WO2022109971A1 - 一种fcc装置的预提升系统和工艺 - Google Patents

一种fcc装置的预提升系统和工艺 Download PDF

Info

Publication number
WO2022109971A1
WO2022109971A1 PCT/CN2020/132046 CN2020132046W WO2022109971A1 WO 2022109971 A1 WO2022109971 A1 WO 2022109971A1 CN 2020132046 W CN2020132046 W CN 2020132046W WO 2022109971 A1 WO2022109971 A1 WO 2022109971A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
valve
pipeline
superheater
input line
Prior art date
Application number
PCT/CN2020/132046
Other languages
English (en)
French (fr)
Inventor
舒程
吴宗奥
赵雨晨
Original Assignee
广州智京科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州智京科技有限公司 filed Critical 广州智京科技有限公司
Priority to PCT/CN2020/132046 priority Critical patent/WO2022109971A1/zh
Publication of WO2022109971A1 publication Critical patent/WO2022109971A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/06Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils

Definitions

  • the invention relates to the field of conversion systems and processes of petroleum refineries, in particular to a pre-lifting system and method of a fluidized catalytic cracking unit.
  • the dry gas is mainly composed of hydrogen, methane and a small amount of ethane. If it is used as a pre-lifting medium, the composition of the dry gas is unstable, and the pressure is greatly affected by the compressor outlet environment and the system pipe network. , and the third is that it is an inert component of the catalytic cracking reaction, which occupies the reactive center of the catalytic cracking agent.
  • the present invention provides a pre-lifting system of an FCC unit, which can significantly increase the economic benefit of a refinery and has the environmental protection effect of energy saving and emission reduction.
  • the present invention also provides a pre-lifting process of the FCC unit, which can significantly increase the economic benefit of the refinery, and is beneficial to the environmental protection effect of energy saving and emission reduction.
  • the technical scheme of the present invention is as follows: a pre-lifting process of an FCC unit, wherein: under normal operating conditions, low-carbon hydrocarbons are first input into a gasifier for gasification, and then, through pressure control, are mixed with high-temperature steam and/or gas dry gas phase After mixing, it is input to the superheater to be superheated, and finally input to the pre-lifter; before input to the superheater, the mixing ratio and respective flow rates of high-temperature steam and/or gas dry gas are gradually adjusted according to the difficulty of coking of low-carbon hydrocarbons at high temperature.
  • the low-carbon hydrocarbons are input into the gasifier for gasification, and the flow rate of the low-carbon hydrocarbon gas is gradually increased, and the flow rate of the high-temperature steam and/or gas dry gas before and after the input to the superheater is gradually adjusted.
  • the pre-lifting process of the FCC unit wherein: when the gasifier fails under normal operating conditions and needs to be repaired online, only high-temperature steam and/or gas dry gas is input to the pre-lift after passing through the heater It is convenient to cut the gasifier online from the system for maintenance, and then cut in the gasifier online after the maintenance.
  • the pre-lifting process of the FCC unit wherein: when the superheater fails under normal operating conditions and needs to be repaired online, only high-temperature steam and/or gas dry gas is input into the pre-lifter, so as to facilitate the recovery from the superheater.
  • the superheater is cut online for maintenance, and after the maintenance, the superheater is switched online.
  • the pre-lifting process of the FCC unit wherein: the gasifier adopts a pressure control method, the superheater adopts a temperature control method, combined with the flow control method of the relevant input pipeline, so as to realize the pressure and temperature of the low-carbon hydrocarbon components. , Precise control of flow.
  • the heat source for heating the gasifier and/or the superheater is directly or indirectly from a heating furnace, high-temperature steam, heat transfer oil, hot catalyst or scorching energy of a catalyst regenerator Or superheated high temperature steam from the heat collector inside and outside the catalyst regenerator.
  • the low-carbon hydrocarbons include ethane, propane, isobutane, ethylene-rich gas, n-isobutane, n-isobutene, carbon three, carbon four, carbon five and carbon six , one or more combinations of light hydrocarbons of carbon seven, carbon eight and carbon nine; and the low carbon hydrocarbons include one or more components of saturated hydrocarbons, naphthenic hydrocarbons, olefins or aromatic hydrocarbons.
  • a pre-lifting system of an FCC device comprising an input pipeline and a valve thereof arranged between a gasifier, a superheater and a pre-lifter, wherein: one side of the gasifier is provided with a device for inputting low carbon to the gasifier The first input line of hydrocarbons; between the vaporizer and the superheater, there is a second input line for inputting the pre-lifting medium in a gasification state to the superheater, and a second front valve is arranged on the second input line; in the superheater A third input pipeline for inputting gasification and superheated pre-lifting medium to the pre-lifter is arranged between the lifter and the pre-lifter, and a third valve is arranged on the third input pipeline; an input pipeline is arranged on the second input pipeline Input pipeline for high temperature steam and/or gas dry gas and valve thereof; an input pipeline and valve for inputting high temperature water steam and/or gas dry gas are arranged on the third input pipeline; flow of pre-lifting medium along gas
  • the pre-lifting system of the FCC unit wherein: the first input line is provided with a first valve, which is used to independently cut out or cut into the gasifier in line with the second front valve on the second input line.
  • a ninth input pipeline is connected in parallel on both sides of the superheater to replace the seventh input pipeline set on the third input pipeline, and a second input pipeline is set on the second input pipeline.
  • the rear valve is used to independently cut out or cut out the superheater in line with the third valve; and a ninth valve is arranged on the ninth input pipeline to replace the seventh valve arranged on the seventh input pipeline;
  • the connection of the valve and the second rear valve are located on the second input pipeline in turn; along the flow direction of the pre-lifting medium in the vaporized and superheated state, the third valve, the connection between the ninth input pipeline and the third input pipeline, the high-temperature steam
  • the pre-lifting system of the FCC device wherein: the third input line is provided with an eighth input line for inputting high-temperature steam, to replace the fifth input line provided on the third input line, and the eighth input line
  • An eighth valve is set on the pipeline to replace the fifth valve set on the fifth input pipeline; along the flow direction of the pre-lifting medium in the vaporized and superheated state, the connection between the third valve, the seventh input pipeline and the third input pipeline .
  • the connection between the eighth input pipeline and the third input pipeline is sequentially located on the third input pipeline.
  • the pre-lifting system and process of a FCC unit has the following advantages: 1. Significantly reduces the overall high-temperature steam consumption of the FCC unit and the rate of hydrothermal deactivation of the catalyst, and significantly reduces the It reduces the consumption of fresh catalyst, reduces the material loss and energy consumption of the FCC unit in the catalytic cracking reaction process, and significantly reduces the discharge and treatment of acid water, effectively achieving energy conservation and emission reduction; 2. Significantly increases the catalytic cracking unit Effective processing capacity, using low-carbon hydrocarbons as the pre-lifting medium, greatly increases the production of low-carbon olefins and high-value components such as hydrogen, and significantly improves the benefits of the catalytic cracking unit; 3.
  • FIG. 1 is a schematic diagram of the principle of an embodiment of a pre-lifting system and process of an FCC unit of the present invention.
  • FIG. 2 is a schematic diagram of the principle of an embodiment of the pre-lifting system and process of the FCC device of the present invention (deleting the sixth input pipeline and its sixth valve).
  • FIG. 3 is a schematic diagram of the principle of an embodiment of the pre-lifting system and process of the FCC device of the present invention (with the fourth input pipeline and its fourth valve deleted).
  • FIG. 4 is a schematic diagram of the principle of an embodiment of the pre-lifting system and process of the FCC device of the present invention (the seventh input pipeline and the seventh valve thereof are deleted).
  • FIG. 5 is a schematic diagram of the principle of an embodiment of the pre-lifting system and process of the FCC device of the present invention (with the fifth input pipeline and its fifth valve deleted).
  • FIG. 6 is a schematic schematic diagram of the pre-lifting system and process embodiment of the FCC device of the present invention (deleting the eighth input pipeline and its eighth valve).
  • FIG. 7 is a schematic schematic diagram of the pre-lifting system and process embodiment of the FCC device of the present invention (with the fifth input pipeline and its fifth valve deleted).
  • gasifier 100 gasifier 100, superheater 200, pre-lifter 300, first input line 410, first valve 411, second input line 420, second front valve 421, second rear valve 422, Three input line 430, third valve 431, fourth input line 440, fourth valve 441, fifth input line 450, fifth valve 451, sixth input line 460, sixth valve 461, seventh input line 470, third Seven valve 471 , eighth input line 480 , eighth valve 481 , ninth input line 490 , ninth valve 491 .
  • FCC Fluid catalytic cracking
  • Fluidized-bed catalytic cracking also known as Fluidized-bed catalytic cracking, or Fluidized Catalytic cracking, Chinese name: fluidized catalytic cracking, abbreviated as: catalytic cracking
  • catalytic cracking is one of the most important conversion processes in petroleum refineries, and is widely used to convert high-boiling, high-molecular-weight hydrocarbon components in petroleum crude oil into More valuable gasoline, olefin gases, and other products; cracking of petroleum hydrocarbons was initially accomplished by thermal cracking cracking); thermal cracking has now been almost completely replaced by catalytic cracking, because catalytic cracking can produce more gasoline with a high octane number; in addition, because catalytic cracking can also produce more by-product gases with carbon-carbon double bonds ( That is, more olefins), so the catalytic cracking process has higher economic value than the thermal cracking process; the FCC
  • FIG. 1 is a schematic diagram of the principle of the pre-lifting system and process embodiment of the FCC unit of the present invention.
  • the pre-lifting system of the FCC unit of the present invention includes a gasifier 100 , a superheater 200 and a pre-lifter 300 . between the input line and its valve.
  • a first input line 410 is provided on one side of the gasifier 100 for inputting low-carbon hydrocarbons to the gasifier 100 .
  • a second input line 420 is provided between the gasifier 100 and the superheater 200 for inputting the pre-lifting medium in a vaporized state to the superheater 200; and a second front valve 421 is provided on the second input line 420, used for It is used to gradually adjust the flow rate of the gasified low-carbon hydrocarbons output by the gasifier 100 , and to cooperate with other valves to cut out or cut in the gasifier 100 during online maintenance of the gasifier 100 alone.
