WO2022110159A1 - 定位方法、装置、可移动平台、地标及地标阵列 - Google Patents

定位方法、装置、可移动平台、地标及地标阵列 Download PDF

Info

Publication number
WO2022110159A1
WO2022110159A1 PCT/CN2020/132815 CN2020132815W WO2022110159A1 WO 2022110159 A1 WO2022110159 A1 WO 2022110159A1 CN 2020132815 W CN2020132815 W CN 2020132815W WO 2022110159 A1 WO2022110159 A1 WO 2022110159A1
Authority
WO
WIPO (PCT)
Prior art keywords
landmark
movable platform
light source
landmarks
coordinate system
Prior art date
Application number
PCT/CN2020/132815
Other languages
English (en)
French (fr)
Inventor
关雁铭
高成强
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/132815 priority Critical patent/WO2022110159A1/zh
Priority to CN202080071115.3A priority patent/CN114729807A/zh
Publication of WO2022110159A1 publication Critical patent/WO2022110159A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present disclosure relates to the field of positioning technology, and in particular, to a positioning method, a device, a movable platform, a landmark and a landmark array.
  • the movable platform needs to rely on a reliable positioning system during the driving process.
  • Existing movable platforms can be positioned wirelessly or through a visual perception system.
  • GPS signals are susceptible to occlusion or interference, and the positioning effect of a visual perception system depends to some extent on the number of features of the surrounding environment. To sum up, the traditional positioning method has poor positioning reliability.
  • one of the objectives of the present disclosure is to provide a positioning method to improve the positioning reliability of the movable platform.
  • a method for positioning a movable platform comprising: acquiring an image collected by an image acquisition device on the movable platform; identifying a plurality of landmarks in a landmark array from the image; The movable platform is positioned according to the position information of a plurality of landmarks in the landmark array.
  • a movable platform positioning device comprising a processor configured to perform the following steps: acquiring an image captured by an image capturing device on the movable platform; identifying a landmark array from the image a plurality of landmarks; positioning the movable platform based on the identified location information of the plurality of landmarks in the landmark array.
  • a movable platform comprising: a body; an image acquisition device, provided on the body, for collecting images; and a positioning device, provided in the body, for performing the first aspect the method described.
  • a landmark including a light source, and the light source is modulated according to a preset modulation method; an image including the landmark can be captured by an image acquisition device on a movable platform, so that the movable platform can The movable platform is positioned based on the location information of the landmark and the demodulated information obtained by demodulating the light source.
  • a landmark array is provided, and the landmark array includes a plurality of landmarks as described in the fourth aspect.
  • a computer-readable storage medium having computer instructions stored thereon, the instructions implementing the method of the first aspect when executed by a processor.
  • the movable platform positioning method uses the position information of multiple landmarks in the landmark array as prior information, identifies the multiple landmarks through image recognition technology, and can know the relative position of the movable platform according to the position information of the multiple landmarks.
  • the movable platform can be positioned according to the relative position of the landmark, so that the movable platform can still be positioned reliably when the visual positioning and GPS positioning based on image features fail.
  • FIG. 1 is a flowchart of a method for positioning a movable platform according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a method for identifying a landmark array according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a method for positioning a movable platform according to another exemplary embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for positioning a movable platform according to another exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a positioning process according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a positioning device according to an exemplary embodiment of the present disclosure.
  • FIG. 7 is a movable platform according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a landmark according to an exemplary embodiment of the present disclosure.
  • FIG. 9 is a landmark array according to an exemplary embodiment of the present disclosure.
  • Traditional movable platforms are generally positioned through visual perception systems or wireless positioning methods.
  • the image of the surrounding environment can be captured by the visual perception system mounted on the fuselage, and then the features can be extracted from the image, and the drone can be processed based on the extracted features. position.
  • the visual positioning system based on image features has high requirements on the number of features and the consistency of feature extraction. In environments such as high altitude, there are fewer features that can be extracted, and the features of the same object extracted by UAVs from images taken at different angles may change, so the robustness of feature extraction will deteriorate, which will lead to positioning accuracy. drop; in addition, the visual positioning system cannot cope with dark or dark environments such as night.
  • the global position of the UAV can be obtained by receiving GPS satellite signals through the onboard Global Positioning System (GPS) receiver.
  • GPS Global Positioning System
  • UWB Ultra Wide Band
  • UAVs can be positioned relative to each other through wireless communication.
  • the wireless positioning method is susceptible to occlusion and malicious interference, and is the only positioning method at night. Once interfered, it will often directly lead to the uncontrolled forced landing or direct fall of the drone.
  • the present disclosure provides a method for positioning a movable platform, which is used on a movable platform equipped with an image acquisition device and a positioning device.
  • the movable platform may be an unmanned aerial photography aircraft, a crossing aircraft, an unmanned vehicle, an unmanned ship, or the like. The method includes the steps shown in Figure 1:
  • Step 110 Acquire an image captured by an image capturing device on the movable platform
  • Step 120 Identify a plurality of landmarks in the landmark array from the image
  • Step 130 Position the movable platform based on the identified location information of multiple landmarks in the landmark array.
  • an image including an array of landmarks may be acquired by an image acquisition device on the movable platform.
  • the image acquisition device may be a camera, and the camera may be installed on the pan/tilt of the movable platform.
  • the landmark array includes a plurality of landmarks, the landmarks can be fixed on other objects, and the geometric shape of the landmarks can be relatively regular shapes such as circles, squares, etc., which eliminates the need to use complex feature detection algorithms for detection, and reduces the complexity of positioning. This reduces the resource consumption during the positioning process.
  • the geometric shape of the landmark may be an irregular shape, such as an asymmetric geometric shape, to distinguish it from the surrounding environment to reduce the misrecognition rate.
  • a geometric shape that combines symmetry and asymmetry can be used to improve the recognition accuracy while reducing the complexity of the detection algorithm.
  • the geometry of the landmark should be significantly different from the surrounding environment, for example, circular landmarks should be avoided in the mountains to distinguish it from the natural shape of the rock; preferably, the color of the landmark should be significantly different from the surrounding environment, for example, Avoid using green landmarks on grass to distinguish it from the natural color of grass.
  • the size of the landmarks is enough to allow the movable platform to detect when working, and each landmark can be seen as a point in the image.
  • each landmark in the present disclosure may include a light source capable of emitting visible light Or invisible light such as infrared light and ultraviolet light. Further, in order to improve the recognition accuracy of the landmark, multiple light sources in the image may also be filtered based on the information of the landmark, so as to filter out light sources other than the landmark.
  • the information of the landmark may include, but is not limited to, at least one of the emission frequency band, arrangement, modulation, and the like of the landmark.
  • an ultraviolet light source or an infrared light source can be selected as the landmark.
  • the light source can also be a narrow-band light source with good monochromaticity, which is used to emit light in a certain wavelength range, for example, a narrow-band infrared light source or a narrow-band ultraviolet light source can be selected.
  • the image acquisition device on the movable platform is further provided with a band-pass filter device, which can pass light including the output wavelength band of the narrow-band light source, and the band-pass filter device may be a narrow-band filter.
  • the band-pass filter device can be set to pass light with a wavelength range of 1070-1090 nm, or a narrow-band filter with a specification of 1080 nm can be selected, so that the image acquisition device can capture the light of the narrow-band light source.
  • the emitted light is filtered out, and the light emitted by other light sources is filtered out, thereby reducing the interference of other light sources and improving the accuracy of identifying landmarks.
  • the movable platform can extract the center of the light spot through a visual recognition algorithm.
  • a plurality of landmarks can also be arranged in a predetermined manner, for example, in a circle. Then, the light sources that are arranged in a different way than the predetermined way are filtered out from the image.
  • each landmark can also be modulated according to a preset modulation mode.
  • the modulation mode may be to modulate at least one of the flickering frequency, the light-emitting frequency band and the light-emitting brightness of the light source.
  • the landmarks when the landmarks are modulated according to a preset modulation method, the landmarks can be identified from the image based on the following methods:
  • Step 121 demodulate each first light source in the image to obtain demodulation information
  • Step 122 Identify a plurality of landmarks in the landmark array from the respective first light sources based on the demodulation information.
  • each landmark in the landmark array can be modulated according to the flickering frequency of the light source, for example, the flickering frequency of each landmark can be set as f 1 .
  • the image acquisition device on the movable platform needs to acquire multiple images containing multiple landmarks.
  • the flickering frequencies of all the first light sources in the images can be calculated according to the multiple images, and the first light source whose flickering frequency matches the flickering frequency f1 of the landmark can be determined as the landmark. If the image includes the first light source with flickering frequency f1 and other flickering frequencies, it can be determined that the first light source with flickering frequency f1 is a landmark.
  • the flickering frequencies of different landmarks may be different. If the landmark array includes landmark A, landmark B, and landmark C, their flickering frequencies can be set to be f A , f B , and f C respectively.
  • the collected image contains four first light sources, namely the first light source a, the first light source b, the first light source c, and the first light source d.
  • the flickering frequencies of the four first light sources are calculated as f A , f B , f C , and f D , it can be determined that the first light source a is the landmark A, the first light source b is the landmark B, the first light source c is the landmark C, and the first light source d is other interfering light sources.
  • Coordinated Universal Time can be used for synchronization between the movable platform and the light source of the landmark.
  • the light source of the landmark can use the UTC time of the GPS and flash at a certain frequency, and the UTC time on the movable platform can be maintained by the body oscillator, so that the UTC time can still be maintained after the subsequent loss of the GPS signal.
  • T 0 time point when the light source A starts to work
  • f A flickering frequency of the light source A
  • each landmark can also be modulated on the luminous frequency band and luminous intensity, or can be modulated by a combination of two or more modulation methods.
  • the modulation and demodulation method is similar to the above process and will not be repeated here.
  • the landmark array can also carry other signal sources that can be detected by other sensors on the movable platform, such as UWB signal sources, Zigbee signal sources, Bluetooth signal sources, and the like.
