网设备可以为图9中的接入网设备1,第一服务小区可以为图9中的LTE小区1,虚拟小区可以为图9中的LTE小区4,第二服务小区可以为图9中的NR小区1,终端设备可以为图9中的终端设备1。其中,服务小区是可以为终端设备提供接入、上下行数据传输等服务的小区,也可以称为正常小区或者小区。虚拟小区是仅是向终端设备发送下行信号,便于终端设备进行小区测量的小区,不为终端设备提供接入,或者上下行数据传输服务的小区。虚拟小区还可以称为虚小区、模拟小区,等等。上述名称仅用于区分这两种类型的小区,在实际应用过程中,还可以存在其他的名称,本实施例不做限制。
S101、第一接入网设备通过第一服务小区向终端设备发送第一测量控制信息。
其中,第一服务小区为终端设备当前接入(或称为驻扎)的通信小区。在一些实施例中,在终端设备成功接入第一服务小区之后,第一接入网设备通过第一服务小区向终端设备发送第一测量控制信息。需要说明的是,在终端设备驻扎在第一服务小区的过程中,会持续根据该第一测量控制信息进行同频测量,该同频测量不会引起终端设备额外的功能消耗。
在一些实施方式中,所述第一测量控制信息中包括指示信息,该指示信息用于指示测量事件的类型。示例性的,测量事件的类型可以包括A1事件(表示服务小区信号质量高于一定门限),A2事件(表示服务小区信号质量低于一定门限),A3事件(表示同频邻区信号质量高于服务小区信号质量),等等。在本申请实施例中,所述第一测量控制信息中包括指示A3事件的指示信息。也即是说,在本申请实施例中,第一测量控制信息用于指示终端设备,在同频邻区信号质量高于服务小区信号质量的情况下,向第一接入网设备反馈第一测量报告。其中,信号质量也可以理解为信号强度,小区的参考信号接收功率(Reference Signal Receiving Power,RSRP)可以是信号质量的参考指标。该信号质量也可以存在其他的参考指标,本申请对此不作限定。
在一些实施方式中,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下 行参考信号的质量。其中,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频点相同。通过这种方式,可以指示终端设备根据虚拟小区的所述下行参考信号的中心频点进行同频检测,从而使得终端设备可以检测到虚拟小区。
其中,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;所述第二服务小区的制式与所述第一服务小区的制式不同(示例性的,对应图9所示的情况)。或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同(示例性的,对应图1B所示的情况)。
在第一服务小区所支持的通信制式不同的情况下,所述第一测量控制信息中包含的内容存在差异。以下对可能的两种情况分别进行介绍。
在一种可能的情况中,所述第一服务小区(或虚拟小区)所支持的通信制式为LTE中的通信制式,第二服务小区所支持的通信制式为NR中的通信制式。第一测量控制信息中可以包含小区的下行参考信号的中心频点和测量带宽。其中,小区的下行参考信号的中心频点与第一服务小区、虚拟小区的所述下行参考信号的中心频点相同,测量带宽为虚拟小区的带宽。可选的,所述虚拟小区的带宽为1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz中的一项。
根据小区的下行参考信号的中心频点和测量带宽可以确定出第一频率范围,该第一频率范围与虚拟小区的频率范围相同。参见图11,是本申请实施例提供的一种第一服务小区、虚拟小区和第二服务小区的频率范围的示意图。第一服务小区和虚拟小区的下行参考信号的中心频点相同。第二服务小区与第一服务小区的频率范围有重叠部分。可选的,第一服务小区和第二服务小区的频率范围可以相同,例如,可以均为2600MHz–2620MHz。第一服务小区的频率范围也可以与第二服务小区的频率范围不相同,例如,第一服务小区的频率范围为2600MHz–2620MHz,第二服务小区的频率范围为2600MHz–2640MHz。
在另一种可能的情况中,所述第一服务小区(或虚拟小区)所支持的通信制式为NR中的通信制式,第二服务小区所支持的通信制式为LTE中的通信制式。第一测量控制信息中可以包含同步信号和物理广播信道块(SSB)中下行参考信号(可具体为解调参考信号(Demodulation Reference Signal,DMRS))的中心频点。其中,该包含的SSB中下行参考信号的中心频点与第一服务小区的SSB中下行参考信号的中心频点、虚拟小区的SSB中下行参考信号的中心频点相同。由于在NR中,同频测量的测量带宽为20个资源块(Resource Block,RB),第一测量控制信息中可以无需包含测量带宽信息。可选的,所述虚拟小区的SSB为20个RB,虚拟小区的带宽可以有多种取值,本申请实施例不作限制。
根据SSB中下行参考信号的中心频点可以确定出第一频率范围,该第一频率范围与虚拟小区的频率范围相同。参见图12,是本申请实施例提供的另一种第一服务小区、虚拟小区和第二服务小区的频率范围的示意图。第一服务小区的SSB中下行参考信号的中心频点和虚拟小区的SSB中下行参考信号的中心频点相同。第二服务小区与第一服务小区的频率范围有重叠部分。可选的,第一服务小区和第二服务小区的频率范围可以相同,例如,可以均为2600MHz–2620MHz。第一服务小区的频率范围也可以与第二服务小区的频率范围不相同,例如,第二服务小区的频率范围为2600MHz–2620MHz,第一服务小区的频率范 围为2600MHz–2640MHz。
在一些实施例中,第一接入网设备可以根据第二接入网设备发送的虚拟小区的下行参考信号的中心频点(可能还包含测量带宽),生成第一测量控制信息。
在一些实施例中,第二接入网设备在构建虚拟小区时,可以根据第一服务小区的下行参考信号的中心频点和测量带宽构建该虚拟小区;或者可以根据第一服务小区的SSB中下行参考信号的中心频点构建虚拟小区。
S102、第二接入网设备通过虚拟小区和第二服务小区向终端设备发送信号。
需要说明的是,该虚拟小区可以理解为第二接入网设备构建的一个虚小区或者模拟小区。构建虚拟小区的目的主要是为了使得,终端设备进行同频测量的过程中,能够发现虚拟小区,并测量到虚拟小区的信号质量。对于终端设备而言,该虚拟小区的存在可以近似代表同频异制式的第二服务小区的存在。该虚拟小区的信号质量可以近似代表同频异制式的第二服务小区的信号质量。构建虚拟小区的目的不是为了向终端设备提供接入服务(或称为通信服务)。