  • a third input line 430 is provided between the superheater 200 and the pre-lifter 300 for inputting the pre-lift medium in a vaporized and superheated state to the pre-lifter 300; and a third valve 431 is provided on the third input line 430 , which is used to cut out or cut in the superheater 200 with other valves when the superheater 200 is independently repaired online.
  • a fourth input line 440 and a fifth input line 450 are provided on the second input line 420 and the third input line 430, respectively, for inputting high-temperature steam into the second input line 420 and the third input line 430, respectively, and using For heating the low-carbon hydrocarbon gas, to use high-temperature steam to suppress or prevent the coking phenomenon of low-carbon hydrocarbons when they are overheated in the superheater 200; and the fourth input line 440 is provided with a fourth valve 441 for gradually adjusting the input second The flow rate of high-temperature water vapor in the pipeline 420 ; and a fifth valve 451 is provided on the fifth input pipeline 450 for gradually adjusting the flow rate of high-temperature water vapor input into the third pipeline 430 .
  • a sixth input line 460 and a seventh input line 470 are provided on the second input line 420 and the third input line 430, respectively, for inputting dry gas into the second input line 420 and the third input line 430, respectively, to Inert components such as methane in the dry gas are used to suppress or prevent coking of low-carbon hydrocarbons when the superheater 200 is overheated; 420 ; and a seventh valve 471 is provided on the seventh input line 470 for gradually adjusting the flow rate of the dry gas input into the third line 430 .
  • FIG. 2 The deletion and replacement scheme of the previous part of the superheater 200, without considering other changing factors, is shown in conjunction with FIG. 2 and FIG. 3, FIG. The schematic diagram of the principle of the input pipeline and the sixth valve thereof), FIG.
  • FIG. 3 is the principle schematic diagram of the pre-lifting system and the process embodiment of the FCC device of the present invention (deleting the fourth input pipeline and the fourth valve thereof), the fourth input pipeline 440 and The fourth valve 441 and the sixth input line 460 and its sixth valve 461 can be selected one by one, and in the case of both the fourth valve 441 and the sixth input line 460 and its sixth valve 461, the adjustment process It will be more variable and refined, and the adjustment effect will be better; in addition, the deletion and replacement scheme of this part can also be combined with the deletion and replacement scheme of other parts to form a new embodiment, which will not be repeated here.
  • Fig. 4 is the pre-lifting system and process embodiment of the FCC device of the present invention (deletion of the seventh input pipeline and its No. Seven valves) schematic diagram of the principle, Fig.
  • 5 is the principle schematic diagram of the pre-lifting system of the FCC device of the present invention and process embodiment (delete the fifth input pipeline and its fifth valve), the fifth input pipeline 450 and its fifth valve 451 With the seventh input line 470 and its seventh valve 471, one can choose one, and in the case of both the fifth input line 450 and its fifth valve 451 and the seventh input line 470 and its seventh valve 471, The adjustment process will be more varied and refined, and the adjustment effect will be better; in addition, the deletion and replacement scheme of this part can also be combined with the deletion and replacement scheme of other parts to form a new embodiment, which will not be repeated here.
  • the third input line 430 is also provided with an eighth input line 480 for inputting high-temperature steam alone; and an eighth valve 481 is provided on the eighth input line 480 for quantitatively adjusting the high-temperature water input to the pre-lifter 300 steam flow.
  • Fig. 6 is the pre-lifting system of the FCC device of the present invention and process embodiment (delete the eighth input pipeline and its No. Eight valves) schematic diagram of the principle, Fig.
  • FIG. 7 is the principle diagram of the pre-lifting system of the FCC device of the present invention and process embodiment (delete the fifth input pipeline and its fifth valve), the eighth input pipeline 480 and its eighth valve 481
  • the fifth input line 450 and its fifth valve 451 can be replaced with each other or alternatively, and in the case of both the fifth input line 450 and its fifth valve 451 and the eighth input line 480 and its eighth valve 481
  • the adjustment process will be more variable and refined, and the impact on the pre-lifter 300 will be smaller; in addition, the deletion and replacement scheme of this part can also be combined with the deletion and replacement scheme of other parts to form a new embodiment , and will not be repeated here.
  • FIG. 8 is a pre-lift system and process embodiment of the FCC device of the present invention (deleting the sixth input line and its sixth valve, the seventh input line and its seventh valve, and the eighth input line and its eighth valve) schematic diagram; this technical scheme is to replace the deletion and replacement scheme of the part before the superheater 200 and the deletion and replacement scheme of the part after the superheater 200, and the input high temperature steam part of Figure 1 A new embodiment formed by combining pruning and substitution schemes.
  • the second front valve 421 Along the flow direction of the pre-lifting medium in the gasification state, that is, from the gasifier 100 to the superheater 200: the second front valve 421, the connection between the fourth input line 440 and the second input line 420, the sixth input line 460 and the The connections of the second input lines 420 are located on the second input lines 420 in turn.
  • the third valve 431 Along the flow direction of the pre-lifting medium in the vaporized and superheated state, that is, from the superheater 200 to the pre-lifter 300: the third valve 431, the connection between the fifth input line 450 and the third input line 430, and the seventh input line 470
  • the connection with the third input pipeline 430 and the connection between the eighth input pipeline 480 and the third input pipeline 430 are located on the third input pipeline 430 in sequence.
  • the pre-lifting system of the FCC unit proposed by the invention can effectively solve the problems of unstable operation of the pre-lifting system of the FCC unit, easy coking of heating parts, and difficulty in long-term operation, which are faced by low-carbon hydrocarbons as the pre-lifting medium. Once the coke is formed, the maintenance will affect the normal operation of the FCC unit.
  • a first valve 411 is provided on the first input pipeline 410 to cooperate with the second front valve 421 on the second input pipeline 420 to independently cut out the gasifier online.
  • the gasifier 100 is switched online, so as to ensure that the superheater 200 and the pre-lifter 300 are in normal working conditions during the maintenance of the dismantled gasifier 100; at the same time, the first A valve 411 is also used to gradually adjust the flow of gasified low carbon hydrocarbons input to the gasifier 100 under normal operating conditions.
  • a ninth input pipeline 490 is connected in parallel on both sides of the superheater 200, and a second rear valve 422 is provided on the second input pipeline 420 to cooperate with the third valve. 431 separately cut out the superheater 200 online for maintenance, and cut in the superheater 200 online after the maintenance; and a ninth valve 491 is provided on the ninth input pipeline 490 for overhauling the dismantled superheater 200 During the period, the stable operation of the gasifier 100 and the pre-lifter 300 is maintained under abnormal conditions.
  • the positional relationship between the relevant pipeline connection and the valve on the second input pipeline 420 is as follows along the flow direction of the pre-lift medium in the gasification state, that is, the direction from the gasifier 100 to the superheater 200: the second front valve 421, The connection between the fourth input line 440 and the second input line 420, the connection between the sixth input line 460 and the second input line 420, the connection between the ninth input line 490 and the second input line 420, the second rear valve 422 .
  • the positional relationship between the relevant pipeline connection and the valve on the third input pipeline 430 is along the flow direction of the pre-lifting medium in the gasified and superheated state, that is, the direction from the gasifier 100 to the superheater 200 is as follows: the third valve 431, the first The connection between the ninth input line 490 and the third input line 430, the connection between the fifth input line 450 and the third input line 430, the connection between the seventh input line 470 and the third input line 430, the connection between the eighth input line 480 and the The connection of the third input line 430 .
  • the ninth input pipeline 490 is connected in parallel on both sides of the superheater 200, as a deletion and replacement scheme of the input gas dry gas part in FIG. 1, without considering other changing factors, as shown in FIG. 4
  • the ninth input line 490 and its ninth valve 491 can also replace the seventh input line 470 and its seventh valve 471.
  • the adjustment process will be more variable and refined, which will affect the pre-lifter 300. It will also be smaller; in addition, the deletion and replacement scheme of this part can also be combined with the deletion and replacement scheme of other parts to form a new embodiment, which will not be repeated here.
  • the other end of the first input pipeline 410 is communicated with a supercharger (not shown in the figure) for further improving the low-carbon hydrocarbons input to the gasifier 100. pressure or pressure treatment.
  • the gasifier 100 is also provided with a raw material return line (not shown in the figure), which is used to discharge the high-boiling substances enriched in the gasifier 100 after working for a period of time, so as to reduce low-temperature Small amounts of relatively high boiling substances that may be mixed with hydrocarbons.
  • a raw material return line (not shown in the figure), which is used to discharge the high-boiling substances enriched in the gasifier 100 after working for a period of time, so as to reduce low-temperature Small amounts of relatively high boiling substances that may be mixed with hydrocarbons.
  • the present invention also proposes a pre-lifting process or method for the FCC unit, including the following steps or steps: under normal operating conditions, ) is input to the gasifier 100 for gasification, and then mixed with high-temperature steam and/or gas dry gas through pressure control, and then input to the superheater 200 for superheating, and finally input to the pre-lifter 300; during normal operating conditions, the ninth input pipeline 490 The ninth valve 491 is always closed.
  • the high temperature is gradually adjusted by gradually adjusting the fourth valve 441 on the fourth input line 440 and the sixth valve 461 on the sixth input line 460
  • the mixing ratio and respective flow rates of water vapor and/or gas dry gas shall be adjusted according to the principle that the overall temperature of the mixed gas must exceed the boiling point temperature of the low-carbon hydrocarbons under the pressure in the second pipeline 420, so as to avoid the liquid or mist of the low-carbon hydrocarbons.
