WO2022109995A1 - 大视场x射线吸收光栅及其制作方法 - Google Patents
大视场x射线吸收光栅及其制作方法 Download PDFInfo
- Publication number
- WO2022109995A1 WO2022109995A1 PCT/CN2020/132163 CN2020132163W WO2022109995A1 WO 2022109995 A1 WO2022109995 A1 WO 2022109995A1 CN 2020132163 W CN2020132163 W CN 2020132163W WO 2022109995 A1 WO2022109995 A1 WO 2022109995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- metal layer
- thickness
- ray absorption
- view
- Prior art date
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 176
- 239000002184 metal Substances 0.000 claims abstract description 176
- 238000003825 pressing Methods 0.000 claims description 24
- 239000007769 metal material Substances 0.000 claims description 11
- 238000000748 compression moulding Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910001385 heavy metal Inorganic materials 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 4
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 239000011133 lead Substances 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 9
- 238000005530 etching Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 4
- 238000000708 deep reactive-ion etching Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- -1 life science Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
Definitions
- the present application relates to the technical field of optical devices, for example, to a large field of view X-ray absorption grating and a manufacturing method thereof.
- X-ray differential interference imaging technology can obtain X-ray absorption images, scattering images and phase contrast images, and it has very important applications in medicine, life science, material science and industrial applications.
- X-ray absorption gratings play an important role in X-ray differential interference imaging.
- large aspect ratio has become the basic requirement of grating production.
- grating production technologies There are mainly four kinds of grating production technologies:
- DRIE Deep Reactive Ion Etching
- LIGA deep Reactive Ion Etching
- the DRIE technology has a low etching aspect ratio
- the LIGA technology has high production cost and small production area
- the photo-assisted electrochemical etching method has a complicated process, and the silicon-based resistivity, temperature, and etching solution during the production process affect the etching structure. It is difficult to control, and high atomic number metal needs to be filled in the subsequent process, the filling process is complicated, the conditions are harsh, and the filling uniformity is poor.
- the fourth metal lamination molding technology can use metal films with uniform thickness to be superimposed and then molded. It has good uniformity and consistency, and the cycle is easy to control. It is suitable for mass production of X-rays. Grating, has broad development prospects.
- the X-ray grating prepared by the above method is generally a plane grating. Since the rays emitted by the light source in the X-ray grating interferometer are cone beams, in the X-ray propagation direction, the phase contrast information and dark field information cannot be compared with the plane grating. Coincidence, the plane grating will produce the phenomenon of edge contrast decline under its projection. The farther it is from the optical axis, the more serious the decline, which limits the effective field of view of the entire imaging system.
- the present application provides a large field of view X-ray absorption grating and a manufacturing method thereof.
- the large field of view X-ray absorption grating has a large aspect ratio, controllable grating period and grating angle, good uniformity, good imaging effect, and is suitable for low cost. Made in large batches.
- a large field of view X-ray absorption grating which includes a metal stack, and the metal stack includes a plurality of first metal layers and a plurality of second metal layers arranged in layers;
- the thickness of the first end of each first metal layer is greater than the thickness of the second end of the first metal layer, the thickness of the first end of each second metal layer is greater than the thickness of the second end of the second metal layer,
- the first end of the first metal layer and the first end of the second metal layer are located at the first end of the large field of view X-ray absorption grating, and the second end of the first metal layer and the The second ends of the two metal layers are located at the second ends of the large field of view X-ray absorption grating;
- the density of the first metal layer is greater than the density of the second metal layer.
- a metal stack is formed between the first pressing plate and the second pressing plate, and the metal stack includes a plurality of first metal layers and a plurality of second metal layers arranged in layers;
- the thickness of the first end of the metal stack is greater than the thickness of the second end
- the metal stack is cut to form a large field of view X-ray absorption grating.
- FIG. 1 is a schematic structural diagram of a large field of view X-ray absorption grating provided by an embodiment of the present application
- FIG. 2 is a schematic structural diagram of an X-ray grating imaging system
- FIG. 3 is a schematic structural diagram of another large field of view X-ray absorption grating provided by an embodiment of the present application.
- FIG. 4 is a schematic flowchart of a method for manufacturing a large field of view X-ray absorption grating provided by an embodiment of the present application;
- FIG. 5 is a schematic structural diagram after step S120 provided by an embodiment of the present application.
- FIG. 6 is a schematic structural diagram after step S130 provided by an embodiment of the present application.
- FIG. 7 is a schematic diagram of a compression molding technology provided by an embodiment of the present application.
- FIG. 1 is a schematic structural diagram of an X-ray absorption grating with a large field of view provided by an embodiment of the present application.
- the X-ray absorption grating with a large field of view provided in this embodiment includes a metal stack 10, and the metal stack 10 includes a plurality of first metal layers 11 and a plurality of second metal layers 12 arranged in layers;
- the thickness of the first end of the metal layer 11 is greater than the thickness of the second end of the first metal layer 11
- the thickness of the first end of each second metal layer 12 is greater than the thickness of the second end of the second metal layer 12
- the first end of 11 and the first end of the second metal layer 12 are located at the first end of the large field of view X-ray absorption grating
- the second end of the first metal layer 11 and the second end of the second metal layer 12 are located in the large field of view.
- the second end of the field X-ray absorption grating; the density of the first metal layer 11 is greater than
- X-rays have strong penetrability and have different penetrability to different materials.
- heavy metal materials such as lead
- light metal materials such as aluminum
- the first metal layer 11 includes a heavy metal material and is configured to absorb X-rays
- the second metal layer 12 includes a light metal material and is configured to transmit X-rays.
- the first metal layer 11 may include gold, silver, or lead
- the second metal layer 12 may include lithium, beryllium, aluminum, or magnesium, which is not limited in this embodiment of the present application.
- FIG. 2 is a schematic structural diagram of an X-ray grating imaging system.
- the X-ray grating imaging system includes an X-ray point light source 100, a grating 200 and a detector 300.
- the X-rays emitted by the point X-ray point light source 100 are cone beams, and the light rays and the propagation optical axis present a certain angle, so the grating The 200 needs to be adjusted according to the light emission angle.
- the light-transmitting part of the channel can just make the light pass through without blocking, thereby improving the edge resolution of the system and expanding the field of view of the system.
- the density of the first metal layer is greater than that of the second metal layer
- the first metal layer is made of heavy metal and is set to absorb X-rays
- the second metal layer is made of light metal and set to transmit X-rays.
- the thickness of the first end of each first metal layer By setting the thickness of the first end of each first metal layer to be greater than the thickness of the second end of the first metal layer, the thickness of the first end of each second metal layer is greater than the thickness of the second end of the second metal layer, thereby changing
- the grating period and the grating angle make the grating structure adjusted to a metal stack suitable for the cone beam light source to pass through, forming a large aspect ratio, grating period, grating angle controllable, good uniformity, good imaging effect, suitable for low-cost mass production Fabricated large field of view X-ray absorption grating.
- the end face of the first end of the large field of view X-ray absorption grating is a plane or arc surface
- the end face of the second end of the large field of view X-ray absorption grating is a plane or arc surface
- FIG. 3 is a schematic structural diagram of another large field of view X-ray absorption grating provided by an embodiment of the present application.
- the two end faces of the large field of view X-ray absorption grating are arc surfaces, and the light is incident from the right end.
- the arc radius can be set according to the divergence angle of the light source exit beam during design to facilitate X-ray incidence.
- one end of the large-field X-ray absorption grating may also be set as a plane, and the other end as an arc, which is not limited in this embodiment of the present application.
- the thickness of the first metal layer 11 decreases linearly; from the first end to the second end of the second metal layer 12 At the end, the thickness of the second metal layer 12 decreases linearly, so that a fixed angle is formed between the metal layers, so as to match the X-ray light source of the corresponding exit angle.
- FIG. 4 is a schematic flowchart of a method for manufacturing a large-field X-ray absorption grating provided by an embodiment of the present application.
- the manufacturing method provided in this embodiment can be used to manufacture the large-field X-ray absorption grating provided by Production methods include:
- Step S110 providing a first pressing plate and a second pressing plate.
- Step S120 forming a metal stack between the first pressing plate and the second pressing plate, where the metal stack includes a plurality of first metal layers and a plurality of second metal layers arranged in layers.
- FIG. 5 is a schematic structural diagram after step S120 provided by an embodiment of the present application.
- a metal stack 10 is included between the first pressing plate 1 and the second pressing plate 2 , and the metal stack 10 includes a plurality of first metal layers 11 and a plurality of second metal layers 12 arranged in layers.
- the first metal layer 11 includes a heavy metal material and is configured to absorb X-rays
- the second metal layer 12 includes a light metal material and is configured to transmit X-rays.
- the first metal layer 11 includes gold, silver, or lead
- the second metal layer 12 includes lithium, beryllium, aluminum, or magnesium, which is not limited in this embodiment of the present application.
- step S130 the thickness of the first end of the metal stack is made greater than the thickness of the second end of the metal stack by using a compression molding technique.
- the thickness of the first end of the metal stack is greater than the thickness of the second end of the metal stack by using a compression molding technique, including:
- FIG. 6 is a schematic structural diagram after step S130 provided by an embodiment of the present application.
- different pressures are applied between the first pressure plate 1 and the second pressure plate 2 (in FIG. 6 , the pressure at the right end is greater than the pressure at the left end as an example) to form a metal stack 10 with one end thick and the other thin.
- the thickness of the first end of the metal stack is greater than the thickness of the second end of the metal stack using a compression molding technique, comprising:
- a plurality of first metal layers and a plurality of second metal layers are respectively placed between the first roller and the second roller; when the first roller and the second roller are rolled, the first metal layer or the second metal layer is rolled to a thickness
- FIG. 7 is a schematic diagram of a compression molding technique provided by an embodiment of the present application.
- the first metal layer 11 or the second metal layer 12 is placed between the first roller 3 and the second roller 4, and the first roller 3 is set to be a non-circular shape with a gradual radius, so that between the first roller 3 and the second roller 4
- the first metal layer 11 or the second metal layer 12 is rolled into a metal film whose thickness varies linearly; then a plurality of metal films are stacked to form a metal stack, and the metal stack is placed on the first
- the pressing plate and the second pressing plate are fixed to form the structure shown in FIG. 6 .
- Step S140 heating the metal stack, so that the metal stack is fixed and formed.
- the heating temperature can be set flexibly according to the metal materials used. For example, when silver is used for the first metal layer and aluminum is used for the second metal layer, the heating temperature can be 400°C to 500°C, lead is used for the first metal layer, and lead is used for the second metal layer. When aluminum is used, the heating temperature may be 200°C to 300°C.
- Step S150 cutting the metal stack to form a large field of view X-ray absorption grating.
- cutting the metal stack to form a large field of view X-ray absorption grating includes:
- the end face of one end of the cut metal stack is a plane or arc surface; the other end of the cut metal stack is a plane or arc surface, so as to form a large field of view X-ray absorption grating.
- the grating structure shown in FIG. 1 When both ends of the cut metal stack are flat, the grating structure shown in FIG. 1 can be obtained, and when both ends of the cut metal stack are arc surfaces, the grating structure shown in FIG. 3 can be obtained.
- the previous method of preparing X-ray absorbing gratings by etching has the following disadvantages: it is difficult to manufacture X-ray absorbing gratings with large aspect ratios; the uniformity is difficult when manufacturing large-area gratings; The tank needs to be filled with heavy metal absorbing substances, and the filling process cannot solve the problem of filling uniformity. Moreover, the angle of the etched holes can only be perpendicular to the surface, so that there are different angles between the etched holes and they are in a non-parallel state, and an arc-shaped cylindrical grating cannot be made.
- the metal lamination molding technology provided in this embodiment can solve the problem of manufacturing micro-holes with large aspect ratio, the grating period and grating angle are controllable, the uniformity is good, convenient and fast, and large-scale large aspect ratio X can be produced in large quantities. Ray absorption grating.
- the use of metal lamination molding technology can solve the grating angle control, so as to realize the manufacture of arc cylindrical grating, which provides important technical support for the development of X-ray grating imaging technology.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种大视场X射线吸收光栅及其制作方法。大视场X射线吸收光栅包括金属叠层(10),金属叠层(10)包括层叠设置的多个第一金属层(11)和多个第二金属层(12);每个第一金属层(11)的第一端的厚度大于第一金属层(11)的第二端的厚度,每个第二金属层(12)的第一端的厚度大于第二金属层(12)的第二端的厚度,第一金属层(11)的第一端和第二金属层(12)的第一端位于大视场X射线吸收光栅的第一端,第一金属层(11)的第二端和第二金属层(12)的第二端位于大视场X射线吸收光栅的第二端;第一金属层(11)的密度大于第二金属层(12)的密度。
Description
本申请涉及光学器件技术领域,例如涉及一种大视场X射线吸收光栅及其制作方法。
X射线微分干涉成像技术能够获取X射线的吸收图像、散射图像以及相位衬度图像,其在医学、生命科学、材料科学及工业应用领域有着非常重要的应用。
X射线吸收光栅在X射线微分干涉成像中具有举足轻重的重要作用。鉴于X射线的穿透力极强,大深宽比就成了光栅制作的基本要求,光栅的制作技术主要有以下四种:
深反应离子刻蚀法(Deep Reactive Ion Etching,DRIE),将光刻(Lithographie)、电铸成型(Galvanoformung)和注塑(Abformung)三者结合的LIGA技术、光助电化学刻蚀技术和金属叠层模压成型技术。其中,DRIE技术刻蚀深宽比不高;LIGA技术制作成本高,制作面积小;光助电化学刻蚀方法流程复杂,而且制作过程中硅基电阻率、温度、腐蚀液等对刻蚀结构的影响较大,难以控制,并且后续工艺中需填充高原子序数金属,填充工艺复杂,条件苛刻,填充均匀性不佳。相比前三种技术,第四种金属叠层模压成型技术,可以利用厚度均匀的金属薄膜进行叠加然后模压成型,其均匀性和一致性较好,周期容易控制,适合大批量生产制作X射线光栅,具有广阔的发展前景。
但上述方法制备的X射线光栅,一般为平面光栅,由于X射线光栅干涉仪中的光源发出的射线为锥束,在X射线的传播方向上,相位衬度信息与暗场信息与平面光栅不能重合,平面光栅在其投影下会产生边缘对比度下降的现象,距离光轴越远,下降越严重,这就限制了整个成像系统的有效视场。
发明内容
本申请提供一种大视场X射线吸收光栅及其制作方法,该大视场X射线吸收光栅具有大深宽比,光栅周期、光栅角度可控,均匀性好,成像效果好,适合低成本大批量制作。
提供一种大视场X射线吸收光栅,包括金属叠层,所述金属叠层包括层叠 设置的多个第一金属层和多个第二金属层;
每个第一金属层的第一端的厚度大于所述第一金属层的第二端的厚度,每个第二金属层的第一端的厚度大于所述第二金属层的第二端的厚度,所述第一金属层的第一端和所述第二金属层的第一端位于所述大视场X射线吸收光栅的第一端,所述第一金属层的第二端和所述第二金属层的第二端位于所述大视场X射线吸收光栅的第二端;
所述第一金属层的密度大于所述第二金属层的密度。
还提供一种大视场X射线吸收光栅的制作方法,包括:
提供第一压板和第二压板;
在所述第一压板和所述第二压板之间形成金属叠层,所述金属叠层包括层叠设置的多个第一金属层和多个第二金属层;
利用模压成型技术,使所述金属叠层的第一端的厚度大于第二端的厚度;
加热所述金属叠层,以使所述金属叠层固定成型;
切割所述金属叠层,以形成大视场X射线吸收光栅。
图1是本申请实施例提供的一种大视场X射线吸收光栅的结构示意图;
图2是一种X射线光栅成像系统的结构示意图;
图3是本申请实施例提供的另一种大视场X射线吸收光栅的结构示意图;
图4是本申请实施例提供的一种大视场X射线吸收光栅的制作方法的流程示意图;
图5是本申请实施例提供的步骤S120后的结构示意图;
图6是本申请实施例提供的步骤S130后的结构示意图;
图7是本申请实施例提供的一种模压成型技术的示意图。
下面结合附图和实施例对本申请进行说明。
本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外在上下文中,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一 元件“上”或者“下”。术语“第一”、“第二”等仅用于描述目的,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。可以根据情况理解上述术语在本申请中的含义。
图1是本申请实施例提供的一种大视场X射线吸收光栅的结构示意图。参考图1,本实施例提供的大视场X射线吸收光栅包括金属叠层10,金属叠层10包括层叠设置的多个第一金属层11和多个第二金属层12;每个第一金属层11的第一端的厚度大于第一金属层11的第二端的厚度,每个第二金属层12的第一端的厚度大于第二金属层12的第二端的厚度,第一金属层11的第一端和第二金属层12的第一端位于大视场X射线吸收光栅的第一端,第一金属层11的第二端和第二金属层12的第二端位于大视场X射线吸收光栅的第二端;第一金属层11的密度大于第二金属层12的密度。
X射线具有较强的穿透性,且对不同材料的穿透性不同,例如重金属材料(例如铅)可以吸收X射线,轻金属材料(例如铝)可以透射X射线。可选的,第一金属层11包括重金属材料,设置为吸收X射线,第二金属层12包括轻金属材料,设置为透射X射线。在实施时,可选的,第一金属层11可以包括金、银或铅,第二金属层12可以包括锂、铍、铝或镁,本申请实施例对此不作限定。
图2是一种X射线光栅成像系统的结构示意图。参考图2,该X射线光栅成像系统包括X射线点光源100、光栅200以及探测器300,点X射线点光源100发出的X射线为椎束,光线与传播光轴呈现一定夹角,所以光栅200需根据光线发射角度进行调整,采用图1中的光栅结构,其透光部分的通道正好可以使得光线无遮挡地通过,从而提高系统边缘分辨,扩大系统视场范围。
本实施例的技术方案,第一金属层的密度大于第二金属层的密度,第一金属层采用重金属,设置为吸收X射线,第二金属层采用轻金属,设置为透射X射线。通过设置每个第一金属层的第一端的厚度大于第一金属层的第二端的厚度,每个第二金属层的第一端的厚度大于第二金属层的第二端的厚度,从而改变光栅周期和光栅夹角,使得光栅结构调整为适合锥束光源通过的金属叠层,形成具有大深宽比、光栅周期、光栅角度可控、均匀性好、成像效果好、适合低成本大批量制作的大视场X射线吸收光栅。
在上述技术方案的基础上,可选的,大视场X射线吸收光栅的第一端的端面为平面或弧面,大视场X射线吸收光栅的第二端的端面为平面或弧面。
参考图1,图1所示的大视场X射线吸收光栅的两个端面均为平面。示例 性的,图3是本申请实施例提供的另一种大视场X射线吸收光栅的结构示意图。参考图3,该大视场X射线吸收光栅的两个端面均为弧面,光线从右端入射,设计时可以根据光源出射光束的发散角设置弧面半径,以利于X射线入射。在其他实施例中,也可以设置大视场X射线吸收光栅的一端为平面,另一端为弧面,本申请实施例对此不作限定。
可选的,参考图1或图3,从第一金属层11的第一端至第二端,第一金属层11的厚度线性减小;从第二金属层12的第一端至第二端,第二金属层12的厚度线性减小,从而使金属层之间形成固定的夹角,以匹配相应出射角度的X射线光源。
图4是本申请实施例提供的一种大视场X射线吸收光栅的制作方法的流程示意图,本实施例提供的制作方法可以用于制作上述实施例提供的大视场X射线吸收光栅,该制作方法包括:
步骤S110、提供第一压板和第二压板。
步骤S120、在第一压板和第二压板之间形成金属叠层,金属叠层包括层叠设置的多个第一金属层和多个第二金属层。
示例性的,图5是本申请实施例提供的步骤S120后的结构示意图。参考图5,第一压板1和第二压板2之间包括金属叠层10,金属叠层10包括层叠设置的多个第一金属层11和多个第二金属层12。可选的,第一金属层11包括重金属材料,设置为吸收X射线,第二金属层12包括轻金属材料,设置为透射X射线。可选的,第一金属层11包括金、银或铅,第二金属层12包括锂、铍、铝或镁,本申请实施例对此不作限定。
步骤S130、利用模压成型技术,使金属叠层的第一端的厚度大于金属叠层的第二端的厚度。
在一实施例中,利用模压成型技术,使金属叠层的第一端的厚度大于金属叠层的第二端的厚度,包括:
在第一压板和第二压板两端施加不同的压力,以使金属叠层的第一端的厚度大于金属叠层的第二端的厚度。
示例性的,图6是本申请实施例提供的步骤S130后的结构示意图。参考图6,在第一压板1和第二压板2之间施加不同的压力(图6以右端压力大于左端压力为例),从而形成一端厚一端薄的金属叠层10。
在另一实施例中,利用模压成型技术,使金属叠层的第一端的厚度大于金 属叠层的第二端的厚度,包括:
分别将多个第一金属层和多个第二金属层置于第一滚筒和第二滚筒之间;第一滚筒和第二滚筒滚动时将第一金属层或第二金属层滚压为厚度线性变化的金属膜片;将多个金属膜片相互叠加形成金属叠层,将金属叠层置于第一压板和第二压板之间进行固定。
示例性的,图7是本申请实施例提供的一种模压成型技术的示意图。参考图7,将第一金属层11或第二金属层12置于第一滚筒3和第二滚筒4之间,设置第一滚筒3为半径渐变的非圆形,从而在第一滚筒3和第二滚筒4滚动时将第一金属层11或第二金属层12滚压为厚度线性变化的金属膜片;然后将多个金属膜片叠加形成金属叠层,将金属叠层置于第一压板和第二压板之间进行固定,形成图6所示的结构。
步骤S140、加热金属叠层,以使金属叠层固定成型。
实施时,加热温度根据所用的金属材料灵活设置,例如第一金属层采用银,第二金属层采用铝时,加热温度可以为400℃~500℃,第一金属层采用铅,第二金属层采用铝时,加热温度可以为200℃~300℃。
步骤S150、切割金属叠层,以形成大视场X射线吸收光栅。
可选的,切割金属叠层,以形成大视场X射线吸收光栅包括:
切割金属叠层的一端的端面为平面或弧面;切割金属叠层的另一端为平面或弧面,以形成大视场X射线吸收光栅。
当切割金属叠层的两端的端面均为平面时,可以得到图1所示的光栅结构,当切割金属叠层的两端的端面均为弧面时,可以得到图3所示的光栅结构。
以往利用刻蚀制备X射线吸收光栅的办法,具有以下缺点:制作大深宽比X射线吸收光栅困难;制作大面积光栅时均匀性困难;为了解决对X射线的吸收问题,制作出的光栅沟槽内需填充重金属吸收物质,而填充工艺尚不能解决填充的均匀性问题。且其刻蚀孔的角度只能与表面垂直,无法做到刻蚀孔之间存在不同夹角且处于非平行状态,无法做出弧形柱面光栅。
本实施例提供的金属叠层模压成型技术可以解决大深宽比微孔的制作难题,光栅周期、光栅角度可控,均匀性好,方便快捷,可以大批量制作出大面积大深宽比X射线吸收光栅。利用金属叠层模压成型技术可以解决光栅角度控制,从而实现弧形柱面光栅的制作,为X射线光栅成像技术的发展提供重要的技术支撑。
Claims (10)
- 一种大视场X射线吸收光栅,包括金属叠层,所述金属叠层包括层叠设置的多个第一金属层和多个第二金属层;每个第一金属层的第一端的厚度大于所述第一金属层的第二端的厚度,每个第二金属层的第一端的厚度大于所述第二金属层的第二端的厚度,所述第一金属层的第一端和所述第二金属层的第一端位于所述大视场X射线吸收光栅的第一端,所述第一金属层的第二端和所述第二金属层的第二端位于所述大视场X射线吸收光栅的第二端;所述第一金属层的密度大于所述第二金属层的密度。
- 根据权利要求1所述的大视场X射线吸收光栅,其中,所述大视场X射线吸收光栅的第一端的端面为平面或弧面,所述大视场X射线吸收光栅的第二端的端面为平面或弧面。
- 根据权利要求1所述的大视场X射线吸收光栅,其中,从所述第一金属层的第一端至第二端,所述第一金属层的厚度线性减小;从所述第二金属层的第一端至第二端,所述第二金属层的厚度线性减小。
- 根据权利要求1~3任一项所述的大视场X射线吸收光栅,其中,所述第一金属层包括重金属材料,设置为吸收X射线,所述第二金属层包括轻金属材料,设置为透射X射线。
- 根据权利要求4所述的大视场X射线吸收光栅,其中,所述第一金属层包括金、银或铅,所述第二金属层包括锂、铍、铝或镁。
- 一种大视场X射线吸收光栅的制作方法,包括:提供第一压板和第二压板;在所述第一压板和所述第二压板之间形成金属叠层,所述金属叠层包括层叠设置的多个第一金属层和多个第二金属层;利用模压成型技术,使所述金属叠层的第一端的厚度大于所述金属叠层的第二端的厚度;加热所述金属叠层,以使所述金属叠层固定成型;切割所述金属叠层,以形成所述大视场X射线吸收光栅。
- 根据权利要求6所述的制作方法,其中,所述切割所述金属叠层,以形成所述大视场X射线吸收光栅包括:切割所述金属叠层的一端的端面为平面或弧面;切割所述金属叠层的另一端为平面或弧面,以形成所述大视场X射线吸收 光栅。
- 根据权利要求6所述的制作方法,其中,所述利用模压成型技术,使所述金属叠层的第一端的厚度大于所述金属叠层的第二端的厚度,包括:在所述第一压板和所述第二压板的两端施加不同的压力,以使所述金属叠层的第一端的厚度大于所述金属叠层的第二端的厚度。
- 根据权利要求6所述的制作方法,其中,所述利用模压成型技术,使所述金属叠层的第一端的厚度大于所述金属叠层的第二端的厚度,包括:分别将所述多个第一金属层和所述多个第二金属层置于第一滚筒和第二滚筒之间;在所述第一滚筒和所述第二滚筒滚动的情况下,将每个第一金属层或每个第二金属层滚压为厚度线性变化的金属膜片;将多个金属膜片相互叠加形成所述金属叠层,将所述金属叠层置于所述第一压板和所述第二压板之间进行固定。
- 根据权利要求6~9任一项所述的制作方法,其中,所述第一金属层包括重金属材料,设置为吸收X射线,所述第二金属层包括轻金属材料,设置为透射X射线;所述第一金属层包括金、银或铅,所述第二金属层包括锂、铍、铝或镁。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/132163 WO2022109995A1 (zh) | 2020-11-27 | 2020-11-27 | 大视场x射线吸收光栅及其制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/132163 WO2022109995A1 (zh) | 2020-11-27 | 2020-11-27 | 大视场x射线吸收光栅及其制作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022109995A1 true WO2022109995A1 (zh) | 2022-06-02 |
Family
ID=81753803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/132163 WO2022109995A1 (zh) | 2020-11-27 | 2020-11-27 | 大视场x射线吸收光栅及其制作方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022109995A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101261331A (zh) * | 2008-04-21 | 2008-09-10 | 南京大学 | 基于纳米压印技术的自支撑透射金属光栅及制备方法 |
CN102460237A (zh) * | 2009-06-16 | 2012-05-16 | 皇家飞利浦电子股份有限公司 | 倾斜光栅和用于生产倾斜光栅的方法 |
US20140241493A1 (en) * | 2011-07-27 | 2014-08-28 | Mitsuru Yokoyama | Metal Lattice Production Method, Metal Lattice, X-Ray Imaging Device, and Intermediate Product for Metal Lattice |
CN108714625A (zh) * | 2018-06-25 | 2018-10-30 | 深圳大学 | 新型x射线光栅的制作工艺 |
CN111522086A (zh) * | 2020-05-12 | 2020-08-11 | 深圳大学 | 热复合的光栅制作工艺 |
CN211375113U (zh) * | 2019-12-27 | 2020-08-28 | 段晓东 | X光光栅 |
-
2020
- 2020-11-27 WO PCT/CN2020/132163 patent/WO2022109995A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101261331A (zh) * | 2008-04-21 | 2008-09-10 | 南京大学 | 基于纳米压印技术的自支撑透射金属光栅及制备方法 |
CN102460237A (zh) * | 2009-06-16 | 2012-05-16 | 皇家飞利浦电子股份有限公司 | 倾斜光栅和用于生产倾斜光栅的方法 |
US20140241493A1 (en) * | 2011-07-27 | 2014-08-28 | Mitsuru Yokoyama | Metal Lattice Production Method, Metal Lattice, X-Ray Imaging Device, and Intermediate Product for Metal Lattice |
CN108714625A (zh) * | 2018-06-25 | 2018-10-30 | 深圳大学 | 新型x射线光栅的制作工艺 |
CN211375113U (zh) * | 2019-12-27 | 2020-08-28 | 段晓东 | X光光栅 |
CN111522086A (zh) * | 2020-05-12 | 2020-08-11 | 深圳大学 | 热复合的光栅制作工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7881432B2 (en) | X-ray focusing device | |
CN108714625B (zh) | X射线光栅的制作工艺 | |
US10153061B2 (en) | Metal grating for X-rays, production method for metal grating for X-rays, metal grating unit for X-rays, and X-ray imaging device | |
CN102269936B (zh) | 一种仿真飞蛾复眼光学减反射结构图案的方法和系统 | |
US11186059B2 (en) | Honeycomb sandwich structure and method for manufacturing the same | |
CN103151089B (zh) | 硬X射线微聚焦多厚度比复合多层膜Laue透镜 | |
US9640291B2 (en) | Stacked zone plates for pitch frequency multiplication | |
US20040089818A1 (en) | Multi-foil optic | |
WO2022109995A1 (zh) | 大视场x射线吸收光栅及其制作方法 | |
CN112885499A (zh) | 用于同步辐射软X射线聚焦成像的Kinoform介质透镜及其制备方法 | |
CN103021496A (zh) | 硬X射线微聚焦高级次多层膜Laue透镜 | |
Yi et al. | Eight-channel Kirkpatrick–Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments | |
Ezoe et al. | Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers | |
US9046615B2 (en) | Production method of scintillator array | |
CN205450297U (zh) | 慢中子转换体及慢中子探测器 | |
CN112255718A (zh) | 一种大视场x射线吸收光栅及其制作方法 | |
CZ306934B6 (cs) | Rentgenový optický systém | |
Marshall et al. | Polar-direct-drive experiments with contoured-shell targets on OMEGA | |
JP4599504B2 (ja) | X線用コリメータ、その製法、x線検出装置及びx線入射場所の決定方法 | |
Rygg et al. | Observations of the collapse of asymmetrically driven convergent shocks | |
CN114496337A (zh) | 多层膜劳厄透镜及其设计方法 | |
US20230065517A1 (en) | Porous silicon charged particle, x-ray, gamma-ray and/or thermal neutron collimators and methods of manufacturing the same | |
Tremsin et al. | Electronic and optical moiré interference with microchannel plates: artifacts and benefits | |
CN117079856A (zh) | 一种硬X射线微聚焦的Nb/Al多层膜Laue透镜 | |
CN108877961B (zh) | 一种x光宽带选能器件及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20962886 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20962886 Country of ref document: EP Kind code of ref document: A1 |