  • the movable platform may be positioned based on local location information of each landmark in the landmark local coordinate system or global location information of each landmark in a global coordinate system (eg, GPS coordinate system).
  • a global coordinate system eg, GPS coordinate system
  • the image acquisition device of the movable platform since the image acquisition device of the movable platform only needs to capture the image identifying the landmark including the light source, it is not necessary to perform feature extraction on the image through a complex feature extraction algorithm, and the requirement on the number of features is low.
  • each landmark is a specific geometry and the volume does not need to be too large (as long as it can be recognized by the movable platform), the positioning error caused by the inconsistency of feature extraction under different shooting angles is reduced. Therefore, the movable platform can still capture images containing multiple landmarks in a dark or no-light environment.
  • the method of filtering or modulating the light source it is also possible to identify whether the light source in the image is a landmark, thereby eliminating the interference of street lamps and other lighting devices and decorative light-emitting devices on the identification of the landmark, increasing the invention provided by the present disclosure.
  • the accuracy and reliability of the positioning method is also possible.
  • movable platforms such as unmanned aerial vehicles, crossing aircraft, etc.
  • the movable platform In order for the movable platform to still clearly capture the image of the landmark at high altitude or far away from the landmark, the landmark needs to meet at least one of the following conditions:
  • the number of landmarks is greater than the preset number.
  • the preset number can be set according to the surrounding environment. If the surrounding terrain is complex (such as a city with many high-rise buildings), the preset number can be set to a larger amount in order to provide more landmarks to assist the movable platform in positioning, and avoid landmarks captured by the movable platform due to occlusion. Insufficient number for targeting. In areas with a wider field of view, due to less occlusion, the preset number can be set to a smaller value.
  • the size of each placemark is larger than the preset size.
  • the preset size can be set according to the maximum moving distance of the movable platform (for example, the maximum flying height of the drone), and the size of the landmark should be such that the movable platform can still capture and recognize the landmark when the movable platform moves at the maximum distance.
  • the landmarks can be arranged in an irregular shape, so as to avoid the phenomenon of localization degradation caused by the collinear arrangement of multiple landmarks or the arrangement of the landmarks in regular patterns such as circles and regular polygons.
  • some landmarks may be arranged sparsely, another part may be densely arranged, and different landmarks may also be arranged at different heights, for example, some landmarks are placed on the ground, and another part is placed on tall buildings.
  • Those skilled in the art can place the alignment landmarks according to the actual situation.
  • different templates can also be set for the landmark arrangement, and a specific template can be adapted according to different environments. Symmetrical arrangement is easier to design, while asymmetrical arrangement has strong terrain adaptability and a lower overlap rate with the surrounding environment, which can further improve positioning accuracy.
  • the location information of each landmark needs to be calibrated, and the location information includes the global location of each landmark in the global coordinate system, that is, the absolute location described by using the latitude and longitude, including the GPS location under GPS positioning or Real Time Kinematic (RTK) position.
  • a positioning device such as an RTK high-precision positioning module is used to determine the global position of each landmark, or after the landmark is placed, the global position of each landmark is detected by a movable platform for positioning. Then, you can also select the origin and the orientation of the coordinate axis to establish the local coordinate system of the landmark.
  • the movable platform may be positioned based on:
  • Step 131 Based on the identified location information of multiple landmarks in the landmark array, obtain local location information of the movable platform in the landmark local coordinate system;
  • Step 132 Position the movable platform based on the local position information of the movable platform in the local coordinate system of the landmark.
  • the local position information of the movable platform in the landmark local coordinate system can be obtained through algorithms such as PnP (Perspective-n-Point).
  • PnP Perspective-n-Point
  • the above method identifies a plurality of landmarks and determines the local position information of the movable platform in the local coordinate system of the landmark according to the position information of the plurality of landmarks, that is, the relative position of the mobile platform relative to the landmark, so as to locate the movable platform. , so that the movable platform can still perform reliable positioning when there are few environmental features, low light, and GPS positioning failure.
  • the position information of the movable platform may also be corrected based on the identified position information of the plurality of landmarks in the landmark array. Specifically, based on the mapping relationship between the preset coordinate system and the landmark local coordinate system, and the real-time local position information of the movable platform in the landmark local coordinate system, the positioning system on the movable platform can obtain the data obtained by the positioning system. The real-time position information of the movable platform in the preset coordinate system is corrected.
  • the preset coordinate system may be a coordinate system such as a navi coordinate system, a northeast coordinate system, or the like.
  • the mapping relationship between the preset coordinate system and the landmark local coordinate system is based on at least one frame of pre-reference image pre-collected by the image acquisition device during the movement of the movable platform, and the movable platform can move when collecting at least one frame of pre-reference image.
  • the pre-position information of the platform under the preset coordinate system is obtained, wherein the pre-reference image includes at least one of the landmarks.
  • the first local position information of the movable platform in the local coordinate system of the landmark can be determined according to the movable platform.
  • the platform determines the mapping relationship between the preset coordinate system and the landmark local coordinate system based on the location information in the preset coordinate system and the first local location information when the platform collects the pre-reference image.
  • the real-time local position information of the movable platform in the landmark local coordinate system is obtained according to at least one frame of real-time reference image collected by the image acquisition device in real time during the movement of the movable platform, wherein the real-time reference image includes at least one frame of the real-time reference image.
  • the specific acquisition method is similar to the above-mentioned process of acquiring the local position information of the movable platform in the landmark local coordinate system, and will not be repeated here.
  • Movable platforms such as drones are usually positioned in the navi coordinate system or the northeast coordinate system during flight.
  • the movable platform may experience positioning drift, that is, the positioning error will gradually increase over time.
  • the real-time positioning results obtained by the movable platform positioning module are compared and corrected in the above manner, thereby correcting the positioning drift and improving the positioning accuracy of the movable platform.
  • the movable platform may also be controlled to move toward the target point based on the position information of the movable platform and the position information of the target point.
  • the positioning module on the mobile platform fails, and when traditional positioning methods such as GPS cannot be used for positioning, the mobile platform can be controlled to the target point, such as the home point. Or other user-defined target points to move autonomously.
  • the target point needs to meet at least one of the following conditions: the environment (for example, illumination, texture and/or wireless signal, etc.) near the target point is controllable; the position of the target point is fixed, and relative to the target point The position of the preset coordinate system is known.
  • autonomous movement of the movable platform can be controlled based on the position information of the movable platform and the position information of the target point.
  • the position information of the movable platform includes the local position information of the movable platform under the landmark local coordinate system;
  • the position information of the target point includes the local position of the target point under the landmark local coordinate system information.
  • the local position information of the target point in the local coordinate system of the landmark is based on the global position information of the target point in the global coordinate system, the global position information of the landmark in the global coordinate system, and the local coordinates of the landmark. The mapping relationship between the system and the global coordinate system is obtained.
  • the movable platform can be controlled to move to the target point autonomously when the traditional positioning method fails, so that the movable platform can accurately return to home and land, thus avoiding the possibility of The movable platform is lost due to movement of the mobile platform without positioning.
  • a method for positioning a movable platform includes the steps:
  • Step 410 Acquire an image captured by an image capturing device on the movable platform
  • Step 420 demodulate each first light source in the image to obtain demodulation information
  • Step 430 Identify a plurality of landmarks in the landmark array from the respective first light sources based on the demodulation information.
  • each landmark in the landmark array includes a light source, which may be a narrowband infrared light source, modulated in a manner, which may be blinking at a certain frequency.
  • the flickering frequencies of all the first light sources can be known according to the demodulation information, so as to match the landmarks.
  • the identified landmarks can be used to locate the movable platform. Specifically, including:
  • Step 440 Based on the identified location information of multiple landmarks in the landmark array, obtain local location information of the movable platform in the landmark local coordinate system;
  • Step 450 Position the movable platform based on the local position information of the movable platform in the landmark local coordinate system.
  • Step 460 Correct the position information of the movable platform based on the identified position information of the plurality of landmarks in the landmark array.
  • Step 470 In a specific case, based on the position information of the movable platform and the position information of the target point, control the movable platform to move toward the target point.
  • steps 460 and 470 are not limited in the present disclosure. Step 460 may be executed first and then step 470 may be executed, or step 470 may be executed first and then step 460 , or only one of steps 460 and 470 may be executed.
  • the specific implementation manner of each step is as described above, and is not repeated here.
  • the movable platform positioning method provided by the present disclosure identifies multiple landmarks through image recognition technology, and can know the relative position of the movable platform relative to the landmarks according to the position information of the multiple landmarks, so as to locate the movable platform so that When the visual positioning and GPS positioning based on image features fail, the mobile platform can also perform reliable positioning and accurate return. And by using the method for positioning, the positioning of the movable platform in other coordinate systems can also be corrected, and the positioning accuracy can be improved.
  • FIG. 5 it is a schematic diagram of a positioning process in some embodiments of the present disclosure.
  • the local position information of the landmark in the captured image under the landmark local coordinate system we can obtain (8) the local position information of the movable platform under the landmark local coordinate system, which can be used for positioning the movable platform when the global position of the movable platform is invalid;
  • the local position information of the movable platform in the preset coordinate system and (8) the local position information of the movable platform in the landmark local coordinate system, it can be obtained (6) the modified movable platform in the preset coordinates
