WO2022109953A1 - 天线选择方法、装置、可移动平台及计算机可读存储介质 - Google Patents

天线选择方法、装置、可移动平台及计算机可读存储介质 Download PDF

Info

Publication number
WO2022109953A1
WO2022109953A1 PCT/CN2020/131939 CN2020131939W WO2022109953A1 WO 2022109953 A1 WO2022109953 A1 WO 2022109953A1 CN 2020131939 W CN2020131939 W CN 2020131939W WO 2022109953 A1 WO2022109953 A1 WO 2022109953A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel parameter
antenna
terminal device
antennas
channel
Prior art date
Application number
PCT/CN2020/131939
Other languages
English (en)
French (fr)
Inventor
王乃博
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/131939 priority Critical patent/WO2022109953A1/zh
Publication of WO2022109953A1 publication Critical patent/WO2022109953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless image transmission, and in particular, to an antenna selection method, an apparatus, a movable platform, and a computer-readable storage medium.
  • the mobile platform can transmit the captured video to the terminal device in real time through the wireless image transmission system, and the terminal device displays the transmitted video.
  • spatial multiplexing technology can be used to increase the wireless
  • the transmission rate of the image transmission can also be improved by using the transmit diversity technology to improve the transmission robustness of the wireless image transmission.
  • a movable platform in order to ensure the transmission performance of wireless image transmission, a movable platform usually uses multiple antennas to transmit data at the same time. However, using multiple antennas to transmit data at the same time on a mobile platform consumes more power and generates more heat than using only one antenna to transmit data. Since the power consumption and heat generation increase with the increase of the transmission time, this will cause the temperature of the movable platform to rise, affecting the operation of the movable platform, and the user experience is not good.
  • the embodiments of the present application provide an antenna selection method, device, movable platform, and computer-readable storage medium, which aim to reduce the power consumption and heat generation of the movable platform while ensuring the transmission performance of wireless image transmission. Improve user experience.
  • an embodiment of the present application provides an antenna selection method, including:
  • the antenna configuration for the communication between the mobile platform and the terminal device is determined.
  • an embodiment of the present application further provides an antenna selection method, including:
  • the antenna configuration for the communication between the mobile platform and the terminal device is determined.
  • an embodiment of the present application further provides a wireless communication device, where the wireless communication device includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the antenna configuration for the communication between the mobile platform and the terminal device is determined.
  • An embodiment of the present application further provides a wireless communication device, where the wireless communication device includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the antenna configuration for the communication between the mobile platform and the terminal device is determined.
  • the present application also provides a movable platform, the movable platform includes;
  • At least two antennas arranged on the platform body, for communicating with terminal equipment
  • the power system is arranged on the platform body, and the power system is used to provide moving power for the movable platform;
  • a controller arranged on the platform body, for controlling the movement of the movable platform
  • the above-mentioned wireless communication apparatus is arranged on the platform body, and is used for determining the antenna configuration for the communication between the movable platform and the terminal device.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned antenna selection steps of the method.
  • Embodiments of the present application provide an antenna selection method, apparatus, movable platform, and computer-readable storage medium, by acquiring first channel parameters corresponding to the movable platform communicating with the terminal device only through the first antenna, and acquiring the movable platform
  • the platform communicates with the terminal device through at least two antennas at the same time with the corresponding second channel parameters, and then compares the first channel parameters with the second channel parameters to obtain a channel parameter comparison result, and according to the channel parameter comparison results, determine the mobile platform and the mobile platform.
  • the antenna configuration of the terminal equipment for communication so that the mobile platform can adaptively select the antenna configuration for the mobile platform to communicate with the terminal equipment, thereby ensuring the transmission performance of wireless image transmission, reducing the power consumption of the mobile platform and the terminal equipment. Generate heat and improve user experience.
  • FIG. 1 is a schematic diagram of a scenario for implementing an antenna selection method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of steps of an antenna selection method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of sub-steps of the antenna selection method in FIG. 2;
  • FIG. 4 is a schematic flowchart of steps of another antenna selection method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of sub-steps of the antenna selection method in FIG. 4;
  • FIG. 6 is a schematic block diagram of the structure of a wireless communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of the structure of another wireless communication apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural block diagram of a movable platform provided by an embodiment of the present application.
  • the mobile platform can transmit the captured video to the terminal device in real time through the wireless image transmission system, and the terminal device displays the transmitted video.
  • spatial multiplexing technology can be used to increase the wireless
  • the transmission rate of the image transmission can also be improved by using the transmit diversity technology to improve the transmission robustness of the wireless image transmission.
  • a movable platform in order to ensure the transmission performance of wireless image transmission, a movable platform usually uses multiple antennas to transmit data at the same time. However, using multiple antennas to transmit data at the same time on a mobile platform consumes more power and generates more heat than using only one antenna to transmit data. Since the power consumption and heat generation increase with the increase of the transmission time, this will cause the temperature of the movable platform to rise, affecting the operation of the movable platform, and the user experience is not good.
  • embodiments of the present application provide an antenna selection method, an apparatus, a movable platform, and a computer-readable storage medium.
  • the first channel parameters corresponding to the mobile platform communicating with the terminal device only through the first antenna and acquiring the second channel parameters corresponding to the mobile platform communicating with the terminal device simultaneously through at least two antennas, then the first channel parameters Comparing with the second channel parameter, obtaining the channel parameter comparison result, and determining the antenna configuration for the communication between the mobile platform and the terminal device according to the channel parameter comparison result, so that the mobile platform can adaptively select the mobile platform and the terminal device.
  • the antenna configuration for communication can reduce the power consumption and heat generation of the mobile platform and improve the user experience while ensuring the transmission performance of wireless image transmission.
  • a selection can be made between a single antenna configuration and a multi-antenna configuration. If the performance of a single antenna configuration (ie, an antenna configuration using only one antenna) and a multi-antenna configuration (ie, an antenna configuration using multiple antennas) are comparable (eg, both meet the currently required transmission performance requirements), the single antenna configuration is preferred.
  • the antenna configuration can reduce the power consumption and heat generation of the mobile platform and improve the user experience while ensuring the transmission performance of wireless image transmission.
  • FIG. 1 is a schematic diagram of a scenario for implementing the antenna selection method provided by the embodiment of the present application.
  • the scenario includes a movable platform 100 and a terminal device 200 , and the movable platform 100 communicates with the terminal device 200
  • the movable platform 100 includes a photographing device 101 , and the video captured by the photographing device 101 can be transmitted to the terminal device 200 through a communication link between the movable platform 100 and the terminal device 200 after being encoded.
  • the movable platform 100 includes at least two antennas, and the terminal device 200 includes at least two antennas.
  • the movable platform 100 can communicate with the terminal device 200 only through one antenna, or can communicate with the terminal device 200 through at least two antennas simultaneously. .
  • the terminal device 200 includes a display device, and the terminal device 200 displays the encoded video transmitted by the movable platform 100 through the display device for the user to watch.
  • the display device includes a display screen disposed on the terminal device 200 or a display independent of the terminal device 200, and the display independent of the terminal device 200 may include a mobile phone, a tablet computer, a personal computer, etc. other electronic equipment for the display.
  • the display screen includes an LED display screen, an OLED display screen, an LCD display screen, and the like.
  • the movable platform 200 further includes a wireless communication device (not shown in FIG. 1 ).
  • the wireless communication device acquires the movable platform only through the first The first channel parameter corresponding to the communication between the antenna and the terminal device is obtained, and the second channel parameter corresponding to the mobile platform communicating with the terminal device through at least two antennas at the same time is obtained, and then the first channel parameter and the second channel parameter are compared to obtain The channel parameter comparison result, and according to the channel parameter comparison result, determine the antenna configuration for the mobile platform to communicate with the terminal device, so that the mobile platform can communicate with the terminal device according to the configured antenna, so that the mobile platform can adaptively select the The antenna configuration for the communication between the mobile platform and the terminal device, thereby ensuring the transmission performance of wireless image transmission, reducing the power consumption and heat generation of the mobile platform, and improving the user experience.
  • the movable platform 200 may be a handheld mobile device, and may also be a device with a power system that provides power to the movable platform 200.
  • the movable platform 200 includes a movable robot, a Human-machine and unmanned vehicles, etc.
  • Terminal device 200 may include, but is not limited to, smart phones/mobile phones, tablet computers, personal digital assistants (PDAs), desktop computers, media content players, video game stations/systems, virtual reality systems, augmented reality systems, wearable devices (eg, watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMDs), headbands), pendants, armbands, leg loops, shoes, vest), gesture recognition device, microphone, any electronic device capable of providing or rendering image data, or any other type of device.
  • the terminal device 200 may be a handheld terminal, and the terminal device 200 may be portable.
  • the terminal device 200 may be carried by a human user. In some cases, the end device 200 may be remote from the human user, and the user may control the end device 200 using wireless and/or wired communications.
  • the power system can make the drone take off from the ground vertically, or land on the ground vertically, without any horizontal movement of the drone (for example, no need to taxi on the runway).
  • the powertrain may allow the drone to pre-set positions and/or turn the steering wheel in the air.
  • One or more power systems may be controlled independently of the other power systems.
  • one or more power systems may be controlled simultaneously.
  • a drone may have multiple horizontal power systems to track the lift and/or push of the target. The power system in the horizontal direction can be actuated to provide the drone with vertical take-off, vertical landing, and hovering capabilities.
  • one or more of the horizontally oriented power systems may rotate in a clockwise direction, while one or more of the other horizontally oriented power systems may rotate in a counter-clockwise direction.
  • the rotational rate of each horizontal power system can be varied independently to achieve the lift and/or push operation caused by each power system to adjust the spatial orientation, speed and/or acceleration of the drone (eg relative to up to three rotation and translation with one degree of freedom).
  • the drone may also include a sensing system, which may include one or more sensors to sense the spatial orientation, velocity, and/or acceleration of the drone (eg, relative to up to three Degree of freedom rotation and translation), angular acceleration, attitude, position (absolute position or relative position), etc.
  • the one or more sensors include GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • the sensing system can also be used to collect data on the environment in which the drone is located, such as climatic conditions, potential obstacles to be approached, locations of geographic features, locations of man-made structures, etc.
  • the drone may include a tripod
  • the tripod is a contact piece between the drone and the ground when the drone is landed, and the tripod can be received when the drone is in flight (for example, when the drone is cruising). It can only be put down when landing; it can also be fixedly installed on the drone and kept in the state of being put down all the time.
  • FIG. 2 is a schematic flowchart of steps of an antenna selection method provided by an embodiment of the present application.
  • the antenna selection method can be applied to a movable platform to adaptively determine the antenna configuration for the communication between the movable platform and the terminal device, so as to ensure the transmission performance of the wireless image transmission, and reduce the power consumption and power consumption of the movable platform. Generate heat and improve user experience.
  • the antenna selection method includes steps S101 to S104.
  • Step S101 acquiring first channel parameters corresponding to the mobile platform communicating with the terminal device only through the first antenna
  • Step S102 Acquire second channel parameters corresponding to the mobile platform communicating with the terminal device simultaneously through at least two antennas.
  • Step S103 comparing the first channel parameter with the second channel parameter to obtain a channel parameter comparison result
  • Step S104 Determine the antenna configuration for communicating between the mobile platform and the terminal device according to the channel parameter comparison result.