具体的,第二接入网设备通过所述虚拟小区发送下行信号,所述下行信号包括所述虚拟小区的所述下行参考信号。该下行信号是为了使得终端设备可以发现虚拟小区,以及检测虚拟小区的信号质量。另外,第二接入网设备通过所述第二服务小区发送通信信号,通信信号是为了向接入该第二服务小区的其他终端设备提供通信服务。
对于接入第一服务小区的终端设备而言,第二接入网设备通过虚拟小区和第二服务小区发送的信号均为邻区信号。但由于第二服务小区为异制式的通信小区(或者为同制式异频小区),在同频测量过程中,终端设备不能检测到第二接入网设备通过第二服务小区发送的信号。
在一些实施例中,第二接入网设备通过所述虚拟小区发送的信号(例如,下行参考信号)所占用的时频资源与通过所述第二服务小区发送的信号所占用的时频资源不同。通过这种方式,可以避免通过所述第二服务小区发送的通信信号对通过所述虚拟小区发送的下行参考信号造成干扰,从而影响同频测量的测量结果。
可选的,所述第二接入网设备通过所述第二服务小区向接入所述第二服务小区的终端设备发送指示信息,所述指示信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区的所述下行信号所占用的时频资源不同;或者用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送所述下行信号所占用的时频资源。
其中,所述指示信息的指示方式可以包含动态调度指示和半静态资源指示。动态调度指示是指,第二接入网设备在第二服务小区中通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送DCI(Downlink Control Information)信息(即理解为指示信息),该DCI信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区发送所述下行信号所占用的时频资源不同。半静态资源指示是指,第二接入网设备在第二服务小区中发送RRC重配置消息(即理解为指示信息),该RRC重配置消息用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送所述下行信号所占用的时频资源。需要说明的是,第二接入网设备可以采用任意一种 指示方式,也可以针对虚拟小区的不同信道采用不同的指示方式。
在一些实施例中,所述虚拟小区不为终端设备提供接入服务。通过这种方式,第二接入网设备无需为虚拟小区划分较多的时频资源以支持终端设备的通信服务,能为第二服务小区保留尽可能多的时频资源用于支持接入第二服务小区的终端设备的通信服务。
以下对通过虚拟小区发送的下行信号作出进一步的介绍。
在一种可能的实现方式中,虚拟小区所支持的通信制式为LTE中的通信制式。所述下行信号包括所述虚拟小区的下行参考信号。所述下行参考信号包括小区参考信号(Cell-specific Reference Signal,CRS)。该CRS用于终端设备检测虚拟小区的信号质量。
可选的,所述下行信号中还包括主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、物理广播信道(Physical Broadcast Channel,PBCH)和系统信息块(System Information Block,SIB)1信息中的一项或者多项。其中,PSS、SSS用于终端设备发现(或称为检测到)虚拟小区。物理广播信道用于终端设备检测到系统信息块。可选的,所述系统信息块中携带指示信息(例如,“禁止(Barred)”标识),所述指示信息用于指示虚拟小区不为终端设备提供接入服务。
其中,系统信息块包含系统信息,一个小区中可以有多个系统信息块,这些系统信息块承载的信息不相同,例如SIB1。SIB1主要承载一些小区的本身的配置信息,例如随机接入相关的信息,PDCCH相关的信息,其他信息块相关的信息,UE接入小区的信息,小区的标识信息等信息。
可选的,第二接入网设备通过所述虚拟小区仅发送PSS、SSS、CRS,以实现虚拟小区不为终端提供接入服务的目的。
在一种可能的实现方式中,虚拟小区所支持的通信制式为NR中的通信制式。所述下行信号中的下行参考信号为解调参考信号(DMRS),所述下行信号为同步信号和物理广播信道块(SSB),所述SSB包括所述DMRS。其中,SSB用于终端设备发现(或称为检测到)虚拟小区,以及检测虚拟小区的信号质量。具体的,终端设备的射频在SSB中心频点位置检索SSB中的PSS、SSS以发现小区,并通过SSB中的解调参考信号检测虚拟小区的信号质量。
需要说明的是,步骤S101和步骤S102的执行没有先后顺序的限制。
S103、终端设备根据所述第一测量控制信息测量邻区信号。
在一些实施例中,终端设备可以根据第一测量控制信息确定测量事件,以及需要测量的邻区信号所在的第一频率范围。可选的,终端设备在第一频率范围上测量邻区信号,确定测量到的邻区的小区标识以及信号质量,得到一个或者多个测量结果。
S104、终端设备根据测量结果生成第一测量报告。
其中,所述第一测量报告中包括所述终端设备检测到的一个或者多个小区的信息,所述一个或者多个小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量。在一些实施例中,第一测量报告中包含所有下行参考信号的质量高于第一服务小区的小区的信息。
在一些实施例中,第一测量控制信息中包含有指示第一测量报告中邻区数量的最大值(例如为N)的指示信息。那么,第一测量报告中最多包含有N个的小区的信息。包含的 N个小区的信号质量强于剩余的测量出的邻区的信号质量。
在本申请实施例中,所述第一测量报告指示所述虚拟小区的下行参考信号的质量。所述第一测量报告中包含所述虚拟小区的测量结果,表明所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量。需要说明的是,由于虚拟小区占用的原第二服务小区的部分时频资源发送下行信号,虚拟小区的信号质量可以视为第二服务小区的信号质量。在这种情况下,通过第二服务小区发送的信号将对终端设备与第一网络设备之间的通信造成影响,容易引发远近干扰的问题。
S105、终端设备向第一接入网设备发送所述第一测量报告。
S106、在第一接入网设备从所述终端设备接收第一测量报告之后,在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,所述第一接入网设备将所述终端设备迁移至第三服务小区。
其中,所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。也即是说,第三服务小区与第一服务小区是同制式异频小区,或者是异制式小区。需要说明的是,第三服务小区可以是第二服务小区,也可以是其他服务小区。