  • the local position information under the system can be corrected to correct the positioning drift and improve the positioning accuracy.
  • the present disclosure further provides a movable platform positioning apparatus, including a processor, and the processor is configured to perform the following steps:
  • the movable platform is positioned based on the identified location information of the plurality of landmarks in the landmark array.
  • each landmark in the landmark array includes a light source.
  • the light source is a narrow-band light source
  • a band-pass filter device is provided on the image acquisition device
  • a pass wavelength band of the band-pass filter device includes an output wavelength band of the narrow-band light source
  • the light source is an infrared light source or an ultraviolet light source.
  • the processor is configured to: demodulate each of the first light sources in the image to obtain demodulation information; and identify the landmark array from each of the first light sources based on the demodulation information Multiple landmarks.
  • the modulation method includes modulating at least one of a flickering frequency, a frequency band of a light source, and a luminous intensity.
  • the preset modulation mode includes modulating the flickering frequency of the landmark, and the number of the images is multiple; the processor is configured to: determine the respective first light sources based on the multiple images. flickering frequency; determining the first light source whose flickering frequency matches the flickering frequency of the first landmark among the first light sources as the first landmark.
  • the processor is further configured to: for each first light source, based on the UTC time at which the first light source flickers and the UTC time at which the first landmark flickers in the plurality of images, determine the Whether the flickering frequency of the first light source matches the flickering frequency of the first landmark.
  • the plurality of landmarks satisfy at least one of the following conditions: the number of the plurality of landmarks is greater than a preset number, the size of each landmark in the plurality of landmarks is greater than the preset size, the A plurality of landmarks are scattered in the moving area of the movable platform, for example, under the flying area of the drone, or in the drivable area of the unmanned vehicle; in particular, a plurality of landmarks can also be scattered in the During the movement of the movable platform, the camera or sensing device mounted on it can perceive the range, for example, multiple landmarks are scattered in the area that the camera mounted on the drone can photograph and recognize during the flight of the drone.
  • the location information of each of the plurality of landmarks is calibrated when the landmark is placed, or detected by the positioning movable platform after the landmark is placed.
  • the processor is configured to: obtain local position information of the movable platform in the landmark local coordinate system based on the identified position information of the plurality of landmarks in the landmark array; The movable platform is positioned according to the local position information of the movable platform in the local coordinate system of the landmark.
  • the apparatus further comprises: correcting the position information of the movable platform based on the identified position information of the plurality of landmarks in the landmark array.
  • the processor is configured to: based on the mapping relationship between the preset coordinate system and the landmark local coordinate system, and the real-time local position information of the movable platform in the landmark local coordinate system The real-time position information of the movable platform under the preset coordinate system obtained by the positioning system on the mobile platform is corrected.
  • the mapping relationship between the preset coordinate system and the local landmark coordinate system is based on at least one frame of pre-reference images pre-acquired by the image acquisition device during the current movement of the movable platform, and
  • the pre-position information of the movable platform in the pre-set coordinate system is established when the at least one frame of pre-reference image is collected, and the pre-reference image includes at least one of the landmarks.
  • the real-time local position information of the movable platform in the landmark local coordinate system is acquired based on at least one frame of real-time reference image captured in real time by the image acquisition device during the current movement of the movable platform , the real-time reference image includes at least one of the landmarks.
  • the processor is further configured to control the movable platform to move toward the target point based on the position information of the movable platform and the position information of the target point under certain circumstances.
  • the position information of the movable platform includes local position information of the movable platform in the landmark local coordinate system; and/or the position information of the target point includes the target point at the landmark Local position information in the local coordinate system.
  • the local location information of the target point in the landmark local coordinate system is based on the global location information of the home point in the global coordinate system, the global location information of the landmark in the global coordinate system, and The mapping relationship between the landmark local coordinate system and the global coordinate system is obtained.
  • the specific situation includes a situation where the global location information of the movable platform is invalid.
  • the target point includes a home point.
  • the target point satisfies at least one of the following conditions: the environment near the target point is controllable; the position of the target point is fixed, and the position relative to the preset coordinate system is known.
  • the present disclosure also provides a movable platform positioning device, comprising a processor for performing the following steps:
  • a plurality of landmarks in the landmark array are identified from the respective first light sources based on the demodulated information.
  • the processor is further configured to: obtain local position information of the movable platform in the landmark local coordinate system based on the identified position information of the plurality of landmarks in the landmark array; The movable platform is positioned according to the local position information of the movable platform in the local coordinate system of the landmark.
  • the processor is further configured to modify the position information of the movable platform based on the identified position information of the plurality of landmarks in the landmark array.
  • the processor is further configured to control the movable platform to move toward the target point based on the position information of the movable platform and the position information of the target point under certain circumstances.
  • FIG. 6 shows a schematic diagram of a more specific hardware structure of a mobile platform positioning apparatus provided by an embodiment of this specification.
  • the device may include: a processor 610, a memory 620, an input/output interface 630, a communication interface 640, and a bus 650.
  • the processor 610 , the memory 620 , the input/output interface 630 and the communication interface 640 realize the communication connection among each other within the device through the bus 650 .
  • the processor 610 can be implemented by a general-purpose CPU (Central Processing Unit, central processing unit), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits, etc. program to implement the technical solutions provided by the embodiments of this specification.
  • a general-purpose CPU Central Processing Unit, central processing unit
  • a microprocessor central processing unit
  • an application specific integrated circuit Application Specific Integrated Circuit, ASIC
  • ASIC Application Specific Integrated Circuit
  • the memory 620 may be implemented in the form of a ROM (Read Only Memory, read-only memory), a RAM (Random Access Memory, random access memory), a static storage device, a dynamic storage device, and the like.
  • the memory 620 may store an operating system and other application programs. When implementing the technical solutions provided by the embodiments of this specification through software or firmware, the relevant program codes are stored in the memory 620 and invoked by the processor 610 for execution.
  • the input/output interface 630 is used to connect the input/output module to realize information input and output.
  • the input/output/module can be configured in the device as a component (not shown in the figure), or can be externally connected to the device to provide corresponding functions.
  • the input device may include a keyboard, a mouse, a touch screen, a microphone, various sensors, etc.
  • the output device may include a display, a speaker, a vibrator, an indicator light, and the like.
  • the communication interface 640 is used to connect a communication module (not shown in the figure), so as to realize the communication interaction between the device and other devices.
  • the communication module may implement communication through wired means (eg, USB, network cable, etc.), or may implement communication through wireless means (eg, mobile network, WIFI, Bluetooth, etc.).
  • Bus 650 includes a path to transfer information between various components of the device (eg, processor 610, memory 620, input/output interface 630, and communication interface 640).
  • the above-mentioned device only shows the processor 610, the memory 620, the input/output interface 630, the communication interface 640 and the bus 650, in the specific implementation process, the device may also include necessary components for normal operation. other components.
  • the above-mentioned device may only include components necessary to implement the solutions of the embodiments of the present specification, rather than all the components shown in the figures.
  • the present disclosure also provides a movable platform as shown in FIG. 7 .
  • the movable platform includes a body, an image acquisition device, and a positioning device, and of course, may also include hardware required by other services.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and executes it, so as to implement the positioning method described in any of the foregoing embodiments.
  • the movable platform is a drone.
  • the present disclosure further provides the landmark as shown in FIG. 8 .
  • the landmark 800 includes a light source 801, and the light source 801 is modulated according to a preset modulation method.
  • the image including the landmark 800 can be captured by the image acquisition device on the movable platform, so that the movable platform is based on the position information of the landmark 800 and the demodulation information obtained by demodulating the light source 801, The movable platform is positioned.
  • the light source is a narrow-band light source
  • a band-pass filter device is provided on the image acquisition device
  • a pass wavelength band of the band-pass filter device includes an output wavelength band of the narrow-band light source
  • the light source is an infrared light source or an ultraviolet light source.
  • the demodulated information is used by the movable platform to identify the landmark from each of the first light sources included in the image.
  • the modulation method includes modulating at least one of a flickering frequency, a frequency band of a light source, and a luminous intensity.
  • the preset modulation method includes modulating the flickering frequency of the landmark, the number of the images is multiple, and the multiple images are used to determine the flickering frequency of each first light source; wherein, Among the first light sources, the first light source whose flickering frequency matches the flickering frequency of the landmark is the landmark.
  • the flickering frequency of a first light source is determined based on the UTC time at which the first light source flickers in the plurality of images.
  • the landmarks in this embodiment can be used to execute the movable platform positioning method of any of the above embodiments.
  • For the specific positioning method refer to the foregoing method embodiments, which will not be repeated here.
  • the present disclosure further provides the landmark array as described in FIG. 9 .
  • the landmark array 900 includes the landmarks 800 shown in FIG. 8 .
  • the present disclosure also provides a computer storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, can be used to execute the positioning method described in any of the foregoing embodiments.
  • the plurality of landmarks satisfy at least one of the following conditions: the number of the plurality of landmarks is greater than a preset number, the size of each landmark in the plurality of landmarks is greater than the preset size, the A number of landmarks are scattered within the movement area of the movable platform.