  • the movable platform in order to ensure the transmission performance of wireless image transmission, the movable platform usually uses multiple antennas to transmit data at the same time.
  • using multiple antennas to transmit data at the same time on a mobile platform consumes more power and generates more heat than using only one antenna to transmit data. Since the power consumption and heat generation increase with the increase of the transmission time, this will cause the temperature of the movable platform to rise, affecting the operation of the movable platform, and the user experience is not good. Therefore, in the process of communicating between the movable platform and the terminal device, obtain the first channel parameters corresponding to the communication between the movable platform and the terminal device only through the first antenna, and obtain the movable platform and the terminal device through at least two antennas at the same time.
  • the mobile platform can adaptively select the antenna configuration for the mobile platform to communicate with the terminal device, thereby ensuring the transmission performance of wireless image transmission, reducing the power consumption and heat generation of the mobile platform, and improving the user experience.
  • the at least two antennas comprise the first antenna.
  • the battery life of the movable platform is limited.
  • the antenna configuration for the communication between the mobile platform and the terminal device can be adaptively selected, so as to ensure the transmission performance of wireless image transmission, reduce the power consumption of the mobile platform, and improve the performance of the mobile platform.
  • the battery life greatly improves the user experience.
  • the antenna configuration for the communication between the movable platform and the terminal device can be adaptively selected, thereby ensuring the transmission performance of wireless image transmission. At the same time, the power consumption of the movable platform is reduced.
  • the heat generation can be reduced to a certain extent, and the high heat generation can prevent the temperature of the battery or motor and other devices from rising rapidly, ensuring that the battery or the The normal operation of the motor and other devices improves the safety of the movable platform.
  • At least two antennas are located on the movable platform, the at least two antennas include a first antenna, and the first channel parameter is used to indicate the first channel capacity and/or the first channel when only communicating with the terminal device through the first antenna. or the first signal-to-noise ratio, the second channel parameter is used to indicate the second channel capacity and/or the second signal-to-noise ratio when the mobile platform communicates with the terminal device simultaneously through at least two antennas.
  • the value of the first channel parameter corresponding to the mobile platform communicating with the terminal device only through the first antenna is higher than that of the third channel parameter corresponding to the mobile platform communicating with the terminal device only through any one of the other antennas among the at least two antennas.
  • the value of the channel parameter is large, that is, the first channel capacity corresponding to the mobile platform communicating with the terminal device only through the first antenna is greater than that of the mobile platform only through any one of the other antennas among the at least two antennas and the terminal device.
  • the third channel capacity corresponding to the communication, and/or, the first signal-to-noise ratio corresponding to the mobile platform communicating with the terminal device only through the first antenna is greater than any of the other antennas of the at least two antennas.
  • the value of the first channel parameter corresponding to the mobile platform communicating with the terminal device only through the first antenna is higher than the first channel parameter corresponding to the mobile platform communicating with the terminal device only through any one of the other antennas among the at least two antennas
  • the values of the three channel parameters are large. Therefore, by comparing the first channel parameters with the second channel parameters, it can be known that the transmission performance of communicating with the terminal device through the first antenna with the best channel quality is the same as that of communicating with the terminal device through at least two antennas. Whether the transmission performance of the device's communication meets the current transmission performance requirements, it is not necessary to compare the channel parameters corresponding to the communication with the terminal device only through each antenna with the second channel parameters, reducing the amount of calculation and improving the processing speed.
  • the movable platform includes a first working mode and a second working mode
  • the first working mode has higher requirements on the definition/image quality of the video
  • the second working mode has higher requirements on the clarity/image quality of the video.
  • the amount of data transmission between the movable platform and the terminal device in the first working mode is greater than the amount of data transmission between the movable platform and the terminal device in the second working mode.
  • the first working mode has lower requirements on the reliability of transmission
  • the second working mode has higher requirements on the reliability of transmission. Therefore, the bit error rate between the movable platform and the terminal device in the first working mode may sometimes Greater than the bit error rate between the movable platform and the terminal device in the second working mode.
  • the first channel parameter is used to indicate the first channel capacity when only communicating with the terminal device through the first antenna
  • the second channel parameter is used In order to indicate the second channel capacity when communicating with the terminal device through at least two antennas at the same time, that is, when the current working mode of the mobile platform is the first working mode, only the influence of the channel capacity on the antenna selection is considered, not the The effect of signal-to-noise ratio on antenna selection.
  • the first channel parameter is used to indicate the first signal-to-noise ratio when only communicating with the terminal device through the first antenna
  • the second channel parameter is used to indicate the simultaneous The second signal-to-noise ratio when communicating with the terminal device through at least two antennas, that is, when the current working mode of the mobile platform is the second working mode, only the influence of the signal-to-noise ratio on the antenna selection is considered, but the channel is not considered The effect of capacity on antenna selection.
  • the method of comparing the first channel parameter and the second channel parameter may be: determining the difference between the first channel parameter and the second channel parameter, wherein the difference between the first channel parameter and the second channel parameter is The value includes the difference between the first channel capacity and the second channel capacity, and/or the difference between the first signal-to-noise ratio and the second signal-to-noise ratio; or determine the product obtained by multiplying the first channel parameter by the first preset coefficient The difference between the second channel parameter and the second channel parameter, where the first preset coefficient is greater than 1; or the difference between the product obtained by multiplying the second channel parameter by the second preset coefficient and the first channel parameter, where, The second preset coefficient is less than 1 and greater than 0; or it is determined whether the first channel parameter and the second channel parameter are within a predetermined range.
  • the first preset coefficient, the second preset coefficient, and the predetermined range may be set based on actual conditions, which are not specifically limited in this embodiment of the present application.
  • the first preset coefficient is The second preset coefficient
  • the method of determining the difference between the product obtained by multiplying the first channel parameter by the first preset coefficient and the second channel parameter may be: determining the value obtained by multiplying the first channel parameter by the first preset coefficient.
  • the product is recorded as the first target channel parameter, and then the difference between the first target channel parameter and the second channel parameter is determined.
  • the first target channel parameter includes the first target channel capacity and/or the first target signal-to-noise ratio
  • the difference between the first target channel parameter and the second channel parameter includes the difference between the first target channel capacity and the second channel capacity.
  • the difference, and/or, the difference between the first target SNR and the second SNR may be: determining the value obtained by multiplying the first channel parameter by the first preset coefficient.
  • the product is recorded as the first target channel parameter, and then the difference between the first target channel parameter and the second channel parameter is determined.
  • the first target channel parameter includes the first target channel capacity and/or the first target signal-to-noise ratio
  • the method of determining the difference between the product obtained by multiplying the second channel parameter by the second preset coefficient and the first channel parameter may be: determining the value obtained by multiplying the second channel parameter by the second preset coefficient.
  • the product is recorded as the second target channel parameter, and then the difference between the second target channel parameter and the first channel parameter is determined.
  • the second target channel parameter includes the second target channel capacity and/or the second target signal-to-noise ratio
  • the difference between the second target channel parameter and the first channel parameter includes the difference between the second target channel capacity and the first channel capacity The difference, and/or, the difference between the second target SNR and the first SNR.
  • step S104 may include sub-steps S1041 to S1042.
  • Sub-step S1041 Determine whether the channel parameter comparison result satisfies a preset condition.
  • the transmission performance of the mobile platform communicating with the terminal device only through the first antenna can be determined and the transmission performance of communicating with the terminal device through at least two antennas at the same time meets the current transmission performance requirements. If the channel parameter comparison result does not meet the preset conditions, it can be determined that the movable platform only communicates with the terminal device through the first antenna. The transmission performance of the communication does not meet the transmission performance requirements currently required.
  • the preset condition includes: both the first channel parameter and the second channel parameter are within a predetermined range.
  • the absolute value of the difference between the first channel parameter and the second channel parameter is less than or equal to the preset value, wherein the absolute value of the difference between the first channel parameter and the second channel parameter is less than or equal to the preset value, including the first The difference between the channel capacity and the second channel capacity is less than or equal to the preset channel capacity difference, and/or the difference between the first SNR and the second SNR is less than or equal to the preset SNR difference.
  • the absolute value of the difference between the product obtained by multiplying the first channel parameter by the first preset coefficient and the second channel parameter is less than or equal to the preset value, and the first preset coefficient is greater than 1, wherein the first channel parameter
  • the absolute value of the difference between the product obtained by multiplying the first preset coefficient and the second channel parameter is less than or equal to the preset value, including that the difference between the first target channel capacity and the second channel capacity is less than or equal to the preset channel capacity.
  • the difference between the first target SNR and the second SNR is less than or equal to the preset SNR difference.
  • the absolute value of the difference between the product obtained by multiplying the second channel parameter by the second preset coefficient and the first channel parameter is less than or equal to the preset value, and the second preset coefficient is less than 1 and greater than 0, wherein, The difference between the second target channel capacity and the first channel capacity is less than or equal to the preset channel capacity difference, and/or the difference between the second target SNR and the first SNR is less than or equal to the preset SNR difference.
  • Sub-step S1042 If the channel parameter comparison result satisfies a preset condition, only use the first antenna as a target antenna, so that the movable platform communicates with the terminal device through the target antenna.
  • the transmission performance of the mobile platform communicating with the terminal device only through the first antenna and the transmission performance of communicating with the terminal device through at least two antennas at the same time both meet the currently required transmission performance
  • the first antenna is used as the target antenna, so that the mobile platform can communicate with the terminal device through the target antenna, so that the power consumption and heat generation of the mobile platform can be reduced while ensuring the transmission performance of wireless image transmission, and the user can be improved. experience.
  • the first antenna is used as the target antenna, so that the movable platform can communicate with the terminal device through the target antenna. communication.
  • the temperature of the movable platform may be determined through acquisition by a temperature sensor on the movable platform, and the preset temperature may be set based on the actual situation, which is not specifically limited in this embodiment of the present application.
  • the movable platform When the temperature of the movable platform is greater than or equal to the preset temperature, the movable platform communicates with the terminal device only through the first antenna, so that the power consumption and heat generation of the movable platform can be reduced, and the excessive temperature of the movable platform can be prevented.
  • the mobile platform is broken and the user experience is improved.
  • the channel parameter comparison result does not meet the preset conditions, that is, the transmission performance of the mobile platform communicating with the terminal device only through the first antenna does not meet the currently required transmission performance requirements, and the transmission performance through at least two antennas If the transmission performance of the communication with the terminal device meets the current required transmission performance requirements, at least two antennas are used as target antennas, so that the movable platform communicates with the terminal device through the target antennas.
  • the transmission performance of the mobile platform communicating with the terminal device only through the first antenna does not meet the currently required transmission performance requirements, but the transmission performance of communicating with the terminal device through at least two antennas meets the currently required transmission performance requirements
  • the movable platform communicates with the terminal device through at least two antennas to ensure the transmission performance of wireless image transmission.
  • the mobile platform controls only the target antenna (the first antenna) among the at least two antennas during the process of communicating with the terminal device only through the first antenna.
  • the power amplifier and RF transceiver corresponding to the external antenna are turned off. Or, control the power amplifier corresponding to the antenna other than the target antenna (the first antenna) among the at least two antennas to be in the off state; control the transmission channel corresponding to the antenna other than the target antenna (the first antenna) among the at least two antennas is closed.