  • Inert components such as high-temperature water vapor and methane in dry gas are used as coking-inhibiting components, and two or only one of them can be input at the same time.
  • the superheater 200 After the superheater 200 is input, according to the working state of the pre-lifter, by gradually adjusting the fifth valve 451 on the fifth input line 450 and the seventh valve 471 on the seventh input line 470, the low-carbon hydrocarbons, The ratio and flow rate of high-temperature steam and/or gas dry gas to make the lifting section of the FCC unit work stably; under different working conditions, except for low-carbon hydrocarbons, the content ratio of high-temperature steam and gas dry gas in the mixed gas The adjustment range is between 0-100%.
  • the low-carbon hydrocarbons are first suspended into the gasifier 100 for gasification, and only the high-temperature steam and/or gas dry gas are superheated by the heater 200 and then input into the pre-lifter 300, that is, the first input line 410 is closed.
  • the first valve 411 and the second front valve 421 on the second input line 420 open the second rear valve 422 on the second input line 420 and the third valve 431 on the third input line 430, and by opening and adjusting The fourth valve 441 on the fourth input line 440 preheats the superheater 200 and the pre-lifter 300; after the pre-lifter 300 reaches the preset or expected working state, the gasifier 100 is activated again, that is, the first The first valve 411 on an input line 410 inputs low-carbon hydrocarbons (or low-carbon hydrocarbons after pressure boosting) into the gasifier 100 for gasification, and by gradually adjusting the second front valve 421 on the second input line 420 and The first valve 411 on the first input line 410 gradually increases the flow rate of the low-carbon hydrocarbon gas, and by gradually adjusting the fourth valve 441 on the fourth input line 440 and/or the sixth valve 461 on the sixth input line 460, Step by step adjusting the flow rate of the high-temperature steam and/or gas dry gas
  • the low-carbon hydrocarbons are boosted and then enter the gasifier 100, and the gasified low-carbon hydrocarbons flow into the superheater 200 through pressure control (ie, pressure control), where Before flowing into the superheater 200, according to the difficulty of coking of the low-carbon hydrocarbons used at high temperature, an appropriate proportion of high-temperature steam and dry gas are mixed to ensure that the low-carbon hydrocarbons do not appear liquid and mist before entering the superheater 200.
  • pressure control ie, pressure control
  • the heating process of low-carbon hydrocarbons is divided into two types: gasification and superheating.
  • gasification after the gasification process, according to the characteristics of the low-carbon hydrocarbons used, it is considered to mix in moderately high-temperature steam and/or gas dry gas, as an effective means to inhibit the coking of low-carbon hydrocarbons in the superheater 200, and solve the problem of low carbon hydrocarbons.
  • Carbon hydrocarbons as the pre-lifting medium face the problems of unstable operation of the pre-lifting system of the FCC unit, easy coking of heating components, and difficulty in long-term operation.
  • the gasifier 100 and/or the superheater 200 fails under normal operating conditions and needs to be repaired online (ie, the maintenance is performed without the pre-lifter 300 being shut down)
  • only the high-temperature steam and/or Or gas dry gas (after being superheated by the heater 200) is input to the pre-lifter 300, so as not to affect the long-term operation of the FCC unit, and it is convenient to cut out the gasifier 100 and/or the superheater 200 online from the system for maintenance, and after the maintenance
  • the gasifier 100 and/or the superheater 200 are then switched in-line.
  • the gasifier 100 is to be cut out or cut into the gasifier 100 alone during normal working conditions, it is only necessary to close the first valve 411 on the first input line 410 and the second front valve 421 on the second input line 420, namely Yes, in order to stably maintain the long-term operation of the superheater 200 and the pre-lifter 300, which can significantly reduce the production shutdown loss of the refinery.
  • the superheater 200 is to be cut out or cut in online during normal working conditions, it is necessary to close the second rear valve 422 on the second input line 420 and the third valve 431 on the third input line 430, open and Gradually adjusting the ninth valve 491 on the ninth input line 490 so as to stably maintain the long-cycle operation of the gasifier 100 and the pre-lifter 300, which can significantly reduce the production shutdown loss of the refinery.
  • the gasifier 100 adopts a pressure (and temperature) control method
  • the superheater 200 adopts a temperature control method, combined with the flow control method of the relevant input pipeline, so as to realize the pressure, pressure, and pressure of the low-carbon hydrocarbon components in the entire FCC unit.
  • Precise control of temperature and flow; at the same time, the eighth input pipeline 480 with high-temperature steam as the pre-lifting medium is separately reserved.
  • one pipeline can be used to fix the flow and the other to adjust the flow, so that more accurate lifting can be achieved.
  • Medium control and then try to avoid the problem of large ups and downs in the flow of the lifting medium.
  • the operating pressure of the gasifier 100 is controlled between 0.3-2.0 Mpa, so that the low-carbon hydrocarbons reach their boiling temperature under the operating pressure; Control to ensure that the low-carbon hydrocarbons, high-temperature water vapor and gas dry gas before entering the superheater 200 are all gaseous, and no droplets or atomization are allowed.
  • the operating temperature of the superheater 200 is greater than 100° C. and less than 650° C., so that the mixed gas of low-carbon hydrocarbons, high-temperature steam and gas dry gas passes through the superheater 200 then overheated.
  • the pre-lifting medium is stabilized by using high-temperature steam and dry gas.
  • the superheater 200 can be preheated by using high-temperature steam first, and after the system is stabilized, the gasifier 100, The heat source of the superheater 200 gradually gasifies and superheats the low-carbon hydrocarbons, thereby incorporating the low-carbon hydrocarbon gas into the pre-lift medium using the least disturbance method.
  • the heat source for gasifying and superheating the liquid hydrocarbons can be directly or indirectly from a heating furnace, high-temperature steam, heat transfer oil, or directly or indirectly
  • the hot catalyst or coke energy from the catalyst regenerator includes but is not limited to the superheated high-temperature steam from the internal and external heat extractors of the catalyst regenerator; and the heat source can be in a single form, or can come from a combination of the above multiple heat sources.
  • the lower part of the pre-lifter 300 used in the FCC device of the present invention is a pre-lift section, and the lower part of the pre-lift section can be provided with a distribution pipe, which can be respectively connected with the feed pipe of dry gas, the superheated high-temperature water
  • the feed pipe of steam is connected with the feed pipe of gasification of low carbon hydrocarbons; the above three feed pipes can be simplified as any two materials are combined first and then communicated with the third material, or the three materials are directly communicated and combined into one.
  • Combination connected with the distribution pipe when simplifying, a mixer for three materials or any two materials of high temperature steam, dry gas, gasified low-carbon hydrocarbons, or no special mixer can be set before entering the distribution pipe. , directly set up input pipelines connecting high-temperature steam, dry gas, gasified low-carbon hydrocarbons, or any two materials, separated by valves; or not simplified, and keep the input pipelines of three materials directly with the The distribution pipes are connected.
  • the pre-lifting gas entering the pre-lifting section can be a single gaseous low-carbon hydrocarbon, or a mixed gas mixed with high-temperature steam and gas dry gas. Coking on the tube wall, the mass ratio of high temperature steam, dry gas and low carbon hydrocarbons can be between 0-100%.
  • the low-carbon hydrocarbons used in the present invention include ethane, propane, isobutane, ethylene-rich gas, n-isobutane, n-isobutene, carbon three, carbon four, carbon five, carbon six, carbon seven, carbon eight, carbon nine and other light hydrocarbons
  • the combination ratio can be any ratio between 0-100%; and the low-carbon hydrocarbons include saturated hydrocarbons, cycloalkanes, One or more components of an olefin or aromatic hydrocarbon.
  • pre-lifting media such as low-carbon hydrocarbons, high-temperature steam, and dry gas should be heated to a temperature suitable for (ie, as close as possible) to the regenerated catalyst used, and the temperature of the gaseous low-carbon hydrocarbons when entering the bottom of the pre-lifter 300 It should exceed 100°C; for different low-carbon hydrocarbons, different superheated final temperatures can be adopted; then the superheated mixed gas is used as all or part of the pre-lifting medium.
  • the temperature of the regenerated catalyst returned from the bottom regenerator (not shown in the figure) is 680°C, and the circulation rate is 1350 tons/hour;
  • the original pre-lifting medium is normal temperature, 1.0MPa, 2000nm 3 /h Gas dry gas and superheated high temperature steam at 290°C, 1.0MPa, 5t/h.
  • Example 1 Using the pre-lifting system and process of the present invention, 3 tons of propane are used as the main body of low-carbon hydrocarbons. After the propane passes through the gasifier 100, the high-temperature steam is mixed with a mass ratio of 1:1, and then passes through the superheater 200. After that, adjust to 1.0MPa, 450°C, 6t/h of vaporized propane + high-temperature steam, and then mix with 1.0Mpa, 290°C, 1.2t/h of superheated high-temperature steam as the pre-lift medium and input it to the pre-lifter 300.
  • an additional 0.6 tons of ethylene and 0.66 tons of propylene can be produced per hour; according to the calculation that the value of low-carbon olefins is 3,000 yuan/ton higher than that of liquefied gas, the additional income is about 3,780 yuan per hour, That is, the daily income is increased by about 90,700 yuan, or the weekly income is increased by about 635,000 yuan, and the economic efficiency is significantly increased.
  • the acid water converted by high-temperature steam is 0.8t/h less, that is, 19.2 tons/day, or 134.4 tons/week. The environmental protection benefits are obvious.
  • Example 2 Using the pre-lifting system and process of the present invention, 3 tons of isobutane was used as the main body of low-carbon hydrocarbons. After isobutane passed through the gasifier 100, the high-temperature steam was mixed with the mass ratio of 1:1. After passing through the superheater 200, it is adjusted to 1.0MPa, 450°C, 6t/h of gasified isobutane + high-temperature steam, and then mixed with 1.0Mpa, 290°C, 1.4t/h of superheated high-temperature steam as the pre-lifting medium input Pre-lifter 300.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种FCC装置的预提升系统和工艺,正常工况下先将低碳烃气化,并与高温水蒸汽和/或瓦斯干气相混合后再过热;在输入过热器之前逐步调整高温水蒸汽和/或瓦斯干气的混入比例,以避免低碳烃出现液态或雾滴;在输入过热器之后根据预提升器工作状态,再次逐步调整低碳烃、高温水蒸汽和/或瓦斯干气的配比和流量,以使FCC装置提升段工作稳定;开工工况下先暂停输入低碳烃,仅将高温水蒸汽和/或瓦斯干气输入预提升器(300),待预提升器(300)达到预设工作状态后,再将低碳烃输入气化器(100)气化,并逐步增加低碳烃气体流量,以及逐步调整输入过热器(200)前后的高温水蒸汽和/或瓦斯干气的流量;显著增加了炼厂的经济效益,并具有节能减排的环保效果。