Abstract

一种可移动平台定位方法,包括:获取可移动平台上的图像采集装置采集的图像(110);从图像中识别地标阵列中的多个地标(120);基于识别出的地标阵列中多个地标的位置信息,对可移动平台进行定位(130);通过图像识别技术识别出多个地标,并根据多个地标的位置信息可得知可移动平台相对于地标的相对位置,从而对可移动平台进行定位,使得在视觉定位、GPS定位其他定位方式失效时,可移动平台还能进行可靠定位。

Description

定位方法、装置、可移动平台、地标及地标阵列 技术领域
本公开涉及定位技术领域,尤其涉及定位方法、装置、可移动平台、地标及地标阵列。
背景技术
可移动平台在行驶过程中需要依赖于可靠的定位系统。现有的可移动平台可以通过无线定位方式或者通过视觉感知系统来进行定位。然而,GPS信号容易受遮挡或干扰,视觉感知系统的定位效果一定程度上取决于周边环境的特征数量。综上所述,传统的定位方式定位可靠性较差。
发明内容
有鉴于此,本公开的目的之一是提供一种定位方法,以提高可移动平台的定位可靠性。
为了达到上述技术效果,本公开实施例公开了如下技术方案:
第一方面,提供了一种可移动平台定位方法,所述方法包括:获取可移动平台上的图像采集装置采集的图像;从所述图像中识别地标阵列中的多个地标;基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台进行定位。
第二方面,提供了一种可移动平台定位装置,包括处理器,所述处理器用于执行以下步骤:获取可移动平台上的图像采集装置采集的图像;从所述图像中识别地标阵列中的多个地标;基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台进行定位。
第三方面,提供了一种可移动平台,包括:机体;图像采集装置,设于所述机体上,用于采集图像;以及定位装置,设于所述机体内,用于执行如第一方面所述的方法。
第四方面,提供了一种地标,包括光源,所述光源按照预设调制方式进行调制;包括所述地标的图像能够被可移动平台上的图像采集装置采集到,以使所述可移动平 台基于所述地标的位置信息和对所述光源进行解调得到的解调信息,对所述可移动平台进行定位。
第五方面,提供了一种地标阵列,所述地标阵列包括多个如第四方面所述的地标。
第六方面,提供了一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现如第一方面所述的方法。
本公开提供的可移动平台定位方法,将地标阵列中多个地标的位置信息作为先验信息,通过图像识别技术识别出多个地标,并根据多个地标的位置信息可得知可移动平台相对于地标的相对位置,从而对可移动平台进行定位,使得在基于图像特征的视觉定位、GPS定位失效时,可移动平台还能进行可靠定位。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开根据一示例性实施例示出的可移动平台的定位方法的流程图。
图2是本公开根据一示例性实施例示出的识别地标阵列方法的流程图。
图3是本公开根据另一示例性实施例示出的可移动平台的定位方法的流程图。
图4是本公开根据另一示例性实施例示出的可移动平台的定位方法的流程图。
图5是本公开根据一示例性实施例示出的定位过程的示意图。
图6是本公开根据一示例性实施例示出的一种定位装置。
图7是本公开根据一示例性实施例示出的一种可移动平台。
图8是本公开根据一示例性实施例示出的一种地标。
图9是本公开根据一示例性实施例示出的一种地标阵列。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
传统的可移动平台一般通过视觉感知系统或者无线定位方式来进行定位。以无人机为例,当无人机在低空或者室内飞行时,可以通过机身搭载的视觉感知系统拍摄周边环境的图像,再从图像中提取出特征,基于提取的特征对无人机进行定位。然而,基于图像特征的视觉定位系统对特征数量、特征提取的一致性有较高要求。在高空等环境下,可提取的特征变少,且无人机在不同角度拍摄的图像中提取到的同一物体的特征可能会发生变化,因此特征提取的鲁棒性变差,会导致定位精度下降;此外,视觉定位系统无法应对夜晚等无光或较暗环境。
当无人机在高空飞行时,可以通过机载全球定位系统(Global Positioning System,GPS)接收机接收GPS卫星信号来获取无人机的全局位置。此外,还有通过架设超宽带(Ultra Wide Band,UWB)基站的方法获取无人机的局部位置等手段。对于多机系统,多架无人机可以通过无线通信进行相互之间的相对定位。无线定位方式易受遮挡和恶意干扰,且在夜晚时为唯一的定位手段,一经干扰往往会直接导致无人机失控迫降或直接坠落。
综上所述,传统的定位方式可靠性较差。基于此,本公开提供的一种可移动平台定位方法,用于搭载有图像采集装置与定位装置的可移动平台上。所述可移动平台可以是无人航拍机、穿越机、无人车、无人船等。所述方法包括如图1所示的步骤:
步骤110:获取可移动平台上的图像采集装置采集的图像;
步骤120:从所述图像中识别地标阵列中的多个地标;
步骤130:基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台进行定位。
在步骤110中,可以通过可移动平台上的图像采集装置采集包含地标阵列的图像。其中,图像采集装置可以是摄像头,所述摄像头可以安装在可移动平台的云台上。所述地标阵列中包括多个地标,地标可以固定在其他物体上,地标的几何形状可以是圆形、正方形等较为规则的形状,这样可以无需采用复杂的特征检测算法进行检测, 降低了定位复杂度,减少了定位过程中的资源消耗量。在另一些实施例中,地标的几何形状可以是不规则形状,如不对称的几何形状,用来与周围的环境形成区别以减少误识别率。在又一些实施例中,可以采用对称和不对称结合的几何形状,以在降低检测算法复杂度的同时,提高识别正确率。优选地,地标的几何形状要与周边环境形成显著差别,例如,在山地要避免采用圆形地标,以区别于岩石的自然形状;优选地,地标的颜色要与周边环境形成显著差别,例如,在草地要避免采用绿色地标,以区别于青草的自然颜色。地标的尺寸只要允许可移动平台在工作时能够检测到即可,每个地标可以看成图像中的一个点。
在步骤120中,可以从所述图像中识别地标阵列中的多个地标。在一些实施例中,为了使可移动平台上的图像采集装置在较暗的环境下仍能采集到包含多个地标的图像,本公开中的每个地标可以包括光源,所述光源能发射可见光或红外光、紫外光等不可见光。进一步地,为了提高对地标的识别准确性,还可以基于地标的信息对图像中的多个光源进行过滤,以滤除地标以外的光源。所述地标的信息可以包括但不限于地标的发光频段、排列方式、调制方式等中的至少一者。
可选地,为了减少路灯等照明装置的干扰,可选用紫外光源或红外光源作为地标。此外,所述光源还可以是单色性好的窄带光源,用于发射一定波段范围内的光,如可以选用窄带红外光源或窄带紫外光源。对应地,所述可移动平台上的图像采集装置上还设有带通滤光装置,可通过包含所述窄带光源输出波段的光,所述带通滤光装置可以是窄带滤光片。如光源可发出中心波长为1080nm的光,则所述带通滤光装置可设置通过波段在1070~1090nm的光,或选用规格为1080nm窄带滤光片,以使图像采集装置能捕获窄带光源所发射的光,并过滤掉其他光源发射的光,从而减少其他光源的干扰,提高识别地标的准确性。在捕获并滤光后,可移动平台可以通过视觉识别算法提取出光斑的中心。
此外,可选地,还可以将多个地标排列成预定方式,例如,围成一个圈。然后,从图像中过滤掉排列方式与预定方式不同的光源。
此外,可选地,还可以对每个地标按照预设的调制方式进行调制。所述调制方式可以是对光源的闪烁频率、发光频段和发光亮度中的至少一种进行调制。如图2所示,在地标按照预设调制方式进行调制的情况下,可以基于以下方式从图像中识别出地标:
步骤121:对所述图像中的各个第一光源进行解调,得到解调信息;
步骤122:基于所述解调信息从所述各个第一光源中识别所述地标阵列中的多个地标。
例如,可以对地标阵列中每个地标按照光源的闪烁频率进行调制,如可以设定每个地标的闪烁频率为f 1。可移动平台上的图像采集装置需要采集多张包含多个地标的图像。根据多张图像可以计算出图像中所有第一光源的闪烁频率,而闪烁频率与地标闪烁频率f 1匹配的第一光源,可以确定为地标。如所述图像中包含了闪烁频率为f 1以及其他闪烁频率的第一光源,则可以确定出闪烁频率为f 1的第一光源是地标。
又例如,由于地标阵列中包含了多个地标,为了让可移动平台区分出不同的地标,不同地标的闪烁频率可以不同。如地标阵列中包含了地标A、地标B、地标C,则可以设置他们的闪烁频率分别为f A、f B、f C。采集的图像中包含了四个第一光源,分别为第一光源a、第一光源b、第一光源c、第一光源d,根据多张图像计算出四个第一光源的闪烁频率分别是f A、f B、f C、f D,则可以确定第一光源a为地标A,第一光源b为地标B,第一光源c为地标C,而第一光源d为其他干扰光源。
更进一步地,可移动平台与地标的光源之间可利用协调世界时(Coordinated Universal Time,UTC)进行同步。其中地标的光源可使用GPS的UTC时间,并按照一定频率闪烁,而可移动平台上的UTC时间可通过机身振荡器维持,使得后续丢失GPS信号后依然能维持UTC时间。例如,通过地标光源A的UTC时间,可得知光源A开始工作的时间点为T 0,已知光源A的闪烁频率为f A,则可计算出光源A第n次发光的时刻应为T 0+n/f A,其中n为正整数。若图像中的第一光源在T 0+n/f A以外的时刻发光,则可判断该第一光源必不可能是光源A,从而使第一光源与地标的匹配结果准确度更高。