可选的,所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量,可以理解为上述第一测量报告包括所述虚拟小区的信息,也就是说虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量,终端设备才上报所述虚拟小区的信息,上述第一测量报告可以隐含地指示所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量。
在一些实施例中,所述第一接入网设备将所述终端设备迁移至第三服务小区的前提条件还可以存在其他情况。以下对一些可能的前提条件进行介绍。
可选的,在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量,且所述虚拟小区的下行参考信号的质量高于所述第一测量报告包含的其他小区的下行参考信号的质量的情况下,所述第一接入网设备将所述终端设备迁移至第三服务小区。上述这种情况表明,与第一服务小区同频异制式的第二服务小区的邻区信号是检测出的邻区信号中最强的,第二服务小区的邻区信号对第一服务小区的服务信号的干扰较强,这种情况下会极易引发远近干扰的问题。
可选的,在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量,且所述虚拟小区的下行参考信号的质量高于预设值的情况下,所述第一接入网设备将所述终端设备迁移至第三服务小区。可选的,该预设值可以为预先设定的一个与驻扎小区信号质量的相对门限值,也可以为预先设定的一个绝对门限值。上述这种情况表明,虚拟小区的信号质量较强,对第一服务小区的服务信号的干扰较强,这种情况下会极易引发远近干扰的问题。
可选的,所述第一接入网设备将所述终端设备迁移至第三服务小区可能为:第一接入网设备将终端设备切换至第三服务小区。或者,该方式可能为第一接入网设备将终端设备重定向至第三服务小区。
接下来,介绍第一接入网设备将所述终端设备迁移至第三服务小区的一些可能的实现 方式。
在一些实现方式中,所述第一接入网设备向所述终端设备发送第二测量控制信息,所述第二测量控制信息用于指示所述终端设备测量所述第三服务小区的下行参考信号的质量;所述第一接入网设备从所述终端设备接收第二测量报告,所述第二测量报告指示所述第三服务小区的下行参考信号的质量;所述第一接入网设备根据所述第二测量报告将所述终端设备迁移至所述第三服务小区。需要说明的是,第二测量报告中包含符合测量条件的一个或者多个同制式异频小区或者异制式小区的信息。第一接入网设备从所述一个或者多个同制式异频小区或者异制式小区中选取出所述第三服务小区。
在一些实现方式中,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述一个或者多个服务小区的小区标识包括所述第三服务小区的小区标识,所述第一接入网设备将所述终端设备迁移至第三服务小区,包括:所述第一接入网设备从存储的与所述第一服务小区相邻的一个或者多个服务小区中选取所述第三服务小区;所述第一接入网设备将所述终端设备迁移至所述第三服务小区。可选的,所述第一服务小区相邻的一个或者多个服务小区的小区标识可以存储在邻区列表中。该小区标识可以为物理小区标识(Physical Cell Identifier,PCI)。
接下来,介绍第一接入网设备确定第一测量报告中包含虚拟小区的信息的一些可能的实现方式。
在一些实现方式中,所述第一接入网设备存储有所述虚拟小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识。可选的,第一接入网设备可以存储有虚拟小区列表,所述虚拟小区列表包含有预设的多个虚拟小区的小区标识。
在一些实现方式中,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识,所述虚拟小区的小区标识与所述一个或者多个服务小区的小区标识均不相同。可选的,所述第一服务小区相邻的一个或者多个服务小区的小区标识可以存储在邻区列表中。换句话说,邻区列表中存储有预设的该第一服务小区相邻的一个或者多个可支持终端设备通信服务的小区的小区标识。该小区标识与所述一个或者多个服务小区的小区标识均不相同,表明这个虚拟小区不是服务小区。
需要说明的是,上述实施例以图1A对应的网络架构为例,介绍了本申请实施例提供的一种小区的测量方法的实施步骤。
在另一些实施例中,该方法还可以应用于图1B所对应的网络架构。在图1B所示的网络架构中,在LTE小区7中新建LTE小区8(可参见图13所示的网络架构)。其中,LTE小区8可以视为上述内容中介绍的虚拟小区,LTE小区6可以视为上述内容中介绍的第一服务小区,LTE小区7可以视为上述内容中介绍的第二服务小区,终端设备6可以视为上述内容中介绍的终端设备。LTE小区6与接入网设备4对应,LTE小区7和LTE小区7均与接入网设备5对应。
在另一些实施例中,该方法还可以应用于图2A所对应的网络架构。在图2A所示的网络架构中,在NR小区2中新建LTE小区5(可参见图14所示的网络架构)。其中,LTE 小区5可以视为上述内容中介绍的虚拟小区,LTE小区2可以视为上述内容中介绍的第一服务小区,NR小区2可以视为上述内容中介绍的第二服务小区,终端设备3可以视为上述内容中介绍的终端设备。LTE小区5、LTE小区2和NR小区2均与接入网设备3对应。上述介绍的第一接入网设备(即接入网设备1)所执行的操作和第二接入网设备(即接入网设备2)均由接入网设备3执行。
也即是说,在一些实施例中,所述接入网设备3还通过所述虚拟小区发送下行信号。接入网设备3还通过第二服务小区发送通信信号。
在一些实施例中,所述接入网设备3还通过所述第二服务小区向接入所述第二服务小区的终端设备发送指示信息,所述指示信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区发送的下行信号所占用的时频资源不同;或者用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送的下行信号所占用的时频资源。
在另一些实施例中,该方法还可以应用于图2B所对应的网络架构。在图2B所示的网络架构中,在NR小区4中新建NR小区5(可参见图15所示的网络架构)。其中,NR小区5可以视为上述内容中介绍的虚拟小区,NR小区3可以视为上述内容中介绍的第一服务小区,NR小区4可以视为上述内容中介绍的第二服务小区,终端设备7可以视为上述内容中介绍的终端设备。NR小区4、NR小区3和NR小区5均与接入网设备6对应。那么接入网设备6不仅需要执行上述介绍的第一接入网设备(即接入网设备1)所执行的操作,还需要执行上述介绍的第二接入网设备(即接入网设备2)所执行的操作。
这些实施方式的具体实现可以参照上述内容中的介绍,此处不再一一赘述。