Description

一种FCC装置的预提升系统和工艺 技术领域
本发明涉及石油精炼厂的转化系统和工艺领域,尤其涉及的是一种流化催化裂化装置的预提升系统和方法。
背景技术
目前炼厂的催化裂化工艺中的预提升段,大都以高温水蒸汽和瓦斯干气作为预提升介质,一般是单独采用高温水蒸汽、瓦斯干气或者高温水蒸汽和瓦斯干气组合;因为高温水蒸汽具有生产安全、方便的特点,所以高温水蒸汽一直以来都是作为预提升的首选介质。
但是,高温水蒸汽进入预提升段之后,在一定程度上加剧了催化剂的水热失活的速度,加快了催化剂的热崩和老化,随之增加了催化剂及高温水蒸汽的消耗量,同时也增加了分馏塔顶部的冷凝器负荷和酸性水排放量。
而瓦斯干气以氢气、甲烷和少量乙烷为主体,若将其作为预提升介质,一是瓦斯干气的组分不稳定,二是压力受到压缩机出口环境、系统管网的影响比较大,三是其本身就是催化裂化反应的惰性组分,挤占了催化裂化剂的反应活性中心。
鉴于目前催化裂化的预提升介质的温度均低于300℃,曾经有人提出过以液态烃、轻油、重油经高温水蒸汽雾化后作为预提升介质的设想,但是并没有针对这样做可能导致的各种问题进行列举、分析以及解决方案的阐述,且至今也没有实际应用案例。
因此,现有技术尚有待改进和发展。
技术问题
为解决上述技术问题,本发明提供一种FCC装置的预提升系统,可显著增加炼厂的经济效益,并具有节能减排的环保效果。
同时,本发明还提供一种FCC装置的预提升工艺,可显著增加炼厂的经济效益,并利于具有节能减排的环保效果。
技术解决方案
本发明的技术方案如下:一种FCC装置的预提升工艺,其中:正常工况下,先将低碳烃输入气化器气化,再通过压力控制,与高温水蒸汽和/或瓦斯干气相混合后输入过热器过热,最后输入预提升器;在输入过热器之前,根据低碳烃在高温下结焦的难易程度,逐步调整高温水蒸汽和/或瓦斯干气的混入比例和各自流量,以避免低碳烃出现液态或雾滴的现象;在输入过热器之后,根据预提升器的工作状态,再次逐步调整低碳烃、高温水蒸汽和/或瓦斯干气的配比和流量,以使FCC装置的提升段工作稳定;开工工况下,先暂停将低碳烃输入气化器气化,仅将高温水蒸汽和/或瓦斯干气输入预提升器,待预提升器达到预设工作状态后,再将低碳烃输入气化器气化,并逐步增加低碳烃气体流量,以及逐步调整输入过热器前后的高温水蒸汽和/或瓦斯干气的流量。
所述的FCC装置的预提升工艺,其中:当所述气化器在正常工况下出现故障而需要在线进行检修时,仅将高温水蒸汽和/或瓦斯干气经过热器之后输入预提升器,以便于从系统中在线切出气化器进行检修,并在检修之后再在线切入气化器。
所述的FCC装置的预提升工艺,其中:当所述过热器在正常工况下出现故障而需要在线进行检修时,仅将高温水蒸汽和/或瓦斯干气输入预提升器,以便于从系统中在线切出过热器进行检修,并在检修之后再在线切入过热器。
所述的FCC装置的预提升工艺,其中:所述气化器采用压力控制方式,过热器采用温度控制方式,结合相关输入管线的流量控制方式,以实现对低碳烃组分的压力、温度、流量的精确控制。
所述的FCC装置的预提升工艺,其中:加热所述气化器和/或过热器的热源,直接或间接来自加热炉、高温水蒸汽、导热油、催化剂再生器的热催化剂或烧焦能量或催化剂再生器内外取热器的过热高温水蒸汽。
所述的FCC装置的预提升工艺,其中:所述低碳烃包括乙烷、丙烷、异丁烷、富乙烯气、正异丁烷、正异丁烯、碳三、碳四、碳五、碳六、碳七、碳八、碳九的轻质烃中的一种或多种组合;且低碳烃中包含饱和烃、环烷烃、烯烃或芳烃中的一种或多种组分。
一种FCC装置的预提升系统,包括设置在气化器、过热器和预提升器之间的输入管线及其阀门,其中:在气化器一侧设置有用于向该气化器输入低碳烃的第一输入管线;在气化器与过热器之间设置有用于向过热器输入气化状态预提升介质的第二输入管线,且第二输入管线上设置有第二前阀门;在过热器与预提升器之间设置有用于向预提升器输入气化、过热状态预提升介质的第三输入管线,且第三输入管线上设置有第三阀门;在第二输入管线上设置有输入高温水蒸汽和/或瓦斯干气的输入管线及其阀门;在第三输入管线上设置有输入高温水蒸汽和/或瓦斯干气的输入管线及其阀门;沿气化状态预提升介质的流动方向,第二前阀门、高温水蒸汽的输入管线与第二输入管线的连接处、瓦斯干气的输入管线与第二输入管线的连接处依次位于第二输入管线上;沿气化且过热状态预提升介质的流动方向,第三阀门、高温水蒸汽的输入管线与第三输入管线的连接处、瓦斯干气的输入管线与第三输入管线的连接处依次位于第三输入管线上。
所述的FCC装置的预提升系统,其中:所述第一输入管线上设置有第一阀门,用于配合第二输入管线上的第二前阀门在线单独切出或切入气化器。
所述的FCC装置的预提升系统,其中:所述过热器两侧并联有第九输入管线,以替代第三输入管线上设置的第七输入管线,且在第二输入管线上设置有第二后阀门,用于配合第三阀门在线单独切出或切出过热器;以及在第九输入管线上设置有第九阀门,以替代第七输入管线上设置的第七阀门;沿气化状态预提升介质的流动方向,第二前阀门、高温水蒸汽的输入管线与第二输入管线的连接处、瓦斯干气的输入管线与第二输入管线的连接处、第九输入管线与第二输入管线的连接处、第二后阀门依次位于第二输入管线上;沿气化且过热状态预提升介质的流动方向,第三阀门、第九输入管线与第三输入管线的连接处、高温水蒸汽的输入管线与第三输入管线的连接处、瓦斯干气的输入管线与第三输入管线的连接处依次位于第三输入管线上。
所述的FCC装置的预提升系统,其中:所述第三输入管线上设置有用于输入高温水蒸汽的第八输入管线,以替代第三输入管线上设置的第五输入管线,且第八输入管线上设置有第八阀门,以替代第五输入管线上设置的第五阀门;沿气化且过热状态预提升介质的流动方向,第三阀门、第七输入管线与第三输入管线的连接处、第八输入管线与第三输入管线的连接处依次位于第三输入管线上。
有益效果
相比现有技术,本发明所提供的一种FCC装置的预提升系统和工艺,具有以下优点:1、明显降低了FCC装置整体高温水蒸汽耗量和催化剂水热失活的速率,明显减少了新鲜催化剂的消耗量,也降低了催化裂化反应工艺中FCC装置的物料损耗和能量消耗,并明显减少酸性水的排放和处理,有效地达到节能减排;2、显著增加了催化裂化装置的有效处理能力,利用低碳烃作为预提升介质,大大增产了低碳烯烃以及氢气等高价值组分,显著提升了催化裂化装置的效益;3、明显减少了因为预提升介质和再生催化剂接触而造成的再生催化剂温度的降低,提高了再生催化剂的温度,更有利于催化裂化或催化裂解反应的深度,大大有利于多出低碳烯烃。
附图说明
在此描述的附图仅用于解释目的,而非意图以任何方式来限制本发明公开的范围;图中各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并非是具体限定本发明各部件的形状和比例尺寸;本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图1是本发明FCC装置的预提升系统和工艺实施例的原理示意图。
图2是本发明FCC装置的预提升系统和工艺实施例(删减第六输入管线及其第六阀门)的原理示意图。
图3是本发明FCC装置的预提升系统和工艺实施例(删减第四输入管线及其第四阀门)的原理示意图。
图4是本发明FCC装置的预提升系统和工艺实施例(删减第七输入管线及其第七阀门)的原理示意图。
图5是本发明FCC装置的预提升系统和工艺实施例(删减第五输入管线及其第五阀门)的原理示意图。
图6是本发明FCC装置的预提升系统和工艺实施例(删减第八输入管线及其第八阀门)的原理示意图。
图7是本发明FCC装置的预提升系统和工艺实施例(删减第五输入管线及其第五阀门)的原理示意图。
图8是本发明FCC装置的预提升系统和工艺实施例(删减第六输入管线及其第六阀门、第七输入管线及其第七阀门、第八输入管线及其第八阀门)的原理示意图。
图中各标号汇总:气化器100、过热器200、预提升器300、第一输入管线410、第一阀门411、第二输入管线420、第二前阀门421、第二后阀门422、第三输入管线430、第三阀门431、第四输入管线440、第四阀门441、第五输入管线450、第五阀门451、第六输入管线460、第六阀门461、第七输入管线470、第七阀门471、第八输入管线480、第八阀门481、第九输入管线490、第九阀门491。
本发明的实施方式
以下将结合附图,对本发明的具体实施方式和实施例加以详细说明,所描述的具体实施例仅用以解释本发明,并非用于限定本发明的具体实施方式。