每个地标除了可以按照光源的闪烁频率进行调制以外,还可以对发光频段、发光亮度进行调制,也可以是对两种以上调制方式的结合进行调制。调制解调方法与上述过程类似,在此不再赘述。当然,地标阵列也可以搭载其他能够被可移动平台上的其他传感器探测到的信号源,例如UWB信号源、紫峰(Zigbee)信号源、蓝牙(Bluetooth)信号源等。
在步骤130中,可以基于各个地标在地标局部坐标系下的局部位置信息或者各个地标在全局坐标系(例如,GPS坐标系)下的全局位置信息,对可移动平台进行定位。
通过上述方法,由于可移动平台的图像采集装置只需捕获识别包含光源的地标的图像,无需通过复杂的特征提取算法对图像进行特征提取,对特征数量的要求较低。此外,由于每个地标均为特定的几何体且体积无需太大(只要能被可移动平台识别到即可),减少了不同拍摄角度下特征提取的不一致带来的定位误差。因此,可以使可移动平台在较暗或无光的环境下依然能采集到包含多个地标的图像。进一步地,通过滤光或是对光源进行调制的方法,还能识别出图像中的光源是否为地标,从而排除了路灯等照明装置和装饰性发光装置对路标识别的干扰,增加了本公开提供的定位方法的准确性与可靠性。
通常情况下,可移动平台如无人机、穿越机等,需要在高空飞行。为了在高空下,或离地标较远处,可移动平台依然能清晰捕捉到地标图像,所述地标需要满足以下至少任一条件:
条件1:地标的数量大于预设数量。预设数量满足地标总数的50%被遮挡或者损坏的情况下,可移动平台仍然可依靠剩下的地标进行定位。预设数量可以根据周边环境进行设置。若周边环境地形较复杂(如高楼林立的城市),则预设数量可设置一个较大的量,以便提供更多的地标辅助可移动平台进行定位,避免因遮挡导致可移动平台捕获到的地标数量不足以进行定位的情况。而在视野较为开阔的区域,由于遮挡情况较少,预设数量可以设置为较小的值。
条件2:每个地标的尺寸均大于预设尺寸。具体地,预设尺寸可根据可移动平台的最大运动距离(例如,无人机的最大飞行高度)设置,地标的尺寸应当满足可移动平台在最大距离运动时仍能够捕获和识别到地标。
条件3:多个地标散布在可移动平台的移动区域内。在一些实施例中,可以将地标排列成不规则的形状,从而避免由于多个地标共线排列或者由于将排列为圆形、正多边形等规则图案而导致的定位退化现象。在一些实施例中,一部分地标可以较稀疏排列,另一部分可以较密集排列,不同地标之间也可以排布在不同高度上,如一部分地标放置在地面上,另一部分放置在高楼上。本领域技术人员可根据实际情况放置排列地标。可选地,还可以为地标排列设置不同的模板,根据不同的环境适应性的采用特定模板。对称性的排列较易设计,而非对称性的排列方式具有较强的地形适应性,且与周围环境的重叠率更低,能够进一步提高定位准确性。
此外,在一些实施例中,还需要标定各个地标的位置信息,所述位置信息包括各个地标在全局坐标系下的全局位置,即使用经纬高描述的绝对位置,包括GPS定位 下的GPS位置或实时动态(Real Time Kinematic,RTK)位置。具体实现为,在放置地标时,利用RTK高精度定位模块等定位装置确定各个地标的全局位置,或者在放置地标后,由用于定位的可移动平台检测得到各个地标的全局位置。然后,还可以选定原点与坐标轴朝向,建立地标局部坐标系。
在一些实施例中,如图3所示,可以基于以下方式对所述可移动平台进行定位:
步骤131:基于识别出的所述地标阵列中多个地标的位置信息,获取所述可移动平台在所述地标局部坐标系下的局部位置信息;
步骤132:基于所述可移动平台在所述地标局部坐标系下的局部位置信息,对所述可移动平台进行定位。
在从图像中识别出多个地标后,可以通过PnP(Perspective-n-Point)等算法获得可移动平台在地标局部坐标系下的局部位置信息。上述方法通过识别出多个地标,并根据多个地标的位置信息确定可移动平台在地标局部坐标系下的局部位置信息,即可移动平台相对于地标的相对位置,从而对可移动平台进行定位,使得在环境特征较少、光线较暗、GPS定位失效时,可移动平台还能进行可靠定位。
在一些实施例中,还可以基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台的位置信息进行修正。具体地,可以基于预设坐标系与所述地标局部坐标系的映射关系,以及所述可移动平台在地标局部坐标系下的实时局部位置信息,对所述可移动平台上的定位系统获取的所述可移动平台在所述预设坐标系下的实时位置信息进行修正。
所述预设坐标系可以是navi坐标系、北东地坐标系等坐标系。所述预设坐标系与所述地标局部坐标系的映射关系是根据可移动平台在运动过程中图像采集装置预先采集的至少一帧预先参考图像,以及在采集至少一帧预先参考图像时可移动平台在所述预设坐标系下的预先位置信息而得到的,其中所述预先参考图像包括至少一个所述地标。具体来说,根据所述参考图像可以确定可移动平台采集所述预先参考图像时,所述可移动平台在所述地标局部坐标系下的第一局部位置信息,然后,可以根据所述可移动平台采集所述预先参考图像时在预设坐标系下的位置信息与所述第一局部位置信息,确定预设坐标系与地标局部坐标系的映射关系。
而可移动平台在地标局部坐标系下的实时局部位置信息是根据可移动平台在运动过程中图像采集装置实时采集的至少一帧实时参考图像而得到的,其中所述实时 参考图像包括至少一个所述地标,具体获取方式与上述获取可移动平台在地标局部坐标系下的局部位置信息过程类似,在此不再赘述。
可移动平台如无人机,在飞行时通常在navi坐标系或北东地坐标系下进行定位。但在传统定位方式受到干扰时,可移动平台可能会发生定位漂移,即定位误差会随着时间累积逐渐增大。通过上述方式对可移动平台定位模块获取的实时定位结果进行对比与修正,从而修正了定位漂移,提高了可移动平台定位的准确性。
在一些实施例中,在特定情况下,还可以基于所述可移动平台的位置信息和目标点的位置信息,控制所述可移动平台向所述目标点移动。
在特定情况下,如在可移动平台的全局位置信息失效时,即可移动平台上的定位模块失效,无法用GPS等传统定位方式进行定位时,可以控制可移动平台向目标点,如返航点或用户自定义的其他目标点,进行自主移动。其中,所述目标点需要满足以下至少任一条件:所述目标点附近的环境(例如,光照、纹理和/或无线信号等)可控;所述目标点的位置固定,且相对于所述预设坐标系的位置已知。
具体地,可基于所述可移动平台的位置信息和目标点的位置信息,控制所述可移动平台的自主移动。其中,所述可移动平台的位置信息包括所述可移动平台在地标局部坐标系下的局部位置信息;所述目标点的位置信息包括所述目标点在所述地标局部坐标系下的局部位置信息。而所述目标点在所述地标局部坐标系下的局部位置信息,是根据目标点在全局坐标系下的全局位置信息、所述地标在所述全局坐标系下的全局位置信息以及地标局部坐标系和所述全局坐标系之间的映射关系而获取的。
通过获取在地标局部坐标系下的可移动平台与目标点的局部位置信息,可以控制可移动平台在传统定位方法失效时自主向目标点移动,是可移动平台能精准返航降落,从而避免了可移动平台在无定位的情况下移动而导致可移动平台丢失。
参见图4,为本公开提供的一种可移动平台定位方法,包括步骤:
步骤410:获取可移动平台上的图像采集装置采集的图像;
步骤420:对所述图像中的各个第一光源进行解调,得到解调信息;
步骤430:基于所述解调信息从所述各个第一光源中识别所述地标阵列中的多个地标。
在一些实施例中,地标阵列中的每个地标包含光源,所述光源可以是窄带红外 光源,按照一定方式进行调制,所述调制方式可以是按照一定频率闪烁。在对图像中所有的第一光源进行解调,便可根据解调信息得知所有第一光源的闪烁频率,从而与地标匹配。
进一步地,识别出的地标可以用于对可移动平台进行定位。具体来说,包括:
步骤440:基于识别出的所述地标阵列中多个地标的位置信息,获取所述可移动平台在所述地标局部坐标系下的局部位置信息;
步骤450:基于所述可移动平台在所述地标局部坐标系下的局部位置信息,对所述可移动平台进行定位。
可选地,还可以执行以下步骤:
步骤460:基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台的位置信息进行修正。
步骤470:在特定情况下,基于所述可移动平台的位置信息和目标点的位置信息,控制所述可移动平台向所述目标点移动。
其中,步骤460与步骤470的执行顺序本公开不做限制,可以先执行步骤460再执行步骤470,也可以先执行步骤470再执行步骤460,或者仅执行步骤460与步骤470中的一者。各步骤的具体实施方式如上所述,在此不再赘述。本公开提供的可移动平台定位方法,通过图像识别技术识别出多个地标,并根据多个地标的位置信息可得知可移动平台相对于地标的相对位置,从而对可移动平台进行定位,使得在基于图像特征的视觉定位、GPS定位失效时,可移动平台还能进行可靠定位与精准返航。且利用所述方法进行定位,还可以修正可移动平台在其他坐标系下的定位,提高定位精准度。
本实施例的具体细节参见前一方法实施例,此处不再赘述。
参见图5,为本公开在一些实施例中的定位过程的示意图。从图5可知,根据(3)拍摄到的图像中的地标在地标局部坐标系下的局部位置信息,可得出(8)可移动平台在地标局部坐标系下的局部位置信息,以用于在可移动平台的全局位置失效时对可移动平台进行定位;
根据(2)地标在全局坐标系下的全局位置信息、(3)地标在地标局部坐标系下的局部位置信息,可得出(4)全局坐标系与地标局部坐标系之间的映射关系,进而 根据(4)全局坐标系与地标局部坐标系之间的映射关系、(1)目标点在全局坐标系下的全局位置信息,可得出(7)目标点在地标局部坐标系下的局部位置信息,以便控制可移动平台移动到目标点;