以上介绍了本申请实施例提供的一种小区的测量方法。接下来针对上述内容中列举出的几种LTE和NR同频组网的情况,介绍本申请实施例的应用场景。
对于图3所示的网络架构,支持DSS的NR小区与周边相邻的LTE小区容易产生远近干扰。因此,可以在与支持DSS的NR小区相邻的LTE小区中部署虚拟小区1(可以参照图16所示的网络架构),虚拟小区1的通信制式为NR的通信制式。也即是说,与支持DSS的NR小区相邻的LTE小区可以视为上述内容中介绍的第二服务小区,与LTE小区相邻的支持DSS的NR小区可以视为上述内容中介绍的第一服务小区。
对于图4所示的网络架构,支持DSS的LTE小区与周边相邻的NR小区容易产生远近干扰。因此,可以在与支持DSS的LTE小区相邻的NR小区中部署虚拟小区2(可参见图17所示的网络架构),虚拟小区2的通信制式为LTE的通信制式。也即是说,与NR小区相邻的支持DSS的LTE小区可以视为上述内容中介绍的第一服务小区,与支持DSS的LTE小区相邻的NR小区可以视为上述内容中介绍的第二服务小区。
对于图5所示的网络架构,相邻的LTE小区和NR小区容易产生远近干扰。因此,可以在与NR小区相邻的LTE小区中部署虚拟小区1,虚拟小区1的通信制式为NR的通信制式。在与LTE小区相邻的NR小区中部署虚拟小区2,虚拟小区2的通信制式为LTE的通信制式(可参见图18所示的网络架构)。也即是说,对于虚拟小区1而言,与NR小区相邻的LTE小区可以视为上述内容中介绍的第二服务小区,与LTE小区相邻的NR小区可 以视为上述内容中介绍的第一服务小区。对于虚拟小区2而言,与NR小区相邻的LTE小区可以视为上述内容中介绍的第一服务小区,与LTE小区相邻的NR小区可以视为上述内容中介绍的第二服务小区。
对于图6A所示的网络架构,NR小区与周边相邻的支持DSS的LTE小区容易产生远近干扰。因此,可以在与支持DSS的LTE小区相邻的NR小区中部署虚拟小区2(可以参照图19所示的网络架构),虚拟小区2的通信制式为LTE的通信制式。也即是说,与支持DSS的LTE小区相邻的NR小区可以视为上述内容中介绍的第二服务小区,与NR小区相邻的支持DSS的LTE小区可以视为上述内容中介绍的第一服务小区。
对于图6B所示的网络架构,LTE小区与周边相邻的支持DSS的NR小区容易产生远近干扰。因此,可以在与支持DSS的NR小区相邻的LTE小区中部署虚拟小区1(可以参照图20所示的网络架构),虚拟小区1的通信制式为NR的通信制式。也即是说,与支持DSS的NR小区相邻的LTE小区可以视为上述内容中介绍的第二服务小区,与LTE小区相邻的支持DSS的NR小区可以视为上述内容中介绍的第一服务小区。
为了实现上述本申请实施例提供的方法中的各功能,第一接入网设备、第二接入网设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
参见图21,是本申请实施例提供的一种通信装置的示意图。所述通信装置210可以是接入网设备,也可以是接入网设备中的装置,还可以是能够与终端设备匹配使用的装置。所述通信装置210包括发送单元2101、接收单元2102和迁移单元2103,其中:所述发送单元2101,用于通过第一服务小区向终端设备发送第一测量控制信息,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下行参考信号的质量,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频点相同。其中,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;所述第二服务小区的制式与所述第一服务小区的制式不同,或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同;所述虚拟小区和所述第二服务小区为所述通信装置的小区,或者,所述虚拟小区和所述第二服务小区为第二接入网设备的小区。具体的,所述发送单元2101所执行的操作可以参照上述图10所示方法中的步骤S101中的介绍。
所述接收单元2102,用于从所述终端设备接收第一测量报告,所述第一测量报告指示所述虚拟小区的下行参考信号的质量。具体的,所述接收单元2102所执行的操作可以参照上述图10所示方法中的步骤S105中的介绍。
所述迁移单元2103,用于在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,将所述终端设备迁移至第三服务小区。其中,所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。 具体的,所述迁移单元2103所执行的操作可以参照上述图10所示方法中的步骤S106中的介绍。
在一些实施例中,所述迁移单元2103具体用于:向所述终端设备发送第二测量控制信息,所述第二测量控制信息用于指示所述终端设备测量所述第三服务小区的下行参考信号的质量;从所述终端设备接收第二测量报告,所述第二测量报告指示所述第三服务小区的下行参考信号的质量;根据所述第二测量报告将所述终端设备迁移至所述第三服务小区。
在一些实施例中,所述通信装置存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述一个或者多个服务小区的小区标识包括所述第三服务小区的小区标识,所述迁移单元2103具体用于:从存储的与所述第一服务小区相邻的一个或者多个服务小区中选取所述第三服务小区;将所述终端设备迁移至所述第三服务小区。
在一些实施例中,所述通信装置存储有所述虚拟小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识。
在一些实施例中,所述通信装置存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识,所述虚拟小区的小区标识与所述一个或者多个服务小区的小区标识均不相同。
在一些实施例中,所述虚拟小区不为终端设备提供接入服务。
在一些实施例中,所述第二服务小区的制式与所述第一服务小区的制式不同包括:所述第一服务小区所支持的制式为长期演进LTE中的制式,所述第二服务小区所支持的制式为新无线NR中的制式;或者,所述第一服务小区所支持的制式为NR中的制式,所述第二服务小区所支持的制式为LTE中的制式。
在一些实施例中,所述虚拟小区和所述第二服务小区为所述通信装置的小区,所述发送单元2101还用于:发送所述虚拟小区的下行信号,所述下行信号包括所述虚拟小区的所述下行参考信号。
在一些实施例中,所述下行参考信号包括小区参考信号CRS。
在一些实施例中,所述下行信号还包括PSS、SSS和系统信息块中的一项或者多项,所述系统信息块包括指示所述虚拟小区不为终端设备提供接入服务的指示信息。