本发明FCC装置的预提升系统和工艺属于石油化工领域,FCC(Fluid catalytic cracking,又作Fluidized-bed catalytic cracking,或者Fluidized catalytic cracking,中文名称:流化催化裂化,简称:催化裂化)工艺,是石油精炼厂中最重要的转化工艺之一,被广泛用于将石油原油中高沸点、高分子量的烃类组分转化为更有价值的汽油、烯烃气体和其他产品;石油烃类的裂化最初都是通过热裂化(thermal cracking)完成;如今热裂化已几乎全部被催化裂化所取代,因为催化裂化可以产生更多具有高辛烷值的汽油;此外,因为催化裂化也能产生更多拥有碳碳双键的副产品气体(即更多的烯烃),所以相比于热裂化工艺,催化裂化工艺具有更高的经济价值;该工艺所指的FCC装置包括正常意义上所理解的流化床催化裂化和催化裂解装置。
如图1所示,图1是本发明FCC装置的预提升系统和工艺实施例的原理示意图,本发明FCC装置的预提升系统,包括设置在气化器100、过热器200和预提升器300之间的输入管线及其阀门。
在气化器100一侧设置有第一输入管线410,用于向气化器100输入低碳烃。
在气化器100与过热器200之间设置有第二输入管线420,用于向过热器200输入气化状态的预提升介质;且第二输入管线420上设置有第二前阀门421,用于逐步调节气化器100输出的气化低碳烃流量,并用于单独在线检修气化器100时配合其他阀门切出或切入该气化器100。
在过热器200与预提升器300之间设置有第三输入管线430,用于向预提升器300输入气化、过热状态的预提升介质;且第三输入管线430上设置有第三阀门431,用于单独在线检修过热器200时配合其他阀门切出或切入该过热器200。
在第二输入管线420和第三输入管线430上分别设置有第四输入管线440和第五输入管线450,分别用于向第二输入管线420和第三输入管线430中输入高温水蒸汽,并用于加热低碳烃气体,以利用高温水蒸汽抑制或预防低碳烃在过热器200内过热时出现结焦现象;且第四输入管线440上设置有第四阀门441,用于逐步调节输入第二管线420的高温水蒸汽流量;以及第五输入管线450上设置有第五阀门451,用于逐步调节输入第三管线430的高温水蒸汽流量。
在第二输入管线420和第三输入管线430上分别设置有第六输入管线460和第七输入管线470,分别用于向第二输入管线420和第三输入管线430中输入瓦斯干气,以利用瓦斯干气中的甲烷等惰性组分抑制或预防低碳烃在过热器200过热时内出现结焦现象;且第六输入管线460上设置有第六阀门461,用于调节逐步输入第二管线420的瓦斯干气流量;以及第七输入管线470上设置有第七阀门471,用于逐步调节输入第三管线430的瓦斯干气流量。
需要说明的是,因在输入过热器200之前,通过仅输入高温水蒸汽或者仅输入瓦斯干气的方式,都可以不同程度地避免低碳烃出现液态或雾滴的现象,故作为图1在过热器200之前部分的删减替换方案,在不考虑其他变化因素的情况下,结合图2和图3所示,图2是本发明FCC装置的预提升系统和工艺实施例(删减第六输入管线及其第六阀门)的原理示意图,图3是本发明FCC装置的预提升系统和工艺实施例(删减第四输入管线及其第四阀门)的原理示意图,第四输入管线440及其第四阀门441与第六输入管线460及其第六阀门461可以做二选一,而在既有第四阀门441又有第六输入管线460及其第六阀门461的情况下,调节过程则会更加多变和精细,调节效果也会更好;此外,该部分的删减替换方案还可以与其他部分的删减替换方案组合成新的实施例,在此不再赘述。
同理,因在输入过热器200之后,通过仅输入高温水蒸汽或者仅输入瓦斯干气的方式,都可以不同程度地使FCC装置的提升段工作稳定,故作为图1在过热器200之后部分的删减替换方案,在不考虑其他变化因素的情况下,结合图4和图5所示,图4是本发明FCC装置的预提升系统和工艺实施例(删减第七输入管线及其第七阀门)的原理示意图,图5是本发明FCC装置的预提升系统和工艺实施例(删减第五输入管线及其第五阀门)的原理示意图,第五输入管线450及其第五阀门451与第七输入管线470及其第七阀门471可以做二选一,而在既有第五输入管线450及其第五阀门451又有第七输入管线470及其第七阀门471的情况下,调节过程则会更加多变和精细,调节效果也会更好;此外,该部分的删减替换方案还可以与其他部分的删减替换方案组合成新的实施例,在此不再赘述。
在第三输入管线430上还设置有第八输入管线480,用于单独输入高温水蒸汽;且第八输入管线480上设置有第八阀门481,用于定量调节输入预提升器300的高温水蒸汽流量。
需要说明的是,因第八输入管线480具有与第五输入管线450同样的调节功能,都可以在过热器200之后向第三输入管线430输入高温水蒸汽,故作为图1输入高温水蒸汽部分的删减替换方案,在不考虑其他变化因素的情况下,结合图6和图7所示,图6是本发明FCC装置的预提升系统和工艺实施例(删减第八输入管线及其第八阀门)的原理示意图,图7是本发明FCC装置的预提升系统和工艺实施例(删减第五输入管线及其第五阀门)的原理示意图,第八输入管线480及其第八阀门481与第五输入管线450及其第五阀门451可以相互替换或做二选一,而在既有第五输入管线450及其第五阀门451又有第八输入管线480及其第八阀门481的情况下,调节过程则会更加多变和精细,对预提升器300的影响也会更小;此外,该部分的删减替换方案还可以与其他部分的删减替换方案组合成新的实施例,在此不再赘述。
例如,结合图8所示,图8是本发明FCC装置的预提升系统和工艺实施例(删减第六输入管线及其第六阀门、第七输入管线及其第七阀门、第八输入管线及其第八阀门)的原理示意图;该技术方案就是将图1在过热器200之前部分的删减替换方案和在过热器200之后部分的删减替换方案,与图1输入高温水蒸汽部分的删减替换方案进行组合后形成的新实施例。
沿气化状态预提升介质的流动方向,即从气化器100到过热器200方向:第二前阀门421、第四输入管线440与第二输入管线420的连接处、第六输入管线460与第二输入管线420的连接处依次位于第二输入管线420上。
沿气化且过热状态预提升介质的流动方向,即从过热器200到预提升器300方向:第三阀门431、第五输入管线450与第三输入管线430的连接处、第七输入管线470与第三输入管线430的连接处、第八输入管线480与第三输入管线430的连接处依次位于第三输入管线430上。
本发明所提出的一种FCC装置的预提升系统,能够有效解决以低碳烃为预提升介质所面临的FCC装置预提升系统运行不稳定、加热部件易结焦、不易长期运转的问题,以及加热器一旦结焦之后的检修将影响FCC装置正常运行的问题。
为便于单独在线检修气化器100,较好的是,在第一输入管线410上设置有第一阀门411,用于配合第二输入管线420上的第二前阀门421在线单独切出气化器100进行检修,并在检修之后再在线切入该气化器100,以在对拆下来的气化器100进行检修的期间,保证过热器200和预提升器300均处于正常工况;同时,第一阀门411还用于在正常工况下逐步调节输入气化器100的气化低碳烃流量。
为便于单独在线检修过热器200,较好的是,在过热器200两侧并联有第九输入管线490,且在第二输入管线420上设置有第二后阀门422,用于配合第三阀门431在线单独切出过热器200进行检修,并在检修之后再在线切入该过热器200;以及在第九输入管线490上设置有第九阀门491,用于在对拆下来的过热器200进行检修的期间,维持气化器100和预提升器300在非正常工况下的稳定运行。
由此,第二输入管线420上相关管线连接处和阀门的位置关系,沿气化状态预提升介质的流动方向,即从气化器100到过热器200方向依次如下:第二前阀门421、第四输入管线440与第二输入管线420的连接处、第六输入管线460与第二输入管线420的连接处、第九输入管线490与第二输入管线420的连接处、第二后阀门422。
而第三输入管线430上相关管线连接处和阀门的位置关系,沿气化且过热状态预提升介质的流动方向,即从气化器100到过热器200方向依次如下:第三阀门431、第九输入管线490与第三输入管线430的连接处、第五输入管线450与第三输入管线430的连接处、第七输入管线470与第三输入管线430的连接处、第八输入管线480与第三输入管线430的连接处。