根据(5)可移动平台在预设坐标系下的局部位置信息、(8)可移动平台在地标局部坐标系下的局部位置信息,可得到(6)修正后的可移动平台在预设坐标系下的局部位置信息,以便修正定位漂移,提高定位精度。
基于上述任意实施例所述的定位方法,本公开还提供了一种可移动平台定位装置,包括处理器,所述处理器用于执行以下步骤:
获取可移动平台上的图像采集装置采集的图像;
从所述图像中识别地标阵列中的多个地标;
基于识别出的所述地标阵列中多个地标的位置信息,对可移动平台进行定位。
在一些实施例中,所述地标阵列中的各个地标均包括光源。
在一些实施例中,所述光源为窄带光源,所述图像采集装置上设有带通滤光装置,所述带通滤光装置的通过波段包括所述窄带光源的输出波段。
在一些实施例中,所述光源为红外光源或者紫外光源。
在一些实施例中,所述处理器用于:对所述图像中的各个第一光源进行解调,得到解调信息;基于所述解调信息从各个第一光源中识别所述地标阵列中的多个地标。
在一些实施例中,所述调制方式包括对闪烁频率、光源频段和发光亮度中的至少一者进行调制。
在一些实施例中,所述预设调制方式包括对地标的闪烁频率进行调制,所述图像的数量为多张;所述处理器用于:基于多张所述图像确定所述各个第一光源的闪烁频率;将所述各个第一光源中闪烁频率与第一地标的闪烁频率相匹配的第一光源确定为所述第一地标。
在一些实施例中,所述处理器还用于:针对每个第一光源,基于多张所述图像中所述第一光源闪烁的UTC时间以及所述第一地标闪烁的UTC时间,确定所述第一光源的闪烁频率是否与所述第一地标的闪烁频率相匹配。
在一些实施例中,所述多个地标满足以下至少任一条件:所述多个地标的数量大于预设数量,所述多个地标中每个地标的尺寸均大于预设尺寸,所述多个地标散布 在所述可移动平台的移动区域内,例如,散布在无人机的飞行区域下方,或是散步在无人车的可行驶区域内;特别地,还可以将多个地标散布在可移动平台移动期间其上搭载的拍摄设备或传感设备可感知的范围内,例如令多个地标散步在无人机飞行期间其上搭载的相机可拍摄并识别的区域内。
在一些实施例中,所述多个地标中各个地标的位置信息在所述地标被放置时标定,或者,在所述地标被放置之后由定位可移动平台检测得到。
在一些实施例中,所述处理器用于:基于识别出的所述地标阵列中多个地标的位置信息,获取所述可移动平台在所述地标局部坐标系下的局部位置信息;基于所述可移动平台在所述地标局部坐标系下的局部位置信息,对所述可移动平台进行定位。
在一些实施例中,所述装置还包括:基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台的位置信息进行修正。
在一些实施例中,所述处理器用于:基于预设坐标系与所述地标局部坐标系的映射关系,以及所述可移动平台在地标局部坐标系下的实时局部位置信息,对所述可移动平台上的定位系统获取的所述可移动平台在所述预设坐标系下的实时位置信息进行修正。
在一些实施例中,所述预设坐标系与所述地标局部坐标系的映射关系基于所述图像采集装置在所述可移动平台本次移动过程中预先采集的至少一帧预先参考图像,以及采集所述至少一帧预先参考图像时所述可移动平台在所述预设坐标系下的预先位置信息而建立,所述预先参考图像包括至少一个所述地标。
在一些实施例中,所述可移动平台在地标局部坐标系下的实时局部位置信息基于所述图像采集装置在所述可移动平台本次移动过程中实时采集的至少一帧实时参考图像而获取,所述实时参考图像包括至少一个所述地标。
在一些实施例中,所述处理器还用于:在特定情况下,基于所述可移动平台的位置信息和目标点的位置信息,控制所述可移动平台向所述目标点移动。
在一些实施例中,所述可移动平台的位置信息包括所述可移动平台在地标局部坐标系下的局部位置信息;和/或所述目标点的位置信息包括所述目标点在所述地标局部坐标系下的局部位置信息。
在一些实施例中,所述目标点在所述地标局部坐标系下的局部位置信息基于返航点在全局坐标系下的全局位置信息、所述地标在所述全局坐标系下的全局位置信息 以及地标局部坐标系和所述全局坐标系之间的映射关系而获取。
在一些实施例中,所述特定情况包括可移动平台的全局位置信息失效的情况。
在一些实施例中,所述目标点包括返航点。
在一些实施例中,所述目标点满足以下至少任一条件:所述目标点附近的环境可控;所述目标点的位置固定,且相对于所述预设坐标系的位置已知。
本公开还提供了一种可移动平台定位装置,包括处理器,所述处理器用于执行以下步骤:
获取可移动平台上的图像采集装置采集的图像;
对所述图像中的各个第一光源进行解调,得到解调信息;
基于所述解调信息从所述各个第一光源中识别所述地标阵列中的多个地标。
在一些实施例中,所述处理器还用于:基于识别出的所述地标阵列中多个地标的位置信息,获取所述可移动平台在所述地标局部坐标系下的局部位置信息;基于所述可移动平台在所述地标局部坐标系下的局部位置信息,对所述可移动平台进行定位。
在一些实施例中,所述处理器还用于:基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台的位置信息进行修正。
在一些实施例中,所述处理器还用于:在特定情况下,基于所述可移动平台的位置信息和目标点的位置信息,控制所述可移动平台向所述目标点移动。
图6示出了本说明书实施例所提供的一种更为具体的可移动平台定位装置硬件结构示意图,该设备可以包括:处理器610、存储器620、输入/输出接口630、通信接口640和总线650。其中处理器610、存储器620、输入/输出接口630和通信接口640通过总线650实现彼此之间在设备内部的通信连接。
处理器610可以采用通用的CPU(Central Processing Unit,中央处理器)、微处理器、应用专用集成电路(Application Specific Integrated Circuit,ASIC)、或者一个或多个集成电路等方式实现,用于执行相关程序,以实现本说明书实施例所提供的技术方案。
存储器620可以采用ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、静态存储设备,动态存储设备等形式实现。存储器620可以存储操作系统和其他应用程序,在通过软件或者固件来实现本说明书实施 例所提供的技术方案时,相关的程序代码保存在存储器620中,并由处理器610来调用执行。
输入/输出接口630用于连接输入/输出模块,以实现信息输入及输出。输入输出/模块可以作为组件配置在设备中(图中未示出),也可以外接于设备以提供相应功能。其中输入设备可以包括键盘、鼠标、触摸屏、麦克风、各类传感器等,输出设备可以包括显示器、扬声器、振动器、指示灯等。
通信接口640用于连接通信模块(图中未示出),以实现本设备与其他设备的通信交互。其中通信模块可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信。
总线650包括一通路,在设备的各个组件(例如处理器610、存储器620、输入/输出接口630和通信接口640)之间传输信息。
需要说明的是,尽管上述设备仅示出了处理器610、存储器620、输入/输出接口630、通信接口640以及总线650,但是在具体实施过程中,该设备还可以包括实现正常运行所必需的其他组件。此外,本领域的技术人员可以理解的是,上述设备中也可以仅包含实现本说明书实施例方案所必需的组件,而不必包含图中所示的全部组件。
基于上述任意实施例所述的定位方法,本公开还提供了如图7所述的可移动平台。如图7,在硬件层面,该可移动平台包括机体、图像采集装置与定位装置,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述任意实施例所述的定位方法。在一些实施例中,所述可移动平台为无人机。
基于上述任意实施例所述的定位方法,本公开还提供了如图8所述的地标。如图8,地标800包括了光源801,所述光源801按照预设调制方式进行调制。包括所述地标800的图像能够被可移动平台上的图像采集装置采集到,以使所述可移动平台基于所述地标800的位置信息和对所述光源801进行解调得到的解调信息,对所述可移动平台进行定位。
在一些实施例中,所述光源为窄带光源,所述图像采集装置上设有带通滤光装置,所述带通滤光装置的通过波段包括所述窄带光源的输出波段。
在一些实施例中,所述光源为红外光源或者紫外光源。
在一些实施例中,所述解调信息用于所述可移动平台从所述图像中包括的各个 第一光源中识别出所述地标。
在一些实施例中,所述调制方式包括对闪烁频率、光源频段和发光亮度中的至少一者进行调制。
在一些实施例中,所述预设调制方式包括对地标的闪烁频率进行调制,所述图像的数量为多张,所述多张图像用于确定所述各个第一光源的闪烁频率;其中,所述各个第一光源中闪烁频率与所述地标的闪烁频率相匹配的第一光源为所述地标。
在一些实施例中,一个第一光源的闪烁频率基于多张所述图像中所述第一光源闪烁的UTC时间确定。
本实施例中的地标可用于执行以上任一实施例的可移动平台定位方法,具体的定位方式参见前述方法实施例,此处不再赘述。
基于上述任意实施例所述的定位方法,本公开还提供了如图9所述的地标阵列。如图9,所述地标阵列900包括如图8所示的地标800。
本公开还提供了一种计算机存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时可用于执行上述任意实施例所述的定位方法。
在一些实施例中,所述多个地标满足以下至少任一条件:所述多个地标的数量大于预设数量,所述多个地标中每个地标的尺寸均大于预设尺寸,所述多个地标散布在所述可移动平台的移动区域内。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为 对本公开的限制。

Claims (53)

  1. 一种可移动平台定位方法,其特征在于,所述方法包括:
    获取可移动平台上的图像采集装置采集的图像;
    从所述图像中识别地标阵列中的多个地标;
    基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台进行定位。
  2. 根据权利要求1所述的方法,其特征在于,所述地标阵列中的各个地标均包括光源。
  3. 根据权利要求2所述的方法,其特征在于,所述光源为窄带光源,所述图像采集装置上设有带通滤光装置,所述带通滤光装置的通过波段包括所述窄带光源的输出波段。
  4. 根据权利要求2所述的方法,其特征在于,所述光源为红外光源或者紫外光源。
  5. 根据权利要求2所述的方法,其特征在于,所述地标阵列中每个地标按照预设调制方式进行调制;所述从所述图像中识别地标阵列中的多个地标,包括:
    对所述图像中的各个第一光源进行解调,得到解调信息;
    基于所述解调信息从所述各个第一光源中识别所述地标阵列中的多个地标。
  6. 根据权利要求5所述的方法,其特征在于,所述调制方式包括对闪烁频率、光源频段和发光亮度中的至少一者进行调制。
  7. 根据权利要求5所述的方法,其特征在于,所述预设调制方式包括对地标的闪烁频率进行调制,所述图像的数量为多张;所述基于所述解调信息从所述各个第一光源中识别所述地标阵列中的多个地标,包括:
    基于多张所述图像确定所述各个第一光源的闪烁频率;
    将所述各个第一光源中闪烁频率与第一地标的闪烁频率相匹配的第一光源确定为所述第一地标。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    针对每个第一光源,基于多张所述图像中所述第一光源闪烁的UTC时间以及所述第一地标闪烁的UTC时间,确定所述第一光源的闪烁频率是否与所述第一地标的闪烁频率相匹配。
  9. 根据权利要求1所述的方法,其特征在于,所述多个地标满足以下至少任一条件:
    所述多个地标的数量大于预设数量,
    所述多个地标中每个地标的尺寸均大于预设尺寸,
    所述多个地标散布在所述可移动平台的移动区域内。
  10. 根据权利要求1所述的方法,其特征在于,所述多个地标中各个地标的位置信息在所述地标被放置时标定,或者,在所述地标被放置之后由定位可移动平台检测得到。
  11. 根据权利要求1所述的方法,其特征在于,所述基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台进行定位,包括:
    基于识别出的所述地标阵列中多个地标的位置信息,获取所述可移动平台在所述地标局部坐标系下的局部位置信息;
    基于所述可移动平台在所述地标局部坐标系下的局部位置信息,对所述可移动平台进行定位。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台的位置信息进行修正。
  13. 根据权利要求12所述的方法,其特征在于,所述基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台的位置信息进行修正,包括:
    基于预设坐标系与所述地标局部坐标系的映射关系,以及所述可移动平台在地标局部坐标系下的实时局部位置信息,对所述可移动平台上的定位系统获取的所述可移动平台在所述预设坐标系下的实时位置信息进行修正。
  14. 根据权利要求13所述的方法,其特征在于,所述预设坐标系与所述地标局部坐标系的映射关系基于所述图像采集装置在所述可移动平台本次移动过程中预先采集的至少一帧预先参考图像,以及采集所述至少一帧预先参考图像时所述可移动平台在所述预设坐标系下的预先位置信息而建立,所述预先参考图像包括至少一个所述地标。
  15. 根据权利要求13所述的方法,其特征在于,所述可移动平台在地标局部坐标系下的实时局部位置信息基于所述图像采集装置在所述可移动平台本次移动过程中实时采集的至少一帧实时参考图像而获取,所述实时参考图像包括至少一个所述地标。
  16. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在特定情况下,基于所述可移动平台的位置信息和目标点的位置信息,控制所述可移动平台向所述目标点移动。
  17. 根据权利要求16所述的方法,其特征在于,所述可移动平台的位置信息包括所述可移动平台在地标局部坐标系下的局部位置信息;和/或所述目标点的位置信息包括所述目标点在所述地标局部坐标系下的局部位置信息。
  18. 根据权利要求16所述的方法,其特征在于,所述目标点在所述地标局部坐标系下的局部位置信息基于目标点在全局坐标系下的全局位置信息、所述地标在所述全局坐标系下的全局位置信息以及地标局部坐标系和所述全局坐标系之间的映射关系而获取。
  19. 根据权利要求16所述的方法,其特征在于,所述特定情况包括所述可移动平台的全局位置信息失效的情况。
  20. 根据权利要求16所述的方法,其特征在于,所述目标点包括返航点。
  21. 根据权利要求16所述的方法,其特征在于,所述目标点满足以下至少任一条件:
    所述目标点附近的环境可控;
    所述目标点的位置固定,且相对于所述预设坐标系的位置已知。
  22. 一种可移动平台定位装置,包括处理器,其特征在于,所述处理器用于执行以下步骤:
    获取可移动平台上的图像采集装置采集的图像;
    从所述图像中识别地标阵列中的多个地标;
    基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台进行定位。
  23. 根据权利要求22所述的装置,其特征在于,所述地标阵列中的各个地标均包括光源。
  24. 根据权利要求23所述的装置,其特征在于,所述光源为窄带光源,所述图像采集装置上设有带通滤光装置,所述带通滤光装置的通过波段包括所述窄带光源的输出波段。
  25. 根据权利要求23所述的装置,其特征在于,所述光源为红外光源或者紫外光源。
  26. 根据权利要求23所述的装置,其特征在于,所述处理器用于:
    对所述图像中的各个第一光源进行解调,得到解调信息;
    基于所述解调信息从所述各个第一光源中识别所述地标阵列中的多个地标。
  27. 根据权利要求26所述的装置,其特征在于,所述调制方式包括对闪烁频率、光源频段和发光亮度中的至少一者进行调制。
  28. 根据权利要求26所述的装置,其特征在于,所述预设调制方式包括对地标的闪烁频率进行调制,所述图像的数量为多张;所述处理器用于:
    基于多张所述图像确定所述各个第一光源的闪烁频率;
    将所述各个第一光源中闪烁频率与第一地标的闪烁频率相匹配的第一光源确定为所述第一地标。
  29. 根据权利要求28所述的装置,其特征在于,所述处理器还用于:
    针对每个第一光源,基于多张所述图像中所述第一光源闪烁的UTC时间以及所述第一地标闪烁的UTC时间,确定所述第一光源的闪烁频率是否与所述第一地标的闪烁频率相匹配。
  30. 根据权利要求22所述的装置,其特征在于,所述多个地标满足以下至少任一条件:
    所述多个地标的数量大于预设数量,
    所述多个地标中每个地标的尺寸均大于预设尺寸,
    所述多个地标散布在所述可移动平台的移动区域内。
  31. 根据权利要求22所述的装置,其特征在于,所述多个地标中各个地标的位置信息在所述地标被放置时标定,或者,在所述地标被放置之后由定位可移动平台检测得到。
  32. 根据权利要求22所述的装置,其特征在于,所述处理器用于:
    基于识别出的所述地标阵列中多个地标的位置信息,获取所述可移动平台在所述地标局部坐标系下的局部位置信息;
    基于所述可移动平台在所述地标局部坐标系下的局部位置信息,对所述可移动平台进行定位。
  33. 根据权利要求22所述的装置,其特征在于,所述装置还包括:
    基于识别出的所述地标阵列中多个地标的位置信息,对所述可移动平台的位置信息进行修正。
  34. 根据权利要求33所述的装置,其特征在于,所述处理器用于:
    基于预设坐标系与所述地标局部坐标系的映射关系,以及所述可移动平台在地标局部坐标系下的实时局部位置信息,对所述可移动平台上的定位系统获取的所述可移动平台在所述预设坐标系下的实时位置信息进行修正。
  35. 根据权利要求34所述的装置,其特征在于,所述预设坐标系与所述地标局部坐标系的映射关系基于所述图像采集装置在所述可移动平台本次移动过程中预先采集的至少一帧预先参考图像,以及采集所述至少一帧预先参考图像时所述可移动平台在所述预设坐标系下的预先位置信息而建立,所述预先参考图像包括至少一个所述地标。
  36. 根据权利要求34所述的装置,其特征在于,所述可移动平台在地标局部坐标 系下的实时局部位置信息基于所述图像采集装置在所述可移动平台本次移动过程中实时采集的至少一帧实时参考图像而获取,所述实时参考图像包括至少一个所述地标。
  37. 根据权利要求22所述的装置,其特征在于,所述处理器还用于:
    在特定情况下,基于所述可移动平台的位置信息和目标点的位置信息,控制所述可移动平台向所述目标点移动。
  38. 根据权利要求37所述的装置,其特征在于,所述可移动平台的位置信息包括所述可移动平台在地标局部坐标系下的局部位置信息;和/或所述目标点的位置信息包括所述目标点在所述地标局部坐标系下的局部位置信息。
  39. 根据权利要求37所述的装置,其特征在于,所述目标点在所述地标局部坐标系下的局部位置信息基于返航点在全局坐标系下的全局位置信息、所述地标在所述全局坐标系下的全局位置信息以及地标局部坐标系和所述全局坐标系之间的映射关系而获取。
  40. 根据权利要求37所述的装置,其特征在于,所述特定情况包括所述可移动平台的全局位置信息失效的情况。
  41. 根据权利要求37所述的装置,其特征在于,所述目标点包括返航点。
  42. 根据权利要求37所述的装置,其特征在于,所述目标点满足以下至少任一条件:
    所述目标点附近的环境可控;
    所述目标点的位置固定,且相对于所述预设坐标系的位置已知。
  43. 一种可移动平台,其特征在于,包括:
    机体;
    图像采集装置,设于所述机体上,用于采集图像;以及
    定位装置,设于所述机体内,用于执行权利要求1至21任意一项所述的方法。
  44. 一种地标,其特征在于,包括光源,所述光源按照预设调制方式进行调制;
    包括所述地标的图像能够被可移动平台上的图像采集装置采集到,以使所述可移动平台基于所述地标的位置信息和对所述光源进行解调得到的解调信息,对所述可移动平台进行定位。
  45. 根据权利要求44所述的地标,其特征在于,所述光源为窄带光源,所述图像采集装置上设有带通滤光装置,所述带通滤光装置的通过波段包括所述窄带光源的输出波段。
  46. 根据权利要求45所述的地标,其特征在于,所述光源为红外光源或者紫外光 源。
  47. 根据权利要求44所述的地标,其特征在于,所述解调信息用于所述可移动平台从所述图像中包括的各个第一光源中识别出所述地标。
  48. 根据权利要求44所述的地标,其特征在于,所述调制方式包括对闪烁频率、光源频段和发光亮度中的至少一者进行调制。
  49. 根据权利要求47所述的地标,其特征在于,所述预设调制方式包括对地标的闪烁频率进行调制,所述图像的数量为多张,所述多张图像用于确定所述各个第一光源的闪烁频率;其中,所述各个第一光源中闪烁频率与所述地标的闪烁频率相匹配的第一光源为所述地标。
  50. 根据权利要求49所述的地标,其特征在于,一个第一光源的闪烁频率基于多张所述图像中所述第一光源闪烁的UTC时间确定。
  51. 一种地标阵列,其特征在于,所述地标阵列包括多个如权利要求44至50任意一项所述的地标。
  52. 根据权利要求51所述的地标阵列,其特征在于,所述多个地标满足以下至少任一条件:
    所述多个地标的数量大于预设数量,
    所述多个地标中每个地标的尺寸均大于预设尺寸,
    所述多个地标散布在所述可移动平台的移动区域内。
  53. 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,该指令被处理器执行时实现权利要求1至21任意一项所述的方法。
PCT/CN2020/132815 2020-11-30 2020-11-30 定位方法、装置、可移动平台、地标及地标阵列 WO2022110159A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/132815 WO2022110159A1 (zh) 2020-11-30 2020-11-30 定位方法、装置、可移动平台、地标及地标阵列
CN202080071115.3A CN114729807A (zh) 2020-11-30 2020-11-30 定位方法、装置、可移动平台、地标及地标阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132815 WO2022110159A1 (zh) 2020-11-30 2020-11-30 定位方法、装置、可移动平台、地标及地标阵列

Publications (1)

Publication Number Publication Date
WO2022110159A1 true WO2022110159A1 (zh) 2022-06-02

Family

ID=81755139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132815 WO2022110159A1 (zh) 2020-11-30 2020-11-30 定位方法、装置、可移动平台、地标及地标阵列

Country Status (2)

Country Link
CN (1) CN114729807A (zh)
WO (1) WO2022110159A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459029A (zh) * 2018-11-22 2019-03-12 亮风台(上海)信息科技有限公司 一种用于确定目标对象的导航路线信息的方法与设备
US10235762B1 (en) * 2018-09-12 2019-03-19 Capital One Services, Llc Asset tracking systems
CN110737736A (zh) * 2019-09-16 2020-01-31 连尚(新昌)网络科技有限公司 一种获取车况地图信息的方法与设备
CN110869701A (zh) * 2017-07-20 2020-03-06 国际商业机器公司 定位
CN111047231A (zh) * 2018-10-11 2020-04-21 北京京东振世信息技术有限公司 盘点方法及其系统、计算机系统及计算机可读存储介质
CN111833443A (zh) * 2019-04-16 2020-10-27 辉达公司 自主机器应用中的地标位置重建

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506533B1 (ko) * 2003-01-11 2005-08-05 삼성전자주식회사 이동로봇 및 그에 따른 자율주행 시스템 및 방법
JP4264380B2 (ja) * 2004-04-28 2009-05-13 三菱重工業株式会社 自己位置同定方法及び該装置
US7634336B2 (en) * 2005-12-08 2009-12-15 Electronics And Telecommunications Research Institute Localization system and method of mobile robot based on camera and landmarks
US8144213B2 (en) * 2008-02-04 2012-03-27 Panasonic Corporation Imaging device, integrated circuit, and imaging method for encoding image frames based on detected flicker of a light source
CN108406731B (zh) * 2018-06-06 2023-06-13 珠海一微半导体股份有限公司 一种基于深度视觉的定位装置、方法及机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869701A (zh) * 2017-07-20 2020-03-06 国际商业机器公司 定位
US10235762B1 (en) * 2018-09-12 2019-03-19 Capital One Services, Llc Asset tracking systems
CN111047231A (zh) * 2018-10-11 2020-04-21 北京京东振世信息技术有限公司 盘点方法及其系统、计算机系统及计算机可读存储介质
CN109459029A (zh) * 2018-11-22 2019-03-12 亮风台(上海)信息科技有限公司 一种用于确定目标对象的导航路线信息的方法与设备
CN111833443A (zh) * 2019-04-16 2020-10-27 辉达公司 自主机器应用中的地标位置重建
CN110737736A (zh) * 2019-09-16 2020-01-31 连尚(新昌)网络科技有限公司 一种获取车况地图信息的方法与设备

Also Published As

Publication number Publication date
CN114729807A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US11550315B2 (en) Unmanned aerial vehicle inspection system
US11067396B2 (en) Position estimation device and position estimation method
AU2018388887B2 (en) Image based localization for unmanned aerial vehicles, and associated systems and methods
US20160122038A1 (en) Optically assisted landing of autonomous unmanned aircraft
JP6390013B2 (ja) 小型無人飛行機の制御方法
CN103822635A (zh) 基于视觉信息的无人机飞行中空间位置实时计算方法
EP2228626A2 (en) Method and system for correlating data sources for on-board vehicle displays
CN106371447A (zh) 一种无人机全天候精准降落的控制方法
JP2019031164A (ja) 離発着装置、離発着装置の制御方法、およびプログラム
US9892646B2 (en) Context-aware landing zone classification
CN111003192A (zh) 一种基于gps与视觉的无人机自主着陆系统和着陆方法
US20200364930A1 (en) Venue survey using unmanned aerial vehicle
KR20170004508A (ko) 영상정보를 이용한 비행체의 자동 착륙 방법 및 장치
JP2019060641A (ja) 対空標識、解析装置、及び、ドローン空撮測量システム
US11440657B2 (en) Aerial vehicles with machine vision
CN104735423B (zh) 位于无人机上的输电设备辨认平台
JP2009137577A (ja) 航空機を位置合わせするための装置および方法
CN109857128A (zh) 无人机视觉定点降落方法、系统、设备及存储介质
WO2022110159A1 (zh) 定位方法、装置、可移动平台、地标及地标阵列
US9979934B1 (en) Automated weather sensing system and method using cameras
CN105208346B (zh) 基于无人机的输电设备辨认方法
CN104715462B (zh) 位于无人机上的沙漠区域道路检测平台
US20210327283A1 (en) Systems and Methods for Mobile Aerial Flight Planning and Image Capturing Based on Structure Footprints
KR102289752B1 (ko) Gps 음영 지역에서 경로 비행을 수행하는 드론 및 그 방법
CN114815871A (zh) 一种基于视觉的垂直起降无人机动平台自主降落方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963047

Country of ref document: EP

Kind code of ref document: A1