在一些实施例中,所述下行参考信号为DMRS,所述下行信号为SSB,所述SSB包括所述DMRS。
在一些实施例中,所述发送单元2101还用于:通过所述第二服务小区向接入所述第二服务小区的终端设备发送指示信息;其中,所述指示信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区的所述下行信号所占用的时频资源不同;或者用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送所述下行信号所占用的时频资源。
需要说明的是,图21所示的通信装置的各个单元执行的操作可以上述方法实施例的相关内容。此处不再详述。上述各个单元可以以硬件,软件或者软硬件结合的方式来实现。在一个实施例中,上述内容中的发送单元2101、接收单元2102和迁移单元2103的功能可以由通信装置210中的一个或多个处理器来实现。
通过图21所示的通信装置,通信装置可以根据第一测量报告,确定虚拟小区的下行参 考信号的质量高于所述第一服务小区的下行参考信号的质量,这样可能会引起远近干扰的问题。在这种情况下,通信装置将所述终端设备迁移至第三服务器小区,可以避免终端设备受到远近干扰。
参见图22,是本申请实施例提供的又一种通信装置的结构示意图。所述通信装置220可以是接入网设备,也可以是接入网设备中的装置,还可以是能够与终端设备匹配使用的装置。也可以是支持接入网设备实现上述方法的芯片、芯片系统、或处理器等。所述通信装置220可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置220可以包括一个或多个处理器2201。所述处理器2201可以是通用处理器或者专用处理器等。所述处理器2201可以用于对通信装置(如,接入网设备、接入网设备芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置220中可以包括一个或多个存储器2202,其上可以存有指令2204,所述指令可在所述处理器2201上被运行,使得所述通信装置220执行上述方法实施例中描述的方法。可选的,所述存储器2202中还可以存储有数据。所述处理器2201和存储器2202可以单独设置,也可以集成在一起。
可选的,所述通信装置220还可以包括收发器2205、天线2206。所述收发器2205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
在一种实现方式中,处理器2201用于执行以下操作:
通过收发器2205通过第一服务小区向终端设备发送第一测量控制信息,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下行参考信号的质量,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频点相同。其中,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;所述第二服务小区的制式与所述第一服务小区的制式不同,或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同;所述虚拟小区和所述第二服务小区为所述通信装置的小区,或者,所述虚拟小区和所述第二服务小区为第二接入网设备的小区。
通过收发器2205从所述终端设备接收第一测量报告,所述第一测量报告指示所述虚拟小区的下行参考信号的质量。
在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,将所述终端设备迁移至第三服务小区。其中,所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。
处理器2201执行的操作可以上述方法实施例的相关内容。此处不再详述。
在另一种可能的设计中,该收发器可以是收发电路,或者是接口,或者是接口电路。 用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,可选的,处理器2201可以存有指令2203,指令2203在处理器2201上运行,可使得所述通信装置220执行上述方法实施例中描述的方法。指令2203可能固化在处理器2201中,该种情况下,处理器2201可能由硬件实现。
在又一种可能的设计中,通信装置220可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
以上实施例描述中的通信装置可以是接入点或者站点,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图22的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图23所示的芯片的结构示意图。图23所示的芯片2300包括处理器2301和接口2302。其中,处理器2301的数量可以是一个或多个,接口2302的数量可以是多个。
对于芯片用于实现本申请实施例中第一接入网设备的功能:
所述接口2302,用于通过第一服务小区向终端设备发送第一测量控制信息,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下行参考信号的质量,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频点相同。其中,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;所述第二服务小区的制式与所述第一服务小区的制式不同,或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同;所述虚拟小区和所述第二服务小区为所述第一接入网设备的小区,或者,所述虚拟小区和所述第二服务小区为第二接入网设备的小区。
所述接口2302,从所述终端设备接收第一测量报告,所述第一测量报告指示所述虚拟小区的下行参考信号的质量。
所述处理器2301,用于在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,将所述终端设备迁移至第三服务小区。其中,所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。
可选的,芯片还包括存储器2303,存储器2303用于存储通信装置必要的程序指令和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种小区的测量方法,其特征在于,所述方法包括:
