WO2022109927A1 - 一种通信方法、装置及计算机可读存储介质 - Google Patents

一种通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022109927A1
WO2022109927A1 PCT/CN2020/131790 CN2020131790W WO2022109927A1 WO 2022109927 A1 WO2022109927 A1 WO 2022109927A1 CN 2020131790 W CN2020131790 W CN 2020131790W WO 2022109927 A1 WO2022109927 A1 WO 2022109927A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
pdsch
sequence
tci
receiving
Prior art date
Application number
PCT/CN2020/131790
Other languages
English (en)
French (fr)
Inventor
郝宇峰
叶国和
简红清
孙庆华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080107221.2A priority Critical patent/CN116458241A/zh
Priority to PCT/CN2020/131790 priority patent/WO2022109927A1/zh
Publication of WO2022109927A1 publication Critical patent/WO2022109927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method, an apparatus, and a computer-readable storage medium.
  • UE can parse the transmission configuration indication (TCI) status in downlink control information (DCI) carried on the physical downlink control channel (PDCCH) by parsing , select the matching TCI state from the 8 TCI states activated by the MAC control element (CE) to obtain the demodulation reference signal (DMRS) of the physical downlink share channel (PDSCH) ) and the quasi co-location (QCL) relationship of the corresponding reference signal (reference signal, RS), so as to determine the best transmit and receive beam pair (beam pair) information of PDSCH data, and then switch the receiving beam of PDSCH to TCI Indicates the best beam received.
  • TCI transmission configuration indication
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • CE MAC control element
  • QCL quasi co-location
  • the receiving and processing flow of PDCCH is: channel estimation, blind detection, decoding, physical layer parameter analysis and parameter configuration. Due to the processing flow of the PDCCH, there is a certain delay between the reception of the PDCCH and the effective configuration of the specific parameters. Therefore, in the 3rd generation partnership project (3GPP) TS38.331, the time threshold (timeDurationForQCL) for the downlink (downlink, DL) PDSCH beam receiving indication to take effect is defined, that is, if the PDSCH start symbol and scheduling The last symbol of its PDCCH is greater than or equal to the interval of the time threshold, then the parsed TCI state can take effect. On the contrary, the DMRS of the PDSCH is the same as the control resource set (CORESET) with the lowest index number in the corresponding search space. The QCLs of the included PDCCHs are consistent.
  • the UE can use the PDCCH beam receiving or the default beam receiving (for example, the synchronization signal/PBCH block (SSB) selected by the UE during initial access)
  • the optimal receiving beam for PDSCH data cannot be timely selected according to TCI, thus reducing the accuracy of receiving PDSCH data.
  • the present application provides a communication method, an apparatus and a computer-readable storage medium, which can realize switching of PDSCH receiving beams through the first indication information, and improve the accuracy of receiving PDSCH data.
  • the present application provides a communication method, which can be applied to a terminal device, and can also be applied to a module (eg, a chip) in the terminal device.
  • the following description takes the application to the terminal device as an example.
  • the communication method can be used to switch the beam receiving of the PDSCH through the first indication information, and can include: receiving first indication information from a network device, where the first indication information is used to indicate the beam receiving of the PDSCH of the physical downlink shared channel. information; switching the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information; using the receiving beam corresponding to the first indication information to receive the PDSCH from the network device.
  • the terminal device can receive the first indication information from the network device before receiving the PDSCH, parse the first indication message to determine the receiving beam for receiving the PDSCH, and switch to the advanced PDSCH when it needs to receive the PDSCH from the network device. Determine the receiving beam for receiving PDSCH.
  • the receiving beam for receiving PDSCH can be determined in advance through the first indication information, so that the terminal device can quickly and seamlessly determine the optimal receiving beam for PDSCH data when receiving PDSCH, so that the accuracy of receiving PDSCH data can be improved.
  • the demodulation and reception performance of the downlink data channel reduces the bit error rate of the PDSCH channel and ensures the low-latency and high-reliability reception of data.
  • the method further includes: receiving second indication information from the network device, where the second indication information is used to indicate a time-frequency position of the first indication information; the receiving The first indication information from the network device includes: receiving the first indication information from the network device at the time-frequency position indicated by the second indication information.
  • the network device may first send second indication information to the terminal device, the second indication information indicates the time-frequency location of the first indication information, and the time-frequency location can be understood as time-frequency resource or time-frequency resource location.
  • the terminal device may receive the first indication information at the time-frequency position of the first indication information indicated by the second indication information. Receiving the first indication information through a specific time-frequency location indication can reduce the delay in receiving the first indication information.
  • the method further includes: the switching the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information includes: when the first indication information matches the first sequence At the time, the transmission state indication TCI is determined according to the first indication information; the receiving beam of the PDSCH is switched to the receiving beam corresponding to the TCI.
  • the terminal device after the terminal device receives the first indication information from the network device, it can be obtained through automatic gain control (automatic gain control, AGC) adjustment and fast Fourier transform (fast fourier transform, FFT) processing.
  • AGC automatic gain control
  • FFT fast fourier transform
  • For the first indication information sequence correlate the first indication information sequence with the first sequence, parse out the TCI indication content, and switch the PDSCH receiving beam to the receiving beam corresponding to the TCI when receiving the PDSCH from the network device.
  • the first indication information matches the first sequence. It can be understood that after the terminal device receives the first indication information from the network device, it can perform correlation operations on the first indication information to analyze the content, such as AGC adjustment and FFT processing, to obtain the first indication. an information sequence, correlating the first indication information sequence with the first sequence sequence.
  • the first sequence may be generated by the terminal device itself and stored locally.
  • the first sequence of indication information may be correlated with the first sequence stored in the terminal device.
  • the present application provides a communication method, which can be applied to a network device, and can also be applied to a module (eg, a chip) in a network device.
  • the communication method can be used to switch the receiving beam of the PDSCH through the first indication information, and can include: generating the first indication information; sending the first indication information to the terminal device, where the first indication information is used to indicate the physical downlink The receiving beam of the shared channel PDSCH; the PDSCH is sent to the terminal device, and the sending time of the first indication information is earlier than the sending time of the PDSCH.
  • the network device may generate first indication information, where the first indication information is used to indicate the receiving beam of the PDSCH, and the first indication information is sent before sending the PDSCH to the terminal device.
  • the terminal device can determine the receiving beam of PDSCH in advance through the first indication information, so that the terminal device can receive PDSCH data according to the determined receiving beam when receiving PDSCH, thereby improving the accuracy of receiving PDSCH data.
  • the execution subject of the second aspect is a network device
  • the specific content of the second aspect corresponds to the content of the first aspect
  • the corresponding features and beneficial effects of the second aspect can refer to the description of the first aspect. To avoid repetition, this The detailed description is appropriately omitted here.
  • the symbol difference between the start symbol of the PDSCH and the end symbol of the first indication information is greater than or equal to a first threshold.
  • the terminal device since it takes a certain time for the terminal device to parse the first indication information, to ensure that the terminal device accurately switches to the receiving beam indicated by the network device when receiving the PDSCH, it needs to be reserved for the terminal device to parse the first indication information.
  • the time required for the indication information therefore, the time interval between sending the PDSCH and sending the first indication information is greater than or equal to the first threshold, and the first threshold refers to the time for the terminal device to parse the first indication information.
  • the method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate a time-frequency position of the first indication information.
  • the method further includes: determining a symbol interval between the PDSCH and a physical downlink control channel PDCCH corresponding to the PDSCH; the generating the first indication information includes: when the symbol interval When the value is less than the threshold value, the first indication information is generated.
  • the terminal device when the symbol interval between PDSCH and its corresponding PDCCH is less than the threshold timeDurationForQCL, the terminal device cannot timely select the optimal receiving beam of PDSCH according to the TCI instruction of the network device, then it needs to pass the first
  • the indication information determines the receiving beam of the PDSCH in advance. Therefore, the first indication information may be generated by the network device in a scenario where the symbol interval between the PDCCH and its scheduled PDSCH is smaller than a threshold defined by the protocol. If the interval between the PDCCH and its scheduled PDSCH symbols is greater than or equal to the threshold defined by the protocol, the network device may not generate the first indication information.
  • the first indication information sequence satisfies:
  • r(m) is the first indication information sequence
  • c(i) is a pseudo-random sequence
  • the c(i) is initialized by a first initial value, and the first initial value satisfies:
  • n TCI-ID is the transmission status indication TCI indicator code, the n TCI-ID ⁇ ⁇ 0,1,2,3,4,5, 6,7 ⁇ .
  • the pseudorandom sequence c(i) is initialized by a second initial value, and the second initial value satisfies:
  • UE_ID is the identifier of the terminal device.
  • the pseudo-random sequence c(i) can be obtained by initialization according to different initial values, that is, the first initial value and the second initial value. In this way, there can be various methods for generating the first indication information sequence.
  • the first indication information is generated by an m sequence, and the first indication information sequence satisfies:
  • the generation sequence of the first indication information is one of the following sequences:
  • Gold sequence m sequence
  • ZC sequence computer generated sequence CGS.
  • a communication apparatus may be a terminal device or a module (eg, a chip) in the terminal device.
  • the communication device may include:
  • a receiving unit configured to receive first indication information from a network device, where the first indication information is used to indicate beam receiving information of the physical downlink shared channel PDSCH;
  • a switching unit configured to switch the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information
  • the receiving unit is further configured to receive the PDSCH from the network device by using the receiving beam corresponding to the first indication information.
  • the receiving unit is further configured to:
  • the receiving unit receives the first indication information from the network device, and is specifically used for:
  • the first indication information from the network device is received at the time-frequency position indicated by the second indication information.
  • the switching unit switches the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information specifically for:
  • a communication apparatus may be a network device or a module (eg, a chip) in the network device.
  • the communication device may include:
  • a generating unit configured to generate first indication information
  • a sending unit configured to send the first indication information to the terminal device, where the first indication information is used to indicate the receiving beam of the physical downlink shared channel PDSCH;
  • the sending unit is further configured to send the PDSCH to the terminal device, and the sending time of the first indication information is earlier than the sending time of the PDSCH.
  • the symbol difference between the start symbol of the PDSCH and the end symbol of the first indication information is greater than or equal to a first threshold.
  • the sending unit is further configured to:
  • the communication device further includes:
  • a determining unit configured to determine the symbol interval between the PDSCH and the physical downlink control channel PDCCH corresponding to the PDSCH;
  • the generating unit generating the first indication information is specifically used for:
  • the first indication information is generated.
  • the first indication information sequence satisfies:
  • r(m) is the first indication information sequence
  • c(i) is a pseudo-random sequence
  • the c(i) is initialized by a first initial value, and the first initial value satisfies:
  • n TCI-ID is the transmission status indication TCI indicator code, the n TCI-ID ⁇ ⁇ 0,1,2,3,4,5, 6,7 ⁇ .
  • the c(i) is initialized by a second initial value, and the second initial value satisfies:
  • UE_ID is the identifier of the terminal device.
  • the first indication information is generated by an m sequence, and the first indication information sequence satisfies:
  • the sequence for generating the first indication information is one of the following sequences:
  • Gold sequence m sequence
  • ZC sequence computer generated sequence CGS.
  • the present application provides a communication apparatus, where the communication apparatus may be a terminal device or a module (eg, a chip) in the terminal device.
  • the communication apparatus may include: a processor, where the processor is coupled to a memory, and the memory is used for storing programs or instructions, and when the programs or instructions are executed by the processor, the apparatus can implement the first aspect or any possibility of the first aspect The communication method in the embodiment.
  • the present application provides a communication apparatus, and the communication apparatus may be a network device or a module (eg, a chip) in the network device.
  • the communication device may include: a processor coupled with a memory, the memory is used for storing programs or instructions, and when the programs or instructions are executed by the processor, the device enables the device to implement the second aspect or any one of the second aspects A communication method in a possible implementation.
  • the present application provides a communication system, which includes the communication device of the fifth aspect and the communication device of the sixth aspect.
  • the present application provides a computer-readable storage medium, in which a computer program or computer instruction is stored, and when the computer program or computer instruction is executed, the above-mentioned first aspect and any one of the This possible implementation and some or all of the steps of the communication method in the second aspect and any of the possible implementations are performed.
  • the present application provides a computer program product comprising executable instructions, which, when the computer program product is run on a user equipment, enables the first aspect and any possible implementation thereof and the second aspect and any possible implementation thereof. Some or all of the steps of the communication method in one possible implementation are performed.
  • the present application provides a chip system
  • the chip system includes at least one processor, a memory and an interface circuit, the memory, the interface circuit and the at least one processor are interconnected by lines, and at least one memory stores an instruction; the instruction is When executed by the processor, the chip system is caused to execute part or all of the steps of the communication method in the first aspect and any possible implementation thereof and the second aspect and any possible implementation thereof.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a beam for receiving PDSCH data by a terminal device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a beam pair provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a timing relationship between a PDCCH and a PDSCH provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 7 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 8 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 10 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 11 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 12 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 13 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a timing relationship provided by an embodiment of the present application.
  • 15 is a schematic diagram of a processing sequence provided by an embodiment of the present application.
  • 16 is a schematic diagram of another processing sequence provided by an embodiment of the present application.
  • FIG. 17 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • 5G NR uses beamforming to transmit traffic channels, broadcast and control channels.
  • the terminal device measures the beam bearing the channel state information reference signal (CSI-RS) or SSB, and reports the measurement result to the network device.
  • CSI-RS channel state information reference signal
  • the network device sends the downlink data, the channel The condition assumes that the terminal equipment is notified through TCI, and the terminal equipment selects the receiving beam according to the received TCI indication.
  • P-1 process The terminal device uses the beam to measure the beam sent by the network device, and selects the best transmission coarse beam of the network device
  • P-2 Process The terminal device uses the receiving beam to fine-tune the best sending coarse beam of the network device selected in the P-1 process, and selects the best narrow beam of the network device
  • the best narrow beam of the network equipment is fine-tuned to determine the best beam pair for sending and receiving.
  • the TCI indication is carried through the PDCCH channel, and the terminal device obtains the channel transmission conditions of the PDCCH/PDSCH through the TCI configuration.
  • the TCI configuration is associated with the channel demodulation reference signal (DMRS) antenna port and reference signal (reference signal, RS) (CSI-RS/SSB) approximate channel state relationship. This approximate channel state relationship is described by a channel state assumption (quasi co-location, QCL) quasi-co-location relationship.
  • DMRS channel demodulation reference signal
  • RS reference signal
  • CSI-RS/SSB reference signal
  • This approximate channel state relationship is described by a channel state assumption (quasi co-location, QCL) quasi-co-location relationship.
  • QCL quasi-co-location relationship.
  • 3GPP TS38.214 defines four QCL relationships to assist terminal equipment in channel estimation, time-frequency offset estimation and beam selection. Where QCL can be configured as one of the following types:
  • 'QCL-TypeA' ⁇ This type means that the signal transmission conditions (or approximate positioning relationship) between the DMRS antenna port and the reference signal have the same Doppler shift, Doppler spread, average delay and multipath delay extension ⁇ ;
  • this type means that the signal transmission conditions between the DMRS antenna port and the reference signal have the same Doppler shift and average delay ⁇ ;
  • 5G NR can pre-configure a series of channel condition associations through high-level signaling. Each association is identified by a TCI state, and a TCI state can be indexed by TCI-StateId.
  • the TCI state of the PDSCH channel can be up to 128 groups can be configured, while the TCI state of the PDCCH channel can be configured with up to 64 groups.
  • Each TCI state information includes parameters for configuring the approximate positioning relationship between the DMRS antenna port in the PDSCH/PDCCH and the other 1 or 2 downlink reference signals (DL RS).
  • the network device activates the MAC CE through the MAC control message and makes these configurations take effect.
  • the protocol stipulates that the maximum number of TCIs that can be activated at the same time for each UE is 8. In fact, the network side can flexibly configure M TCIs for each terminal device through high-level parameters. State configuration, the value of M depends on the maximum active TCI configuration capability that each BWP of the terminal device can actually support.
  • one DCI in the NR R16 protocol only supports the configuration of one TCI state, and the information bit (bit) is carried in DCI1_1 and DCI1_2, with a total of 4 bits.
  • the 3GPP physical layer (TS38.214 5.1.5) protocol defines the process for the terminal device to obtain the channel assumption in the connected-discontinuous reception (C-DRX) DL PDSCH in the connected state: the network device passes the parameter field through DCI1_1/DCI1_2 TCI, after the terminal device parses the TCI state, selects the matching TCI state from the 8 TCI states activated by the MAC CE, and obtains the QCL relationship between the DMRS of the PDSCH and the corresponding RS, thereby determining the best transmit and receive beam pair information for PDSCH data , and finally the terminal equipment switches the receiving beam of the PDSCH to the optimal receiving beam indicated by the TCI.
  • the receiving and processing flow of the PDCCH is: channel estimation-blind detection-decoding-physical layer parameter analysis-parameter configuration. This results in a certain delay between the receiving, processing and parsing of the control channel and the specific parameter configuration taking effect. Therefore, the 3GPP physical layer (TS38.214 5.1.5) protocol defines the time threshold timeDurationForQCL for the DL PDSCH receiving beam indication to take effect (the threshold is valued in the number of OFDM symbols, and for the subcarrier interval of 60kHz, the value is 7, 14, 28, for the subcarrier spacing of 120 kHz, the values are 14, 28).
  • the parsed TCI state can take effect. Otherwise, the DMRS of the PDSCH and the CORESET with the lowest index number in the corresponding search space are included.
  • the QCL of the PDCCH is consistent.
  • the time threshold for the PDSCH beam switching to take effect is defined in 3GPP TS38.331: FeatureSetDownlink IE>timeDurationForQCL.
  • the threshold is valued by the number of OFDM symbols, and takes values of 7, 14, and 28 for a sub-carrier interval of 60 kHz, and takes values of 14 and 28 for a sub-carrier interval of 120 kHz.
  • timeDurationForQCL is defined for frequency range 2 (frequency range2, FR2) sub-carrier space (SCS) of 60k and 120k. This parameter specifically refers to the interval between the last symbol of the PDCCH and the first symbol of the scheduled PDSCH, Units are symbols.
  • FIG. 1 is a schematic diagram of a beam for receiving PDSCH data by a terminal device according to an embodiment of the present application.
  • the network device can send PDCCH data to the terminal device through the PDCCH beam, and send PDSCH data to the terminal device through the PDSCH beam.
  • the terminal device can receive the PDCCH from the network device through the PDCCH beam.
  • Data receive PDSCH data from the network device through the PDSCH receiving beam.
  • the threshold between the last symbol of the PDCCH and the first symbol of the scheduled PDSCH is timeDurationForQCL.
  • FIG. 2 is a schematic diagram of a beam pair provided by an embodiment of the present application.
  • the PDSCH transmit beam of the network device and the PDSCH receive beam of the terminal device are a beam pair
  • the PDCCH transmit beam of the network device and the PDCCH receive beam of the terminal device are a beam pair
  • the network device and the terminal device pass through the corresponding beam pair
  • Data transmission can make data transmission more accurate.
  • FIG. 3 is a schematic diagram of a timing relationship between a PDCCH and a PDSCH provided by an embodiment of the present application.
  • the terminal equipment uses the PDCCH receiving beam to receive PDSCH data, and the beam pair used in this way is obviously not the optimal beam right.
  • the terminal device quickly adjusts to the PDSCH receiving beam according to the instructions of the network device (the network device indicates the receiving beam information of PDSCH data in the PDCCH) after receiving the PDCCH data, the channel estimation performance of the PDSCH data is better, and can be more The parameters such as modulation order and target code rate set by the network device for PDSCH are well matched.
  • the terminal equipment uses the receiving beam of the PDCCH to receive PDSCH data, it cannot timely select the optimal receiving beam of the PDSCH according to the TCI instruction, thus reducing the receiving performance of the data channel.
  • the terminal device receives PDSCH according to the TCI instruction, the network side needs to configure the symbol interval between the PDCCH and its scheduled PDSCH to be greater than the timeDurationForQCL threshold.
  • the timing relationship As shown in (a) of FIG. 3 , the terminal device may receive the PDSCH by using the optimal receiving beam indicated by the TCI.
  • this configuration increases the symbol interval between the PDCCH and its scheduled PDSCH in scheduling, increases the end-to-end processing delay, makes the terminal equipment unable to receive and decode the PDSCH quickly, and cannot meet the requirements of low-latency scenarios.
  • the symbol interval between PDSCH and corresponding PDCCH may be shorter or even no interval.
  • PDCCH The difference between the beam and the PDSCH beam is greater, and this problem is more prominent.
  • the present application provides a communication method, which can realize the switching of the receiving beam of the PDSCH through the first indication information, and improve the accuracy of receiving PDSCH data.
  • the network device may generate the first indication information, and advance the TCI indication information of the PDSCH data before the PDSCH data through the first indication information
  • the terminal device can immediately parse and obtain the TCI indication information of the PDSCH data, so as to determine the beam receiving information of the received PDSCH, and realize the fast switching of the PDSCH beam receiving when receiving the PDSCH data. In this way, the accuracy of receiving PDSCH data can be improved.
  • FIG. 4 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • the system architecture may include a network device 201 and a terminal device 202 .
  • the network device 201 can send the PDCCH/PDSCH to the terminal device 202 through the PDCCH/PDSCH beam, and the terminal device 202 can receive the PDCCH/PDSCH from the network device 201 through the PDCCH/PDSCH beam.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • EDGE enhanced data rate for GSM evolution
  • WiMAX worldwide interoperability for microwave access
  • the technical solutions of the embodiments of the present application can also be applied to other communication systems, such as a public land mobile network (PLMN) system, a fifth generation (5th generation, 5G) system or a communication system after 5G or a new wireless ( new radio, NR), etc., which are not limited in the embodiments of the present application.
  • PLMN public land mobile network
  • 5G fifth generation
  • NR new wireless
  • the terminal device in this embodiment of the present application may also be referred to as a user terminal.
  • the user terminal can be a device that includes a wireless transceiver function and can cooperate with a network device to provide a communication service for the user.
  • a user terminal may refer to a UE, a user, a satellite phone, a satellite terminal, a subscriber unit, a cellular phone, a smart phone, a smart watch, a wireless data card, a personal Personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • PDA personal Personal digital assistant
  • the terminal device may be a vehicle-mounted device or a wearable device, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a driverless ( Wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city A terminal, a wireless terminal in a smart home, a 5G network, or a terminal device in a future communication network, etc., are not specifically limited in this embodiment of the present application.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in self driving wireless terminals in remote medical
  • wireless terminals in smart grid wireless terminals in transportation safety
  • wireless terminals in smart city A terminal a wireless terminal in a smart home, a 5G network, or a terminal device in a future communication network, etc.
  • the network device in this embodiment of the present application may be a device used to communicate with a terminal device, for example, may be a global system for mobile communications (GSM) system or a code division multiple access (code division multiple access) device.
  • a base station base transceiver station, BTS
  • BTS can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolutional Node B in an LTE system , eNB or eNodeB), it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and future 5G
  • the network equipment in the network or the network after 5G or the network equipment in the future evolved PLMN network, etc. for example, the transmission point (TRP or TP) in the NR system, the base station (gNB) in the NR system, the base station in the 5G system.
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, a next-generation base station (gNodeB, gNB), a transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center and device-to-device (Device-to-Device, D2D), vehicle outreach (vehicle-to-everything, V2X), machine A device that undertakes the function of a base station in machine-to-machine (M2M) communication, etc., is not specifically limited in this embodiment of the present application.
  • M2M machine-to-machine
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to execute the methods provided by the embodiments of the present application. It is sufficient to perform communication.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs), etc. ), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the functions performed by the terminal device in this application may also be performed by modules (eg, chips) in the terminal equipment, and the functions performed by the network devices in this application may also be performed by modules (eg, chips) in the network device. implement.
  • the communication method can be used for terminal equipment to determine uplink and downlink resources. As shown in FIG. 5 , the communication method may include the following steps.
  • the network device generates first indication information.
  • the network device may generate the first indication information.
  • the threshold value may be a time threshold (timeDurationForQCL) at which the beam receiving indication of the DL PDSCH defined in 3GPPTS 38.331 takes effect.
  • the first indication information may be a signal. If the TCI indication information is carried in the signal and sent to the terminal device, the time for the terminal device to parse is relatively short.
  • the first indication information may be a beam indication signal (BIS).
  • the first indication information can be used to indicate the beam receiving information of the PDSCH, and can also be used to estimate the PDCCH channel, so that the reception performance of the PDCCH can be enhanced.
  • the indication mode of the first indication information may be direct indication, may also be indicated by an index value, may be indicated by transmission resources, may be indicated by an indicator/indication bit, or may be indicated by bit information, for example, the bit Information is either 0 or 1.
  • the first indication information sequence may be correlated in the frequency domain or in the time domain. Different design methods can be used to design the first indication information in the correlation in the time domain and the correlation in the frequency domain, so as to improve the reliability of receiving the first indication information, the analysis speed, and reduce the complexity of processing the first information.
  • the design of the first indication information related to the frequency domain is specifically:
  • the first indication information sequence may satisfy:
  • r(m) is the first indication information sequence
  • the pseudo-random sequence c(i) can use the definition in 3GPP TS38.211 5.2.1.
  • the pseudo-random sequence c(i) can be initialized by a first initial value C init1 , and the first initial value C init1 satisfies:
  • n TCI-ID is the TCI indicator code
  • the TCI-ID can be configured by the network device through signaling.
  • the first indication information sequence may satisfy:
  • the pseudo-random sequence c(i) can be initialized by a second initial value C init2 , and the second initial value C init2 satisfies:
  • the UE_ID is an identifier of the terminal device, and the UE_ID may be configured by the network device through signaling.
  • the design of the first indication information related to the time domain is specifically:
  • the first indication information may be generated by an m sequence, and the first indication information sequence satisfies:
  • the generation sequence of the first indication information may be one of a Gold sequence, an m sequence, a ZC sequence, and a computer generated sequence (computer generated sequence, CGS).
  • the configuration of the first indication information may refer to the configuration of a tracking reference signal (TRS)/CSI-RS, which is easy to standardize.
  • TRS tracking reference signal
  • the first indication information may use methods such as different frequency domain locations, UE_IDs, and orthogonal covering codes (Orthogonal covering codes, OCC) to distinguish different terminal devices.
  • the frequency domain position may be used to distinguish different terminal devices of a multi-user (MU) through the offset (V shift ) of different terminal devices in the frequency domain.
  • the first indication information may occupy one symbol or more than one symbol in the time domain, and may be mapped on continuous RBs in the frequency domain, or may be mapped with the first frequency domain density.
  • the first frequency domain density is 3RE per RB.
  • the specific resource mapping of the first indication information may be as follows:
  • Time-frequency resource distribution for multi-user and different terminal equipment is a time-frequency resource distribution for multi-user and different terminal equipment
  • FIG. 6 is a schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • the frequency domain resources of four different terminal equipments are indicated in the frequency domain with a density of 1/3 of the frequency domain density
  • the time domain resources of the four different terminal equipments are indicated in the time domain with a single column of symbols.
  • the time-frequency resource distribution may be the time-frequency resource distribution for one or more terminal devices, and the four different terminal devices are merely illustrative, and are not intended to limit the present application.
  • FIG. 7 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • the frequency domain resources of four different terminal equipments are indicated in the frequency domain with a density of 1/3 in the frequency domain
  • the time domain resources of the four different terminal equipments are indicated in the time domain with double-column symbols.
  • the time-frequency resource distribution may be the time-frequency resource distribution for one or more terminal devices, and the four different terminal devices are merely illustrative, and are not intended to limit the present application.
  • the use of double-column symbols can make the demodulation accuracy rate of the terminal equipment higher, and can also reduce the spectral efficiency.
  • FIG. 8 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • the frequency domain resources of four different terminal equipments are indicated in the frequency domain with a density of 1/3 of the frequency domain density
  • the time domain resources of the four different terminal equipments are indicated in the time domain with a single column of symbols.
  • the time-frequency resource distribution may be the time-frequency resource distribution for one or more terminal devices, and the four different terminal devices are merely illustrative, and are not intended to limit the present application.
  • FIG. 9 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • the frequency domain resources of four different terminal equipments are indicated in the frequency domain with a density of 1/3 in the frequency domain, and the time domain resources of the four different terminal equipments are indicated in the time domain with a single column of symbols.
  • the time-frequency resource distribution may be the time-frequency resource distribution for one or more terminal equipments, and the four different terminal equipments are only illustrative, and are not intended to limit the present application.
  • Time-frequency resource distribution for single-user terminal equipment is a time-frequency resource distribution for single-user terminal equipment
  • FIG. 10 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application. As shown in FIG. 10 , the frequency domain resources of the first terminal equipment are indicated in the frequency domain with a density of 1/3 of the frequency domain density, and the time domain resources of the first terminal equipment are indicated in the time domain with a single column of symbols.
  • FIG. 11 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application. As shown in FIG. 11 , the frequency domain resources of the first terminal equipment are indicated in the frequency domain with a density of 1/3 of the frequency domain density, and the domain resources of the first terminal equipment are indicated in the time domain with double-column symbols.
  • FIG. 12 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • the frequency domain resources of the first terminal equipment are indicated in the frequency domain with a density of 1/3 of the frequency domain density
  • the time domain resources of the first terminal equipment are indicated in the time domain with a single column of symbols.
  • FIG. 13 is another schematic diagram of time-frequency resource distribution provided by an embodiment of the present application. As shown in FIG. 13 , the frequency domain resources of the first terminal equipment are indicated in the frequency domain with a density of 1/3 of the frequency domain density, and the time domain resources of the first terminal equipment are indicated in the time domain with double-column symbols.
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the network device may send the first indication information in advance of the PDSCH data. Please refer to FIG. 14 .
  • FIG. 14 is a schematic diagram of a timing relationship provided by an embodiment of the present application.
  • the network device may send the first indication information before the PDCCH data, or may send it in the middle or after the PDCCH data, which may depend on the specific implementation form, as long as it is guaranteed to be sent before the PDSCH data.
  • the symbol difference between the starting symbol of the PDSCH sent by the network device and the symbol sending the first indication information is greater than or equal to a first threshold, where the first threshold refers to the number of symbols used by the terminal device to parse the first indication information.
  • a fixed symbol position (1-2 symbols in advance or a fixed pilot position in the coreset) can be sent before the PDCCH symbol (CORESET symbol).
  • the terminal device switches the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information.
  • the terminal device After receiving the first indication information from the network device, the terminal device matches the first indication information with the first sequence, and the first indication information matches the first sequence, which can be understood as performing a correlation operation on the first indication information to parse the content, for example AGC adjustment and FFT processing are performed to obtain a first indication information sequence, the first indication information sequence is correlated with the first sequence sequence, and the TCI indication content is parsed.
  • the terminal device After receiving PDSCH data according to the TCI instruction, switch the receiving beam of the PDSCH according to the analysis result, that is, switch the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information.
  • the first sequence may be pre-generated by the terminal device and then stored locally.
  • For the generation of the first sequence reference may be made to the method for generating the first indication information sequence in the foregoing step 501, which will not be repeated here.
  • the terminal device can detect the first indication information in the frequency domain, or can detect the first indication information in the time domain, that is, the terminal device can perform the frequency domain correlation between the first indication information sequence and the first sequence or the time domain. related.
  • FIG. 15 is a schematic diagram of a processing sequence provided by an embodiment of the present application.
  • PDCCH occupies the first 3 symbols of time slot n, namely sym0 to sym2
  • PDSCH occupies the 4th to 14th symbols of time slot n, namely sym3 to sym2.
  • the first indication information may be sent 1 symbol before the PDCCH, that is, the first indication information is sent 1 symbol before sym0.
  • the first indication information is sent from the air interface of the network device to the terminal device to receive the time advance (time advance, TA) time.
  • time advance time advance
  • the terminal device After the terminal device receives the first indication information from the network device, it can pass 2 symbols of time to perform correlation operation analysis. Content, such as AGC adjustment and FFT processing, to obtain the first indication information sequence, correlate the first indication information sequence with the frequency domain of the first sequence, and parse out the TCI indication content, according to the TCI indication, before the end time of the air interface symbol 2, according to The analysis result performs receiving beam switching on PDSCH, that is, switching the receiving beam of PDSCH to the receiving beam corresponding to the first indication information.
  • Content such as AGC adjustment and FFT processing
  • FIG. 16 is a schematic diagram of another processing sequence provided by an embodiment of the present application.
  • PDCCH occupies the first symbol of time slot n, namely sym0
  • PDSCH occupies the second to 14th symbols of time slot n, namely sym1 to sym13.
  • the first indication information may be sent 2 symbols before the PDCCH in advance, that is, the first indication information is sent 2 symbols before sym0.
  • a time-domain related implementation may be adopted: the first indication information is sent from the air interface of the network device to received by the terminal device, and the TA time may pass, and after the terminal device receives the first indication information from the network device, it may pass 1 Perform correlation operations on the time of each symbol to parse the content, such as AGC adjustment and FFT processing, to obtain the first indication information sequence, correlate the first indication information sequence with the time domain of the first sequence, parse out the TCI indication content, and use the air interface according to the TCI indication.
  • the receiving beam is switched on the PDSCH according to the analysis result, that is, the receiving beam of the PDSCH is switched to the receiving beam corresponding to the first indication information.
  • the network device sends the PDSCH to the terminal device.
  • the terminal device can receive the PDSCH from the network device.
  • the terminal device When the terminal device receives the PDSCH, it has switched to the receiving beam corresponding to the PDSCH according to the TCI instruction, so that the PDSCH can be accurately received.
  • FIG. 17 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the functions performed by the terminal device in this application may also be performed by modules (eg, chips) in the terminal equipment, and the functions performed by the network devices in this application may also be performed by modules (eg, chips) in the network device. implement.
  • the communication method can be used for terminal equipment to determine uplink and downlink resources. As shown in FIG. 17 , the communication method may include the following steps.
  • the network device generates first indication information.
  • step 1701 corresponds to step 501, and the related description in step 1701 can refer to the description of step 501 above, which is not repeated here in order to avoid repetition.
  • the network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information may include time-frequency location information of the first indication information, which is used to indicate the time-frequency location of the first indication information.
  • the time-frequency location can be understood as a time-frequency resource or a time-frequency resource location.
  • the second indication information may also include the information type of the first indication information, and the information type may indicate whether the first indication information is single-column or dual-column.
  • the network device may use two fields to indicate the second indication information before sending the first indication information, the first field is configured with the first indication information, and the second field is the first indication Whether the information is double-column or single-column.
  • the network device may use a field to indicate the second indication information, and the field is used to notify the terminal device that the first indication information needs to be detected.
  • the network device periodically sends the first indication information, and the terminal device may periodically detect the first indication information at the valid location according to the indication.
  • the location for sending the first indication information may be configured as other DL/UL/flexible symbols.
  • the network device sends the first indication information to the terminal device.
  • step 1703 corresponds to step 502, and the related description in step 1703 can refer to the description of step 502 above, which is not repeated here in order to avoid repetition.
  • the terminal device receives the first indication information according to the second indication information.
  • the terminal device may receive the first indication information according to the time-frequency location information of the first indication information in the second indication information. In this way, it is not necessary to detect the first indication information by means of blind detection, so that the rate of receiving data can be improved.
  • the terminal device may parse the first indication information according to the information type.
  • the terminal device switches the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information.
  • step 1705 corresponds to step 503, and the related description in step 1705 can refer to the description of step 503, which is not repeated here in order to avoid repetition.
  • the network device sends the PDSCH to the terminal device.
  • step 1706 corresponds to step 504, and the related description in step 1706 can refer to the description of step 504, which is not repeated here in order to avoid repetition.
  • FIG. 18 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may be a terminal device, or may be a module (eg, a chip) in the terminal device.
  • the communication device 1800 at least includes: a receiving unit 1801 and a switching unit 1802; wherein:
  • a receiving unit 1801 configured to receive first indication information from a network device, where the first indication information is used to indicate beam receiving information of a physical downlink shared channel PDSCH;
  • a switching unit 1802 configured to switch the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information
  • the receiving unit 1801 is further configured to receive the PDSCH from the network device by using the receiving beam corresponding to the first indication information.
  • the receiving unit 1801 is further configured to:
  • the receiving unit 1801 receives the first indication information from the network device, and is specifically used for:
  • the first indication information from the network device is received at the time-frequency position indicated by the second indication information.
  • the switching unit 1802 switches the receiving beam of the PDSCH to the receiving beam corresponding to the first indication information specifically for:
  • FIG. 19 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may be a network device, or may be a module (eg, a chip) in the network device.
  • the communication device 1900 includes at least: a generating unit 1901, a sending unit 1902 and a determining unit 1903; wherein:
  • a generating unit 1901 configured to generate first indication information
  • a sending unit 1902 configured to send the first indication information to the terminal device, where the first indication information is used to indicate the receiving beam of the physical downlink shared channel PDSCH;
  • the sending unit 1902 is further configured to send the PDSCH to the terminal device, and send the first indication information before sending the PDSCH.
  • the difference between the time domain start symbol of the PDSCH and the symbol for sending the first indication information is greater than or equal to the number of symbols used by the terminal device to parse the first indication information.
  • the sending unit 1902 is further configured to:
  • the communication device further includes:
  • a determining unit 1903 configured to determine the symbol interval between the physical downlink control channel PDCCH and the PDSCH;
  • the generating unit 1901 generates the first indication information specifically for:
  • the first indication information is generated.
  • the first indication information sequence satisfies:
  • r(m) is the first indication information sequence
  • the pseudo-random sequence c(i) is initialized by a first initial value, and the first initial value satisfies:
  • n TCI-ID is the TCI indicator code
  • the pseudorandom sequence c(i) is initialized by a second initial value satisfying:
  • UE_ID is the identifier of the terminal device.
  • the first indication information is generated by an m sequence, and the first indication information sequence satisfies:
  • the generation sequence of the first indication information is one of the following sequences:
  • Gold sequence m sequence
  • ZC sequence computer generated sequence CGS.
  • the first indication information occupies one symbol or more than one symbol in the time domain
  • the first indication information is mapped on the continuous resource block RB in the frequency domain;
  • the first indication information is mapped with a first frequency domain density.
  • FIG. 20 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the apparatus 2000 may include one or more processors 2001, and the processors 2001 may also be referred to as processing units, which may implement certain control functions.
  • the processor 2001 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, process software program data.
  • the processor 2001 may also store instructions and/or data 2003, and the instructions and/or data 2003 may be executed by the processor, so that the apparatus 2000 executes the above method embodiments method described.
  • the processor 2001 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit, or a communication interface.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the apparatus 2000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the apparatus 2000 may include one or more memories 2002 on which instructions 2004 may be stored, and the instructions may be executed on the processor, so that the apparatus 2000 executes the above method embodiments method described.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and the memory can be provided separately or integrated together. For example, the corresponding relationship described in the above method embodiments may be stored in a memory or in a processor.
  • the apparatus 2000 may further include a transceiver 2005 and/or an antenna 2006 .
  • the processor 2001 may be referred to as a processing unit, and controls the apparatus 2000 .
  • the transceiver 2005 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver device or a transceiver module, etc., and is used to implement a transceiver function.
  • the apparatus 2000 in this embodiment of the present application may be used to execute the methods described in FIG. 5 and FIG. 17 in the embodiment of the present application.
  • the communication apparatus 2000 may be a terminal device, or may be a module (eg, a chip) in the terminal device.
  • the processor 2001 is used to control the switching unit 1802 performs the operations performed in the above embodiments
  • the transceiver 2005 is configured to perform the operations performed by the receiving unit 1801 in the above embodiments
  • the transceiver 2005 is further configured to receive information from other communication devices other than the communication device.
  • the foregoing terminal device or modules in the terminal device may also be used to execute various methods performed by the terminal device in the foregoing method embodiments shown in FIG. 5 and FIG. 17 , which will not be described again.
  • the communication apparatus 2000 may be a network device, or may be a module (eg, a chip) in the network device.
  • the processor 2001 is used to control the generating unit 1901 and the determining unit 1903 perform the operations performed in the foregoing embodiments
  • the transceiver 2005 is configured to perform the operations performed by the sending unit 1902 in the foregoing embodiments
  • the transceiver 2005 is further configured to send information to other communication devices other than the communication device.
  • the foregoing network device or modules within the network device may also be used to execute various methods performed by the network device in the foregoing method embodiments in FIG. 5 and FIG. 17 , and details are not described again.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • the apparatus described in the above embodiments may be network equipment or terminal equipment, but the scope of the apparatus described in this application is not limited thereto, and the structure of the apparatus may not be limited by FIG. 20 .
  • An apparatus may be a stand-alone device or may be part of a larger device.
  • the means may be:
  • a set with one or more ICs may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 21 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal device 2100 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data. deal with.
  • Figure 21 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 21 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with transceiving function can be regarded as the transceiving unit 2101 of the terminal device 2100
  • the processor having the processing function can be regarded as the processing unit 2102 of the terminal device 2100
  • the terminal device 2100 includes a transceiver unit 2101 and a processing unit 2102 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 2101 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 2101 may be regarded as a transmitting unit, that is, the transceiver unit 2101 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the above-mentioned receiving unit and transmitting unit may be an integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and transmitting unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the processing unit 2102 is configured to perform the operations performed by the switching unit 1802 in the foregoing embodiment
  • the transceiving unit 2101 is configured to perform the operations performed by the receiving unit 1801 in the foregoing embodiment.
  • the terminal 2100 can also be used to execute various methods performed by the terminal in the above method embodiments of FIG. 5 and FIG. 17 , and details are not described again.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement a process related to a terminal device in the communication method provided by the above method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement the processes related to the network device in the communication method provided by the above method embodiments.
  • Embodiments of the present application also provide a computer program product, which, when run on a computer or a processor, causes the computer or processor to execute one or more steps in any one of the above communication methods. If each component module of the above-mentioned device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
  • An embodiment of the present application further discloses a communication system, where the communication system includes a terminal device and a network device.
  • the communication system includes a terminal device and a network device.
  • the non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a hard disk drive (HDD), a solid-state drive (SSD), a read-only memory (ROM), a programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous dRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct rambus RAM, DR RAM
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.
  • modules/units in the apparatus of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置及计算机可读存储介质。其中,该方法包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束的信息;将所述PDSCH的收波束切换到所述第一指示信息对应的收波束;使用所述第一指示信息对应的收波束接收来自所述网络设备的PDSCH。通过本申请提供的技术方案,可以提高接收PDSCH数据的准确性。

Description

一种通信方法、装置及计算机可读存储介质 技术领域
本申请涉及无线通信技术领域,具体涉及一种通信方法、装置及计算机可读存储介质。
背景技术
用户设备(user equipment,UE)可以通过解析承载在物理下行控制信道(physical downlink control channel,PDCCH)上的下行控制信息(downlink control information,DCI)中的传输状态指示(transmission configuration indication,TCI)状态,从MAC控制单元(control element,CE)激活的8个TCI状态中选择与之匹配的TCI状态,得到物理下行共享信道(physical downlink share channel,PDSCH)的解调参考信号(demodulation reference signal,DMRS)与相应参考信号(reference signal,RS)的准共址(quasi co-location,QCL)关系,从而确定PDSCH数据的最佳收发波束对(beam pair)信息,再将PDSCH的收波束切换为TCI指示的最佳收波束。
PDCCH的接收和处理流程是:信道估计、盲检、译码、物理层参数解析和参数配置。由于PDCCH的处理流程,导致了PDCCH的接收与具体参数配置生效之间有一定的时延。因此,在第三代合作伙伴计划(3rd generation partnership project,3GPP)TS38.331中定义了下行(downlink,DL)PDSCH的收波束指示生效的时间门限(timeDurationForQCL),即如果PDSCH起始符号与调度它的PDCCH的最后一个符号大于或等于时间门限的间隔,则解析到的TCI状态可以生效,反之,该PDSCH的DMRS与相应搜索空间中索引号最低的控制资源集合(control resource set,CORESET)所包含的PDCCH的QCL一致。
然而,对于PDSCH的收波束指示生效的时间小于时间门限的场景下,UE可以用PDCCH的收波束或者默认收波束(例如初始接入时UE选用的同步块(synchronization signal/PBCH block,SSB)的收波束)来接收PDSCH数据,而不能按照TCI适时地选择PDSCH数据的最优的收波束,因此降低了接收PDSCH数据的准确性。
发明内容
本申请提供了一种通信方法、装置及计算机可读存储介质,可以通过第一指示信息实现PDSCH的收波束的切换,提高接收PDSCH数据的准确性。
第一方面,本申请提供了一种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片),下面以应用于终端设备为例进行描述。该通信方法可以用于通过第一指示信息进行PDSCH的收波束的切换,可以包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束的信息;将所述PDSCH的收波束切换到所述第一指示信息对应的收波束;使用所述第一指示信息对应的收波束接收来自所述网络设备的PDSCH。
在本申请提供的方案中,终端设备可以在接收PDSCH之前接收来自网络设备的第一指示信息,解析第一指示消息确定接收PDSCH的收波束,当需要接收来自网络设备的PDSCH时,切换到提前确定好的接收PDSCH的收波束。这样,可以实现通过第一指示信 息提前确定接收PDSCH的收波束,可以满足终端设备在接收PDSCH时,快速无缝地确定PDSCH数据的最佳收波束,从而可以提高接收PDSCH数据的准确性,提升下行数据信道的解调接收性能,降低PDSCH信道的误码率,保证数据的低时延高可靠接收。
在一种可能的实现方式中,所述方法还包括:接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置;所述接收来自网络设备的第一指示信息包括:在所述第二指示信息指示的时频位置接收来自所述网络设备的第一指示信息。
在本申请提供的方案中,网络设备可以先向终端设备发送第二指示信息,第二指示信息指示第一指示信息的时频位置,时频位置可以理解为时频资源或者时频资源位置。当网络设备向终端设备发送第一指示信息时,终端设备可以在第二指示信息指示的第一指示信息的时频位置来接收第一指示信息。通过具体的时频位置指示来接收第一指示信息,可以降低接收第一指示信息的时延。
在一种可能的实现方式中,所述方法还包括:所述将所述PDSCH的收波束切换到所述第一指示信息对应的收波束包括:当所述第一指示信息与第一序列匹配时,根据所述第一指示信息确定传输状态指示TCI;将所述PDSCH的收波束切换到所述TCI对应的收波束。
在本申请提供的方案中,终端设备接收到来自网络设备的第一指示信息后,可以通过自动增益控制(automatic gain control,AGC)调整、快速傅里叶变换(fast fourier transform,FFT)处理得到第一指示信息序列,进行第一指示信息序列与第一序列相关,解析出TCI指示内容,当接收来自网络设备的PDSCH时,将PDSCH的收波束切换到TCI对应的收波束。
第一指示信息与第一序列匹配,可以理解为,终端设备接收来自网络设备的第一指示信息之后,可以对第一指示信息做相关运算解析内容,例如AGC调整、FFT处理,得到第一指示信息序列,将第一指示信息序列与第一序列序列相关。
可以理解,第一序列可以是终端设备自己生成并存储在本地的,当接收来自网络设备的第一指示信息时,可以将第一指示信息序列与存储在终端设备的第一序列进行相关。
第二方面,本申请提供了一种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以应用于网络设备为例进行描述。该通信方法可以用于通过第一指示信息进行PDSCH的收波束的切换,可以包括:生成第一指示信息;向终端设备发送所述第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束;向所述终端设备发送所述PDSCH,所述第一指示信息的发送时间早于所述PDSCH的发送时间。
在本申请提供的方案中,网络设备可以生成第一指示信息,第一指示信息用于指示PDSCH的收波束,在向终端设备发送PDSCH之前,发送该第一指示信息。这样,可以实现终端设备通过第一指示信息提前确定接收PDSCH的收波束,以满足终端设备在接收PDSCH时,根据确定的收波束来接收PDSCH数据,从而可以提高接收PDSCH数据的准确性。
应理解,第二方面的执行主体为网络设备,第二方面的具体内容与第一方面的内容对 应,第二方面相应特征以及达到的有益效果可以参考第一方面的描述,为避免重复,此处适当省略详细描述。
在一种可能的实现方式中,所述PDSCH的起始符号与所述第一指示信息的结束符号之间的符号差值大于或等于第一阈值。
在本申请提供的方案中,由于终端设备解析第一指示信息需要一定的时间,因此,要保证在终端设备接收PDSCH时准确切换到网络设备指示的收波束,就需要留予终端设备解析第一指示信息所需时间,因此,发送PDSCH与发送第一指示信息的时间间隔要大于或等于第一阈值,第一阈值指终端设备解析第一指示信息的时间。
在一种可能的实现方式中,所述方法还包括:向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置。
在一种可能的实现方式中,所述方法还包括:确定所述PDSCH与所述PDSCH对应的物理下行控制信道PDCCH之间的符号间隔;所述生成第一指示信息包括:当所述符号间隔小于门限值时,生成所述第一指示信息。
在本申请提供的方案中,当PDSCH与其相应的PDCCH之间的符号间隔小于门限timeDurationForQCL的场景下,终端设备不能按照网络设备的TCI指示适时地选择PDSCH的最优收波束,则需要通过第一指示信息提前确定PDSCH的收波束。因此,第一指示信息可以是在PDCCH与其调度的PDSCH符号间隔小于协议定义的门限的场景下由网络设备生成。如果PDCCH与其调度的PDSCH符号间隔大于或等于协议定义的门限的场景,网络设备可以不生成第一指示信息。
在一种可能的实现方式中,所述第一指示信息序列满足:
Figure PCTCN2020131790-appb-000001
其中,r(m)为所述第一指示信息序列,c(i)为伪随机序列。
在一种可能的实现方式中,所述c(i)由第一初始值初始化,所述第一初始值满足:
Figure PCTCN2020131790-appb-000002
Figure PCTCN2020131790-appb-000003
为每时隙内的符号数,
Figure PCTCN2020131790-appb-000004
为无线帧内的时隙数,l为时隙内的符号号,n TCI-ID为传输状态指示TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
在一种可能的实现方式中,所述伪随机序列c(i)由第二初始值初始化,所述第二初始值满足:
Figure PCTCN2020131790-appb-000005
其中,UE_ID为所述终端设备的标识。
在本申请提供的方案中,伪随机序列c(i)可以根据不同的初始值初始化得到,即第一初始值和第二初始值。这样,可以有多种生成第一指示信息序列的方法。
在一种可能的实现方式中,所述第一指示信息由m序列生成,所述第一指示信息序列满足:
d BIS(n)=1-2x(m)
m=(n+14n TCI-ID)mod127
0≤n≤127
其中,d BIS(n)为所述第一指示信息序列,x(i+7)=(x(i+4)+x(i))mod2且[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0],n TCI-ID为所述TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
在一种可能的实现方式中,所述第一指示信息的生成序列为以下序列中的一种:
Gold序列,m序列,ZC序列以及计算机生成序列CGS。
第三方面,提供了一种通信装置,该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。该通信装置可以包括:
接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束的信息;
切换单元,用于将所述PDSCH的收波束切换到所述第一指示信息对应的收波束;
所述接收单元,还用于使用所述第一指示信息对应的收波束接收来自所述网络设备的PDSCH。
在一种可能的实现方式中,所述接收单元,还用于:
接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置;
所述接收单元接收来自网络设备的第一指示信息,具体用于:
在所述第二指示信息指示的时频位置接收来自所述网络设备的第一指示信息。
在一种可能的实现方式中,所述切换单元将所述PDSCH的收波束切换到所述第一指示信息对应的收波束具体用于:
当所述第一指示信息与第一序列匹配时,根据所述第一指示信息确定传输状态指示TCI;
将所述PDSCH的收波束切换到所述TCI对应的收波束。
第四方面,提供了一种通信装置,该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。该通信装置可以包括:
生成单元,用于生成第一指示信息;
发送单元,用于向终端设备发送所述第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束;
所述发送单元,还用于向所述终端设备发送所述PDSCH,所述第一指示信息的发送时间早于所述PDSCH的发送时间。
在一种可能的实现方式中,所述PDSCH的起始符号与所述第一指示信息的结束符号之间的符号差值大于或等于第一阈值。
在一种可能的实现方式中,所述发送单元,还用于:
向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置。
在一种可能的实现方式中,该通信装置还包括:
确定单元,用于确定所述PDSCH与所述PDSCH对应的物理下行控制信道PDCCH之 间的符号间隔;
所述生成单元生成第一指示信息具体用于:
当所述符号间隔小于门限值时,生成所述第一指示信息。
在一种可能的实现方式中,所述第一指示信息序列满足:
Figure PCTCN2020131790-appb-000006
其中,r(m)为所述第一指示信息序列,c(i)为伪随机序列。
在一种可能的实现方式中,所述c(i)由第一初始值初始化,所述第一初始值满足:
Figure PCTCN2020131790-appb-000007
Figure PCTCN2020131790-appb-000008
为每时隙内的符号数,
Figure PCTCN2020131790-appb-000009
为无线帧内的时隙数,l为时隙内的符号号,n TCI-ID为传输状态指示TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
在一种可能的实现方式中,所述c(i)由第二初始值初始化,所述第二初始值满足:
Figure PCTCN2020131790-appb-000010
其中,UE_ID为所述终端设备的标识。
在一种可能的实现方式中,所述第一指示信息由m序列生成,所述第一指示信息序列满足:
d BIS(n)=1-2x(m)
m=(n+14n TCI-ID)mod127
0≤n≤127
其中,d BIS(n)为所述第一指示信息序列,x(i+7)=(x(i+4)+x(i))mod2且[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0],n TCI-ID为所述TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
在一种可能的实现方式中,所述生成第一指示信息的序列为以下序列中的一种:
Gold序列,m序列,ZC序列以及计算机生成序列CGS。
第五方面,本申请提供了一种通信装置,该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。该通信装置可以包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该装置实现上述第一方面、或第一方面任一种可能的实施方式中的通信方法。
第六方面,本申请提供了一种通信装置,该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。该通信装置可以包括:处理器,该处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被该处理器执行时,使得该装置实现上述第二方面、或第二方面任一种可能的实施方式中的通信方法。
第七方面,本申请提供了一种通信系统,该通信系统包括第五方面的通信装置和第六方面的通信装置。
第八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或计算机指令,当该计算机程序或计算机指令被运行时,使得上述第一方面及其任一种可能的实现和第二方面及其任一种可能的实现中的通信方法的部分或全部步骤被执 行。
第九方面,本申请提供一种包括可执行指令的计算机程序产品,当该计算机程序产品在用户设备上运行时,使得上述第一方面及其任一种可能的实现和第二方面及其任一种可能的实现中的通信方法的部分或全部步骤被执行。
第十方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器、存储器和接口电路,存储器、接口电路和至少一个处理器通过线路互联,至少一个存储器中存储有指令;该指令被处理器执行时,使得芯片系统执行第一方面及其任一种可能的实现和第二方面及其任一种可能的实现中的通信方法的部分或全部步骤。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种终端设备接收PDSCH数据的波束示意图;
图2是本申请实施例提供的一种波束对的示意图;
图3是本申请实施例提供的一种PDCCH与PDSCH的时序关系示意图;
图4是本申请实施例提供的一种系统架构示意图;
图5是本申请实施例提供的一种通信方法的流程示意图;
图6是本申请实施例提供的一种时频资源分布示意图;
图7是本申请实施例提供的另一种时频资源分布示意图;
图8是本申请实施例提供的又一种时频资源分布示意图;
图9是本申请实施例提供的又一种时频资源分布示意图;
图10是本申请实施例提供的又一种时频资源分布示意图;
图11是本申请实施例提供的另一种时频资源分布示意图;
图12是本申请实施例提供的又一种时频资源分布示意图;
图13是本申请实施例提供的另一种时频资源分布示意图;
图14是本申请实施例提供的一种时序关系的示意图;
图15是本申请实施例提供的一种处理时序的示意图;
图16是本申请实施例提供的另一种处理时序的示意图;
图17是本申请实施例提供的另一种通信方法的流程示意图;
图18是本申请实施例提供的一种通信装置的结构示意图;
图19是本申请实施例提供的另一种通信装置的结构示意图;
图20是本申请实施例提供的又一种通信装置的结构示意图;
图21是本申请实施例提供的一种终端的结构示意图。
具体实施方式
为了便于理解本申请,首先在此介绍本申请实施例涉及的相关技术知识。
1、NR DL波束(beam)管理
5G NR对业务信道、广播、控制信道都采用波束赋形的方式传输。对下行通道,终端设备对承载信道状态信息参考信号(channel state information reference signal,CSI-RS)或 SSB的波束进行测量,并将测量结果上报给网络设备,网络设备在发送下行数据时,将信道条件假设通过TCI通知终端设备,终端设备根据接收的TCI指示选择收波束。在3GPP TR38.802中描述了新空口(new radio,NR)波束管理的过程:P-1过程:终端设备用收波束测量网络设备发波束,选择网络设备的最佳发送粗波束;P-2过程:终端设备用收波束对P-1过程中选择的网络设备的最佳发送粗波束进行细调,选择网络设备的最佳窄波束;P-3过程:终端设备对P-2过程中选择的网络设备的最佳窄波束进行细调,确定最佳收发波束对(best beam pair)。通过波束管理过程,网络设备和终端设备可以完成最佳传输波束对的确定,用于后续的数据传输。
TCI指示通过PDCCH信道承载,终端设备通过TCI配置获得PDCCH/PDSCH的信道传输条件,TCI配置中关联了信道解调参考信号(demodulation reference signal,DMRS)天线端口与参考信号(reference signal,RS)(CSI-RS/SSB)的近似信道状态关系。这一近似信道状态关系通过信道状态假设(quasi co-location,QCL)准共址关系描述。3GPP TS38.214中定义了4中QCL关系,辅助终端设备进行信道估计、时频偏估计和波束选择等过程。其中QCL可以配置为如下类型之一:
‘QCL-TypeA’{该类型意味着DMRS天线端口与参考信号之间的信号传输条件(或近似定位关系)具有相同的多普勒频移,多普勒扩展,平均时延以及多径时延扩展};
‘QCL-TypeB’{该类型意味着DMRS天线端口与参考信号之间的信号传输条件具有相同的多普勒频移,多普勒扩展};
‘QCL-TypeC’{该类型意味着DMRS天线端口与参考信号之间的信号传输条件具有相同的多普勒频移和平均时延};
‘QCL-TypeD’{该类型意味着空间接收机参数一致,该类型是网络侧对于终端接收天线的一种信道条件约束}。
5G NR通过高层信令可以预先配置一系列信道条件关联关系,每一种关联关系以一个TCI状态进行标识,而一个TCI状态可以通过TCI-StateId来进行索引,关于PDSCH信道这样的TCI状态最多可以配置128组,而PDCCH信道的TCI状态最多可以配置64组。每个TCI状态信息包含了配置PDSCH/PDCCH中DMRS天线端口和其他1或2个下行参考信号(DL RS)近似定位关系的参数。网络设备通过MAC控制消息MAC CE激活并使这些配置得以生效,协议规定每个UE最大同时可激活TCI个数为8,而实际上网络侧可以通过高层参数为每个终端设备灵活配置M个TCI状态配置,M取值取决于终端设备的每BWP能够实际支持的最大活跃TCI配置能力,由高层参数maxNumberActiveTCI-PerBWP决定,可选取值分别为{1,2,4,8}。
目前NR R16协议中一个DCI只支持配置一个TCI状态,该信息比特(bit)承载在DCI1_1和DCI1_2中,共4比特。
2、NR DL数据信道接收波束选择过程
3GPP物理层(TS38.214 5.1.5)协议中定义了终端设备在连接态非连续接收(connected-discontinuous reception,C-DRX)DL PDSCH获取信道假设的过程:网络设备通过DCI1_1/DCI1_2传递参数字段TCI,终端设备解析到TCI状态后,从MAC CE激活的8个TCI状态中选择与之匹配的TCI状态,得到PDSCH的DMRS与相应RS的QCL关系, 从而确定PDSCH数据的最佳收发波束对信息,最后终端设备将PDSCH的收波束切换为TCI指示的最佳收波束。
PDCCH的接收和处理流程是:信道估计-盲检-译码-物理层参数解析-参数配置。这导致了控制信道的接收处理解析和具体参数配置生效之间有一定的延时。因此3GPP物理层(TS38.214 5.1.5)协议中定义了DL PDSCH收波束指示生效的时间门限timeDurationForQCL(该门限以OFDM符号数进行取值,针对子载波间隔60kHz,取值为7、14、28,针对子载波间隔120kHz,取值为14、28)。如果PDSCH起始符号与调度它的PDCCH的最后一个符号大于或等于timeDurationForQCL指示的间隔,则解析到的TCI状态可以生效,反之则该PDSCH的DMRS与相应搜索空间中索引号最低的CORESET所包含的PDCCH的QCL一致。
3、NR DL数据信道接收波束切换门限
在3GPP TS38.331中定义了PDSCH波束切换生效的时间门限:FeatureSetDownlink IE>timeDurationForQCL。该门限以OFDM符号数进行取值,针对子载波间隔60kHz,取值为7、14、28,针对子载波间隔120kHz,取值为14、28。
timeDurationForQCL针对频率范围2(frequency range2,FR2)子载波间隔(sub carrier space,SCS)为60k和120k定义,该参数具体指PDCCH的最后一个符号与其调度的PDSCH的第一个符号之间的间隔,单位为符号。
在3GPP TR38.822中描述了关于PDSCH波束切换参数timeDurationForQCL的使用场景和使用方式,即针对FR2,通过必选能力信令指示。
请参阅图1,图1是本申请实施例提供的一种终端设备接收PDSCH数据的波束示意图。如图1所示,网络设备可以通过PDCCH的发波束向终端设备发送PDCCH数据,通过PDSCH的发波束向终端设备发送PDSCH数据,对应的,终端设备可以通过PDCCH的收波束接收来自网络设备的PDCCH数据,通过PDSCH的收波束接收来自网络设备的PDSCH数据。PDCCH的最后一个符号与其调度的PDSCH的第一个符号之间的门限为timeDurationForQCL。请参阅图2,图2是本申请实施例提供的一种波束对的示意图。如图2所示,网络设备的PDSCH发波束与终端设备的PDSCH收波束为波束对,网络设备的PDCCH发波束与终端设备的PDCCH收波束为波束对,网络设备与终端设备通过对应的波束对传输数据,能够使得数据传输更为准确。
请参阅图3,图3是本申请实施例提供的一种PDCCH与PDSCH的时序关系示意图。如图3的(b)所示,在PDCCH与其调度的PDSCH之间的符号间隔不足门限值的场景下,终端设备使用PDCCH的收波束接收PDSCH数据,这样使用的波束对明显不是最佳波束对。如果终端设备在PDCCH数据接收完成后,按照网络设备指示(网络设备在PDCCH中指示了接收PDSCH数据的收波束信息),迅速调整到PDSCH收波束,则PDSCH数据的信道估计性能更好,可以更好地匹配网络设备为PDSCH设置的调制阶数(modulation order)和目标码率(target code rate)等参数。但是如果终端设备使用PDCCH的收波束接收PDSCH数据,不能按照TCI指示适时地选择PDSCH的最优的收波束,因此降低了数据信道的接收性能。
如果终端设备按照TCI指示接收PDSCH,网络侧就需要配置PDCCH与其调度的PDSCH之间的符号间隔大于timeDurationForQCL门限,在网络设备配置PDCCH与其调度的PDSCH符号间隔大于timeDurationForQCL门限值的场景下,时序关系如图3的(a)所示,终端设备可以使用TCI指示的最佳收波束来接收PDSCH。但是,这种配置在调度上拉大了PDCCH与其调度的PDSCH之间的符号间隔,增加了端到端处理延时,使终端设备不能快速接收解码PDSCH,不能满足低时延的场景要求。特别地,考虑未来mmWave应用在多收发节点(multi-transmissionandreceivingpoints,multi-TRP)、低时延、高移动性等场景下,PDSCH与相应的PDCCH之间的符号间隔可能更短甚至没有间隔,PDCCH波束和PDSCH波束的差异性更大,这个问题表现的就更加突出。
基于上述问题,本申请提供一种通信方法,能够通过第一指示信息实现PDSCH的收波束的切换,提高接收PDSCH数据的准确性。
本申请实施例中,可以在PDCCH与其调度的PDSCH之间的符号间隔不足门限值的场景下,网络设备生成第一指示信息,将PDSCH数据的TCI指示信息通过第一指示信息提前于PDSCH数据发送,终端设备接收来自网络设备的第一指示信息后,可以立即解析得到PDSCH数据的TCI指示信息,从而确定接收PDSCH的收波束信息,实现在接收PDSCH数据时对PDSCH收波束的快速切换。这样,可以提高接收PDSCH数据的准确性。
为了更好地理解本申请实施例提供的一种通信方法、装置及计算机可读存储介质,下面先对本申请实施例的系统架构进行描述。具体的:请参阅图4,图4是本申请实施例提供的一种系统架构示意图。如图4所示,该系统架构可以包括网络设备201和终端设备202。网络设备201可以通过PDCCH/PDSCH发波束向终端设备202发送PDCCH/PDSCH,终端设备202可以通过PDCCH/PDSCH收波束接收来自网络设备201的PDCCH/PDSCH。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信系统(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码多分址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信(universal mobile telecommunications system,UMTS)系统、增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(public land mobile network,PLMN)系统,第五代(5th generation,5G)系统或5G之后的通信系统或新无线(new radio,NR)等,本申请实施例对此不作限定。
本申请实施例中的终端设备也可以称为用户终端。用户终端可以为包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。具体的,用户终端可以指UE、用户、卫星电话、卫星终端、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能手机(smart phone)、智能手表(smart watch)、无线数据卡、个人数字助理(personal digital assistant, PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。例如,终端设备可以是车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络或者未来通信网络中的终端设备等,本申请实施例对此不作具体限定。
本申请实施例中的网络设备可以是用于与终端设备进行通信的设备,例如,可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络设备或者未来演进的PLMN网络中的网络设备等,例如,NR系统中传输点(TRP或TP)、NR系统中的基站(gNB)、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等,本申请实施例对此不作限定。
可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,本申请实施例对此不作具体限定。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasableprogrammableread-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本申请描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
基于上述的网络架构,请参阅图5,图5是本申请实施例提供的一种通信方法的流程 示意图。其中,本申请中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。该通信方法可以用于终端设备确定上下行资源。如图5所示,该通信方法可以包括以下步骤。
501、网络设备生成第一指示信息。
网络设备可以确定PDCCH与PDSCH之间的符号间隔,在该符号间隔小于门限值的情况下,例如,K0=0(即PDCCH与PDSCH在同一个时隙上)、mini-slot、multi-panel/TRP的情况下,网络设备可以生成第一指示信息。其中,门限值可以为3GPPTS38.331中定义的DL PDSCH的收波束指示生效的时间门限(timeDurationForQCL)。第一指示信息可以是信号,如果将TCI指示信息承载在信号中发送给终端设备,终端设备解析的时间比较短。例如,第一指示信息可以是波束指示信号(beam indication signal,BIS)。
第一指示信息可以用于指示PDSCH的收波束信息,也可以用于PDCCH信道估计,从而可以增强PDCCH的接收性能。
第一指示信息的指示方式可以是直接指示,也可以采用索引值的方式指示,还可以通过传输资源指示,还可以是指示符/指示位进行指示,还可以用比特信息进行指示,例如该比特信息为0或1。
第一指示信息序列可以做频域相关或者时域相关。在时域相关与在频域相关可以采用不同的设计方法来设计第一指示信息,以提高第一指示信息接收的可靠性、解析速度以及降低第一信息处理的复杂度。
其中,频域相关的第一指示信息设计,具体的:
在一种可能的实施方式中,第一指示信息序列可以满足:
Figure PCTCN2020131790-appb-000011
其中,r(m)为所述第一指示信息序列,伪随机序列c(i)可以使用3GPP TS38.211 5.2.1中的定义。该伪随机序列c(i)可以由第一初始值C init1初始化,所述第一初始值C init1满足:
Figure PCTCN2020131790-appb-000012
Figure PCTCN2020131790-appb-000013
为每时隙的符号数,
Figure PCTCN2020131790-appb-000014
为无线帧内时隙数,l为时隙内符号号,n TCI-ID为所述TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7},n TCI-ID可以由网络设备通过信令配置。
在另一种可能的实施方式中,第一指示信息序列可以满足:
Figure PCTCN2020131790-appb-000015
其中,伪随机序列c(i)可以由第二初始值C init2初始化,所述第二初始值C init2满足:
Figure PCTCN2020131790-appb-000016
其中,UE_ID为终端设备的标识,UE_ID可以由网络设备通过信令配置。
其中,时域相关的第一指示信息设计,具体的:
第一指示信息可以由m序列生成,第一指示信息序列满足:
d BIS(n)=1-2x(m)
m=(n+14n TCI-ID)mod127
0≤n≤127
其中,d BIS(n)为所述第一指示信息序列,x(i+7)=(x(i+4)+x(i))mod2且[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0],n TCI-ID为所述TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
第一指示信息的生成序列可以为Gold序列,m序列,ZC序列以及计算机生成序列(computer generated sequence,CGS)等中的一种。
可选的,第一指示信息的配置可以参照跟踪参考信号(tracking reference signal,TRS)/CSI-RS的配置,这样容易标准化。
可选的,第一指示信息可以采用不同的频域位置、UE_ID和正交覆盖码(Orthogonal covering codes,OCC)等方法进行不同终端设备的区分。频域位置可以是通过不同终端设备在频域中的偏移量(V shift)来进行多用户(multi user,MU)的不同终端设备的区分。
第一指示信息在时域上可以占用1个符号或1个以上符号,在频域上可以在连续RB上映射,也可以以第一频域密度进行映射。
例如,第一频域密度为3RE每RB。第一指示信息的具体资源映射可以如下:
对于多用户不同的终端设备的时频资源分布:
在一种可能的实施方式中,若采用单列符号,PDSCH typeA时,请参阅图6,图6是本申请实施例提供的一种时频资源分布示意图。如图6所示,以频域密度为1/3的密度在频域上指示四种不同终端设备的频域资源,以单列符号在时域上指示四种不同终端设备的时域资源。其中,时频资源分布可以是对于一个或多个终端设备的时频资源分布,四种不同终端设备只是举例说明,并不对本申请作以限定。
在另一种可能的实施方式中,若采用双列符号,PDSCH typeA时,请参阅图7,图7是本申请实施例提供的另一种时频资源分布示意图。如图7所示,以频域密度为1/3的密度在频域上指示四种不同终端设备的频域资源,以双列符号在时域上指示四种不同终端设备的时域资源。其中,时频资源分布可以是对于一个或多个终端设备的时频资源分布,四种不同终端设备只是举例说明,并不对本申请作以限定。采用双列符号,可以使得终端设备解调的正确率更高一些,还可以降低频谱效率。
在又一种可能的实施方式中,若采用单列符号,PDSCH typeB时,请参阅图8,图8是本申请实施例提供的又一种时频资源分布示意图。如图8所示,以频域密度为1/3的密度在频域上指示四种不同终端设备的频域资源,以单列符号在时域上指示四种不同终端设备的时域资源。其中,时频资源分布可以是对于一个或多个终端设备的时频资源分布,四种不同终端设备只是举例说明,并不对本申请作以限定。
在又一种可能的实施方式中,若采用双列符号,PDSCH typeB时,请参阅图9,图9是本申请实施例提供的又一种时频资源分布示意图。如图9所示,以频域密度为1/3的密度在频域上指示四种不同终端设备的频域资源,以单列符号在时域上指示四种不同终端设备的时域资源。其中,时频资源分布可以是对于一个或多个终端设备的时频资源分布,四种不 同终端设备只是举例说明,并不对本申请作以限定。
对于单用户的终端设备的时频资源分布:
在一种可能的实施方式中,若采用单列符号,PDSCH typeA时,请参阅图10,图10是本申请实施例提供的又一种时频资源分布示意图。如图10所示,以频域密度为1/3的密度在频域上指示第一终端设备的频域资源,以单列符号在时域上指示第一终端设备的时域资源。
在另一种可能的实施方式中,若采用双列符号,PDSCH typeA时,请参阅图11,图11是本申请实施例提供的另一种时频资源分布示意图。如图11所示,以频域密度为1/3的密度在频域上指示第一终端设备的频域资源,以双列符号在时域上指示第一终端设备的域资源。
在又一种可能的实施方式中,若采用单列符号,PDSCH typeB时,请参阅图12,图12是本申请实施例提供的又一种时频资源分布示意图。如图12所示,以频域密度为1/3的密度在频域上指示第一终端设备的频域资源,以单列符号在时域上指示第一终端设备的时域资源。
在又一种可能的实施方式中,若采用双列符号,PDSCH typeB时,请参阅图13,图13是本申请实施例提供的另一种时频资源分布示意图。如图13所示,以频域密度为1/3的密度在频域上指示第一终端设备的频域资源,以双列符号在时域上指示第一终端设备的时域资源。
502、网络设备向终端设备发送第一指示信息。
相应的,终端设备接收来自网络设备的第一指示信息。
网络设备可以提前于PDSCH数据发送第一指示信息,请参阅图14,图14是本申请实施例提供的一种时序关系的示意图。如图14所示,网络设备可以在PDCCH数据前发送第一指示信息,也可以在PDCCH数据中间或后面发送,可以取决于具体实现形式,只要保证在PDSCH数据之前发送即可。网络设备发送PDSCH的起始符号与发送第一指示信息的符号的符号差值大于或等于第一阈值,该第一阈值指终端设备解析第一指示信息的符号数。
例如,可以在PDCCH符号(CORESET符号)前发送固定符号位置(提前1~2个符号或在coreset中固定导频位置)发送。
503、终端设备将PDSCH的收波束切换到第一指示信息对应的收波束。
终端设备接收来自网络设备的第一指示信息之后,将第一指示信息与第一序列匹配,第一指示信息与第一序列匹配,可以理解为,对第一指示信息做相关运算解析内容,例如AGC调整、FFT处理,得到第一指示信息序列,将第一指示信息序列与第一序列序列相关,解析出TCI指示内容。根据TCI指示在接收PDSCH数据时,根据解析结果对PDSCH做收波束切换,即将PDSCH的收波束切换到第一指示信息对应的收波束。
其中,第一序列可以是终端设备预先生成之后存储在本地的,第一序列的生成可以参考上述步骤501中的第一指示信息序列的生成方法,在此不再赘述。
可选的,终端设备可以在频域上检测第一指示信息,也可以在时域上检测第一指示信息,即终端设备可以进行第一指示信息序列与第一序列的频域相关或者时域相关。
在一个实施例中,请参阅图15,图15是本申请实施例提供的一种处理时序的示意图。如图15所示,PDCCH和PDSCH的符号间隔为0的场景下,PDCCH占时隙n的前3个符号,即 sym0~sym2,PDSCH占时隙n的第4~14个符号,即sym3~sym13。第一指示信息可以在PDCCH前1个符号发送,即在sym0之前的1个符号发送第一指示信息。第一指示信息从网络设备空口发送到终端设备接收可以经过时间提前(time advance,TA)时间,终端设备接收到来自网络设备的第一指示信息之后,可以经过2个符号的时间做相关运算解析内容,例如AGC调整、FFT处理,得到第一指示信息序列,对第一指示信息序列与第一序列的频域相关,解析出TCI指示内容,根据TCI指示在空口符号2的结束时刻前,根据解析结果对PDSCH做收波束切换,即将PDSCH的收波束切换到第一指示信息对应的收波束。
在另一个实施例中,请参阅图16,图16是本申请实施例提供的另一种处理时序的示意图。如图16所示,PDCCH和PDSCH的符号间隔为0的场景下,PDCCH占时隙n的第1个符号,即sym0,PDSCH占时隙n的第2~14个符号,即sym1~sym13。第一指示信息可以提前在PDCCH前2个符号发送,即在sym0之前的2个符号发送第一指示信息。在该实施例中,可以采用时域相关的实现方式:第一指示信息从网络设备空口发送到终端设备接收可以经过TA时间,终端设备接收到来自网络设备的第一指示信息之后,可以经过1个符号的时间做相关运算解析内容,例如AGC调整、FFT处理,得到第一指示信息序列,对第一指示信息序列与第一序列的时域相关,解析出TCI指示内容,根据TCI指示在空口符号0的结束时刻前,根据解析结果对PDSCH做收波束切换,即将PDSCH的收波束切换到第一指示信息对应的收波束。
504、网络设备向终端设备发送PDSCH。
相应的,终端设备可以接收来自网络设备的PDSCH。
终端设备在接收PDSCH时,已经根据TCI指示切换到接收PDSCH对应的收波束,可以实现准确地接收PDSCH。
基于上述的网络架构,请参阅图17,图17是本申请实施例提供的另一种通信方法的流程示意图。其中,本申请中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。该通信方法可以用于终端设备确定上下行资源。如图17所示,该通信方法可以包括以下步骤。
1701、网络设备生成第一指示信息。
应理解,步骤1701与步骤501对应,步骤1701中的相关描述可以参见上述步骤501的描述,此处为了避免重复,不再赘述。
1702、网络设备向终端设备发送第二指示信息。
相应的,终端设备接收来自网络设备的第二指示信息。
第二指示信息可以包括第一指示信息的时频位置信息,用于指示第一指示信息的时频位置。时频位置可以理解为时频资源或者时频资源位置。第二指示信息也可以包括第一指示信息的信息类型,信息类型可以指示第一指示信息是单列还是双列。
在一种可能的实施方式中,网络设备可以在发送第一指示信息前,通过两个字段来指示第二指示信息,第一字段为配置有第一指示信息,第二字段为该第一指示信息是双列还是单列。
在另一种可能的实施方式中,网络设备可以在发送第一指示信息前,通过一个字段来 指示第二指示信息,该字段用于通知终端设备需要检测第一指示信息。
在又一种可能的实施方式中,网络设备周期性发送第一指示信息,终端设备可以根据指示在有效位置周期检测第一指示信息。
可选的,在第一指示信息配置无效的情况下,用于发送第一指示信息的位置可以配置为其他DL/UL/灵活符号。
1703、网络设备向终端设备发送第一指示信息。
应理解,步骤1703与步骤502对应,步骤1703中的相关描述可以参见上述步骤502的描述,此处为了避免重复,不再赘述。
1704、终端设备根据第二指示信息接收第一指示信息。
终端设备接收第二指示信息之后,可以根据第二指示信息中第一指示信息的时频位置信息,来接收第一指示信息。这样,可以不用通过盲检的方式来检测第一指示信息,从而可以提高接收数据的速率。
可选的,当第二指示信息包括第一指示信息的信息类型时,终端设备可以根据信息类型来解析第一指示信息。
1705、终端设备将PDSCH的收波束切换到第一指示信息对应的收波束。
应理解,步骤1705与步骤503对应,步骤1705中的相关描述可以参见上述步骤503的描述,此处为了避免重复,不再赘述。
1706、网络设备向终端设备发送PDSCH。
应理解,步骤1706与步骤504对应,步骤1706中的相关描述可以参见上述步骤504的描述,此处为了避免重复,不再赘述。
基于上述的网络架构,请参阅图18,图18是本申请实施例提供的一种通信装置的结构示意图。该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。如图18所示,该通信装置1800,至少包括:接收单元1801和切换单元1802;其中:
接收单元1801,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束的信息;
切换单元1802,用于将所述PDSCH的收波束切换到所述第一指示信息对应的收波束;
接收单元1801,还用于使用所述第一指示信息对应的收波束接收来自所述网络设备的PDSCH。
在一个实施例中,接收单元1801,还用于:
接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置;
所述接收单元1801接收来自网络设备的第一指示信息,具体用于:
在所述第二指示信息指示的时频位置接收来自所述网络设备的第一指示信息。
在一个实施例中,所述切换单元1802将所述PDSCH的收波束切换到所述第一指示信息对应的收波束具体用于:
当所述第一指示信息与第一序列匹配时,根据所述第一指示信息确定传输状态指示TCI;
将所述PDSCH的收波束切换到所述TCI对应的收波束。
有关上述接收单元1801和切换单元1802更详细的描述可以直接参考上述图5和图17所示的方法实施例中终端设备的相关描述,这里不加赘述。
基于上述的网络架构,请参阅图19,图19是本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。如图19所示,该通信装置1900,至少包括:生成单元1901、发送单元1902和确定单元1903;其中:
生成单元1901,用于生成第一指示信息;
发送单元1902,用于向终端设备发送所述第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束;
所述发送单元1902,还用于向所述终端设备发送所述PDSCH,发送所述第一指示信息在发送所述PDSCH之前。
在一个实施例中,所述PDSCH的时域起始符号与发送所述第一指示信息的符号的符号差值大于或等于所述终端设备解析所述第一指示信息的符号数。
在一个实施例中,所述发送单元1902,还用于:
向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置。
在一个实施例中,该通信装置还包括:
确定单元1903,用于确定物理下行控制信道PDCCH与所述PDSCH之间的符号间隔;
生成单元1901生成第一指示信息具体用于:
当所述符号间隔小于门限值时,生成所述第一指示信息。
在一个实施例中,所述第一指示信息序列满足:
Figure PCTCN2020131790-appb-000017
其中,r(m)为所述第一指示信息序列,伪随机序列c(i)由第一初始值初始化,所述第一初始值满足:
Figure PCTCN2020131790-appb-000018
Figure PCTCN2020131790-appb-000019
为每时隙的符号数,
Figure PCTCN2020131790-appb-000020
为无线帧内时隙数,l为时隙内符号号,n TCI-ID为所述TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
在一个实施例中,所述伪随机序列c(i)由第二初始值初始化,所述第二初始值满足:
Figure PCTCN2020131790-appb-000021
其中,UE_ID为所述终端设备的标识。
在一个实施例中,所述第一指示信息由m序列生成,所述第一指示信息序列满足:
d BIS(n)=1-2x(m)
m=(n+14n TCI-ID)mod127
0≤n≤127
其中,d BIS(n)为所述第一指示信息序列,x(i+7)=(x(i+4)+x(i))mod2且 [x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0],n TCI-ID为所述TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
在一个实施例中,所述第一指示信息的生成序列为以下序列中的一种:
Gold序列,m序列,ZC序列以及计算机生成序列CGS。
在一个实施例中,所述第一指示信息在时域上占用1个符号或1个以上符号;
所述第一指示信息在频域连续资源块RB上映射;或者
所述第一指示信息以第一频域密度进行映射。
有关上述生成单元1901、发送单元1902和确定单元1903更详细的描述可以直接参考上述图5和图17所示的方法实施例中网络设备的相关描述,这里不加赘述。
基于上述网络架构,请参阅图20,图20是本申请实施例提供的又一种通信装置的结构示意图。如图20所示,该装置2000可以包括一个或多个处理器2001,处理器2001也可以称为处理单元,可以实现一定的控制功能。处理器2001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器2001也可以存有指令和/或数据2003,所述指令和/或数据2003可以被所述处理器运行,使得所述装置2000执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器2001中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置2000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置2000中可以包括一个或多个存储器2002,其上可以存有指令2004,所述指令可在所述处理器上被运行,使得所述装置2000执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置2000还可以包括收发器2005和/或天线2006。所述处理器2001可以称为处理单元,对所述装置2000进行控制。所述收发器2005可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置2000可以用于执行本申请实施例中图5和图17中描述的方法。
在一个实施例中,该通信装置2000可以为终端设备,也可以为终端设备中的模块(例如,芯片),存储器2002中存储的计算机程序指令被执行时,该处理器2001用于控制切换单元1802执行上述实施例中执行的操作,收发器2005用于执行上述实施例中接收单元1801 执行的操作,收发器2005还用于接收来自该通信装置之外的其它通信装置的信息。上述终端设备或者终端设备内的模块还可以用于执行上述图5和图17方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置2000可以为网络设备,也可以为网络设备中的模块(例如,芯片),存储器2002中存储的计算机程序指令被执行时,该处理器2001用于控制生成单元1901和确定单元1903执行上述实施例中执行的操作,收发器2005用于执行上述实施例中发送单元1902执行的操作,收发器2005还用于向该通信装置之外的其它通信装置发送信息。上述网络设备或者网络设备内的模块还可以用于执行上述图5和图17方法实施例中网络设备执行的各种方法,不再赘述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图20的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
基于上述网络架构,请参阅图21,图21是本申请实施例提供的一种终端的结构示意图。为了便于说明,图21仅示出了终端设备的主要部件。如图21所示,终端设备2100包括处理器、存储器、控制电路、天线、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基 带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图21仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图21中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个实施例中,可以将具有收发功能的天线和控制电路视为终端设备2100的收发单元2101,将具有处理功能的处理器视为终端设备2100的处理单元2102。如图21所示,终端设备2100包括收发单元2101和处理单元2102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元2101中用于实现接收功能的器件视为接收单元,将收发单元2101中用于实现发送功能的器件视为发送单元,即收发单元2101包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
在一个实施例中,处理单元2102用于执行上述实施例中切换单元1802执行的操作,收发单元2101用于执行上述实施例中接收单元1801执行的操作。该终端2100还可以用于执行上述图5和图17方法实施例中终端执行的各种方法,不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
本申请实施例还提供了一种计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
本申请实施例还公开一种通信系统,该通信系统包括终端设备和网络设备,具体描述可以参考图5和图17所示的通信方法。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是硬盘(hard disk drive,HDD)、固态硬盘(solid-state drive,SSD)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static rAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous dRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
还应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块/单元可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束的信息;
    将所述PDSCH的收波束切换到所述第一指示信息对应的收波束;
    使用所述第一指示信息对应的收波束接收来自所述网络设备的PDSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置;
    所述接收来自网络设备的第一指示信息包括:
    在所述第二指示信息指示的时频位置接收来自所述网络设备的第一指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述将所述PDSCH的收波束切换到所述第一指示信息对应的收波束包括:
    当所述第一指示信息与第一序列匹配时,根据所述第一指示信息确定传输状态指示TCI;
    将所述PDSCH的收波束切换到所述TCI对应的收波束。
  4. 一种通信方法,其特征在于,包括:
    生成第一指示信息;
    向终端设备发送所述第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束;
    向所述终端设备发送所述PDSCH,所述第一指示信息的发送时间早于所述PDSCH的发送时间。
  5. 根据权利要求4所述的方法,其特征在于,所述PDSCH的起始符号与所述第一指示信息的结束符号之间的符号差值大于或等于第一阈值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述方法还包括:
    确定所述PDSCH与所述PDSCH对应的物理下行控制信道PDCCH之间的符号间隔;
    所述生成第一指示信息包括:
    当所述符号间隔小于门限值时,生成所述第一指示信息。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述第一指示信息序列满足:
    Figure PCTCN2020131790-appb-100001
    其中,r(m)为所述第一指示信息序列,c(i)为伪随机序列。
  9. 根据权利要求8所述的方法,其特征在于,所述c(i)由第一初始值初始化,所述第一初始值满足:
    Figure PCTCN2020131790-appb-100002
    Figure PCTCN2020131790-appb-100003
    为每时隙内的符号数,
    Figure PCTCN2020131790-appb-100004
    为无线帧内的时隙数,l为时隙内的符号号,n TCI-ID为传输状态指示TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
  10. 根据权利要求8所述的方法,其特征在于,所述c(i)由第二初始值初始化,所述第二初始值满足:
    Figure PCTCN2020131790-appb-100005
    其中,UE_ID为所述终端设备的标识。
  11. 根据权利要求4-7任一项所述的方法,其特征在于,所述第一指示信息由m序列生成,所述第一指示信息序列满足:
    d BIS(n)=1-2x(m)
    m=(n+14n TCI-ID)mod127
    0≤n≤127
    其中,d BIS(n)为所述第一指示信息序列,x(i+7)=(x(i+4)+x(i))mod2且[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0],n TCI-ID为TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
  12. 根据权利要求4-10任一项所述的方法,其特征在于,所述生成第一指示信息的序列为以下序列中的一种:
    Gold序列,m序列,ZC序列以及计算机生成序列CGS。
  13. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束的信息;
    切换单元,用于将所述PDSCH的收波束切换到所述第一指示信息对应的收波束;
    所述接收单元,还用于使用所述第一指示信息对应的收波束接收来自所述网络设备的PDSCH。
  14. 根据权利要求13所述的装置,其特征在于,所述接收单元,还用于:
    接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置;
    所述接收单元接收来自网络设备的第一指示信息,具体用于:
    在所述第二指示信息指示的时频位置接收来自所述网络设备的第一指示信息。
  15. 根据权利要求13或14所述的装置,其特征在于,所述切换单元将所述PDSCH的收波束切换到所述第一指示信息对应的收波束具体用于:
    当所述第一指示信息与第一序列匹配时,根据所述第一指示信息确定传输状态指示TCI;
    将所述PDSCH的收波束切换到所述TCI对应的收波束。
  16. 一种通信装置,其特征在于,包括:
    生成单元,用于生成第一指示信息;
    发送单元,用于向终端设备发送所述第一指示信息,所述第一指示信息用于指示物理下行共享信道PDSCH的收波束;
    所述发送单元,还用于向所述终端设备发送所述PDSCH,所述第一指示信息的发送时间早于所述PDSCH的发送时间。
  17. 根据权利要求16所述的装置,其特征在于,所述PDSCH的起始符号与所述第一指示信息的结束符号之间的符号差值大于或等于第一阈值。
  18. 根据权利要求16或17所述的装置,其特征在于,所述发送单元,还用于:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一指示信息的时频位置。
  19. 根据权利要求16-18任一项所述的装置,其特征在于,所述装置还包括:
    确定单元,用于确定所述PDSCH与所述PDSCH对应的物理下行控制信道PDCCH之间的符号间隔;
    所述生成单元生成第一指示信息具体用于:
    当所述符号间隔小于门限值时,生成所述第一指示信息。
  20. 根据权利要求16-19任一项所述的装置,其特征在于,所述第一指示信息序列满足:
    Figure PCTCN2020131790-appb-100006
    其中,r(m)为所述第一指示信息序列,c(i)为伪随机序列。
  21. 根据权利要求20所述的装置,其特征在于,所述c(i)由第一初始值初始化,所述第一初始值满足:
    Figure PCTCN2020131790-appb-100007
    Figure PCTCN2020131790-appb-100008
    为每时隙内的符号数,
    Figure PCTCN2020131790-appb-100009
    为无线帧内的时隙数,l为时隙内的符号号,n TCI-ID为传输状态指示TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
  22. 根据权利要求20所述的装置,其特征在于,所述c(i)由第二初始值初始化,所述第二初始值满足:
    Figure PCTCN2020131790-appb-100010
    其中,UE_ID为所述终端设备的标识。
  23. 根据权利要求16-19任一项所述的装置,其特征在于,所述第一指示信息由m序列生成,所述第一指示信息序列满足:
    d BIS(n)=1-2x(m)
    m=(n+14n TCI-ID)mod127
    0≤n≤127
    其中,d BIS(n)为所述第一指示信息序列,x(i+7)=(x(i+4)+x(i))mod2且[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0],n TCI-ID为所述TCI指示码,所述n TCI-ID∈{0,1,2,3,4,5,6,7}。
  24. 根据权利要求16-22所述的装置,其特征在于,所述生成第一指示信息的序列为以下序列中的一种:
    Gold序列,m序列,ZC序列以及计算机生成序列CGS。
  25. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行
    如权利要求1-3任一项所述的方法;或者
    如权利要求4-12任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,
    权利要求1-3任一项所述的方法被执行;或者
    权利要求4-12任一项所述的方法被执行。
  27. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器、存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,使得所述芯片系统
    执行权利要求1-3任一项所述的方法;或者
    执行如权利要求4-12任一项所述的方法。
  28. 一种通信系统,其特征在于,包括如权利要求25所述的装置。
PCT/CN2020/131790 2020-11-26 2020-11-26 一种通信方法、装置及计算机可读存储介质 WO2022109927A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107221.2A CN116458241A (zh) 2020-11-26 2020-11-26 一种通信方法、装置及计算机可读存储介质
PCT/CN2020/131790 WO2022109927A1 (zh) 2020-11-26 2020-11-26 一种通信方法、装置及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131790 WO2022109927A1 (zh) 2020-11-26 2020-11-26 一种通信方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022109927A1 true WO2022109927A1 (zh) 2022-06-02

Family

ID=81755072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131790 WO2022109927A1 (zh) 2020-11-26 2020-11-26 一种通信方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116458241A (zh)
WO (1) WO2022109927A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365939A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种配置信息的方法、装置及系统
CN109845371A (zh) * 2019-01-08 2019-06-04 北京小米移动软件有限公司 下行数据接收方法、发送方法、装置和存储介质
US20190253220A1 (en) * 2018-02-14 2019-08-15 Electronics And Telecommunications Research Institute Method and apparatus for downlink communication in communication system
CN110536456A (zh) * 2018-05-25 2019-12-03 成都华为技术有限公司 通信方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365939A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种配置信息的方法、装置及系统
US20190253220A1 (en) * 2018-02-14 2019-08-15 Electronics And Telecommunications Research Institute Method and apparatus for downlink communication in communication system
CN110536456A (zh) * 2018-05-25 2019-12-03 成都华为技术有限公司 通信方法、终端设备和网络设备
CN109845371A (zh) * 2019-01-08 2019-06-04 北京小米移动软件有限公司 下行数据接收方法、发送方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "On Beam Management for DL Control and Data Channels", 3GPP DRAFT; R1-1708334 BEAM MANAGEMENT FOR CONTROL AND DATA CHANNELS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051262374 *

Also Published As

Publication number Publication date
CN116458241A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN111586862B (zh) 信息指示的方法及装置
EP3817479B1 (en) Communication method and communication apparatus
WO2020034889A1 (zh) 信号传输的方法和通信装置
US11109392B2 (en) Communication method, network device, and relay device
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
JP2021529495A (ja) 測位基準信号設定方法、受信方法及び機器
WO2021026926A1 (zh) 通信方法及终端设备、网络设备
WO2020233420A1 (zh) 时隙格式指示的方法和通信装置
CN108811074B (zh) 信息传输方法及装置
WO2020164600A1 (zh) 信息指示的方法及装置
WO2018137222A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
CN111464473B (zh) 配置信息的方法与装置
WO2024164149A1 (zh) 参考信号的传输资源的确定方法及装置
WO2022247655A1 (zh) 一种功率放大器非线性特征参数确定方法及相关装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
CN111436129B (zh) 数据传输方法和通信装置
US20190305902A1 (en) Reference signal transmission method and apparatus
US20210243614A1 (en) Communication method and apparatus
WO2023066061A1 (zh) 一种通信方法、通信装置及通信系统
WO2022109927A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN114765504B (zh) 发送位置确定方法、通信设备和存储介质
CN110351034B (zh) 控制信道传输方法和网络设备
WO2022141420A1 (zh) 一种传输配置指示tci状态切换的方法和通信装置
CN113475150A (zh) 一种下行数据传输方法、终端设备及存储介质
WO2022151390A1 (zh) 一种通信方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107221.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962818

Country of ref document: EP

Kind code of ref document: A1