需要说明的是,在过热器200两侧并联有第九输入管线490的情况下,作为图1输入瓦斯干气部分的删减替换方案,在不考虑其他变化因素的情况下,如图4所示,第九输入管线490及其第九阀门491还可替代第七输入管线470及其第七阀门471,在输入过热器200之后通过仅输入瓦斯干气的方式使FCC装置的提升段工作稳定,而在既有第七输入管线470及其第七阀门471又有第九输入管线490及其第九阀门491的情况下,调节过程则会更加多变和精细,对预提升器300的影响也会更小;此外,该部分的删减替换方案还可以与其他部分的删减替换方案组合成新的实施例,在此不再赘述。
为便于低碳烃气化,较好的是,第一输入管线410的另一端与增压器(图未示出)相连通,用于对输入气化器100的低碳烃进行进一步的提压或加压处理。
较好的是,气化器100中还设置有原料返回管线(图未示出),用于将工作一段时间之后的气化器100内富集的高沸点物质进行外排处理,以减少低碳烃中可能混有的少量相对高沸点物质。
基于上述FCC装置的预提升系统,本发明还提出了一种FCC装置的预提升工艺或方法,包括以下环节或步骤:正常工况下,先将低碳烃(或提压后的低碳烃)输入气化器100气化,再通过压力控制,与高温水蒸汽和/或瓦斯干气相混合后输入过热器200过热,最后输入预提升器300;正常工况期间,第九输入管线490上的第九阀门491始终处于关闭状态。
在输入过热器200之前,根据低碳烃在高温下结焦的难易程度,通过逐步调节第四输入管线440上的第四阀门441和第六输入管线460上的第六阀门461,逐步调整高温水蒸汽和/或瓦斯干气的混入比例和各自流量,并依据混合气体的整体温度须超过第二管线420内压力下低碳烃沸点温度的原则进行调整,以避免低碳烃出现液态或雾滴的现象;而高温水蒸汽和瓦斯干气中的甲烷等惰性组分作为结焦抑制组分,可以同时输入两种也可以仅输入其中任意一种。
在输入过热器200之后,则根据预提升器的工作状态,通过逐步调节第五输入管线450上的第五阀门451和第七输入管线470上的第七阀门471,再次逐步调整低碳烃、高温水蒸汽和/或瓦斯干气的配比和流量,以使FCC装置的提升段工作稳定;不同工况下,除低碳烃外,高温水蒸汽和瓦斯干气在混合气体中的含量比例调整幅度在0-100%之间。
开工工况下,先暂停将低碳烃输入气化器100气化,仅将高温水蒸汽和/或瓦斯干气经过热器200过热后输入预提升器300,即关闭第一输入管线410上的第一阀门411和第二输入管线420上的第二前阀门421,打开第二输入管线420上的第二后阀门422和第三输入管线430上的第三阀门431,并通过打开和调节第四输入管线440上的第四阀门441,对过热器200和预提升器300进行预热处理;待预提升器300达到预设或预想工作状态后,再启用气化器100,即打开第一输入管线410上的第一阀门411,将低碳烃(或提压后的低碳烃)输入气化器100气化,并通过逐步调节第二输入管线420上的第二前阀门421和第一输入管线410上的第一阀门411,逐步增加低碳烃气体流量,且通过逐步调节第四输入管线440上的第四阀门441和/或第六输入管线460上的第六阀门461,逐步调整输入第二管线420的高温水蒸汽和/或瓦斯干气的流量;以及通过逐步调节第五输入管线450上的第五阀门451和/或第七输入管线470上的第七阀门471,逐步调整输入第三管线430的高温水蒸汽和/或瓦斯干气的流量,以实现增产低碳烯烃、减缓过热器结焦、减少催化剂水热崩解的目的,实现综合优化;开工工况期间,第九输入管线490上的第九阀门491也始终处于关闭状态。
本发明所提出的一种FCC装置的预提升工艺或方法,低碳烃经提压后进入气化器100,气化后的低碳烃通过压控(即压力控制)流入过热器200,在流入过热器200之前,根据所用低碳烃在高温下结焦的难易程度,混入适当比例的高温水蒸汽和瓦斯干气,以保证低碳烃在进入过热器200之前不出现液态和雾滴等现象;而经过过热器200之后,则根据预提升300的工作状态,再决定后续调入高温水蒸汽和瓦斯干气的比例;由此可见,低碳烃的加热过程分为气化和过热两个环节,在气化过程之后,根据所用低碳烃的特性,考虑混入适度的高温水蒸汽和/或瓦斯干气,作为抑制低碳烃在过热器200内结焦的有效手段,解决了以低碳烃为预提升介质所面临的FCC装置预提升系统运行不稳定、加热部件易结焦、不易长期运转的问题,以及加热器一旦结焦之后的检修将影响FCC装置正常运行的问题。
进一步地,当气化器100和/或过热器200在正常工况下出现故障而需要在线进行检修(即在预提升器300不停机的情况下进行检修)时,仅将高温水蒸汽和/或瓦斯干气(经过热器200过热之后)输入预提升器300,以免影响FCC装置的长周期运行,并便于从系统中在线切出气化器100和/或过热器200进行检修,并在检修之后再在线切入气化器100和/或过热器200。
具体的,若在正常工况期间要单独在线切出或切入气化器100,则只需关闭第一输入管线410上的第一阀门411和第二输入管线420上的第二前阀门421即可,以便于稳定维持过热器200和预提升器300的长周期运行,可显著降低炼厂的停产损失。
具体的,若在正常工况期间要单独在线切出或切入过热器200,则需要关闭第二输入管线420上的第二后阀门422和第三输入管线430上的第三阀门431,打开并逐步调整第九输入管线490上的第九阀门491,以便于稳定维持气化器100和预提升器300的长周期运行,可显著降低炼厂的停产损失。
较好的是,气化器100采用压力(和温度)的控制方式,过热器200采用温度控制方式,结合相关输入管线的流量控制方式,以实现整个FCC装置对低碳烃组分的压力、温度、流量的精确控制;同时单独保留有高温水蒸汽作为预提升介质的第八输入管线480,可以在实操中采取一条管线流量固定,另一条管线流量调整,由此能够实现更加精准的提升介质控制,进而尽量避免出现提升介质流量大起大落的问题。
具体的,正常工况下,低碳烃在气化过程中,气化器100的操作压力控制在0.3-2.0Mpa之间,以使低碳烃在操作压力下达到其沸点温度;而通过温度控制,确保进入过热器200之前的低碳烃、高温水蒸汽和瓦斯干气均为气态,不得出现液滴或雾化现象。
具体的,正常工况下,低碳烃在过热过程中,过热器200的操作温度大于100℃且小于650℃,以使低碳烃、高温水蒸汽和瓦斯干气的混合气体通过过热器200之后处于过热状态。
在开工工况下,先利用高温水蒸汽和瓦斯干气实现预提升介质的稳定,其中,过热器200可先利用高温水蒸汽进行预热,待系统稳定后,再通过调整气化器100、过热器200的热源,将低碳烃逐步进行气化和过热,由此采用最少扰动的方法将低碳烃气体并入预提升介质中。
在整个预提升系统中,气化、过热液态烃(即加热气化器100和/或过热器200)的热源,可以直接或间接来自加热炉、高温水蒸汽、导热油,也可以直接或间接来自催化剂再生器的热催化剂或烧焦能量,包括但不限于来自催化剂再生器内外取热器的过热高温水蒸汽;且该热源可以采用单一的形式,也可以来自以上多中热源的组合形式。
需要说明的是,本发明FCC装置所采用预提升器300的下部为预提升段,预提升段的下部可设置有分布管,该分布管可分别与瓦斯干气的进料管、过热高温水蒸汽的进料管和气化低碳烃的进料管相通;以上三种进料管可简化为其中任意两种物料先组合再与第三种物料相通,或三种物料直接相通合一后再与分布管相通的组合;在简化时,可以在进入分布管之前设置高温水蒸汽、瓦斯干气、气化低碳烃三种物料或任意两种物料的混合器,或者不设置专门的混合器,直接设置连通高温水蒸汽、瓦斯干气、气化低碳烃三种物料或任意两种物料的输入管线,并以阀门相隔;或者也可以不简化,分别保留三种物料的输入管线直接与分布管相连。
而进入预提升段的预提升气体,可以是单独的气态低碳烃,也可以是与高温水蒸汽、瓦斯干气混合后的混合气体,为减少低碳烃经过热器200高温造成其换热管壁结焦,高温水蒸汽、瓦斯干气和低碳烃混合的质量比例可以是在0-100%之间。
本发明所用低碳烃包括乙烷、丙烷、异丁烷、富乙烯气、正异丁烷、正异丁烯、碳三、碳四、碳五、碳六、碳七、碳八、碳九等轻质烃、以及碳三、碳四为主体的混合液化气中的一种或多种组合,组合比例可以是0-100%之间的任意比例;且低碳烃中包含饱和烃、环烷烃、烯烃或芳烃中的一种或多种组分。
而低碳烃、高温水蒸汽、瓦斯干气等预提升介质建议最好被加热到适配(即尽可能接近)所用再生催化剂的温度,且进入预提升器300底部时气态低碳烃的温度应超过100℃;对于不同的低碳烃,可采取不同的过热终温;然后以过热的混合气体作为预提升介质的全部或部分。