    第一接入网设备通过第一服务小区向终端设备发送第一测量控制信息,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下行参考信号的质量,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频点相同,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;
    所述第一接入网设备从所述终端设备接收第一测量报告,所述第一测量报告指示所述虚拟小区的下行参考信号的质量;
    在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,所述第一接入网设备将所述终端设备迁移至第三服务小区;
    其中,所述第二服务小区的制式与所述第一服务小区的制式不同,或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同;
    所述虚拟小区和所述第二服务小区为所述第一接入网设备的小区,或者,所述虚拟小区和所述第二服务小区为第二接入网设备的小区;且
    所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一接入网设备将所述终端设备迁移至第三服务小区,包括:
    所述第一接入网设备向所述终端设备发送第二测量控制信息,所述第二测量控制信息用于指示所述终端设备测量所述第三服务小区的下行参考信号的质量;
    所述第一接入网设备从所述终端设备接收第二测量报告,所述第二测量报告指示所述第三服务小区的下行参考信号的质量;
    所述第一接入网设备根据所述第二测量报告将所述终端设备迁移至所述第三服务小区。
  3. 根据权利要求1所述的方法,其特征在于,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述一个或者多个服务小区的小区标识包括所述第三服务小区的小区标识,所述第一接入网设备将所述终端设备迁移至第三服务小区,包括:
    所述第一接入网设备从存储的与所述第一服务小区相邻的一个或者多个服务小区中选取所述第三服务小区;
    所述第一接入网设备将所述终端设备迁移至所述第三服务小区。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一接入网设备存储有所 述虚拟小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一接入网设备存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识,所述虚拟小区的小区标识与所述一个或者多个服务小区的小区标识均不相同。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述虚拟小区不为终端设备提供接入服务。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第二服务小区的制式与所述第一服务小区的制式不同包括:
    所述第一服务小区所支持的制式为长期演进LTE中的制式,所述第二服务小区所支持的制式为新无线NR中的制式;或者,所述第一服务小区所支持的制式为NR中的制式,所述第二服务小区所支持的制式为LTE中的制式。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述虚拟小区和所述第二服务小区为所述第一接入网设备的小区,所述方法还包括:
    所述第一接入网设备发送所述虚拟小区的下行信号,所述下行信号包括所述虚拟小区的所述下行参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述下行参考信号包括小区参考信号CRS。
  10. 根据权利要求9所述的方法,其特征在于,所述下行信号还包括主同步信号PSS、辅同步信号SSS和系统信息块中的一项或者多项,所述系统信息块包括指示所述虚拟小区不为终端设备提供接入服务的指示信息。
  11. 根据权利要求8所述的方法,其特征在于,所述下行参考信号为解调参考信号DMRS,所述下行信号为同步信号和物理广播信道块SSB,所述SSB包括所述DMRS。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一接入网设备通过所述第二服务小区向接入所述第二服务小区的终端设备发送指示信息;
    其中,所述指示信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区的所述下行信号所占用的时频资源不同;或者用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送所述下行信号所占用的时频资源。
  13. 一种通信装置,其特征在于,所述通信装置包括发送单元,接收单元和迁移单元,其中:
    所述发送单元,用于通过第一服务小区向终端设备发送第一测量控制信息,所述第一测量控制信息用于指示所述终端设备测量虚拟小区的下行参考信号的质量,所述第一服务小区的所述下行参考信号和所述虚拟小区的所述下行参考信号的中心频点相同,所述虚拟小区的频率范围包含在第二服务小区的频率范围中,所述第二服务小区与所述第一服务小区的频率范围有重叠;
    所述接收单元,用于从所述终端设备接收第一测量报告,所述第一测量报告指示所述虚拟小区的下行参考信号的质量;
    所述迁移单元,用于在所述虚拟小区的下行参考信号的质量高于所述第一服务小区的下行参考信号的质量的情况下,将所述终端设备迁移至第三服务小区;
    其中,所述第二服务小区的制式与所述第一服务小区的制式不同,或者,所述第二服务小区的制式与所述第一服务小区的制式相同,且所述第二服务小区的所述下行参考信号与所述第一服务小区的所述下行参考信号的中心频点不同;
    所述虚拟小区和所述第二服务小区为所述通信装置的小区,或者,所述虚拟小区和所述第二服务小区为第二接入网设备的小区;且
    所述第三服务小区与所述第一服务小区制式相同,且所述第三服务小区与所述第一服务小区的所述下行参考信号的中心频点不同,或者所述第三服务小区与所述第一服务小区制式不同。
  14. 根据权利要求13所述的通信装置,其特征在于,所述迁移单元具体用于:
    向所述终端设备发送第二测量控制信息,所述第二测量控制信息用于指示所述终端设备测量所述第三服务小区的下行参考信号的质量;
    从所述终端设备接收第二测量报告,所述第二测量报告指示所述第三服务小区的下行参考信号的质量;
    根据所述第二测量报告将所述终端设备迁移至所述第三服务小区。