  • the power consumption of the mobile platform can be reduced by turning off the power amplifiers and RF transceivers corresponding to the remaining antennas that are not working. and heat generation, and for the scenario of using one RF transceiver for multiple antennas, the RF transceiver includes multiple transmit channels. Therefore, it can be reduced by closing the power amplifiers and transmit channels in the RF transceivers corresponding to the remaining antennas that are not working. Power consumption and heat generation of mobile platforms.
  • the first channel parameter corresponding to the mobile platform communicating with the terminal device only through the first antenna is obtained
  • the second channel parameter corresponding to the mobile platform communicating with the terminal device simultaneously through at least two antennas is obtained.
  • channel parameters and then compare the first channel parameters with the second channel parameters to obtain the channel parameter comparison results, and determine the antenna configuration for the mobile platform to communicate with the terminal device according to the channel parameter comparison results, so that the mobile platform can automatically
  • the antenna configuration for the communication between the mobile platform and the terminal device is selected adaptively, so as to ensure the transmission performance of wireless image transmission, reduce the power consumption and heat generation of the mobile platform, and improve the user experience.
  • FIG. 4 is a schematic flowchart of steps of another antenna selection method provided by an embodiment of the present application.
  • the antenna selection method can be applied to terminal equipment or unmanned aerial vehicles, and is used to adaptively select the antenna configuration for the mobile platform to communicate with the terminal equipment, thereby ensuring the transmission performance of wireless image transmission and reducing the number of mobile platforms. Power consumption and heat generation, improve user experience.
  • the antenna selection method includes steps S201 to S204.
  • Step S201 acquiring first channel parameters corresponding to the mobile platform communicating with the terminal device only through any one of the at least two antennas;
  • Step S202 acquiring second channel parameters corresponding to the mobile platform communicating with the terminal device simultaneously through the at least two antennas;
  • Step S203 comparing the first channel parameter corresponding to the communication between any one of the antennas and the terminal device with the second channel parameter, respectively, to obtain multiple channel parameter comparison results;
  • Step S204 Determine the antenna configuration for the communication between the mobile platform and the terminal device according to the comparison results of the multiple channel parameters.
  • the movable platform in order to ensure the transmission performance of wireless image transmission, the movable platform usually uses multiple antennas to transmit data at the same time.
  • using multiple antennas to transmit data at the same time on a mobile platform consumes more power and generates more heat than using only one antenna to transmit data. Since the power consumption and heat generation increase with the increase of the transmission time, this will cause the temperature of the movable platform to rise, affecting the operation of the movable platform, and the user experience is not good.
  • the first channel parameters corresponding to the communication between the movable platform and the terminal device are obtained only through any one of the at least two antennas, and the first channel parameters corresponding to the communication between the movable platform and the terminal device are obtained through at least one The second channel parameters corresponding to the communication between the two antennas and the terminal device, and then the first channel parameters corresponding to the communication between any one of the antennas and the terminal device are compared with the second channel parameters to obtain multiple channel parameter comparison results.
  • the comparison results of channel parameters are used to determine the antenna configuration for the communication between the mobile platform and the terminal device, so that the mobile platform can adaptively select the antenna configuration for the communication between the mobile platform and the terminal device, thereby ensuring the transmission performance of wireless image transmission.
  • the power consumption and heat generation of the mobile platform are reduced, and the user experience is improved.
  • step S204 may include: sub-steps S2041 to S2042.
  • the transmission performance of a single antenna communicating with the terminal device and the transmission performance of communicating with the terminal device through at least two antennas at the same time meet the current transmission performance requirements, and the comparison results of multiple channel parameters do not meet the preset conditions, it can be determined.
  • the transmission performance of communicating with the terminal device only through a single antenna does not meet the transmission performance requirements of the current demand.
  • the at least one channel parameter comparison result satisfying a preset condition includes: at least one of the first channel parameter and the second channel parameter are both within a predetermined range; or, the difference between at least one of the first channel parameter and the second channel parameter The absolute value of is less than or equal to the preset value; or, the absolute value of the difference between the product obtained by multiplying at least one first channel parameter by the first preset coefficient and the second channel parameter is less than or equal to the preset value, the first The preset coefficient is greater than 1; or, the absolute value of the difference between the product obtained by multiplying the second channel parameter by the second preset coefficient and the at least one first channel parameter is less than or equal to the preset value, and the second preset coefficient is less than 1, and greater than 0.
  • one antenna is selected from at least two antennas as the target antenna according to at least one first channel parameter that satisfies the preset conditions, so that the mobile platform can communicate with the terminal device through the target antenna, thereby ensuring wireless While the transmission performance of image transmission, the power consumption and heat generation of the mobile platform are reduced, and the user experience is improved.
  • the method of selecting one antenna from at least two antennas as the target antenna according to the at least one first channel parameter that satisfies the preset condition may be as follows: The first channel parameter of is determined as the target channel parameter; the antenna corresponding to the target channel parameter among the at least two antennas is used as the target antenna, so that the movable platform communicates with the terminal device through the target antenna.
  • the mobile platform communicates with the terminal device through the antenna with the best transmission performance, which can improve the transmission performance of wireless image transmission, and can also reduce the power consumption and heat generation of the movable platform while ensuring the transmission performance of wireless image transmission. user experience.
  • the target channel parameters include target channel capacity and target signal-to-noise ratio
  • the method of using the antenna corresponding to the target channel parameter among the at least two antennas as the target antenna may be: when the movable platform is in the first working mode , the antenna corresponding to the target channel capacity among the at least two antennas is used as the target antenna; when the movable platform is in the second working mode, the antenna corresponding to the target signal-to-noise ratio among the at least two antennas is used as the target antenna.
  • the first working mode has higher requirements on the definition/image quality of the video, so the second working mode has lower requirements on the definition/image quality of the video, and the movable platform and the terminal device in the first working mode
  • the data volume transmission volume between them is greater than the data volume transmission volume between the movable platform and the terminal device in the second working mode.
  • the first working mode has lower requirements on the reliability of transmission
  • the second working mode has higher requirements on the reliability of transmission. Therefore, the bit error rate between the movable platform and the terminal device in the first working mode is higher than that in the second working mode. Bit error rate between the mobile platform and the terminal device in working mode.
  • the comparison results of multiple channel parameters do not meet the preset conditions, that is, the transmission performance of communicating with the terminal device only through a single antenna does not meet the current transmission performance requirements, then at least two antennas are used as the target. antenna, so that the movable platform communicates with the terminal device through the target antenna.
  • the transmission performance of the mobile platform communicating with the terminal device only through a single antenna does not meet the currently required transmission performance requirements, but the transmission performance of communicating with the terminal device through at least two antennas meets the currently required transmission performance requirements, it can be The mobile platform communicates with the terminal device through at least two antennas to ensure the transmission performance of wireless image transmission.
  • the at least one first channel parameter that satisfies the preset condition is selected from at least two channel parameters.
  • One of the antennas is selected as the target antenna; when the temperature of the movable platform is lower than the preset temperature, at least two antennas are used as the target antenna, so that the movable platform communicates with the terminal device through the target antenna.
  • the temperature of the movable platform may be determined through acquisition by a temperature sensor on the movable platform, and the preset temperature may be set based on the actual situation, which is not specifically limited in this embodiment of the present application.
  • the movable platform When the temperature of the movable platform is greater than or equal to the preset temperature, the movable platform communicates with the terminal device only through a single antenna, which can reduce the power consumption and heat generation of the movable platform, and prevent the movable platform from being moved due to excessive temperature. The platform is broken and the user experience is improved.
  • the antenna selection method obtained by the above-mentioned embodiment obtains the first channel parameter corresponding to the mobile platform communicating with the terminal device only through any one of the at least two antennas, and obtains the mobile platform simultaneously communicates with the terminal device through at least two antennas. communicate the corresponding second channel parameters, and then compare the first channel parameters corresponding to the communication between any antenna and the terminal device with the second channel parameters, respectively, to obtain multiple channel parameter comparison results, and finally according to the multiple channel parameter comparison results, Determine the antenna configuration for the communication between the mobile platform and the terminal device, so that the mobile platform can adaptively select the antenna configuration for the communication between the mobile platform and the terminal device, thereby ensuring the transmission performance of wireless image transmission and reducing the number of mobile The power consumption and heat generation of the platform improve the user experience.
  • FIG. 6 is a schematic structural block diagram of a wireless communication apparatus provided by an embodiment of the present application.
  • the wireless communication device 300 includes a processor 301 and a memory 302.
  • the processor 301 and the memory 302 are connected by a bus 303, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 301 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 301 is used for running the computer program stored in the memory 302, and implements the following steps when executing the computer program:
  • the antenna configuration for the communication between the mobile platform and the terminal device is determined.
  • the at least two antennas are located on the movable platform.
  • the processor when the processor implements the comparison of the first channel parameter with the second channel parameter, the processor implements:
  • the numerical ratio of the first channel parameter corresponding to the communication with the terminal device only through the first antenna is only communicated with the terminal device through the other antennas of the at least two antennas
  • the value of the corresponding third channel parameter is large.
  • the first channel parameter is used to indicate a first channel capacity and/or a first signal-to-noise ratio when communicating with the terminal device only through the first antenna
  • the second channel The parameter is used to indicate a second channel capacity and/or a second signal-to-noise ratio when communicating with the terminal device through the at least two antennas simultaneously.
  • the first channel parameter when the movable platform is in the first working mode, is used to indicate the first channel capacity when only communicating with the terminal device through the first antenna, so the second channel parameter is used to indicate the second channel capacity when communicating with the terminal device through the at least two antennas simultaneously;
  • the first channel parameter is used to indicate a first signal-to-noise ratio when only communicating with the terminal device through the first antenna
  • the second channel parameter It is used to indicate the second signal-to-noise ratio when communicating with the terminal device through the at least two antennas simultaneously.
  • the amount of data transmission between the movable platform and the terminal device in the first working mode is larger than that between the movable platform and the terminal device in the second working mode The amount of data transferred between;
  • the bit error rate between the movable platform and the terminal device in the first working mode is greater than the bit error rate between the movable platform and the terminal device in the second working mode.
  • the determining, according to the channel parameter comparison result, an antenna configuration for communicating between the mobile platform and the terminal device includes:
  • the first antenna is used as a target antenna, so that the movable platform communicates with the terminal device through the target antenna.
  • the preset conditions include:
  • the absolute value of the difference between the first channel parameter and the second channel parameter is less than or equal to a preset value
  • the absolute value of the difference between the product obtained by multiplying the first channel parameter by the first preset coefficient and the second channel parameter is less than or equal to a preset value, and the first preset coefficient is greater than 1;
  • the absolute value of the difference between the product obtained by multiplying the second channel parameter by the second preset coefficient and the first channel parameter is less than or equal to the preset value, and the second preset coefficient is less than 1 and greater than 0; or
  • Both the first channel parameter and the second channel parameter are within a predetermined range.
  • the processor when the processor determines the antenna configuration for communication between the mobile platform and the terminal device according to the channel parameter comparison result, the processor is configured to:
  • the at least two antennas are used as target antennas, so that the movable platform communicates with the terminal device through the target antennas.