以某催化裂化装置为例,底部再生器(图未示出)返回的再生催化剂的温度为680℃,循环量为1350吨/小时;原预提升介质为常温、1.0MPa,2000nm 3/h的瓦斯干气和290℃、1.0MPa、5t/h的过热高温水蒸汽。
实施例1、采用本发明的预提升系统和工艺,以3吨丙烷作为低碳烃主体,丙烷经过气化器100之后,按质量比1:1的比例混合高温水蒸汽,在经过过热器200之后,调整为1.0MPa、450℃、6t/h的气化丙烷+高温水蒸汽,再混合1.0Mpa、290℃、1.2t/h的过热高温水蒸汽作为预提升介质输入预提升器300。
在正常工况下,丙烷约有60%发生了转化,其中的甲烷收率约15%,乙烯收率约20%,丙烯收率约22%,氢气收率约2%。
对于此催化而言,在其他条件不变的情况下,每小时多产出乙烯0.6吨,丙烯0.66吨;按照低碳烯烃比液化气价值高3000元/吨测算,每小时增收约3780元,即每天增收约9.07万元,或每周增收约63.5万元,经济增效显著;另外,高温水蒸汽转化的酸性水少产0.8t/h,即19.2吨/天,或134.4吨/周,环保效益明显。
实施例2、采用本发明的预提升系统和工艺,以3吨异丁烷作为低碳烃主体,异丁烷经过气化器100之后,按质量比1:1的比例混合高温水蒸汽,在经过过热器200之后,调整为1.0MPa,450℃,6t/h的气化异丁烷+高温水蒸汽,再混合1.0Mpa、290℃、1.4t/h的过热高温水蒸汽作为预提升介质输入预提升器300。
在正常工况下,异丁烷约有70%发生了转化,其中的甲烷收率约22%,乙烯收率约12%,乙烷收率约6%,丙烯收率约24%,丙烷约7%,氢气收率约2%。
对于此催化而言,在其他条件不变的情况下,每小时多产出乙烯0.36吨,丙烯0.72吨;按照低碳烯烃比液化气价值高3000元/吨测算,每小时增收约3240元,即每天增收约7.78万元,或每周增收约54.4万元,经济增效显著;另外,高温水蒸汽转化的酸性水少产1.0t/h,即24吨/天,或168吨/周,环保效益明显。
应当理解的是,以上所述仅为本发明的较佳实施例而已,并不足以限制本发明的技术方案,对本领域普通技术人员来说,在本发明的精神和原则之内,可以根据上述说明加以增减、替换、变换或改进;例如,在删减第八输入管线480及其第八阀门481的情况下,可仅组合删减第七输入管线470上设置有第七阀门471,或仅组合删减第六输入管线460及其第六阀门461,或仅组合删减第四输入管线440及其第四阀门441;又如,为便于单独在线检修过热器200,在过热器200两侧没有并联第九输入管线490及其第九阀门491,而是并联一个备用的过热器,以替代待在线检修是过热器200;再如,完全没有瓦斯干气输入的实施例,即既删减第六输入管线460及其第六阀门461,又删减第七输入管线470及其第七阀门471;此外,图中的气化器100和过热器200既可以是独立的两个设备,也可以是气化和过热两个工段合在一起的一个设备,比如,申请公布号CN101995173A所公开的气化过热器;等等,而所有这些增减、替换、变换或改进后的技术方案,都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种FCC装置的预提升工艺,其特征在于:
    正常工况下,先将低碳烃输入气化器气化,再通过压力控制,与高温水蒸汽和/或瓦斯干气相混合后输入过热器过热,最后输入预提升器;
    在输入过热器之前,根据低碳烃在高温下结焦的难易程度,逐步调整高温水蒸汽和/或瓦斯干气的混入比例和各自流量,以避免低碳烃出现液态或雾滴的现象;
    在输入过热器之后,根据预提升器的工作状态,再次逐步调整低碳烃、高温水蒸汽和/或瓦斯干气的配比和流量,以使FCC装置的提升段工作稳定;
    开工工况下,先暂停将低碳烃输入气化器气化,仅将高温水蒸汽和/或瓦斯干气输入预提升器,待预提升器达到预设工作状态后,再将低碳烃输入气化器气化,并逐步增加低碳烃气体流量,以及逐步调整输入过热器前后的高温水蒸汽和/或瓦斯干气的流量。
  2. 根据权利要求1所述的FCC装置的预提升工艺,其特征在于:当所述气化器在正常工况下出现故障而需要在线进行检修时,仅将高温水蒸汽和/或瓦斯干气经过热器之后输入预提升器,以便于从系统中在线切出气化器进行检修,并在检修之后再在线切入气化器。
  3. 根据权利要求1所述的FCC装置的预提升工艺,其特征在于:当所述过热器在正常工况下出现故障而需要在线进行检修时,仅将高温水蒸汽和/或瓦斯干气输入预提升器,以便于从系统中在线切出过热器进行检修,并在检修之后再在线切入过热器。
  4. 根据权利要求1所述的FCC装置的预提升工艺,其特征在于:所述气化器采用压力控制方式,过热器采用温度控制方式,结合相关输入管线的流量控制方式,以实现对低碳烃组分的压力、温度、流量的精确控制。
  5. 根据权利要求1所述的FCC装置的预提升工艺,其特征在于:加热所述气化器和/或过热器的热源,直接或间接来自加热炉、高温水蒸汽、导热油、催化剂再生器的热催化剂或烧焦能量或催化剂再生器内外取热器的过热高温水蒸汽。
  6. 根据权利要求1所述的FCC装置的预提升工艺,其特征在于:所述低碳烃包括乙烷、丙烷、异丁烷、富乙烯气、正异丁烷、正异丁烯、碳三、碳四、碳五、碳六、碳七、碳八、碳九的轻质烃中的一种或多种组合;且低碳烃中包含饱和烃、环烷烃、烯烃或芳烃中的一种或多种组分。
  7. 一种FCC装置的预提升系统,包括设置在气化器、过热器和预提升器之间的输入管线及其阀门,其特征在于:
    在气化器一侧设置有用于向该气化器输入低碳烃的第一输入管线;
    在气化器与过热器之间设置有用于向过热器输入气化状态预提升介质的第二输入管线,且第二输入管线上设置有第二前阀门;
    在过热器与预提升器之间设置有用于向预提升器输入气化、过热状态预提升介质的第三输入管线,且第三输入管线上设置有第三阀门;
    在第二输入管线上设置有输入高温水蒸汽和/或瓦斯干气的输入管线及其阀门;
    在第三输入管线上设置有输入高温水蒸汽和/或瓦斯干气的输入管线及其阀门;
    沿气化状态预提升介质的流动方向,第二前阀门、高温水蒸汽的输入管线与第二输入管线的连接处、瓦斯干气的输入管线与第二输入管线的连接处依次位于第二输入管线上;
    沿气化且过热状态预提升介质的流动方向,第三阀门、高温水蒸汽的输入管线与第三输入管线的连接处、瓦斯干气的输入管线与第三输入管线的连接处依次位于第三输入管线上。
  8. 根据权利要求7所述的FCC装置的预提升系统,其特征在于:所述第一输入管线上设置有第一阀门,用于配合第二输入管线上的第二前阀门在线单独切出或切入气化器。
  9. 根据权利要求7所述的FCC装置的预提升系统,其特征在于:所述过热器两侧并联有第九输入管线,以替代第三输入管线上设置的第七输入管线,且在第二输入管线上设置有第二后阀门,用于配合第三阀门在线单独切出或切出过热器;以及在第九输入管线上设置有第九阀门,以替代第七输入管线上设置的第七阀门;
    沿气化状态预提升介质的流动方向,第二前阀门、高温水蒸汽的输入管线与第二输入管线的连接处、瓦斯干气的输入管线与第二输入管线的连接处、第九输入管线与第二输入管线的连接处、第二后阀门依次位于第二输入管线上;
    沿气化且过热状态预提升介质的流动方向,第三阀门、第九输入管线与第三输入管线的连接处、高温水蒸汽的输入管线与第三输入管线的连接处、瓦斯干气的输入管线与第三输入管线的连接处依次位于第三输入管线上。
  10. 根据权利要求7所述的FCC装置的预提升系统,其特征在于:所述第三输入管线上设置有用于输入高温水蒸汽的第八输入管线,以替代第三输入管线上设置的第五输入管线,且第八输入管线上设置有第八阀门,以替代第五输入管线上设置的第五阀门;沿气化且过热状态预提升介质的流动方向,第三阀门、第七输入管线与第三输入管线的连接处、第八输入管线与第三输入管线的连接处依次位于第三输入管线上。
PCT/CN2020/132046 2020-11-27 2020-11-27 一种fcc装置的预提升系统和工艺 WO2022109971A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132046 WO2022109971A1 (zh) 2020-11-27 2020-11-27 一种fcc装置的预提升系统和工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132046 WO2022109971A1 (zh) 2020-11-27 2020-11-27 一种fcc装置的预提升系统和工艺

Publications (1)

Publication Number Publication Date
WO2022109971A1 true WO2022109971A1 (zh) 2022-06-02

Family

ID=81755093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132046 WO2022109971A1 (zh) 2020-11-27 2020-11-27 一种fcc装置的预提升系统和工艺

Country Status (1)

Country Link
WO (1) WO2022109971A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326888A1 (en) * 2009-06-25 2010-12-30 China Petroleum & Chemical Corporation Catalytic cracking catalyst having a higher selectivity, processing method and use thereof
CN102585883A (zh) * 2012-03-05 2012-07-18 东北石油大学 一种fcc装置的预提升工艺
CN103666534A (zh) * 2012-09-20 2014-03-26 中国石油化工股份有限公司 一种催化裂化装置开工方法
WO2016110253A1 (zh) * 2015-01-06 2016-07-14 李群柱 一种冷再生催化剂循环方法及其装置
CN109694725A (zh) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 一种生产高辛烷值汽油的催化裂化方法
CN109957421A (zh) * 2017-12-25 2019-07-02 中国石油天然气股份有限公司 一种催化裂化与轻烃深加工的组合方法
CN112457880A (zh) * 2020-11-20 2021-03-09 广州智京科技有限公司 一种fcc装置的预提升系统和工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326888A1 (en) * 2009-06-25 2010-12-30 China Petroleum & Chemical Corporation Catalytic cracking catalyst having a higher selectivity, processing method and use thereof
CN102585883A (zh) * 2012-03-05 2012-07-18 东北石油大学 一种fcc装置的预提升工艺
CN103666534A (zh) * 2012-09-20 2014-03-26 中国石油化工股份有限公司 一种催化裂化装置开工方法
WO2016110253A1 (zh) * 2015-01-06 2016-07-14 李群柱 一种冷再生催化剂循环方法及其装置
CN109694725A (zh) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 一种生产高辛烷值汽油的催化裂化方法
CN109957421A (zh) * 2017-12-25 2019-07-02 中国石油天然气股份有限公司 一种催化裂化与轻烃深加工的组合方法
CN112457880A (zh) * 2020-11-20 2021-03-09 广州智京科技有限公司 一种fcc装置的预提升系统和工艺

Similar Documents

Publication Publication Date Title
JPS59159887A (ja) 炭化水素からオレフインを製造するための熱分解法
WO2016110253A1 (zh) 一种冷再生催化剂循环方法及其装置
KR102679916B1 (ko) 하향 유동 반응기의 탄화수소류 촉매 전환 방법 및 이의 장치
CN102389753B (zh) 吸热反应用双流化床反应器及吸热反应的供热方法
JP2019529595A (ja) ガスタービンからの煙道ガスを使用して炭化水素ストリームを分解する方法
US20230256427A1 (en) Method and equipment for circulating cooled regenerated catalyst
CN214270767U (zh) 一种fcc装置的预提升系统
CN110319344B (zh) 一种自给供热的两段加热汽化式混空轻烃燃气制备系统
CN112457880A (zh) 一种fcc装置的预提升系统和工艺
CN114524412A (zh) 一种甲醇和轻烃联合芳构化与制氢生产系统及方法
WO2022109971A1 (zh) 一种fcc装置的预提升系统和工艺
CN110630998B (zh) 一种乙烯裂解炉换热流程及换热系统
US2071286A (en) Oil gasification process
US3758676A (en) Method for recovery of elemental sulfur from sour gas
US2921100A (en) Method and apparatus for cracking hydrocarbons
CN110499181A (zh) 一种匀速床反应的催化裂化方法及装置
CN110183301B (zh) 甲醇制丙烯系统及利用其进行开车投料的方法
CN103435432B (zh) 一种以石脑油为原料生产乙烯丙烯的方法
CN113234472A (zh) 一种纯氧乙烯裂解反应系统及其工艺
CN207749076U (zh) 一种炼油厂产品提质增效及氢气回收系统
CN110877895B (zh) 一种炼厂配套煤制氢耐硫变换甲烷化一体化工艺
CN101514134A (zh) 一种含氧化合物转化为烯烃反应的进料温度调节方法
CN110155947B (zh) 一种利用焦炉蓄热室作为烃类转化炉的工艺
CN216972439U (zh) 一种纯氧乙烯裂解反应系统
CN103588605A (zh) 一种甲醇制烯烃方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962862

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/02/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 20962862

Country of ref document: EP

Kind code of ref document: A1