  15. 根据权利要求13所述的通信装置,其特征在于,所述通信装置存储有与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述一个或者多个服务小区的小区标识包括所述第三服务小区的小区标识,所述迁移单元具体用于:
    从存储的与所述第一服务小区相邻的一个或者多个服务小区中选取所述第三服务小区;
    将所述终端设备迁移至所述第三服务小区。
  16. 根据权利要求13-15任一项所述的通信装置,其特征在于,所述通信装置存储有所述虚拟小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识。
  17. 根据权利要求13-15任一项所述的通信装置,其特征在于,所述通信装置存储有 与所述第一服务小区相邻的一个或者多个服务小区的小区标识,所述第一测量结果包括所述虚拟小区的小区标识,所述虚拟小区的小区标识与所述一个或者多个服务小区的小区标识均不相同。
  18. 根据权利要求13-17任一项所述的通信装置,其特征在于,所述虚拟小区不为终端设备提供接入服务。
  19. 根据权利要求13-18任一项所述的通信装置,其特征在于,所述第二服务小区的制式与所述第一服务小区的制式不同包括:
    所述第一服务小区所支持的制式为长期演进LTE中的制式,所述第二服务小区所支持的制式为新无线NR中的制式;或者,所述第一服务小区所支持的制式为NR中的制式,所述第二服务小区所支持的制式为LTE中的制式。
  20. 根据权利要求13-19任一项所述的通信装置,其特征在于,所述虚拟小区和所述第二服务小区为所述通信装置的小区,所述发送单元还用于:
    发送所述虚拟小区的下行信号,所述下行信号包括所述虚拟小区的所述下行参考信号。
  21. 根据权利要求20所述的通信装置,其特征在于,所述下行参考信号包括小区参考信号CRS。
  22. 根据权利要求21所述的通信装置,其特征在于,所述下行信号还包括PSS、SSS和系统信息块中的一项或者多项,所述系统信息块包括指示所述虚拟小区不为终端设备提供接入服务的指示信息。
  23. 根据权利要求20所述的通信装置,其特征在于,所述下行参考信号为DMRS,所述下行信号为SSB,所述SSB包括所述DMRS。
  24. 根据权利要求20-23任一项所述的通信装置,其特征在于,所述发送单元还用于:
    通过所述第二服务小区向接入所述第二服务小区的终端设备发送指示信息;
    其中,所述指示信息用于指示所述接入所述第二服务小区的终端设备的可用时频资源,所述可用时频资源与所述虚拟小区的所述下行信号所占用的时频资源不同;或者用于指示所述接入所述第二服务小区的终端设备不使用所述虚拟小区发送所述下行信号所占用的时频资源。
  25. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储程序代码;
    所述处理器,用于从所述存储器中调用所述程序代码执行如权利要求1-12任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如权利要求1-12任一项所述的方法被实现。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-12中任一项所述的方法。
PCT/CN2020/132936 2020-11-30 2020-11-30 一种小区的测量方法以及相关装置 WO2022110215A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20963103.5A EP4236473A4 (en) 2020-11-30 2020-11-30 CELL MEASUREMENT METHOD AND ASSOCIATED DEVICE
KR1020237020373A KR20230107340A (ko) 2020-11-30 2020-11-30 셀 측정 방법 및 관련 장치
CN202080106466.3A CN116349307A (zh) 2020-11-30 2020-11-30 一种小区的测量方法以及相关装置
PCT/CN2020/132936 WO2022110215A1 (zh) 2020-11-30 2020-11-30 一种小区的测量方法以及相关装置
US18/325,793 US20230300701A1 (en) 2020-11-30 2023-05-30 Cell measurement method and related apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132936 WO2022110215A1 (zh) 2020-11-30 2020-11-30 一种小区的测量方法以及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/325,793 Continuation US20230300701A1 (en) 2020-11-30 2023-05-30 Cell measurement method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022110215A1 true WO2022110215A1 (zh) 2022-06-02

Family

ID=81753958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132936 WO2022110215A1 (zh) 2020-11-30 2020-11-30 一种小区的测量方法以及相关装置

Country Status (5)

Country Link
US (1) US20230300701A1 (zh)
EP (1) EP4236473A4 (zh)
KR (1) KR20230107340A (zh)
CN (1) CN116349307A (zh)
WO (1) WO2022110215A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279145A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method, apparatus, and system for terminal for measurement configuration of different reference signals and cell measurement report mechanism
CN109479218A (zh) * 2016-04-13 2019-03-15 惠州Tcl移动通信有限公司 通信切换方法、用户设备及基站