  • the processor when the processor determines the antenna configuration for communication between the mobile platform and the terminal device according to the channel parameter comparison result, the processor is configured to:
  • the channel parameter comparison result satisfies the preset condition, when the temperature of the movable platform is greater than or equal to the preset temperature, the first antenna is used as the target antenna, so that the movable platform passes the target An antenna communicates with the terminal device.
  • the processor is further configured to implement:
  • the processor is further configured to implement:
  • FIG. 7 is a schematic structural block diagram of another wireless communication apparatus provided by an embodiment of the present application.
  • the wireless communication device 400 includes a processor 401 and a memory 402, and the processor 401 and the memory 402 are connected through a bus 403, such as an I2C (Inter-integrated Circuit) bus.
  • a bus 403 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 401 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 402 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 402 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • the processor 401 is used for running the computer program stored in the memory 402, and implements the following steps when executing the computer program:
  • the antenna configuration for the communication between the mobile platform and the terminal device is determined.
  • the processor when the processor determines the antenna configuration for communicating between the mobile platform and the terminal device according to the multiple channel parameter comparison results, the processor is configured to:
  • the at least one channel parameter comparison result satisfying a preset condition includes:
  • the absolute value of the difference between at least one of the first channel parameter and the second channel parameter is less than or equal to a preset value
  • the absolute value of the difference between the product obtained by multiplying at least one of the first channel parameters by the first preset coefficient and the second channel parameter is less than or equal to a preset value, and the first preset coefficient is greater than 1;
  • the absolute value of the difference between the product obtained by multiplying the second channel parameter by the second preset coefficient and at least one of the first channel parameters is less than or equal to a preset value, and the second preset coefficient is less than 1, and greater than 0;
  • At least one of the first channel parameter and the second channel parameter are both within a predetermined range.
  • the processor when the processor selects one antenna from the at least two antennas as the target antenna according to at least one of the first channel parameters satisfying a preset condition, the processor is configured to:
  • An antenna corresponding to the target channel parameter among the at least two antennas is used as a target antenna, so that the movable platform communicates with the terminal device through the target antenna.
  • the target channel parameter includes a target channel capacity and a target signal-to-noise ratio
  • the processor implements that when the antenna corresponding to the target channel parameter among the at least two antennas is used as the target antenna, accomplish:
  • the antenna corresponding to the target channel capacity among the at least two antennas is used as the target antenna;
  • the antenna corresponding to the target signal-to-noise ratio among the at least two antennas is used as the target antenna.
  • the processor when the processor determines the antenna configuration for communicating between the mobile platform and the terminal device according to the multiple channel parameter comparison results, the processor is configured to:
  • the at least two antennas are used as target antennas, so that the movable platform communicates with the terminal device through the target antennas.
  • the processor when the processor determines the antenna configuration for communicating between the mobile platform and the terminal device according to the multiple channel parameter comparison results, the processor is configured to:
  • the channel parameter comparison results that satisfies the preset condition, when the temperature of the movable platform is greater than or equal to the preset temperature, according to the at least one first channel parameter that satisfies the preset condition, from the at least one first channel parameter Choose one of the two antennas as the target antenna.
  • FIG. 8 is a schematic structural block diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform 500 includes:
  • At least two antennas 520 disposed on the platform body, for communicating with terminal equipment
  • a power system 530 the power system is provided on the platform body, and the power system is used to provide moving power for the movable platform 500;
  • a controller 540 disposed on the platform body, for controlling the movable platform 500 to move;
  • the wireless communication device 550 is disposed on the platform body, and is used to determine the antenna configuration for the mobile platform 500 to communicate with the terminal device.
  • the movable platform 500 may be a handheld mobile device, or a device having a power system and powered by the power system.
  • the movable platform 200 includes mobile robots, drones, and unmanned vehicles.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, the computer program includes program instructions, and the processor executes the program instructions, so as to realize the provision of the above embodiments.
  • the steps of the antenna selection method are described in detail below.
  • the computer-readable storage medium may be the control terminal described in any of the foregoing embodiments or an internal storage unit of the drone, such as a hard disk or a memory of the movable platform.
  • the computer-readable storage medium can also be an external storage device of the removable platform, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) equipped on the removable platform , SD) card, flash memory card (Flash Card), etc.
  • an antenna selection method, apparatus, and computer-readable storage medium are provided.
  • acquiring the first channel parameters corresponding to the transmitting device communicating with the receiving device only through the first antenna and acquiring the second channel parameters corresponding to the transmitting device communicating with the terminal device simultaneously through at least two antennas, and then comparing the first channel parameters with the first channel parameters
  • the two channel parameters are compared to obtain the channel parameter comparison result, and according to the channel parameter comparison result, the antenna configuration for communication between the transmitting device and the receiving device is determined, so that the transmitting device can adaptively select the antenna configuration for communication between the transmitting device and the receiving device.
  • the above-mentioned antenna selection method is not limited to be applied only between the movable platform and the terminal device. Those skilled in the art can apply this antenna selection method to any transmitting device and receiving device without departing from the spirit and principle of the present invention.
  • the sending device can also be any fixed platform.
  • a fixed-position remote control console In addition to a terminal device, the receiving device may also be other receiving devices that receive signals sent by the sending device. For example, another remote control console in a fixed location.

Abstract

一种天线选择方法、装置、可移动平台及计算机可读存储介质,包括:获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数(S101);获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数(S102);将第一信道参数与第二信道参数进行比较,得到信道参数比较结果(S103);根据信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置(S104)。该方法降低了功耗和发热量。

Description

天线选择方法、装置、可移动平台及计算机可读存储介质 技术领域
本申请涉及无线图传技术领域,尤其涉及一种天线选择方法、装置、可移动平台及计算机可读存储介质。
背景技术
目前,可移动平台可以通过无线图传系统将拍摄得到的视频实时传输至终端设备,由终端设备显示传输的视频,对于使用多天线实现的无线图传系统,可以使用空间复用技术增大无线图传的传输速率,也可以使用发送分集技术提升无线图传的传输鲁棒性。例如,为了保证无线图传的传输性能,可移动平台通常都是同时使用多个天线发射数据。然而,可移动平台同时使用多个天线发射数据比仅使用一个天线发射数据的功耗更高、发热更严重。由于功耗和发热量会随着传输时间的增加而增加,这将导致可移动平台的温度上升,影响可移动平台的运行,用户体验不好。
发明内容
基于此,本申请实施例提供了一种天线选择方法、装置、可移动平台及计算机可读存储介质,旨在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
第一方面,本申请实施例提供了一种天线选择方法,包括:
获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数;
获取所述可移动平台同时通过至少两个天线与所述终端设备通信对应的第二信道参数;
将所述第一信道参数与所述第二信道参数进行比较,得到信道参数比较结果;
根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
第二方面,本申请实施例还提供了一种天线选择方法,包括:
获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数;以及
获取所述可移动平台同时通过所述至少两个天线与所述终端设备通信对应的第二信道参数;
将任一个天线与终端设备进行通信对应的所述第一信道参数分别与所述第二信道参数进行比较,得到多个信道参数比较结果;
根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
第三方面,本申请实施例还提供了一种无线通信装置,所述无线通信装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数;
获取所述可移动平台同时通过至少两个天线与所述终端设备通信对应的第二信道参数;
将所述第一信道参数与所述第二信道参数进行比较,得到信道参数比较结果;
根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
第四方面本申请实施例还提供了一种无线通信装置,所述无线通信装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数;以及
获取所述可移动平台同时通过所述至少两个天线与所述终端设备通信对应的第二信道参数;
将任一个天线与终端设备进行通信对应的所述第一信道参数分别与所述第二信道参数进行比较,得到多个信道参数比较结果;
根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
第五方面,本申请还提供了一种可移动平台,所述可移动平台包括;
平台本体;
至少两个天线,设置于所述平台本体上,用于与终端设备通信;
动力系统,所述动力系统设于所述平台本体上,所述动力系统用于为所述可移动平台提供移动动力;
控制器,设置于所述平台本体上,用于控制所述可移动平台移动;
如上所述的无线通信装置,设置于所述平台本体上,用于确定所述可移动平台与所述终端设备进行通信的天线配置。
第六方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的天线选择方法的步骤。
本申请实施例提供了一种天线选择方法、装置、可移动平台及计算机可读存储介质,通过获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数,以及获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将第一信道参数与第二信道参数进行比较,得到信道参数比较结果,并根据信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置,从而使得可移动平台能够自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施本申请实施例提供的天线选择方法的一场景示意图;
图2是本申请实施例提供的一种天线选择方法的步骤示意流程图;
图3是图2中的天线选择方法的子步骤示意流程图;
图4是本申请实施例提供的另一种天线选择方法的步骤示意流程图;
图5是图4中的天线选择方法的子步骤示意流程图;
图6是本申请实施例提供的一种无线通信装置的结构示意性框图;
图7是本申请实施例提供的另一种无线通信装置的结构示意性框图;
图8是本申请实施例提供的一种可移动平台的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
目前,可移动平台可以通过无线图传系统将拍摄得到的视频实时传输至终端设备,由终端设备显示传输的视频,对于使用多天线实现的无线图传系统,可以使用空间复用技术增大无线图传的传输速率,也可以使用发送分集技术提升无线图传的传输鲁棒性。例如,为了保证无线图传的传输性能,可移动平台通常都是同时使用多个天线发射数据。然而,可移动平台同时使用多个天线发射数据比仅使用一个天线发射数据的功耗更高、发热更严重。由于功耗和发热量会随着传输时间的增加而增加,这将导致可移动平台的温度上升,影响可移动平台的运行,用户体验不好。
为解决上述问题,本申请实施例提供一种天线选择方法、装置、可移动平台及计算机可读存储介质。通过获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数,以及获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将第一信道参数与第二信道参数进行比较,得到信道参数比较结果,并根据信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置,从而使得可移动平台能够自适应地选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
此外,根据本发明的一实施方式,针对信道参数比较结果,可以在单一天线配置和多天线配置中做出选择。若单一的天线配置(即,仅使用一个天线的天线配置)和多天线配置(即,使用多个天线的天线配置)性能相当(例如, 均满足当前需要的传输性能要求),则优先选择单一天线配置,从而可以在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
请参阅图1,图1是实施本申请实施例提供的天线选择方法的一场景示意图,如图1所示,该场景包括可移动平台100和终端设备200,可移动平台100与终端设备200通信连接,可移动平台100包括拍摄装置101,拍摄装置101拍摄的视频经过编码后能够通过可移动平台100与终端设备200之间的通信链路传输至终端设备200。其中,可移动平台100包括至少两个天线,终端设备200至少包括两个天线,可移动平台100可以仅通过一个天线与终端设备200进行通信,也可以同时通过至少两个天线与终端设备200通信。
具体地,终端设备200包括显示装置,终端设备200通过显示装置显示可移动平台100传输的编码后的视频,以供用户观看。需要说明的是,显示装置包括设置在终端设备200上的显示屏或者独立于终端设备200的显示器,独立于终端设备200的显示器可以包括手机、平板电脑或者个人电脑等,或者也可以是带有显示屏的其他电子设备。其中,该显示屏包括LED显示屏、OLED显示屏、LCD显示屏等等。
在一实施例中,可移动平台200还包括无线通信装置(图1中未示出),在可移动平台100与终端设备200进行通信的过程中,无线通信装置获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数,并获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将第一信道参数与第二信道参数进行比较,得到信道参数比较结果,并根据信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置,使得可移动平台按照配置的天线与终端设备进行通信,从而使得可移动平台能够自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
在一实施例中,可移动平台200可以为手持移动设备,还可以是具有动力系统,并由该动力系统为可移动平台200提供动力的设备,例如,可移动平台200包括可移动机器人、无人机和无人汽车等。终端设备200可以包括但不限于:智能电话/手机、平板电脑、个人数字助理(PDA)、台式计算机、媒体内容播放器、视频游戏站/系统、虚拟现实系统、增强现实系统、可穿戴式装置(例如,手表、眼镜、手套、头饰(例如,帽子、头盔、虚拟现实头戴耳机、增强现实头戴耳机、头装式装置(HMD)、头带)、挂件、臂章、腿环、鞋子、马 甲)、手势识别装置、麦克风、能够提供或渲染图像数据的任意电子装置、或者任何其他类型的装置。该终端设备200可以是手持终端,终端设备200可以是便携式的。该终端设备200可以由人类用户携带。在一些情况下,终端设备200可以远离人类用户,并且用户可以使用无线和/或有线通信来控制终端设备200。
其中,动力系统能够使无人机垂直地从地面起飞,或者垂直地降落在地面上,而不需要无人机任何水平运动(如不需要在跑道上滑行)。可选的,动力系统可以允许无人机在空中预设位置和/或方向盘旋。一个或者多个动力系统在受到控制时可以独立于其它的动力系统。可选的,一个或者多个动力系统可以同时受到控制。例如,无人机可以有多个水平方向的动力系统,以追踪目标的提升及/或推动。水平方向的动力系统可以被致动以提供无人机垂直起飞、垂直降落、盘旋的能力。
在一实施例中,水平方向的动力系统中的一个或者多个可以顺时针方向旋转,而水平方向的动力系统中的其它一个或者多个可以逆时针方向旋转。例如,顺时针旋转的动力系统与逆时针旋转的动力系统的数量一样。每一个水平方向的动力系统的旋转速率可以独立变化,以实现每个动力系统导致的提升及/或推动操作,从而调整无人机的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。
在一实施例中,无人机还可以包括传感系统,传感系统可以包括一个或者多个传感器,以感测无人机的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)、角加速度、姿态、位置(绝对位置或者相对位置)等。所述一个或者多个传感器包括GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器。可选的,传感系统还可以用于采集无人机所处的环境数据,如气候条件、要接近的潜在的障碍、地理特征的位置、人造结构的位置等。另外,无人机可以包括脚架,所述脚架是无人机降落时,无人机与地面的接触件,脚架可以是无人机在飞行状态(例如无人机在巡航时)收起,在降落时才放下;也可以固定安装在无人机上,一直处于放下的状态。
请参阅图2,图2是本申请实施例提供的一种天线选择方法的步骤示意流程图。该天线选择方法可以应用在可移动平台中,用于自适应地确定可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
如图2所示,该天线选择方法包括步骤S101至步骤S104。
步骤S101、获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数;
步骤S102、获取所述可移动平台同时通过至少两个天线与所述终端设备通信对应的第二信道参数。
步骤S103、将所述第一信道参数与所述第二信道参数进行比较,得到信道参数比较结果;
步骤S104、根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
目前,为了保证无线图传的传输性能,可移动平台通常都是同时使用多个天线发射数据。然而,可移动平台同时使用多个天线发射数据比仅使用一个天线发射数据的功耗更高、发热更严重。由于功耗和发热量会随着传输时间的增加而增加,这将导致可移动平台的温度上升,影响可移动平台的运行,用户体验不好。因此,在可移动平台与终端设备进行通信的过程中,获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数,并获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将第一信道参数与第二信道参数进行比较,得到信道参数比较结果,并根据信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置从而使得可移动平台能够自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。在一个实施方式中,所述至少两个天线包括所述第一天线。
由于可移动平台的电池的容量有限,并且可移动平台工作时的单位耗电量也较高,因此可移动平台的续航时间是有限的,通过本申请实施例提供的天线选择方法,在可移动平台工作的过程中,可以自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗,还可以提高可移动平台的续航时间,极大的提高了用户体验。
此外,由于可移动平台内部的电池、电机等器件对温度有一定的要求,如果电池或电机等器件的温度较高,则会影响电池或电机等器件的正常运行,进而导致可移动平台无法正常的工作,通过本申请实施例提供的天线选择方法,在可移动平台工作的过程中,可以自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗,由于减少了可移动平台的功耗,可以在一定程度上减少发热量,能够避免较高的发热量导致电池或电机等器件的温度快速上升,保证电池或电机等器件 的正常运行,提高可移动平台的安全性。
其中,至少两个天线位于可移动平台上,所述至少两个天线包括第一天线,所述第一信道参数用于指示仅通过第一天线与终端设备进行通信时的第一信道容量和/或第一信噪比,所述第二信道参数用于指示可移动平台同时通过至少两个天线与终端设备进行通信时的第二信道容量和/或第二信噪比。可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数的数值比可移动平台仅通过至少两个天线中的其他天线中的任意一根天线与终端设备进行通信对应的第三信道参数的数值大,也即可移动平台仅通过第一天线与终端设备进行通信对应的第一信道容量大于可移动平台仅通过至少两个天线中的其他天线中的任意一根天线与终端设备进行通信对应的第三信道容量,和/或,可移动平台仅通过第一天线与终端设备进行通信对应的第一信噪比大于可移动平台仅通过至少两个天线中的其他天线中的任意一根天线与终端设备进行通信对应的第三信噪比。
由于可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数的数值比可移动平台仅通过至少两个天线中的其他天线中的任意一根天线与终端设备进行通信对应的第三信道参数的数值大,因此,将第一信道参数与第二信道参数进行比较,可以知道,通过信道质量最好的第一天线与终端设备进行通信的传输性能与通过至少两个天线与终端设备进行通信的传输性能是否均满足当前需要的传输性能要求,不需要将仅通过每个天线与终端设备进行通信分别对应的信道参数与第二信道参数进行比较,减少计算量,提高处理速度。
在一实施例中,可移动平台包括第一工作模式和第二工作模式,第一工作模式对视频的清晰度/画质要求较高,第二工作模式对视频的清晰度/画质要求较低。因此,第一工作模式下的可移动平台与终端设备之间的数据量传输量大于第二工作模式下的可移动平台与终端设备之间的数据量传输量。同时,第一工作模式对传输的可靠性要求较低,第二工作模式对传输的可靠性要求较高,因此第一工作模式下的可移动平台与终端设备之间的误码率有时可能会大于第二工作模式下的可移动平台与终端设备之间的误码率。
在一实施例中,当可移动平台的当前工作模式为第一工作模式时,第一信道参数用于指示仅通过第一天线与终端设备进行通信时的第一信道容量,第二信道参数用于指示同时通过至少两个天线与终端设备进行通信时的第二信道容量,也即在可移动平台的当前工作模式为第一工作模式时,仅考虑信道容量对天线选择的影响,而不考虑信噪比对天线选择的影响。当可移动平台的当前工 作模式为第二工作模式时,所述第一信道参数用于指示仅通过第一天线与终端设备进行通信时的第一信噪比,第二信道参数用于指示同时通过至少两个天线与终端设备进行通信时的第二信噪比,也即在可移动平台的当前工作模式为第二工作模式时,仅考虑信噪比对天线选择的影响,而不考虑信道容量对天线选择的影响。通过在不同的工作模式下,考虑不同的信道参数对天线选择的影响,从而能够在满足不同工作模式的传输性能要求的情况下,减少可移动平台的功耗和发热量,提高用户体验。
在一实施例中,将第一信道参数与第二信道参数进行比较的方式可以为:确定第一信道参数与第二信道参数的差值,其中,第一信道参数与第二信道参数的差值包括第一信道容量与第二信道容量的差值,和/或,第一信噪比与第二信噪比的差值;或者确定第一信道参数乘以第一预设系数得到的乘积与第二信道参数之间的差值,其中,第一预设系数大于1;或者确定第二信道参数乘以第二预设系数得到的乘积与第一信道参数之间的差值,其中,第二预设系数小于1,且大于0;或者确定第一信道参数和第二信道参数是否位于预定范围内。其中,第一预设系数、第二预设系数和预定范围可基于实际情况进行设置,本申请实施例对此不做具体限定,例如,第一预设系数为
Figure PCTCN2020131939-appb-000001
第二预设系数为0.5。
在一实施例中,确定第一信道参数乘以第一预设系数得到的乘积与第二信道参数之间的差值的方式可以为:确定第一信道参数乘以第一预设系数得到的乘积,且将该乘积记为第一目标信道参数,然后确定第一目标信道参数与第二信道参数之间的差值。其中,第一目标信道参数包括第一目标信道容量和/或第一目标信噪比,第一目标信道参数与第二信道参数之间的差值包括第一目标信道容量与第二信道容量的差值,和/或,第一目标信噪比与第二信噪比的差值。
在一实施例中,确定第二信道参数乘以第二预设系数得到的乘积与第一信道参数之间的差值的方式可以为:确定第二信道参数乘以第二预设系数得到的乘积,且将乘积记为第二目标信道参数,然后确定第二目标信道参数与第一信道参数之间的差值。其中,第二目标信道参数包括第二目标信道容量和/或第二目标信噪比,第二目标信道参数与第一信道参数之间的差值包括第二目标信道容量与第一信道容量的差值,和/或,第二目标信噪比与第一信噪比的差值。
在一实施例中,如图3所示,步骤S104可以包括子步骤S1041至S1042。
子步骤S1041、确定所述信道参数比较结果是否满足预设条件。
在得到信道参数比较结果后,确定该信道参数比较结果是否满足预设条件, 如果该信道参数比较结果满足预设条件,则可以确定可移动平台仅通过第一天线与终端设备进行通信的传输性能和同时通过至少两个天线与终端设备进行通信的传输性能均满足当前需要的传输性能要求,如果该信道参数比较结果不满足预设条件,则可以确定可移动平台仅通过第一天线与终端设备进行通信的传输性能不满足当前需要的传输性能要求。
其中,所述预设条件包括:第一信道参数与第二信道参数均位于预定范围。或者,第一信道参数与第二信道参数的差值的绝对值小于或等于预设值,其中,第一信道参数与第二信道参数的差值的绝对值小于或等于预设值包括第一信道容量与第二信道容量的差值小于或等于预设信道容量差值,和/或,第一信噪比与第二信噪比的差值小于或等于预设信噪比差值。
或者,第一信道参数乘以第一预设系数得到的乘积与第二信道参数之间的差值的绝对值小于或等于预设值,第一预设系数大于1,其中,第一信道参数乘以第一预设系数得到的乘积与第二信道参数之间的差值的绝对值小于或等于预设值包括第一目标信道容量与第二信道容量的差值小于或等于预设信道容量差值,和/或,第一目标信噪比与第二信噪比的差值小于或等于预设信噪比差值。
或者,第二信道参数乘以第二预设系数得到的乘积与第一信道参数之间的差值的绝对值小于或等于预设值,第二预设系数小于1,且大于0,其中,第二目标信道容量与第一信道容量的差值小于或等于预设信道容量差值,和/或,第二目标信噪比与第一信噪比的差值小于或等于预设信噪比差值。
子步骤S1042、若所述信道参数比较结果满足预设条件,则仅将所述第一天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
在信道参数比较结果满足预设条件,也即可移动平台仅通过第一天线与终端设备进行通信的传输性能和同时通过至少两个天线与终端设备进行通信的传输性能均满足当前需要的传输性能要求时,将第一天线作为目标天线,以使得可移动平台通过目标天线与终端设备通信,从而能够在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
在一实施例中,若信道参数比较结果满足预设条件,则在可移动平台的温度大于或等于预设温度时,将第一天线作为目标天线,以使得可移动平台通过目标天线与终端设备通信。其中,可移动平台的温度可以通过可移动平台上的温度传感器采集确定,预设温度可基于实际情况进行设置,本申请实施例对此不做具体限定。通过在可移动平台的温度大于或等于预设温度时,可移动平台 仅通过第一天线与终端设备通信,可以减少可移动平台的功耗和发热量,防止可移动平台的温度过高导致可移动平台损坏,提高用户体验。
在一实施例中,若信道参数比较结果不满足预设条件,也即可移动平台仅通过第一天线与终端设备进行通信的传输性能不满足当前需要的传输性能要求,而通过至少两个天线与终端设备进行通信的传输性能满足当前需要的传输性能要求,则将至少两个天线作为目标天线,以使得可移动平台通过目标天线与终端设备通信。通过在可移动平台仅通过第一天线与终端设备进行通信的传输性能不满足当前需要的传输性能要求,而通过至少两个天线与终端设备进行通信的传输性能满足当前需要的传输性能要求时,可移动平台通过至少两个天线与终端设备通信,保证无线图传的传输性能。
在一实施例中,将第一天线作为目标天线后,也即可移动平台仅通过第一天线与终端设备进行通信的过程中,控制至少两个天线中除该目标天线(第一天线)之外的天线对应的功率放大器和射频收发器处于关闭状态。或者,控制至少两个天线中除目标天线(第一天线)之外的天线对应的功率放大器处于关闭状态;控制至少两个天线中除目标天线(第一天线)之外的天线对应的发射通道处于关闭状态。通过关闭其余没有工作的天线对应的功率放大器和射频收发器,或者关闭其余没有工作的天线对应的功率放大器和发射通道,可以降低可移动平台的功耗和发热量。
其中,对于多天线使用多射频收发器的场景,也即天线与射频收发器一一对应的场景,可以通过关闭其余没有工作的天线对应的功率放大器和射频收发器来降低可移动平台的功耗和发热量,而对于多天线使用一个射频收发器的场景,该射频收发器包括多个发射通道,因此,可以通过关闭其余没有工作的天线对应的功率放大器和射频收发器中的发射通道来降低可移动平台的功耗和发热量。
上述实施例提供的天线选择方法,通过获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数,以及获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将第一信道参数与第二信道参数进行比较,得到信道参数比较结果,并根据信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置,从而使得可移动平台能够自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
请参阅图4,图4是本申请实施例提供的另一种天线选择方法的步骤示意 流程图。该天线选择方法可以应用在终端设备或无人机中,用于自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
如图4所示,该天线选择方法包括步骤S201至S204。
步骤S201、获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数;以及
步骤S202、获取所述可移动平台同时通过所述至少两个天线与所述终端设备通信对应的第二信道参数;
步骤S203、将任一个天线与终端设备进行通信对应的所述第一信道参数分别与所述第二信道参数进行比较,得到多个信道参数比较结果;
步骤S204、根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
目前,为了保证无线图传的传输性能,可移动平台通常都是同时使用多个天线发射数据。然而,可移动平台同时使用多个天线发射数据比仅使用一个天线发射数据的功耗更高、发热更严重。由于功耗和发热量会随着传输时间的增加而增加,这将导致可移动平台的温度上升,影响可移动平台的运行,用户体验不好。
因此,在可移动平台与终端设备进行通信的过程中,获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数,以及获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将任一个天线与终端设备进行通信对应的第一信道参数分别与第二信道参数进行比较,得到多个信道参数比较结果,最后根据多个信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置,从而使得可移动平台能够自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
在一实施例中,如图5所示,步骤S204可以包括:子步骤S2041至S2042。
S2041、确定所述多个信道参数比较结果中是否存在至少一个信道参数比较结果满足预设条件。
在获取到多个信道参数比较结果后,确定多个信道参数比较结果中是否存在至少一个信道参数比较结果满足预设条件,若存在至少一个信道参数比较结果满足预设条件,则可以确定仅通过单天线与终端设备进行通信的传输性能和同时通过至少两个天线与终端设备进行通信的传输性能满足当前需求的传输性 能要求,则多个信道参数比较结果均不满足预设条件,则可以确定仅通过单天线与终端设备进行通信的传输性能不满足当前需求的传输性能要求。
所述至少一个信道参数比较结果满足预设条件包括:至少一个所述第一信道参数与所述第二信道参数均位于预定范围;或者,至少一个第一信道参数与第二信道参数的差值的绝对值小于或等于预设值;或者,至少一个第一信道参数乘以第一预设系数得到的乘积与第二信道参数之间的差值的绝对值小于或等于预设值,第一预设系数大于1;或者,第二信道参数乘以第二预设系数得到的乘积与至少一个第一信道参数之间的差值的绝对值小于或等于预设值,第二预设系数小于1,且大于0。
S2042、若存在至少一个信道参数比较结果满足预设条件,则根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线。
若多个信道参数比较结果中存在至少一个信道参数比较结果满足预设条件,则仅通过单天线与终端设备进行通信的传输性能和同时通过至少两个天线与终端设备进行通信的传输性能满足当前需求的传输性能要求,则根据满足预设条件的至少一个第一信道参数从至少两个天线中选择一个天线作为目标天线,以使得可移动平台通过目标天线与终端设备进行通信,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
在一实施例中,根据满足预设条件的至少一个第一信道参数从至少两个天线中选择一个天线作为目标天线的方式可以为:将满足预设条件的至少一个第一信道参数中的最大的第一信道参数确定为目标信道参数;将至少两个天线中与目标信道参数对应的天线作为目标天线,以使得可移动平台通过目标天线与终端设备通信。可移动平台通过传输性能最好的天线与终端设备进行通信,可以提高无线图传的传输性能,也能够在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
在一实施例中,目标信道参数包括目标信道容量和目标信噪比,将至少两个天线中与目标信道参数对应的天线作为目标天线的方式可以为:在可移动平台处于第一工作模式时,将至少两个天线中与目标信道容量对应的天线作为目标天线;在可移动平台处于第二工作模式时,将至少两个天线中与目标信噪比对应的天线作为目标天线。通过在不同的工作模式下,考虑不同的信道参数对天线选择的影响,从而能够在满足不同工作模式的传输性能要求的情况下,减少可移动平台的功耗和发热量,提高用户体验。
其中,第一工作模式对视频的清晰度/画质要求较高,因此,第二工作模式对视频的清晰度/画质要求较低,所述第一工作模式下的可移动平台与终端设备之间的数据量传输量大于第二工作模式下的可移动平台与终端设备之间的数据量传输量。同时,第一工作模式对传输的可靠性要求较低,第二工作模式对传输的可靠性要求较高,因此第一工作模式下的可移动平台与终端设备之间的误码率大于第二工作模式下的可移动平台与终端设备之间的误码率。
在一实施例中,若多个信道参数比较结果均不满足预设条件,即仅通过单天线与终端设备进行通信的传输性能不满足当前需求的传输性能要求,则将至少两个天线作为目标天线,以使得可移动平台通过目标天线与所述终端设备通信。通过在可移动平台仅通过单天线与终端设备进行通信的传输性能不满足当前需要的传输性能要求,而通过至少两个天线与终端设备进行通信的传输性能满足当前需要的传输性能要求时,可移动平台通过至少两个天线与终端设备通信,保证无线图传的传输性能。
在一实施例中,若存在至少一个信道参数比较结果满足预设条件,则在可移动平台的温度大于或等于预设温度时,根据满足预设条件的至少一个第一信道参数从至少两个天线中选择一个天线作为目标天线;在可移动平台的温度小于预设温度时,将至少两个天线作为目标天线,以使得可移动平台通过目标天线与终端设备通信。其中,可移动平台的温度可以通过可移动平台上的温度传感器采集确定,预设温度可基于实际情况进行设置,本申请实施例对此不做具体限定。通过在可移动平台的温度大于或等于预设温度时,可移动平台仅通过单天线与终端设备通信,可以减少可移动平台的功耗和发热量,防止可移动平台的温度过高导致可移动平台损坏,提高用户体验。
上述实施例提供的天线选择方法,获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数,以及获取可移动平台同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将任一个天线与终端设备进行通信对应的第一信道参数分别与第二信道参数进行比较,得到多个信道参数比较结果,最后根据多个信道参数比较结果,确定可移动平台与终端设备进行通信的天线配置,从而使得可移动平台能够自适应的选择可移动平台与终端设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少可移动平台的功耗和发热量,提高用户体验。
请参阅图6,图6是本申请实施例提供的一种无线通信装置的结构示意性框图。
如图6所示,该无线通信装置300包括处理器301和存储器302,处理器301和存储器302通过总线303连接,该总线303比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器301可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器302可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器301用于运行存储在存储器302中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数;
获取所述可移动平台同时通过至少两个天线与所述终端设备通信对应的第二信道参数,其中,所述至少两个天线包括所述第一天线;
将所述第一信道参数与所述第二信道参数进行比较,得到信道参数比较结果;
根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
在一实施例中,所述至少两个天线位于所述可移动平台上。
在一实施例中,所述处理器实现将所述第一信道参数与所述第二信道参数进行比较时,用于实现:
确定所述第一信道参数与所述第二信道参数的差值;或者
确定所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值,其中,所述第一预设系数大于1;或者
确定所述第二信道参数乘以第二预设系数得到的乘积与所述第一信道参数之间的差值,其中,所述第二预设系数小于1,且大于0;或者
确定所述第一信道参数和所述第二信道参数是否位于预定范围内。
在一实施例中,仅通过所述第一天线与所述终端设备进行通信对应的所述第一信道参数的数值比仅通过所述至少两个天线中的其他天线与所述终端设备进行通信对应的第三信道参数的数值大。
在一实施例中,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信道容量和/或第一信噪比,以及所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信道容量 和/或第二信噪比。
在一实施例中,当所述可移动平台为第一工作模式时,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信道容量,所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信道容量;以及
当所述可移动平台为第二工作模式时,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信噪比,所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信噪比。
在一实施例中,所述第一工作模式下的所述可移动平台与所述终端设备之间的数据量传输量大于所述第二工作模式下的所述可移动平台与所述终端设备之间的数据量传输量;
所述第一工作模式下的所述可移动平台与所述终端设备之间的误码率大于所述第二工作模式下的所述可移动平台与所述终端设备之间的误码率。
在一实施例中,所述根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
若所述信道参数比较结果满足预设条件,则将所述第一天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
在一实施例中,所述预设条件包括:
所述第一信道参数与所述第二信道参数的差值的绝对值小于或等于预设值;或者
所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值的绝对值小于或等于预设值,所述第一预设系数大于1;或者
所述第二信道参数乘以第二预设系数得到的乘积与所述第一信道参数之间的差值的绝对值小于或等于预设值,所述第二预设系数小于1,且大于0;或者
所述第一信道参数与所述第二信道参数均位于预定范围。
在一实施例中,所述处理器实现根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
若所述信道参数比较结果不满足预设条件,则将所述至少两个天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
在一实施例中,所述处理器实现根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
若所述信道参数比较结果满足预设条件,则在所述可移动平台的温度大于 或等于预设温度时,将所述第一天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
在一实施例中,所述处理器实现将所述第一天线作为目标天线之后,还用于实现:
控制所述至少两个天线中除所述目标天线之外的天线对应的功率放大器和射频收发器处于关闭状态。
在一实施例中,所述处理器实现将所述第一天线作为目标天线之后,还用于实现:
控制所述至少两个天线中除所述目标天线之外的天线对应的功率放大器处于关闭状态;
控制所述至少两个天线中除所述目标天线之外的天线对应的发射通道处于关闭状态。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的无线通信装置的具体工作过程,可以参考前述天线选择方法实施例中的对应过程,在此不再赘述。
请参阅图7,图7是本申请实施例提供的另一种无线通信装置的结构示意性框图。
如图7所示,该无线通信装置400包括处理器401和存储器402,处理器401和存储器402通过总线403连接,该总线403比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器401可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器402可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器401用于运行存储在存储器402中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数;以及
获取所述可移动平台同时通过所述至少两个天线与所述终端设备通信对应的第二信道参数;
将任一个天线与终端设备进行通信对应的所述第一信道参数分别与所述第 二信道参数进行比较,得到多个信道参数比较结果;
根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
在一实施例中,所述处理器实现根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
若存在至少一个信道参数比较结果满足预设条件,则根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线。
在一实施例中,所述至少一个信道参数比较结果满足预设条件包括:
至少一个所述第一信道参数与所述第二信道参数的差值的绝对值小于或等于预设值;或者
至少一个所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值的绝对值小于或等于预设值,所述第一预设系数大于1;或者
所述第二信道参数乘以第二预设系数得到的乘积与至少一个所述第一信道参数之间的差值的绝对值小于或等于预设值,所述第二预设系数小于1,且大于0;
至少一个所述第一信道参数与所述第二信道参数均位于预定范围。
在一实施例中,所述处理器实现根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线时,用于实现:
将满足预设条件的至少一个所述第一信道参数中的最大的所述第一信道参数确定为目标信道参数;
将所述至少两个天线中与所述目标信道参数对应的天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
在一实施例中,所述目标信道参数包括目标信道容量和目标信噪比,所述处理器实现将所述至少两个天线中与所述目标信道参数对应的天线作为目标天线时,用于实现:
在所述可移动平台处于第一工作模式时,将所述至少两个天线中与所述目标信道容量对应的天线作为目标天线;
在所述可移动平台处于第二工作模式时,将所述至少两个天线中与所述目标信噪比对应的天线作为目标天线。
在一实施例中,所述处理器实现根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
若所述多个信道参数比较结果均不满足预设条件,则将所述至少两个天线 作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
在一实施例中,所述处理器实现根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
若存在至少一个所述信道参数比较结果满足预设条件,则在所述可移动平台的温度大于或等于预设温度时,根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的无线通信装置的具体工作过程,可以参考前述天线选择方法实施例中的对应过程,在此不再赘述。
请参阅图8,图8是本申请实施例提供的一种可移动平台的结构示意性框图。
如图8所示,该可移动平台500包括:
平台本体510;
至少两个天线520,设置于所述平台本体上,用于与终端设备通信;
动力系统530,所述动力系统设于所述平台本体上,所述动力系统用于为所述可移动平台500提供移动动力;
控制器540,设置于所述平台本体上,用于控制所述可移动平台500移动;
无线通信装置550,设置于所述平台本体上,用于确定可移动平台500与终端设备进行通信的天线配置。
其中,可移动平台500可以为手持移动设备,还可以是具有动力系统,并由该动力系统提供动力的设备,例如,可移动平台200包括可移动机器人、无人机和无人汽车等。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的可移动平台的具体工作过程,可以参考前述天线选择方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的天线选择方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的控制终端或无人机的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。
需要说明的是,本发明并非限于此。根据本发明的另一实施例,提供一种天线选择方法、装置及计算机可读存储介质。通过获取发送设备仅通过第一天线与接收设备进行通信对应的第一信道参数,以及获取发送设备同时通过至少两个天线与终端设备通信对应的第二信道参数,然后将第一信道参数与第二信道参数进行比较,得到信道参数比较结果,并根据信道参数比较结果,确定发送设备与接收设备进行通信的天线配置,从而使得发送设备能够自适应地选择发送设备与接收设备进行通信的天线配置,进而在保证无线图传的传输性能的同时,减少发送设备的功耗和发热量,提高用户体验。也就是说,上述天线选择方法并不限于仅应用于可移动平台和终端设备之间。本领域技术人员可以在不脱离本发明精神和原理的前提下,将此天线选择方法应用于任意发送设备和接收设备。例如,发送设备除可以是可移动平台之外,还可以是任意的固定平台。例如,一个位置固定的遥控操作台。接收设备除可以是终端设备之外,还可以是接收发送设备发送的信号的其他接收设备。例如,另一位置固定的遥控操作台。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种天线选择方法,其特征在于,包括:
    获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数;
    获取所述可移动平台同时通过至少两个天线与所述终端设备通信对应的第二信道参数;
    将所述第一信道参数与所述第二信道参数进行比较,得到信道参数比较结果;
    根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
  2. 根据权利要求1所述的天线选择方法,其特征在于,所述至少两个天线位于所述可移动平台上,以及所述至少两个天线包括所述第一天线。
  3. 根据权利要求1所述的天线选择方法,其特征在于,所述将所述第一信道参数与所述第二信道参数进行比较,包括:
    确定所述第一信道参数与所述第二信道参数的差值;或者
    确定所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值,其中,所述第一预设系数大于1;或者
    确定所述第二信道参数乘以第二预设系数得到的乘积与所述第一信道参数之间的差值,其中,所述第二预设系数小于1,且大于0;或者
    确定所述第一信道参数和所述第二信道参数是否位于预定范围内。
  4. 根据权利要求1所述的天线选择方法,其特征在于,仅通过所述第一天线与所述终端设备进行通信对应的所述第一信道参数的数值比仅通过所述至少两个天线中的其他天线与所述终端设备进行通信对应的第三信道参数的数值大。
  5. 根据权利要求1所述的天线选择方法,其特征在于,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信道容量和/或第一信噪比,以及所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信道容量和/或第二信噪比。
  6. 根据权利要求1所述的天线选择方法,其特征在于,当所述可移动平台为第一工作模式时,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信道容量,所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信道容量;以及
    当所述可移动平台为第二工作模式时,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信噪比,所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信噪比。
  7. 根据权利要求6所述的天线选择方法,其特征在于,所述第一工作模式下的所述可移动平台与所述终端设备之间的数据量传输量大于所述第二工作模式下的所述可移动平台与所述终端设备之间的数据量传输量;
    所述第一工作模式下的所述可移动平台与所述终端设备之间的误码率大于所述第二工作模式下的所述可移动平台与所述终端设备之间的误码率。
  8. 根据权利要求1-7中任一项所述的天线选择方法,其特征在于,所述根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
    若所述信道参数比较结果满足预设条件,则仅将所述第一天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  9. 根据权利要求8所述的天线选择方法,其特征在于,所述预设条件包括:
    所述第一信道参数与所述第二信道参数的差值的绝对值小于或等于预设值;或者
    所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值的绝对值小于或等于预设值,所述第一预设系数大于1;或者
    所述第二信道参数乘以第二预设系数得到的乘积与所述第一信道参数之间的差值的绝对值小于或等于预设值,所述第二预设系数小于1,且大于0;或者
    所述第一信道参数与所述第二信道参数均位于预定范围。
  10. 根据权利要求8所述的天线选择方法,其特征在于,所述根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
    若所述信道参数比较结果不满足预设条件,则将所述至少两个天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  11. 根据权利要求10所述的天线选择方法,其特征在于,所述根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
    若所述信道参数比较结果满足预设条件,则在所述可移动平台的温度大于或等于预设温度时,将所述第一天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  12. 根据权利要求8所述的天线选择方法,其特征在于,所述将所述第一天线作为目标天线之后,还包括:
    控制所述至少两个天线中除所述目标天线之外的天线对应的功率放大器和射频收发器处于关闭状态。
  13. 根据权利要求8所述的天线选择方法,其特征在于,所述将所述第一天线作为目标天线之后,还包括:
    控制所述至少两个天线中除所述目标天线之外的天线对应的功率放大器处于关闭状态;
    控制所述至少两个天线中除所述目标天线之外的天线对应的发射通道处于关闭状态。
  14. 一种天线选择方法,其特征在于,包括:
    获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数;以及
    获取所述可移动平台同时通过所述至少两个天线与所述终端设备通信对应的第二信道参数;
    将任一个天线与终端设备进行通信对应的所述第一信道参数分别与所述第二信道参数进行比较,得到多个信道参数比较结果;
    根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
  15. 根据权利要求14所述的天线选择方法,其特征在于,所述根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
    若存在至少一个信道参数比较结果满足预设条件,则根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线。
  16. 根据权利要求15所述的天线选择方法,其特征在于,所述至少一个信道参数比较结果满足预设条件包括:
    至少一个所述第一信道参数与所述第二信道参数的差值的绝对值小于或等于预设值;或者
    至少一个所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值的绝对值小于或等于预设值,所述第一预设系数大于1;或者
    所述第二信道参数乘以第二预设系数得到的乘积与至少一个所述第一信道参数之间的差值的绝对值小于或等于预设值,所述第二预设系数小于1,且大 于0;
    至少一个所述第一信道参数与所述第二信道参数均位于预定范围。
  17. 根据权利要求15所述的天线选择方法,其特征在于,所述根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线,包括:
    将满足预设条件的至少一个所述第一信道参数中的最大的所述第一信道参数确定为目标信道参数;
    将所述至少两个天线中与所述目标信道参数对应的天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  18. 根据权利要求17所述的天线选择方法,其特征在于,所述目标信道参数包括目标信道容量和目标信噪比,所述将所述至少两个天线中与所述目标信道参数对应的天线作为目标天线,包括:
    在所述可移动平台处于第一工作模式时,将所述至少两个天线中与所述目标信道容量对应的天线作为目标天线;
    在所述可移动平台处于第二工作模式时,将所述至少两个天线中与所述目标信噪比对应的天线作为目标天线。
  19. 根据权利要求15所述的天线选择方法,其特征在于,所述根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
    若所述多个信道参数比较结果均不满足预设条件,则将所述至少两个天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  20. 根据权利要求15所述的天线选择方法,其特征在于,所述根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
    若存在至少一个所述信道参数比较结果满足预设条件,则在所述可移动平台的温度大于或等于预设温度时,根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线。
  21. 一种无线通信装置,其特征在于,所述无线通信装置包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取可移动平台仅通过第一天线与终端设备进行通信对应的第一信道参数;
    获取所述可移动平台同时通过至少两个天线与所述终端设备通信对应的第二信道参数;
    将所述第一信道参数与所述第二信道参数进行比较,得到信道参数比较结果;
    根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
  22. 根据权利要求21所述的无线通信装置,其特征在于,所述至少两个天线位于所述可移动平台上,并且所述至少两个天线包括所述第一天线。
  23. 根据权利要求21所述的无线通信装置,其特征在于,所述处理器实现将所述第一信道参数与所述第二信道参数进行比较时,用于实现:
    确定所述第一信道参数与所述第二信道参数的差值;或者
    确定所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值,其中,所述第一预设系数大于1;或者
    确定所述第二信道参数乘以第二预设系数得到的乘积与所述第一信道参数之间的差值,其中,所述第二预设系数小于1,且大于0;或者
    确定所述第一信道参数和所述第二信道参数是否位于预定范围内。
  24. 根据权利要求21所述的无线通信装置,其特征在于,仅通过所述第一天线与所述终端设备进行通信对应的所述第一信道参数的数值比仅通过所述至少两个天线中的其他天线与所述终端设备进行通信对应的第三信道参数的数值大。
  25. 根据权利要求21所述的无线通信装置,其特征在于,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信道容量和/或第一信噪比,以及所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信道容量和/或第二信噪比。
  26. 根据权利要求21所述的无线通信装置,其特征在于,当所述可移动平台为第一工作模式时,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信道容量,所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信道容量;以及
    当所述可移动平台为第二工作模式时,所述第一信道参数用于指示仅通过所述第一天线与所述终端设备进行通信时的第一信噪比,所述第二信道参数用于指示同时通过所述至少两个天线与所述终端设备进行通信时的第二信噪比。
  27. 根据权利要求26所述的无线通信装置,其特征在于,所述第一工作模式下的所述可移动平台与所述终端设备之间的数据量传输量大于所述第二工作模式下的所述可移动平台与所述终端设备之间的数据量传输量;
    所述第一工作模式下的所述可移动平台与所述终端设备之间的误码率大于所述第二工作模式下的所述可移动平台与所述终端设备之间的误码率。
  28. 根据权利要求21-27中任一项所述的无线通信装置,其特征在于,所述根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置,包括:
    若所述信道参数比较结果满足预设条件,则将所述第一天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  29. 根据权利要求28所述的无线通信装置,其特征在于,所述预设条件包括:
    所述第一信道参数与所述第二信道参数的差值的绝对值小于或等于预设值;或者
    所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值的绝对值小于或等于预设值,所述第一预设系数大于1;或者
    所述第二信道参数乘以第二预设系数得到的乘积与所述第一信道参数之间的差值的绝对值小于或等于预设值,所述第二预设系数小于1,且大于0;或者
    所述第一信道参数与所述第二信道参数均位于预定范围。
  30. 根据权利要求28所述的无线通信装置,其特征在于,所述处理器实现根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
    若所述信道参数比较结果不满足预设条件,则将所述至少两个天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  31. 根据权利要求30所述的无线通信装置,其特征在于,所述处理器实现根据所述信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
    若所述信道参数比较结果满足预设条件,则在所述可移动平台的温度大于或等于预设温度时,将所述第一天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  32. 根据权利要求28所述的无线通信装置,其特征在于,所述处理器实现将所述第一天线作为目标天线之后,还用于实现:
    控制所述至少两个天线中除所述目标天线之外的天线对应的功率放大器和射频收发器处于关闭状态。
  33. 根据权利要求28所述的无线通信装置,其特征在于,所述处理器实现将所述第一天线作为目标天线之后,还用于实现:
    控制所述至少两个天线中除所述目标天线之外的天线对应的功率放大器处于关闭状态;
    控制所述至少两个天线中除所述目标天线之外的天线对应的发射通道处于关闭状态。
  34. 一种无线通信装置,其特征在于,所述无线通信装置包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取可移动平台仅通过至少两个天线中的任一个天线与终端设备进行通信对应的第一信道参数;以及
    获取所述可移动平台同时通过所述至少两个天线与所述终端设备通信对应的第二信道参数;
    将任一个天线与终端设备进行通信对应的所述第一信道参数分别与所述第二信道参数进行比较,得到多个信道参数比较结果;
    根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置。
  35. 根据权利要求34所述的无线通信装置,其特征在于,所述处理器实现根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
    若存在至少一个信道参数比较结果满足预设条件,则根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线。
  36. 根据权利要求35所述的无线通信装置,其特征在于,所述至少一个信道参数比较结果满足预设条件包括:
    至少一个所述第一信道参数与所述第二信道参数的差值的绝对值小于或等于预设值;或者
    至少一个所述第一信道参数乘以第一预设系数得到的乘积与所述第二信道参数之间的差值的绝对值小于或等于预设值,所述第一预设系数大于1;或者
    所述第二信道参数乘以第二预设系数得到的乘积与至少一个所述第一信道参数之间的差值的绝对值小于或等于预设值,所述第二预设系数小于1,且大于0;
    至少一个所述第一信道参数与所述第二信道参数均位于预定范围。
  37. 根据权利要求35所述的无线通信装置,其特征在于,所述处理器实现根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线时,用于实现:
    将满足预设条件的至少一个所述第一信道参数中的最大的所述第一信道参数确定为目标信道参数;
    将所述至少两个天线中与所述目标信道参数对应的天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  38. 根据权利要求37所述的无线通信装置,其特征在于,所述目标信道参数包括目标信道容量和目标信噪比,所述处理器实现将所述至少两个天线中与所述目标信道参数对应的天线作为目标天线时,用于实现:
    在所述可移动平台处于第一工作模式时,将所述至少两个天线中与所述目标信道容量对应的天线作为目标天线;
    在所述可移动平台处于第二工作模式时,将所述至少两个天线中与所述目标信噪比对应的天线作为目标天线。
  39. 根据权利要求35所述的无线通信装置,其特征在于,所述处理器实现根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
    若所述多个信道参数比较结果均不满足预设条件,则将所述至少两个天线作为目标天线,以使得所述可移动平台通过所述目标天线与所述终端设备通信。
  40. 根据权利要求35所述的无线通信装置,其特征在于,所述处理器实现根据所述多个信道参数比较结果,确定所述可移动平台与所述终端设备进行通信的天线配置时,用于实现:
    若存在至少一个所述信道参数比较结果满足预设条件,则在所述可移动平台的温度大于或等于预设温度时,根据满足预设条件的至少一个所述第一信道参数从所述至少两个天线中选择一个天线作为目标天线。
  41. 一种可移动平台,其特征在于,所述可移动平台包括;
    平台本体;
    至少两个天线,设置于所述平台本体上,用于与终端设备通信;
    动力系统,所述动力系统设于所述平台本体上,所述动力系统用于为所述可移动平台提供移动动力;
    控制器,设置于所述平台本体上,用于控制所述可移动平台移动;
    权利要求21-40中任一项所述的无线通信装置,设置于所述平台本体上,用于确定所述可移动平台与所述终端设备进行通信的天线配置。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-20中任一项所述的天线选择方法的步骤。
PCT/CN2020/131939 2020-11-26 2020-11-26 天线选择方法、装置、可移动平台及计算机可读存储介质 WO2022109953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131939 WO2022109953A1 (zh) 2020-11-26 2020-11-26 天线选择方法、装置、可移动平台及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131939 WO2022109953A1 (zh) 2020-11-26 2020-11-26 天线选择方法、装置、可移动平台及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022109953A1 true WO2022109953A1 (zh) 2022-06-02

Family

ID=81755048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131939 WO2022109953A1 (zh) 2020-11-26 2020-11-26 天线选择方法、装置、可移动平台及计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2022109953A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117134794A (zh) * 2023-10-26 2023-11-28 天津云圣智能科技有限责任公司 一种通信链路的切换方法、图传设备及无人机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050185707A1 (en) * 2004-02-24 2005-08-25 Hoo Min C. Method and system for antenna selection diversity with minimum threshold
CN103312395A (zh) * 2012-03-15 2013-09-18 西门子公司 一种无线通信系统中天线选择方法和无线通信设备
CN105556410A (zh) * 2014-12-31 2016-05-04 深圳市大疆创新科技有限公司 移动物体及其天线自动对准方法、系统
CN111083712A (zh) * 2019-12-20 2020-04-28 珠海云洲智能科技有限公司 一种无人船通信方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050185707A1 (en) * 2004-02-24 2005-08-25 Hoo Min C. Method and system for antenna selection diversity with minimum threshold
CN103312395A (zh) * 2012-03-15 2013-09-18 西门子公司 一种无线通信系统中天线选择方法和无线通信设备
CN105556410A (zh) * 2014-12-31 2016-05-04 深圳市大疆创新科技有限公司 移动物体及其天线自动对准方法、系统
CN111083712A (zh) * 2019-12-20 2020-04-28 珠海云洲智能科技有限公司 一种无人船通信方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117134794A (zh) * 2023-10-26 2023-11-28 天津云圣智能科技有限责任公司 一种通信链路的切换方法、图传设备及无人机
CN117134794B (zh) * 2023-10-26 2024-01-19 天津云圣智能科技有限责任公司 一种通信链路的切换方法、图传设备及无人机

Similar Documents

Publication Publication Date Title
US11703886B2 (en) Control method, apparatus, and device, and UAV
US11151773B2 (en) Method and apparatus for adjusting viewing angle in virtual environment, and readable storage medium
US10551834B2 (en) Method and electronic device for controlling unmanned aerial vehicle
EP3673345B1 (en) System and method for distributed device tracking
US11691079B2 (en) Virtual vehicle control method in virtual scene, computer device, and storage medium
WO2018095158A1 (zh) 一种飞行器的飞行控制方法、装置和系统
WO2016138690A1 (zh) 基于智能终端的体感飞行操控系统及终端设备
US10452063B2 (en) Method, storage medium, and electronic device for controlling unmanned aerial vehicle
TW201522164A (zh) 遠端控制方法及終端
WO2021077923A1 (zh) 控制显示设备的方法及便携设备
US20230276428A1 (en) Coexistence interference avoidance between two different radios operating in the same band
CN105892476A (zh) 一种飞行器的控制方法及控制终端
KR20180022020A (ko) 전자 장치 및 그의 동작 방법
WO2020238350A1 (zh) 天线控制方法及移动终端
KR102290746B1 (ko) 무인 비행 장치를 제어하는 전자 장치, 그에 의해 제어되는 무인 비행 장치 및 시스템
KR102353231B1 (ko) 비행 표시장치
US20220137204A1 (en) Interactive control with ranging and gesturing between devices
CN108268121A (zh) 无人飞行器的控制方法、控制装置及控制系统
US20230198304A1 (en) Electronic device component and control method thereof, and control apparatus of electronic device
CN108170153A (zh) 无人机飞行控制系统及其方法
WO2022109953A1 (zh) 天线选择方法、装置、可移动平台及计算机可读存储介质
CN106980323A (zh) 一种控制无人机的系统
US20230115445A1 (en) Time display method and apparatus, and electronic device
US20220116542A1 (en) ELECTRONIC DEVICE COMPRISING UWB ANTENNAS AND METHOD FOR IMPLEMENTING 6DoF
WO2018058552A1 (zh) 一种信息处理方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962844

Country of ref document: EP

Kind code of ref document: A1