CN111565406A (zh) * 2017-11-09 2020-08-21 Oppo广东移动通信有限公司 频率测量的方法、网络设备和终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
US9380571B2 (en) * 2012-10-04 2016-06-28 Lg Electronics Inc. Method and apparatus for transreceiving downlink signal by considering antenna port relationship in wireless communication system
US11611420B2 (en) * 2017-03-24 2023-03-21 Telefonaktiebolaget Lm Ericsson (Publ) CSI-RS for AMM measurements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479218A (zh) * 2016-04-13 2019-03-15 惠州Tcl移动通信有限公司 通信切换方法、用户设备及基站
US20180279145A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method, apparatus, and system for terminal for measurement configuration of different reference signals and cell measurement report mechanism
CN111565406A (zh) * 2017-11-09 2020-08-21 Oppo广东移动通信有限公司 频率测量的方法、网络设备和终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Measurement priority handling in NR", 3GPP DRAFT; R2-2003072, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online Meeting ;20200420 - 20200430, 9 April 2020 (2020-04-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051870221 *
See also references of EP4236473A4 *

Also Published As

Publication number Publication date
CN116349307A (zh) 2023-06-27
EP4236473A1 (en) 2023-08-30
EP4236473A4 (en) 2024-01-17
KR20230107340A (ko) 2023-07-14
US20230300701A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
CN108810922B (zh) 一种通信方法及终端、基站
JP7092797B2 (ja) 端末、無線通信方法及びシステム
JP7046937B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7248594B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7337696B2 (ja) 端末、無線通信方法、基地局及びシステム
US10999827B2 (en) User equipment
WO2019138500A1 (ja) ユーザ端末及び無線通信方法
US20130115994A1 (en) Set management for flexible bandwidth carriers
US20110319085A1 (en) Controller, radio network controller, base station apparatus, and communication control method
US20180317212A1 (en) Wireless Device and Network Node for a Wireless Communication System and Methods Thereof
TWI693840B (zh) 接收訊號強度指示測量之方法及其使用者設備
GB2498932A (en) Distributed carrier aggregation on unlicensed bands
WO2012062364A1 (en) Interference management for coexisting radio systems
JP7007281B2 (ja) 端末、無線通信方法、基地局、及び無線通信システム
WO2019138519A1 (ja) ユーザ端末及び無線通信方法
JP7467121B2 (ja) 端末、基地局、無線通信方法及びシステム
CN116711362A (zh) 5g新空口fr1双连接中的rrm测量
KR20130124809A (ko) 무선통신 시스템에서 기기 내 공존 간섭을 제어하는 장치 및 방법
WO2022110215A1 (zh) 一种小区的测量方法以及相关装置
CN114208262B (zh) 载波测量方法和装置
JP7469334B2 (ja) 端末、及び通信方法
US11895523B2 (en) User apparatus
WO2022150997A1 (en) Measurement gap timing for new radio dual connectivity
EP3923621A1 (en) User equipment
CN116567704A (zh) 下行控制信息检测方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020963103

Country of ref document: EP

Effective date: 20230525

ENP Entry into the national phase

Ref document number: 20237020373

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE