WO2022108437A1 - Photobioreactor for growing microalgae - Google Patents

Photobioreactor for growing microalgae Download PDF

Info

Publication number
WO2022108437A1
WO2022108437A1 PCT/MX2021/050078 MX2021050078W WO2022108437A1 WO 2022108437 A1 WO2022108437 A1 WO 2022108437A1 MX 2021050078 W MX2021050078 W MX 2021050078W WO 2022108437 A1 WO2022108437 A1 WO 2022108437A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
pipes
tanks
line
growth
Prior art date
Application number
PCT/MX2021/050078
Other languages
Spanish (es)
French (fr)
Inventor
Antonio-José-de-Jesús-de-San-Juan-Bosco ECHEVARRIA-PARRÉS
Original Assignee
Echevarria Parres Antonio Jose De Jesus De San Juan Bosco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Echevarria Parres Antonio Jose De Jesus De San Juan Bosco filed Critical Echevarria Parres Antonio Jose De Jesus De San Juan Bosco
Priority to MX2023006031A priority Critical patent/MX2023006031A/en
Publication of WO2022108437A1 publication Critical patent/WO2022108437A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the present invention is related to photobioreactors for the growth of microalgae, and more particularly with a photobioreactor for the growth of microalgae which has four interconnected growth reactors and two sets of transparent pipes for capturing sunlight and photosynthesis where the pipes of each of the sets of pipes are arranged in such a way that the upper pipes do not cast shadows on the lower pipes.
  • Chlorella alga belongs to the genus of unicellular green algae of the phylum Chlorophyta. It is present in most freshwater bodies. It reproduces rapidly and asexually. For that, it needs the carbon it obtains from photosynthesis, water, light and small amounts of minerals. It contains large amounts of protein, vitamin C, beta-carotene, and B vitamins (B1, B2, B6, and B12).
  • microalgae such as Chlorella
  • Chlorella The processes from the cultivation of microalgae such as Chlorella are efficient and sustainable processes that not only meet the demand for the production of a wide range of products, but are also friendly to the environment.
  • the best conditions for the cultivation of the Chlorella Vulgaris microalgae seek the generation of a greater amount of biomass, the main product of interest, for the subsequent separation of metabolites such as lipids, proteins, among others.
  • the photobioreactor of the present invention has four interconnected growth reactors and two sets of transparent pipes for sunlight harvesting and photosynthesis, wherein the pipes of each of the sets of pipes are arranged in such a way that the upper pipes do not cast shadows on the lower pipes. Additionally, each reactor and each pipe of each set of pipes has a photosynthetically active LED light source and white light to maintain the continuity of photosynthetic activity in any exterior lighting condition.
  • Another main objective of the present invention is to provide a photobioreactor of the nature described above, which has four interconnected growth reactors and two sets of transparent pipes for capturing sunlight and photosynthesis, where the pipes of each of the pipe sets are arranged in such a way that the upper pipes do not cast shadows on the lower pipes.
  • each reactor and each pipe of each set of pipes has a photosynthetically active LED light source and white light to maintain the continuity of the activity. photosynthetic in any outdoor lighting condition.
  • Figure 1 is a diagram of the photobioreactor of the present invention showing all its elements and the connections between them, where the arrows at the end of each connection and flow line show the direction of flow through said line. Likewise, the discontinuity in the lines represents the places where another line of connection and flow passes over it.
  • FIG 2 is a diagram of a growth reactor (tank) corresponding to any of the photobioreactor tanks of the present invention.
  • Figure 3 is a front view of the tanks (1) and (2), showing the liquid and gas homogenization lines and the common connection pipes with the solar collection pipe sets;
  • Figure 4 is a top perspective view of the photobioreactor of the present invention.
  • Figure 5 is a top perspective view of the photobioreactor of the present invention having pipe assemblies with a shorter length than those of Figure 4 and showing only the tanks (1) and (2).
  • the photobioreactor for microalgae growth of the present invention comprises: a first pair of growth tanks formed by a first tank (1) and a second tank (2), placed side by side, and a second pair of tanks (hereafter called rear tanks) consisting of a third tank (3) and a fourth tank (4), placed side by side and opposite to the first pair of tanks, where each of the tanks: can be made of a transparent, translucent or opaque material and each one has a preferably cylindrical shape closed at the top by a top wall and where: each tank has a light source Photosynthetically active LED and white light (5) (400 to 720 Nm) to maintain the continuity of photosynthetic activity in any external lighting condition.
  • a first pair of growth tanks formed by a first tank (1) and a second tank (2), placed side by side
  • a second pair of tanks consisting of a third tank (3) and a fourth tank (4), placed side by side and opposite to the first pair of tanks
  • each of the tanks can be made of a transparent, translucent or opaque material and each
  • Said light source (5) is placed inside a hermetic tube (6) located in a central portion of the tank, said hermetic tube being attached to an internal portion of the upper wall; each pipe of each set of pipes has a cooling system (not shown) that does not allow temperatures higher than
  • the first tank has: an enriched air inlet (7), an osmotic water inlet (8), an inoculum inlet (9), a lower port for a liquid homogenization line (10), an upper port for a gas homogenization line (1 1), a growing biomass outlet (12), a drainage outlet (13) and a first port (14) and a second connection port (15) to one or more lines of pipes for collecting sunlight;
  • the second tank has a nutrient solution inlet (17), an osmotic water inlet (18), an enriched air inlet (19), a spent gas outlet (20), a drain (21), a port an upper port for a gas homogenization line (22), a lower port for a liquid homogenization line (23), a growing biomass
  • the fourth tank has an osmotic water inlet (39), an enriched air inlet (40), a growing biomass inlet (41), a drainage outlet (42), a top port for a homogenization line of gases (43), a lower port for a liquid homogenization line (44), a first port (45) and a second port (46) for connection to one or more pipe lines for capturing sunlight and an outlet for processed biomass (47); at least one pipe for capturing sunlight whose ends are connected to the first (1) and third tank (3) respectively and at least one pipe for capturing sunlight whose ends are connected to the second (2) and fourth tank (4) respectively, where in a preferred embodiment there is a first set (48) and a second set (49) of pipes, each having at least two pipes (ten pipes in a preferred embodiment) , where the ends of each pipe of the first set (48) of pipes are connected to the first (1) and third tank (3) respectively and the ends of each pipe of the second set of pipes (49) are connected to the second
  • each pipe of each set of pipes (48), (49) are connected to the respective common pipe in a staggered manner as shown in Fig. 2, with a separation between pipes of 30 cm in said mode. preferred.
  • the common pipes could be at any other angle to a vertical axis, and the separation between pipes could vary as long as the requirement that the upper pipes do not cast shadows on the lower pipes is met.
  • Each pipe can have one or more sources of photosynthetically active LED light and white light from 400 to 720 Nm (not shown) throughout the length of the pipe, to maintain the continuity of photosynthetic activity in any external lighting condition.
  • first (1) and third (3) tanks and the second (2) and fourth (4) tanks are connected through the first (48) and second (49) set of pipes respectively. Additionally, there are other connections to other elements and between the tanks, which are made through any type of pipe suitable for the size of the photobioreactor, which can be opaque or transparent, and made of rigid or flexible material. These connections will be described below: Input connections.
  • Enriched air source (62) connected to the enriched air inlet (7) of the first tank (1), connection with flow in one direction from (62) to (7) represented by line (63).
  • Enriched air source (62) connected to enriched air inlet (19) of the second tank (2), connection with flow in one direction from (62) to (19) represented by line (64).
  • Enriched air source (62) connected to enriched air inlet (28) of the third tank (3), connection with flow in one direction from (62) to (28), represented by line (65).
  • Enriched air source (62) connected to the enriched air inlet (40) of the fourth tank (4), connection with flow in one direction from (62) to (40), represented by line (66).
  • Osmotic water source (67) connected to the osmotic water inlet (8) of the first tank (1), connection with flow in one direction from (67) to (8) represented by line (68).
  • Osmotic water source (67) connected to the osmotic water inlet (18) of the second tank (2), connection with flow in one direction from (67) to (18), represented by line (69).
  • Osmotic water source (67) connected to the osmotic water inlet (27) of the third tank (3), connection with flow in one direction from (67) to (27), represented by line (70).
  • Osmotic water source (67) connected to the osmotic water inlet (39) of the fourth tank (4), connection with flow in one direction from (67) to (39), represented by the line (71).
  • Inoculum source (72) connected to inoculum inlet (9) of the first tank (1), connection with flow in one direction from (72) to (9), represented by line (73).
  • Nutrient solution source (74) connected to the nutrient solution inlet (17) of the second tank (2), one-way flow connection from (74) to (17), represented by line (75).
  • each tank (1), (2), (3), (4) is connected to a diffuser (G) placed at the bottom of each tank.
  • connection of the tanks with the circulation line allows to maintain the flow between all the tanks by means of at least one pump (86) connected to said circulation line (81) as will be described later.
  • Drain outlet (13) of the first tank (1) connected to drain line (not shown), one-way flow connection from (13) to drain line.
  • Drain outlet (21 ) from second tank (2) connected to drain line (not shown), one-way flow connection from (21 ) to drain line.
  • Drain outlet (42) from fourth tank (4) connected to drain line (not shown), one-way flow connection from (42) to drain line.
  • the processed biomass line (87) includes a pump (88) to maintain an adequate level of flow in the fourth tank (4) in accordance with the flow of all the tanks and facilitate the discharge of biomass from the fourth tank (4). Description of the flow paths to, from and between the elements of the photobioreactor.
  • Biomass processing in the bioreactor is carried out in batches, based on operating cycles.
  • Each cycle of operation should preferably work according to the optimal time to reach a biomass growth of 80% in mass of the volume of inoculum (seed) of Biomass, present at the beginning of the cycle. Therefore, in each cycle predetermined and calculated amounts of osmotic water, inoculum and nutrients are added, whose levels are controlled and maintained until the end of the cycle.
  • Each inlet and outlet of the tanks and each line of the photobioreactor has flow valves that can be opened and closed to control the flow between all the elements of the photobioreactor and control the permanence of the flows in each operating cycle.
  • enriched air is injected into the tanks (1), (2), (3) and (4) through their corresponding enriched air inlets (7), (19), (28), (40), from a source of enriched air (62).
  • Enriched air is a mixture of O2 and CO2.
  • the oxygen is obtained from the cheapest possible source, which is atmospheric air and the concentration of CO2 with air is preferably 3%, and can be varied for optimization.
  • CO2 is obtained from reusable sources or fixed production sources, taking care that the CO2 is as pure as possible and without the presence of NOx and SOx.
  • Osmotic water injection osmotic water includes water free of substances that are harmful to living beings, such as chlorine, lead, fluoride, etc. and it is the means by which the inoculum and nutrients move through all the elements of the photobioreactor.
  • the osmotic water injection is made through all the tanks through their respective osmotic water inlets (8), (18), (27), (39).
  • Nutrient injection the nutrients necessary for the development and reproduction of the microalgae are injected as a solution into the tanks (2) and (3) through their respective nutrient solution inlets (17), (29).
  • the optimal medium for the development and reproduction of microalgae is the following: # Component Final concentration
  • the medium can be optimized according to the specific conditions of the photobioreactor at a given time.
  • Inoculum or seed injection the inoculum injection is carried out by the tank (1) through its inoculum inlet (9).
  • the amount of osmotic water, nutrients and inoculum supplied to the photobioreactor is adequate for the capacity of the photobioreactor and for biomass multiplication, which is calculated using known methods.
  • the inoculum present in the medium that fills the tanks and the pipes of each set of pipes (48) and (49) begins to carry out photosynthesis in said tanks and in the pipes with the help of the light source of each tank ( 5) and with the help of sunlight for biomass multiplication, transforming into a medium with growing microalgae. From now on, this medium will be called “growing biomass”.
  • the growing biomass of the tanks (1) and (2) flows towards the circulation line (81), sucked by the pump (86) of said circulation line (81).
  • the pump (86) of the circulation line (81) drives the growing biomass from tanks (1) and (2) and introduces them to tanks (3) and (4) where they continue to be processed (growing and reproducing) with the help of the light source (5) of said tanks.
  • the photobioreactor produces waste gases, specifically a mixture of Oxygen and CO2 (depleted air) at a different concentration than the one fed, so it is required to remove it from the photobioreactor, which It is carried out through the spent air outlets (20), (32) of the tanks (2) and (3).
  • the photobioreactor has a control system based on a microprocessor. This receives signals sent by temperature sensors, PH, Na, P, K, Br, Mg, Mn, N among others, which are located in the body of each reaction tank.
  • the processor takes action in the absence of each type of nutrients, giving instructions in case of detecting a decrease in any of them, so that they are supplied in a particular way. It is also controlled that the pH does not go out of established parameters and the control of the valves described above to control the flow of gases and liquids between the elements of the bioreactor.
  • the monitoring of nutrient levels, as well as the monitoring of visible light, guarantees knowing and recording the critical parameters for the microalgae cell growth curve.
  • One or more methods and control systems may be suggested by those skilled in the art depending on the size of the photobioreactor and the operating conditions present at any given time.
  • the agitation of the medium in each tank will be carried out through the supply of enriched air.
  • the flow of the medium between all the elements of the photobioreactor is done in a turbulent regime achieved through maintaining a high Reynolds above the turbulent flow curve (ideally with a Reynbolds number of 1 1 ,000).
  • the pipe diameters of both sets of pipes 48, 49 should be no greater than 8 inches to achieve maximum photosynthetic activity throughout the year.
  • the spent gases are recovered and sent to a gas treatment system in order to recirculate them to the photobioreactor in a closed gas recirculation system.
  • the spent gas from the photobioreactor is conducted through a separator where excess N2 and O2 are purged. Subsequently, the current passes through a blower compressor to a line where it is enriched with CO2 and then injected back into the photobioreactor through the enriched air inlets of the tanks (1), (2), (3) and (4).
  • One or more gas recirculation control methods and systems may be suggested by those skilled in the art depending on the size of the photobioreactor and the operating conditions present at a given time.
  • Each of the tanks can have different processing capacity, light capacity and feeding of nutrients, enriched gas and osmotic water to meet the needs of the biomass in each of the stages of development and growth.
  • the remaining medium in the tanks can be drained through the drain outlets of each tank, and said medium sent for reprocessing.
  • osmotic wash water can be introduced into the photobioreactor through the osmotic water inlets (8), (18), (27), (39) of the tanks (1), (2), (3). ) and (4).
  • the size of each element of the photobioreactor can be varied and scaled depending on the desired production capacity of the photobioreactor, which can be calculated by one skilled in the art.
  • Another aspect of the present invention comprises a method for the development of microalgal biomass in batches using the previously described photobioreactor, which comprises the steps of: supplying an aqueous medium for growth with photosynthesis, comprising osmotic water, nutrients and enriched air to a first tank, a second tank, a third tank and a fourth tank; supplying inoculum to the aqueous medium of the first tank; homogenizing the water content between the first and second tanks and the third and fourth tanks by means of a water content homogenization line; allow the transfer of the aqueous medium to a first set of pipes arranged in a staggered manner to collect sunlight whose ends are connected to the first and third tanks and to a second set of pipes arranged in a staggered manner to collect sunlight, whose ends are connected to the second and fourth tank; allow the homogeneous supply of light or provide a homogeneous supply of light to the first and second sets of pipes; allow the homogeneous supply of light or provide a homogeneous supply of light
  • the method additionally includes monitoring the levels of temperature, PH, Na, P, K, Br, Mg, Mn, N, among others, and adding the corresponding nutrients in case of detecting a decrease in any of them. It also includes checking that the pH does not exceed established parameters and controlling the flow of gases and liquids between the tanks and the set of pipes.
  • the monitoring of nutrient levels, as well as the monitoring of visible light, guarantees knowing and recording the critical parameters for the microalgae cell growth curve.
  • the level of aqueous medium in each tank is controlled, to keep the aqueous medium moving throughout the bioreactor and to be able to control the number of times that the aqueous medium will pass through the sets of pipes to receive sunlight and be able to generate photosynthesis.
  • the photobioreactor for the growth of microalgae of the present invention is not limited to the embodiment described above and that those skilled in the art will be enabled, by the teachings set forth herein, to make changes to the photobioreactor for the growth of microalgae. growth of microalgae of the present invention, the scope of which will be established exclusively by the following claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The invention relates to a photobioreactor for growing microalgae, which has four interconnected growth reactors and two sets of pipes for light-harvesting and photosynthesis, wherein the pipes of each of the sets of pipes are arranged in such a way that the upper pipes do not cast shadows on the lower pipes.

Description

FOTOBIORREACTOR PARA CRECIMIENTO DE MICROALGAS PHOTOBIOREACTOR FOR GROWTH OF MICROALGAE
ANTECEDENTES DE LA INVENCION BACKGROUND OF THE INVENTION
A. CAMPO DE LA INVENCION A. FIELD OF THE INVENTION
La presente invención está relacionada con fotobiorreactores para el crecimiento de microalgas, y más particularmente con un fotobiorreactor para el crecimiento de microalgas el cual cuenta con cuatro reactores de crecimiento interconectados y dos conjuntos de tuberías transparentes para captación de luz solar y fotosíntesis en donde las tuberías de cada uno de los conjuntos de tuberías están dispuestas de tal forma que los tubos superiores no proyectan sombras sobre los tubos inferiores. The present invention is related to photobioreactors for the growth of microalgae, and more particularly with a photobioreactor for the growth of microalgae which has four interconnected growth reactors and two sets of transparent pipes for capturing sunlight and photosynthesis where the pipes of each of the sets of pipes are arranged in such a way that the upper pipes do not cast shadows on the lower pipes.
B. DESCRIPCION DEL ARTE RELACIONADO B. DESCRIPTION OF RELATED ART
El alga Chlorella pertenece al género de algas verdes unicelulares del filo Chlorophyta. Se encuentra presente en la mayoría de los cuerpos de agua dulce. Se reproduce de forma acelerada y de forma asexual. Para eso precisa el carbono que obtiene de la fotosíntesis, agua, luz y pequeñas cantidades de minerales. Contiene grandes cantidades de proteínas, vitamina C, betacaroteno y vitaminas B (B1 , B2, B6 y B12). Chlorella alga belongs to the genus of unicellular green algae of the phylum Chlorophyta. It is present in most freshwater bodies. It reproduces rapidly and asexually. For that, it needs the carbon it obtains from photosynthesis, water, light and small amounts of minerals. It contains large amounts of protein, vitamin C, beta-carotene, and B vitamins (B1, B2, B6, and B12).
Los procesos a partir del cultivo de microalgas como la Chlorella, son procesos eficientes y sostenibles que no solo cumplen la demanda de producción de una amplia gama de productos, sino que además son amigables con el medio ambiente. The processes from the cultivation of microalgae such as Chlorella are efficient and sustainable processes that not only meet the demand for the production of a wide range of products, but are also friendly to the environment.
Para emplear estos procesos a nivel industrial, se requieren mayores productividades, es decir, mayores concentraciones celulares en el tiempo de cultivo, por lo que se tienen las condiciones y sistemas de crecimiento adecuados para la reproducción de la microalga. To use these processes at an industrial level, higher productivities are required, that is, higher cell concentrations in the culture time, so that the conditions and growth systems suitable for the reproduction of the microalgae are available.
Las mejores condiciones para el cultivo de la microalga Chlorella Vulgaris, buscan la generación de una mayor cantidad de biomasa, principal producto de interés, para la posterior separación de metabolites como lípidos, proteínas, entre otros. The best conditions for the cultivation of the Chlorella Vulgaris microalgae seek the generation of a greater amount of biomass, the main product of interest, for the subsequent separation of metabolites such as lipids, proteins, among others.
Se busca impulsar bioprocesos rentables. Por lo tanto, el solicitante desarrolló un reactor de crecimiento de biomasa por medio del cual se optimiza la producción de biomasa en todo tipo de iluminación. It seeks to promote profitable bioprocesses. Therefore, the applicant developed a biomass growth reactor by means of which biomass production is optimized in all types of lighting.
El fotobiorreactor de la presente invención cuenta con cuatro reactores de crecimiento interconectados y dos conjuntos de tuberías transparentes para captación de luz solar y fotosíntesis, en donde las tuberías de cada uno de los conjuntos de tuberías están dispuestos de tal forma que los tubos superiores no proyectan sombras sobre los tubos inferiores. Adicionalmente, cada reactor y cada tubería de cada conjunto de tuberías cuenta una fuente de luz led fotosintéticamente activa y luz blanca para mantener la continuidad de la actividad fotosintética en cualquier condición de iluminación exterior. The photobioreactor of the present invention has four interconnected growth reactors and two sets of transparent pipes for sunlight harvesting and photosynthesis, wherein the pipes of each of the sets of pipes are arranged in such a way that the upper pipes do not cast shadows on the lower pipes. Additionally, each reactor and each pipe of each set of pipes has a photosynthetically active LED light source and white light to maintain the continuity of photosynthetic activity in any exterior lighting condition.
SUMARIO DE LA INVENCION SUMMARY OF THE INVENTION
Es por lo tanto un objetivo principal de la presente invención el proporcionar un fotobiorreactor por medio del cual se optimiza la producción de biomasa en cualquier condición de iluminación. It is therefore a main objective of the present invention to provide a photobioreactor by means of which biomass production is optimized in any lighting condition.
Es otro objetivo principal de la presente invención, el proporcionar un fotobiorreactor de la naturaleza anteriormente descrita, el cual cuenta con cuatro reactores de crecimiento interconectados y dos conjuntos de tuberías transparentes para captación de luz solar y fotosíntesis, en donde las tuberías de cada uno de los conjuntos de tuberías están dispuestos de tal forma que los tubos superiores no proyectan sombras sobre los tubos inferiores. Another main objective of the present invention is to provide a photobioreactor of the nature described above, which has four interconnected growth reactors and two sets of transparent pipes for capturing sunlight and photosynthesis, where the pipes of each of the pipe sets are arranged in such a way that the upper pipes do not cast shadows on the lower pipes.
Es aún un objetivo principal de la presente invención, el proporcionar un fotobiorreactor de la naturaleza anteriormente descrita, en donde cada reactor y cada tubería de cada conjunto de tuberías cuenta una fuente de luz led fotosintéticamente activa y luz blanca para mantener la continuidad de la actividad fotosintética en cualquier condición de iluminación exterior. It is still a main objective of the present invention to provide a photobioreactor of the nature described above, where each reactor and each pipe of each set of pipes has a photosynthetically active LED light source and white light to maintain the continuity of the activity. photosynthetic in any outdoor lighting condition.
Estos y otros objetivos y ventajas de la presente invención se harán aparentes a las personas con conocimientos normales en el ramo, de la siguiente descripción detallada de la invención. These and other objects and advantages of the present invention will become apparent to persons of ordinary skill in the art from the following detailed description of the invention.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La Figura 1 es un diagrama del fotobiorreactor de la presente invención mostrando todos sus elementos y las conexiones entre los mismos, en donde las flechas al final de cada línea de conexión y flujo muestran la dirección de flujo por dicha línea. Así mismo, la discontinuidad en las líneas representa los lugares en donde otra línea de conexión y flujo pasa por encima de ella. Figure 1 is a diagram of the photobioreactor of the present invention showing all its elements and the connections between them, where the arrows at the end of each connection and flow line show the direction of flow through said line. Likewise, the discontinuity in the lines represents the places where another line of connection and flow passes over it.
La Figura 2 es un diagrama de un reactor de crecimiento (tanque) correspondiente a cualquiera de los tanques del fotobiorreactor de la presente invención. La Figura 3 es una vista frontal de los tanques (1 ) y (2), mostrando las líneas de homogenización de líquidos y gases y las tuberías comunes de conexión con los conjuntos de tuberías para captación solar; Figure 2 is a diagram of a growth reactor (tank) corresponding to any of the photobioreactor tanks of the present invention. Figure 3 is a front view of the tanks (1) and (2), showing the liquid and gas homogenization lines and the common connection pipes with the solar collection pipe sets;
La Figura 4 es una vista en perspectiva superior del fotobiorreactor de la presente invención. Figure 4 is a top perspective view of the photobioreactor of the present invention.
La figura 5 es una vista en perspectiva superior del fotobiorreactor de la presente invención que tiene conjuntos de tuberías con una longitud más corta que los de la Figura 4 y mostrando solamente los tanques (1 ) y (2). DESCRIPCION DETALLADA DE LA INVENCION Figure 5 is a top perspective view of the photobioreactor of the present invention having pipe assemblies with a shorter length than those of Figure 4 and showing only the tanks (1) and (2). DETAILED DESCRIPTION OF THE INVENTION
El fotobiorreactor para crecimiento de microalgas será ahora descrito haciendo referencia a una modalidad preferida del mismo y haciendo referencia a las figuras que se acompañan, en donde los mismos signos y números corresponden a las mismas partes de las figuras mostradas. The photobioreactor for microalgae growth will now be described with reference to a preferred embodiment thereof and with reference to the accompanying figures, where the same signs and numbers correspond to the same parts of the figures shown.
Haciendo referencia a las Figuras de la Figura 1 a la Figura 5, el fotobiorreactor para crecimiento de microalgas de la presente invención comprende: un primer par de tanques de crecimiento formado por un primer tanque (1 ) y un segundo tanque (2), colocados uno al lado de otro, y un segundo par de tanques (de ahora en delante llamados tanques posteriores) formado por un tercer tanque (3) y un cuarto tanque (4), colocados uno al lado de otro y de manera opuesta al primer par de tanques, en donde cada uno de los tanques: puede estar hecho de un material transparente, translúcido u opaco y cada uno tiene una forma preferentemente cilindrica cerrado por la parte superior mediante una pared superior y en donde: cada tanque cuenta una fuente de luz led fotosintéticamente activa y luz blanca (5) (400 a 720 Nm) para mantener la continuidad de la actividad fotosintética en cualquier condición de iluminación exterior. Dicha fuente de luz (5) se encuentra colocada dentro de un tubo hermético (6) ubicado en una porción central del tanque, dicho tubo hermético estando sujeto de una porción interna de la pared superior; cada tubería de cada conjunto de tuberías cuenta con un sistema de enfriamiento (no mostrado) que no permite temperaturas mayores a el primer tanque cuenta con: una entrada de aire enriquecido (7), una entrada de agua osmótica (8), una entrada de inoculo (9), un puerto inferior para una línea de homogenización de líquidos (10), un puerto superior para una línea de homogenización de gases (1 1 ), una salida de biomasa en crecimiento (12), una salida de drenaje (13) y un primer puerto (14) y un segundo puerto de conexión (15) a una o más líneas de tuberías para captación de luz solar; el segundo tanque cuenta con una entrada de solución de nutrientes (17), una entrada de agua osmótica (18), una entrada de aire enriquecido (19), una salida de gases gastados (20), un drenaje (21 ), un puerto superior para una línea de homogenización de gases (22), un puerto inferior para una línea de homogenización de líquidos (23), una salida de biomasa en crecimiento (24) y un primer puerto (25) y un segundo puerto (26) de conexión a una o más líneas de tuberías para captación de luz solar; el tercer tanque cuenta con una entrada de agua osmótica (27), una entrada de aire enriquecido (28), una entrada de solución de nutrientes (29), una entrada de biomasa en crecimiento (30), una salida de gases gastados (32), una salida de drenaje (33), un puerto superior (34) para una línea de homogenización de gases, un puerto inferior (35) para una línea de homogenización de líquidos y un primer puerto (36) y un segundo puerto (37) de conexión a una o más líneas de tuberías para captación de luz solar; el cuarto tanque cuenta con una entrada de agua osmótica (39), una entrada de aire enriquecido (40), una entrada de biomasa en crecimiento (41 ), una salida de drenaje (42), un puerto superior para una línea de homogenización de gases (43), un puerto inferior para una línea de homogenización de líquidos (44), un primer puerto (45) y un segundo puerto (46) de conexión a una o más líneas de tuberías para captación de luz solar y una salida de biomasa procesada (47); al menos una tubería para captación de luz solar cuyos extremos están conectados al primer (1 ) y tercer tanque (3) respectivamente y al menos una tubería para captación de luz solar cuyos extremos están conectados al segundo (2) y cuarto tanque (4) respectivamente, en donde en una modalidad preferida se tiene un primer conjunto (48) y un segundo conjunto (49) de tuberías, cada uno teniendo al menos dos tuberías (diez tuberías en una modalidad preferida), en donde los extremos de cada tubería del primer conjunto (48) de tuberías están conectados al primer (1 ) y tercer tanque (3) respectivamente y los extremos de cada tubería del segundo conjunto de tuberías (49) están conectados al segundo (2) y cuarto tanque (4) respectivamente y en donde: un primer extremo (50) de cada tubería del primer conjunto de tuberías (48) está conectado al primer tanque (1 ) mediante una tubería común (51 ) de primer tanque (1 ) en donde los extremos de dicha tubería común (51 ) están conectados al primer puerto de conexión (14) y al segundo puerto de conexión (15) respectivamente de tal forma que el primer extremo (50) de cada tubería del primer conjunto de tuberías (48) se encuentra conectado a una porción lateral (52) de dicha tubería común (51 ) y de la misma forma cada tubería a lo largo de la tubería común (51 ) de primer tanque (1 ); un segundo extremo (53) de cada tubería del primer conjunto de tuberías (48) está conectado al tercer tanque (3) mediante una tubería común (54) de tercer tanque (3) en donde extremos de dicha tubería común (54) están conectados al primer puerto de conexión (36) y al segundo puerto de conexión (37) respectivamente, de tal forma que el segundo extremo (53) de cada tubería del primer conjunto de tuberías (48) se encuentra conectado a una porción lateral (55) de dicha tubería común (54) y de la misma forma cada tubería a lo largo de la tubería común (54) de tercer tanque (3); un primer extremo (56) de cada tubería del segundo conjunto de tuberías (49) está conectado al segundo tanque (2) mediante una tubería común (57) de segundo tanque (2) cuyos extremos están conectados al primer puerto de conexión (25) y al segundo puerto de conexión (26) respectivamente, de tal forma que el primer extremo (56) de cada tubería del segundo conjunto de tuberías (49) se encuentra conectado a una porción lateral (58) de dicha tubería común (57) y así cada tubería a lo largo de la tubería común (56) de segundo tanque (2); un segundo extremo (59) de cada tubería del segundo conjunto de tuberías (49) está conectado al cuarto tanque (4) mediante una tubería común (60) de cuarto tanque (4) cuyos extremos están conectados al primer puerto de conexión (45) y al segundo puerto de conexión (46) respectivamente de tal forma que el segundo extremo (59) de cada tubería del segundo conjunto de tuberías (49) se encuentra conectado a una porción lateral (61 ) de dicha tubería común (60) y así cada tubería a lo largo de la tubería común (60) de cuarto tanque (4); cada tubería del primer conjunto de tuberías (48) y del segundo conjunto de tuberías (49) tiene la misma longitud y están hechas de un material transparente; el primer y segundo puerto de conexión de cada tanque están ubicados de tal manera que la tubería común de cada tanque que se conecta a los mismos queda posicionada de manera vertical respecto al tanque respectivo, inclinada en un ángulo de preferentemente 45s respecto a un eje horizontal en tal modalidad preferida. De esta manera los extremos de cada tubería de cada conjunto de tuberías (48), (49) quedan conectados a la tubería común respectiva de manera escalonada como se muestra en la Fig. 2, con una separación entre tuberías de 30 cms en dicha modalidad preferida. De esta manera, ninguna tubería proyecta sombras en las tuberías inferiores, maximizando la captación solar y la actividad fotosintética de la microalga; Las tuberías comunes pudieran encontrarse a cualquier otro ángulo respecto al un eje vertical, y la separación entre tuberías pudiera vahar siempre y cuando se cumple el requisito de que las tuberías superiores no proyecten sombras sobre las tuberías inferiores. cada tubería puede contar con una o más fuentes de luz led fotosintéticamente activa y luz blanca de 400 a 720 Nm (no mostrada) a todo lo largo de la tubería, para mantener la continuidad de la actividad fotosintética en cualquier condición de iluminación exterior. Referring to the Figures from Figure 1 to Figure 5, the photobioreactor for microalgae growth of the present invention comprises: a first pair of growth tanks formed by a first tank (1) and a second tank (2), placed side by side, and a second pair of tanks (hereafter called rear tanks) consisting of a third tank (3) and a fourth tank (4), placed side by side and opposite to the first pair of tanks, where each of the tanks: can be made of a transparent, translucent or opaque material and each one has a preferably cylindrical shape closed at the top by a top wall and where: each tank has a light source Photosynthetically active LED and white light (5) (400 to 720 Nm) to maintain the continuity of photosynthetic activity in any external lighting condition. Said light source (5) is placed inside a hermetic tube (6) located in a central portion of the tank, said hermetic tube being attached to an internal portion of the upper wall; each pipe of each set of pipes has a cooling system (not shown) that does not allow temperatures higher than The first tank has: an enriched air inlet (7), an osmotic water inlet (8), an inoculum inlet (9), a lower port for a liquid homogenization line (10), an upper port for a gas homogenization line (1 1), a growing biomass outlet (12), a drainage outlet (13) and a first port (14) and a second connection port (15) to one or more lines of pipes for collecting sunlight; the second tank has a nutrient solution inlet (17), an osmotic water inlet (18), an enriched air inlet (19), a spent gas outlet (20), a drain (21), a port an upper port for a gas homogenization line (22), a lower port for a liquid homogenization line (23), a growing biomass outlet (24) and a first port (25) and a second port (26) of connection to one or more pipe lines for solar light collection; the third tank has an osmotic water inlet (27), an enriched air inlet (28), a nutrient solution inlet (29), a growing biomass inlet (30), a spent gas outlet (32 ), a drainage outlet (33), an upper port (34) for a gas homogenization line, a lower port (35) for a liquid homogenization line and a first port (36) and a second port (37). ) connection to one or more lines of pipes to capture sunlight; the fourth tank has an osmotic water inlet (39), an enriched air inlet (40), a growing biomass inlet (41), a drainage outlet (42), a top port for a homogenization line of gases (43), a lower port for a liquid homogenization line (44), a first port (45) and a second port (46) for connection to one or more pipe lines for capturing sunlight and an outlet for processed biomass (47); at least one pipe for capturing sunlight whose ends are connected to the first (1) and third tank (3) respectively and at least one pipe for capturing sunlight whose ends are connected to the second (2) and fourth tank (4) respectively, where in a preferred embodiment there is a first set (48) and a second set (49) of pipes, each having at least two pipes (ten pipes in a preferred embodiment) , where the ends of each pipe of the first set (48) of pipes are connected to the first (1) and third tank (3) respectively and the ends of each pipe of the second set of pipes (49) are connected to the second (2 ) and fourth tank (4) respectively and where: a first end (50) of each pipe of the first set of pipes (48) is connected to the first tank (1) by means of a common pipe (51) of the first tank (1) wherein the ends of said common pipe (51) are connected to the first connection port (14) and to the second connection port (15) respectively in such a way that the first end (50) of each pipe of the first set of pipes ( 48) is connected to a lateral portion (52) of said common pipe (51) and in the same way each pipe along the common pipe (51) of the first tank (1); a second end (53) of each pipe of the first set of pipes (48) is connected to the third tank (3) by means of a common pipe (54) of the third tank (3) where ends of said common pipe (54) are connected to the first connection port (36) and the second connection port (37) respectively, in such a way that the second end (53) of each pipe of the first set of pipes (48) is connected to a lateral portion (55) of said common pipe (54) and in the same way each pipe along the common pipe (54) of third tank (3); a first end (56) of each pipe of the second set of pipes (49) is connected to the second tank (2) by means of a common pipe (57) of the second tank (2) whose ends are connected to the first connection port (25) and to the second connection port (26) respectively, in such a way that the first end (56) of each pipe of the second set of pipes (49) is connected to a lateral portion (58) of said common pipe (57) and thus each pipe along the common pipe (56) of the second tank (2); a second end (59) of each pipe of the second set of pipes (49) is connected to the fourth tank (4) by means of a common pipe (60) of the fourth tank (4) whose ends are connected to the first connection port (45) and to the second connection port (46) respectively in such a way that the second end (59) of each pipe of the second set of pipes (49) is connected to a lateral portion (61) of said common pipe (60) and so each pipe along the common pipe (60) of fourth tank (4); each pipe of the first set of pipes (48) and the second set of pipes (49) has the same length and is made of a transparent material; the first and second connection ports of each tank are located in such a way that the common pipe of each tank that connects to them is positioned vertically with respect to the respective tank, inclined at an angle of preferably 45 s with respect to an axis horizontal in such preferred embodiment. In this way, the ends of each pipe of each set of pipes (48), (49) are connected to the respective common pipe in a staggered manner as shown in Fig. 2, with a separation between pipes of 30 cm in said mode. preferred. In this way, no pipe casts shadows on the lower pipes, maximizing solar capture and the photosynthetic activity of the microalgae; The common pipes could be at any other angle to a vertical axis, and the separation between pipes could vary as long as the requirement that the upper pipes do not cast shadows on the lower pipes is met. Each pipe can have one or more sources of photosynthetically active LED light and white light from 400 to 720 Nm (not shown) throughout the length of the pipe, to maintain the continuity of photosynthetic activity in any external lighting condition.
Conexión entre los elementos del fotobiorreactor Connection between the elements of the photobioreactor
Como se mencionó anteriormente, el primer (1 ) y tercer tanque (3) y el segundo (2) y cuarto (4) tanques se encuentran conectados mediate el primer (48) y segundo (49) conjunto de tuberías respectivamente. Adicionalmente, existen otras conexiones a otros elementos y entre los tanques, las cuales se realizan mediante cualquier tipo de tubería adecuada al tamaño del fotobiorreactor, las cuales pueden ser opacas o transparentes, y hechas de material rígido o flexible. Dichas conexiones se describirán a continuación: Conexiones de entrada. As mentioned above, the first (1) and third (3) tanks and the second (2) and fourth (4) tanks are connected through the first (48) and second (49) set of pipes respectively. Additionally, there are other connections to other elements and between the tanks, which are made through any type of pipe suitable for the size of the photobioreactor, which can be opaque or transparent, and made of rigid or flexible material. These connections will be described below: Input connections.
• Fuente de aire enriquecido (62) conectado a entrada de aire enriquecido (7) del primer tanque (1 ), conexión con flujo en un sentido de (62) a (7) representada por la línea (63). • Enriched air source (62) connected to the enriched air inlet (7) of the first tank (1), connection with flow in one direction from (62) to (7) represented by line (63).
• Fuente de aire enriquecido (62) conectado a entrada de aire enriquecido (19) del segundo tanque (2), conexión con flujo en un sentido de (62) a (19) representada por la línea (64). • Enriched air source (62) connected to enriched air inlet (19) of the second tank (2), connection with flow in one direction from (62) to (19) represented by line (64).
• Fuente de aire enriquecido (62) conectado a entrada de aire enriquecido (28) del tercer tanque (3), conexión con flujo en un sentido de (62) a (28), representada por la línea (65). • Enriched air source (62) connected to enriched air inlet (28) of the third tank (3), connection with flow in one direction from (62) to (28), represented by line (65).
• Fuente de aire enriquecido (62) conectado a entrada de aire enriquecido (40) del cuarto tanque (4), conexión con flujo en un sentido de (62) a (40), representada por la línea (66). • Enriched air source (62) connected to the enriched air inlet (40) of the fourth tank (4), connection with flow in one direction from (62) to (40), represented by line (66).
• Fuente de agua osmótica (67) conectado a entrada de agua osmótica (8) del primer tanque (1 ), conexión con flujo en un sentido de (67) a (8) representada por la línea (68). • Osmotic water source (67) connected to the osmotic water inlet (8) of the first tank (1), connection with flow in one direction from (67) to (8) represented by line (68).
• Fuente de agua osmótica (67) conectado a entrada de agua osmótica (18) del segundo tanque (2), conexión con flujo en un sentido de (67) a (18), representada por la línea (69). • Osmotic water source (67) connected to the osmotic water inlet (18) of the second tank (2), connection with flow in one direction from (67) to (18), represented by line (69).
• Fuente de agua osmótica (67) conectado a entrada de agua osmótica (27) del tercer tanque (3), conexión con flujo en un sentido de (67) a (27), representada por la línea (70). • Osmotic water source (67) connected to the osmotic water inlet (27) of the third tank (3), connection with flow in one direction from (67) to (27), represented by line (70).
• Fuente de agua osmótica (67) conectado a entrada de agua osmótica (39) del cuarto tanque (4), conexión con flujo en un sentido de (67) a (39), representada por la línea (71 ). • Osmotic water source (67) connected to the osmotic water inlet (39) of the fourth tank (4), connection with flow in one direction from (67) to (39), represented by the line (71).
• Fuente de inoculo (72) conectada a entrada de inoculo (9) del primer tanque (1 ), conexión con flujo en un sentido de (72) a (9), representada por la línea (73). • Fuente de solución de nutrientes (74) conectada a la entrada de solución de nutrientes (17) del segundo tanque (2), conexión con flujo en un sentido de (74) a (17), representada por la línea (75). • Inoculum source (72) connected to inoculum inlet (9) of the first tank (1), connection with flow in one direction from (72) to (9), represented by line (73). • Nutrient solution source (74) connected to the nutrient solution inlet (17) of the second tank (2), one-way flow connection from (74) to (17), represented by line (75).
• Fuente de solución de nutrientes (74) conectada a la entrada de solución de nutrientes (29) del tercer tanque (3), conexión con flujo en un sentido de (74) a (29), representada por la línea (76). • Nutrient solution source (74) connected to the nutrient solution inlet (29) of the third tank (3), one-way flow connection from (74) to (29), represented by line (76).
La entrada de aire enriquecido de cada tanque (1 ), (2), (3), (4), está conectada a un difusor (G) colocado en la parte inferior de cada tanque. The enriched air inlet of each tank (1), (2), (3), (4), is connected to a diffuser (G) placed at the bottom of each tank.
Conexiones o líneas de igualación Connections or equalization lines
• Puerto superior (1 1 ) del primer tanque (1 ) conectado al puerto superior (22) del segundo tanque (2), mediante línea de homogenización de gases• Upper port (1 1) of the first tank (1) connected to the upper port (22) of the second tank (2), through a gas homogenization line
(77), conexión con flujo en ambos sentidos entre (1 1 ) y (22). (77), connection with flow in both directions between (1 1 ) and (22).
• Puerto superior (34) del tercer tanque (3) conectado al puerto superior (43) del cuarto tanque (4), mediante línea de homogenización de gases• Upper port (34) of the third tank (3) connected to the upper port (43) of the fourth tank (4), through a gas homogenization line
(78), conexión con flujo en ambos sentidos entre (34) y (43). (78), connection with flow in both directions between (34) and (43).
• Puerto inferior (10) del primer tanque (1 ) conectado al puerto inferior (23) del segundo tanque (2), mediante línea de homogenización de líquidos• Lower port (10) of the first tank (1) connected to the lower port (23) of the second tank (2), through a liquid homogenization line
(79), conexión con flujo en ambos sentidos entre (10) y (23). (79), connection with flow in both directions between (10) and (23).
• Puerto inferior (35) del tercer tanque (3) conectado al puerto inferior (44) del cuarto tanque (4), mediante línea de homogenización de líquidos (80), conexión con flujo en ambos sentidos entre (35) y (44). • Lower port (35) of the third tank (3) connected to the lower port (44) of the fourth tank (4), through liquid homogenization line (80), connection with flow in both directions between (35) and (44) .
Conexiones entre tanques Connections between tanks
• Salida de biomasa en crecimiento (12) del primer tanque (1 ) conectada a línea de circulación (81 ), conexión con flujo en un solo sentido de (12) a (81 ) representada por línea (82). • Output of growing biomass (12) from the first tank (1) connected to circulation line (81), connection with flow in one direction from (12) to (81) represented by line (82).
• Salida de biomasa en crecimiento (24) del segundo tanque (2) conectada a línea de circulación (81 ), conexión con flujo en un solo sentido de (24) a (81 ) representada por línea (83). • Output of growing biomass (24) from the second tank (2) connected to circulation line (81), connection with flow in one direction from (24) to (81) represented by line (83).
• Entrada de biomasa en crecimiento (30) del tercer tanque (3) conectada a línea de circulación (81 ), conexión con flujo en un solo sentido de (81 ) a (30) representada por línea (84). • Entrada de biomasa en crecimiento (41 ) del cuarto tanque (4) conectada a línea de circulación (81 ), conexión con flujo en un solo sentido de (81 ) a (41 ) representada por línea (85). • Inlet of growing biomass (30) of the third tank (3) connected to circulation line (81), connection with flow in one direction from (81) to (30) represented by line (84). • Inlet of growing biomass (41) of the fourth tank (4) connected to circulation line (81), connection with one-way flow from (81) to (41) represented by line (85).
La conexión de los tanques con la línea de circulación permite mantener el flujo entre todos los tanques mediante al menos una bomba (86) conectada a dicha línea de circulación (81 ) como se describirá más adelante. The connection of the tanks with the circulation line allows to maintain the flow between all the tanks by means of at least one pump (86) connected to said circulation line (81) as will be described later.
Salidas de gases gas outlets
• Salida de gases gastados (20) del segundo tanque (2) conectada a línea de gases gastados (no mostrada), conexión con flujo en un solo sentido de (20) a línea de gases gastados. • Spent gas outlet (20) from the second tank (2) connected to the spent gas line (not shown), one-way flow connection from (20) to the spent gas line.
• Salida de gases gastados (32) del tercer tanque (3) conectada a línea de gases gastados (no mostrada), conexión con flujo en un solo sentido de (32) a línea de gases gastados. • Spent gas outlet (32) from the third tank (3) connected to the spent gas line (not shown), one-way flow connection from (32) to the spent gas line.
Salidas de drenaje drain outlets
• Salida de drenaje (13) del primer tanque (1 ) conectada a línea de drenaje (no mostrada), conexión con flujo en un solo sentido de (13) a línea de drenaje. • Drain outlet (13) of the first tank (1) connected to drain line (not shown), one-way flow connection from (13) to drain line.
• Salida de drenaje (21 ) del segundo tanque (2) conectada a línea de drenaje (no mostrada), conexión con flujo en un solo sentido de (21 ) a línea de drenaje. • Drain outlet (21 ) from second tank (2) connected to drain line (not shown), one-way flow connection from (21 ) to drain line.
• Salida de drenaje (33) del tercer tanque (3) conectada a línea de drenaje (no mostrada), conexión con flujo en un solo sentido de (33) a línea de drenaje. • Drain outlet (33) from third tank (3) connected to drain line (not shown), one-way flow connection from (33) to drain line.
• Salida de drenaje (42) del cuarto tanque (4) conectada a línea de drenaje (no mostrada), conexión con flujo en un solo sentido de (42) a línea de drenaje. • Drain outlet (42) from fourth tank (4) connected to drain line (not shown), one-way flow connection from (42) to drain line.
Salidas de material procesado o biomasa Outputs of processed material or biomass
• Salida de biomasa procesada (47) del cuarto tanque (4) conectada a una línea de biomasa procesada (87), conexión con flujo en un solo sentido de (47) a (87). • Processed biomass output (47) from the fourth tank (4) connected to a processed biomass line (87), connection with one-way flow from (47) to (87).
La línea de biomasa procesada (87) incluye una bomba (88) para mantener un nivel adecuado de flujo en el cuarto tanque (4) acorde con el flujo de todos los tanques y facilitar la descarga de biomasa del cuarto tanque (4). Descripción de las trayectorias de flujos hacía, desde y entre los elementos del fotobiorreactor. The processed biomass line (87) includes a pump (88) to maintain an adequate level of flow in the fourth tank (4) in accordance with the flow of all the tanks and facilitate the discharge of biomass from the fourth tank (4). Description of the flow paths to, from and between the elements of the photobioreactor.
El procesamiento de la biomasa en el biorreactor es llevado a cabo por lotes, basadas en ciclos de operación. Cada ciclo de operación debe funcionar preferentemente conforme al tiempo óptimo para alcanzar un crecimiento de biomasa del 80% en masa del volumen de inoculo (semilla) de Biomasa, presente al inicio del ciclo. Por lo tanto, en cada ciclo se agregan cantidades predeterminadas y calculadas de agua osmótica, inoculo y nutrientes, cuyos niveles son controlados y mantenidos hasta el final del ciclo. Biomass processing in the bioreactor is carried out in batches, based on operating cycles. Each cycle of operation should preferably work according to the optimal time to reach a biomass growth of 80% in mass of the volume of inoculum (seed) of Biomass, present at the beginning of the cycle. Therefore, in each cycle predetermined and calculated amounts of osmotic water, inoculum and nutrients are added, whose levels are controlled and maintained until the end of the cycle.
Cada entrada y salida de los taques y cada línea del fotobiorreactor cuenta con válvulas de flujo que se pueden abrir y cerrar para controlar el flujo entre todos los elementos del fotobiorreactor y controlar la permanencia de los flujos en cada ciclo de operación. Each inlet and outlet of the tanks and each line of the photobioreactor has flow valves that can be opened and closed to control the flow between all the elements of the photobioreactor and control the permanence of the flows in each operating cycle.
• Inyección de aire enriquecido: el aire enriquecido se inyecta a los tanques (1 ), (2), (3) y (4) a través de sus entradas correspondientes de aire enriquecido (7), (19), (28), (40), de una fuente de aire enriquecido (62). El aire enriquecido es una mezcla de O2 y CO2. Preferentemente, el oxígeno se obtiene de la fuente mas barata posible, que es el aire atmosférico ya la concentración de CO2 con aire es de preferentemente 3%, pudiéndose vahar para optimización. El CO2 se obtiene a partir de fuentes reutilizables o de fuentes fijas de producción, teniendo cuidado de que el CO2 sea lo más puro posible y sin la presencia de NOx y SOx. • Injection of enriched air: the enriched air is injected into the tanks (1), (2), (3) and (4) through their corresponding enriched air inlets (7), (19), (28), (40), from a source of enriched air (62). Enriched air is a mixture of O2 and CO2. Preferably, the oxygen is obtained from the cheapest possible source, which is atmospheric air and the concentration of CO2 with air is preferably 3%, and can be varied for optimization. CO2 is obtained from reusable sources or fixed production sources, taking care that the CO2 is as pure as possible and without the presence of NOx and SOx.
• Inyección de agua osmótica: el agua osmótica comprende agua libre de sustancias nocivas para los seres vivos, como lo son el cloro, plomo, flúor, etc. y es el medio mediante el cual se mueven el inoculo y los nutrientes a través de todos los elementos del fotobiorreactor. La inyección de agua osmótica se hace a través de todos los tanques a través de sus entradas de agua osmótica respectivas (8), (18), (27), (39). • Osmotic water injection: osmotic water includes water free of substances that are harmful to living beings, such as chlorine, lead, fluoride, etc. and it is the means by which the inoculum and nutrients move through all the elements of the photobioreactor. The osmotic water injection is made through all the tanks through their respective osmotic water inlets (8), (18), (27), (39).
• Inyección de nutrientes: los nutrientes necesarios para el desarrollo y la reproducción de las microalgas se inyectan como una solución a los tanques (2) y (3) a través de sus respectivas entradas de solución de nutrientes (17), (29). En una modalidad preferida, el medio óptimo para el desarrollo y reproducción de las microalgas es el siguiente: # Componente concentración Final • Nutrient injection: the nutrients necessary for the development and reproduction of the microalgae are injected as a solution into the tanks (2) and (3) through their respective nutrient solution inlets (17), (29). In a preferred embodiment, the optimal medium for the development and reproduction of microalgae is the following: # Component Final concentration
1 NaNO3 (Fisher BP360-500) 2.94 mM 1 NaNO3 (Fisher BP360-500) 2.94 mM
2 CaCI2»2H2O (Sigma C-3881 ) 0.17 mM 2 CaCl2»2H2O (Sigma C-3881 ) 0.17 mM
3 MgSO4»7H2O (Sigma 230391 ) 0.3 mM 3 MgSO4»7H2O (Sigma 230391 ) 0.3 mM
4 K2HPO4 (Sigma P 3786) 0.43 mM 4 K2HPO4 (Sigma P 3786) 0.43 mM
5 KH2PO4 (Sigma P 0662) 1 .29 mM 5 KH2PO4 (Sigma P0662) 1.29 mM
6 NaCI (Fisher S271 -500) 0.43 mM 6 NaCl (Fisher S271 -500) 0.43 mM
1 gramo de proteosa peptona por litro de solución 1 gram of proteose peptone per liter of solution
Solución de metales metal solution
El medio se puede optimizar de acuerdo con las condiciones específicas del fotobiorreactor en un momento dado. The medium can be optimized according to the specific conditions of the photobioreactor at a given time.
• Inyección de inoculo o semilla: la inyección del inoculo se efectúa por el tanque (1 ) a través de su entrada de inoculo (9). • Inoculum or seed injection: the inoculum injection is carried out by the tank (1) through its inoculum inlet (9).
• Los contenidos líquidos entre los tanques (1 ) y (2) y entre los tanques (3) y (4) comienzan a homogenizarse a través de las líneas de homogenización de líquidos correspondientes (79), (80). • The liquid contents between the tanks (1) and (2) and between the tanks (3) and (4) begin to homogenize through the corresponding liquid homogenization lines (79), (80).
• El contenido de los tanques se transfiere hacia las tuberías comunes verticales respectivas de cada tanque (51 ), (54), (57), (60) y por ende a los conjuntos de tuberías (48), (49) para captación de luz solar conectados a los mismos (51 ), (54), (57), (60), alcanzando los mismos niveles de líquidos de los tanques por el principio de vasos comunicantes. • The content of the tanks is transferred to the respective common vertical pipes of each tank (51), (54), (57), (60) and therefore to the sets of pipes (48), (49) for collection of solar light connected to them (51), (54), (57), (60), reaching the same levels of liquids in the tanks by the principle of communicating vessels.
• La cantidad de agua osmótica, nutrientes e inoculo suministrado al fotobiorreactor es la adecuada para la capacidad del fotobiorreactor y para la multiplicación de biomasa, lo cual se calcula mediante métodos conocidos. • The amount of osmotic water, nutrients and inoculum supplied to the photobioreactor is adequate for the capacity of the photobioreactor and for biomass multiplication, which is calculated using known methods.
• El inoculo presente en el medio que llena los tanques y las tuberías de cada conjunto de tuberías (48) y (49) comienza a realizar la fotosíntesis en dichos tanques y en las tuberías con la ayuda de la fuente de luz de cada tanque (5) y con la ayuda de la luz solar para la multiplicación de la biomasa, transformándose en un medio con microalgas en crecimiento. En delante a dicho medio se le llamará “biomasa en crecimiento”. • La biomasa en crecimiento de los tanques (1 ) y (2), fluye hacia la línea de circulación (81 ), succionado por la bomba (86) de dicha línea de circulación (81 ). • The inoculum present in the medium that fills the tanks and the pipes of each set of pipes (48) and (49) begins to carry out photosynthesis in said tanks and in the pipes with the help of the light source of each tank ( 5) and with the help of sunlight for biomass multiplication, transforming into a medium with growing microalgae. From now on, this medium will be called “growing biomass”. • The growing biomass of the tanks (1) and (2), flows towards the circulation line (81), sucked by the pump (86) of said circulation line (81).
• La bomba (86) de la línea de circulación (81 ) impulsa la biomasa en crecimiento de los tanques (1 ) y (2) y las introduce a los tanques (3) y (4) donde siguen procesándose (creciendo y reproduciéndose) con la ayuda de la fuente de luz (5) de dichos tanques. • The pump (86) of the circulation line (81) drives the growing biomass from tanks (1) and (2) and introduces them to tanks (3) and (4) where they continue to be processed (growing and reproducing) with the help of the light source (5) of said tanks.
• Las algas parcialmente procesadas de los tanques (3) y (4) fluyen hacia los conjuntos de tuberías (48), (49) para captación de luz solar respectivos, en donde se lleva a cabo el procesamiento principal (fotosíntesis) gracias a la luz solar que reciben. • The partially processed algae from the tanks (3) and (4) flow to the respective sets of pipes (48), (49) for collecting sunlight, where the main processing (photosynthesis) is carried out thanks to the sunlight they receive.
• Posteriormente el alga parcialmente procesada presente en cada conjunto de tuberías fluye de regreso a los tanques (1 ) y (2) respectivo, para volver a iniciar otro ciclo de recirculación a través de la línea de circulación (81 ), de los tanques 3 y 4 y de los conjuntos de tuberías para captación de luz solar. • Subsequently, the partially processed algae present in each set of pipes flows back to the respective tanks (1) and (2), to restart another cycle of recirculation through the circulation line (81), of tanks 3 and 4 and the sets of pipes for capturing sunlight.
• Una vez que la biomasa en los tanques alcanza una cantidad predeterminada, preferentemente un 80% en masa del volumen de inoculo introducido al fotobiorreactor, se detiene completamente la circulación entre todos los elementos del fotobiorreactor, se abre una válvula en la salida de biomasa procesada (47) del tanque (4) y sale la biomasa procesada hacia la línea de biomasa procesada (87), en donde la biomasa es succionada por la bomba (88) presente en dicha línea. Posteriormente dicha biomasa se conduce a procesos de microfiltración y rompimiento de pared celular y finalmente de secado. • Once the biomass in the tanks reaches a predetermined quantity, preferably 80% by mass of the volume of inoculum introduced into the photobioreactor, the circulation between all the elements of the photobioreactor is completely stopped, a valve is opened at the output of processed biomass (47) from the tank (4) and the processed biomass exits towards the processed biomass line (87), where the biomass is sucked by the pump (88) present in said line. Subsequently, said biomass is conducted through microfiltration and cell wall breaking processes and finally drying.
• Debido a que la operación del biorreactor se basa en microrganismos que realizan fotosíntesis, se tendrá un patrón de consumo de CO2 como base principal de carbono (C) durante el periodo de luz y generando oxigeno 02 de forma constante. Sin embargo, en la ausencia de la luz, el proceso se invierte y las células de Chlorella Vulgaris inician procesos metabólicos que producen únicamente CO2. • Los gases inyectados y generados en el biorreactor se homogenizan entre los tanques (1 ) y (2) y entre los tanques (3) y (4) a través de sus líneas de homogenización de gases respectivas (77), (78). • Due to the fact that the operation of the bioreactor is based on microorganisms that carry out photosynthesis, there will be a consumption pattern of CO2 as the main base of carbon (C) during the light period and constantly generating oxygen 02. However, in the absence of light, the process is reversed and Chlorella Vulgaris cells initiate metabolic processes that produce only CO2. • The gases injected and generated in the bioreactor are homogenized between the tanks (1) and (2) and between the tanks (3) and (4) through their respective gas homogenization lines (77), (78).
• Como se describió anteriormente, como producto de su operación el fotobiorreactor produce gases de desecho, específicamente una mezcla de Oxigeno y CO2 (Aire empobrecido) a una concentración diferente a la que se alimentó, por lo que se requiere retirarlo del fotobiorreactor, lo cual se efectúa a través de las salidas de aire gastado (20), (32) de los tanques (2) y (3). • As described above, as a product of its operation, the photobioreactor produces waste gases, specifically a mixture of Oxygen and CO2 (depleted air) at a different concentration than the one fed, so it is required to remove it from the photobioreactor, which It is carried out through the spent air outlets (20), (32) of the tanks (2) and (3).
Consideraciones de funcionamiento del fotobiorreactor. Operating considerations of the photobioreactor.
El fotobiorreactor cuenta con un sistema de control basado en un microprocesador. Este recibe señales enviadas por sensores de temperatura, PH, Na, P, K, Br, Mg, Mn, N entre otros, que se encuentran ubicados en el cuerpo de cada tanque de reacción El procesador toma acción ante la falta de cada tipo de nutrientes, dando instrucciones en caso de detectar la disminución de alguno de ellos, para que sean suministrados de forma particular. También se controla que el pH no salga de parámetros establecidos y el control de las válvulas descritas anteriormente para controlar el flujo de gases y líquidos entre los elementos del biorreactor. The photobioreactor has a control system based on a microprocessor. This receives signals sent by temperature sensors, PH, Na, P, K, Br, Mg, Mn, N among others, which are located in the body of each reaction tank The processor takes action in the absence of each type of nutrients, giving instructions in case of detecting a decrease in any of them, so that they are supplied in a particular way. It is also controlled that the pH does not go out of established parameters and the control of the valves described above to control the flow of gases and liquids between the elements of the bioreactor.
El monitoreo de los niveles de nutrientes, así como del monitoreo de la luz visible, garantiza conocer y registrar los parámetros críticos para la curva de crecimiento celular de las microalgas. The monitoring of nutrient levels, as well as the monitoring of visible light, guarantees knowing and recording the critical parameters for the microalgae cell growth curve.
Así mismo se tiene control sobre el nivel de líquido en cada tanque, así como del estado de sistema de bombeo que cuanta el fotobioreactor para mantener en movimiento la biomasa en todo el biorreactor y poder controlar la cantidad de veces que pasará la biomasa por los tubos transparentes para recibir luz solar y poder generar fotosíntesis. Likewise, there is control over the level of liquid in each tank, as well as the state of the pumping system that the photobioreactor counts on to keep the biomass moving throughout the bioreactor and be able to control the number of times the biomass will pass through the tubes. transparent to receive sunlight and be able to photosynthesise.
Uno o más métodos y sistemas de control podrán ser sugeridos por los expertos en el ramo dependiendo del tamaño del fotobiorreactor y de las condiciones de operación presentes en un momento dado. One or more methods and control systems may be suggested by those skilled in the art depending on the size of the photobioreactor and the operating conditions present at any given time.
La agitación del medio en cada tanque, se realizar por medio del suministro de aire enriquecido. El flujo del medio entre todos los elementos del fotobiorreactor se hace en un régimen turbulento logrado a través de mantener un alto Reynolds por encima de la curva de flujo turbulento (idealmente con un número de Reynbolds de 1 1 ,000). Idealmente los diámetros de las tuberías de ambos conjuntos de tuberías 48, 49, no deberán ser mayores a 8 pulgadas para lograr una máxima actividad fotosintética a lo largo del año. The agitation of the medium in each tank will be carried out through the supply of enriched air. The flow of the medium between all the elements of the photobioreactor is done in a turbulent regime achieved through maintaining a high Reynolds above the turbulent flow curve (ideally with a Reynbolds number of 1 1 ,000). Ideally the pipe diameters of both sets of pipes 48, 49 should be no greater than 8 inches to achieve maximum photosynthetic activity throughout the year.
De manera preferente, los gases gastados son recuperados y enviados a un sistema de tratamiento de gases para poder recircularlos al fotobiorreactor en un sistema cerrado de recirculación de gases. Preferably, the spent gases are recovered and sent to a gas treatment system in order to recirculate them to the photobioreactor in a closed gas recirculation system.
Además de la producción constante de O2 en el fotobiorreactor, al incorporar aire al sistema, inevitablemente se incrementan los niveles de nitrógeno N2 y de gases nobles presentes en la composición del circuito, de forma similar a los ciclos de concentración presentes en otros circuitos cerrados. Dicho exceso de O2 y de N2 tiene que ser retirado del aire gastado. In addition to the constant production of O2 in the photobioreactor, when air is added to the system, the levels of nitrogen N2 and noble gases present in the composition of the circuit inevitably increase, similar to the concentration cycles present in other closed circuits. Said excess of O2 and N2 has to be removed from the spent air.
Un ejemplo de sistema de recirculación de gases (no mostrado) se describe a continuación: An example of a gas recirculation system (not shown) is described below:
El gas gastado proveniente del fotobiorreactor se conduce a través de un separador en donde se efectúa una purga del exceso de N2 y O2. Posteriormente, la corriente pasa a través de un compresor soplador a una línea en donde se enriquece con CO2 para después inyectarla de nuevo al fotobiorreactor a través de las entradas de aire enriquecido de los tanques (1 ), (2), (3) y (4). The spent gas from the photobioreactor is conducted through a separator where excess N2 and O2 are purged. Subsequently, the current passes through a blower compressor to a line where it is enriched with CO2 and then injected back into the photobioreactor through the enriched air inlets of the tanks (1), (2), (3) and (4).
Uno o más métodos y sistemas de control de recirculación de gases podrán ser sugeridos por los expertos en el ramo dependiendo del tamaño del fotobiorreactor y de las condiciones de operación presentes en un momento dado. One or more gas recirculation control methods and systems may be suggested by those skilled in the art depending on the size of the photobioreactor and the operating conditions present at a given time.
Cada uno de los tanques puede tener diferente capacidad de procesamiento, capacidad lumínica y de alimentación de nutrientes, gas enriquecido y agua osmótica para satisfacer las necesidades de la biomasa en cada una de las etapas de desarrollo y crecimiento. Each of the tanks can have different processing capacity, light capacity and feeding of nutrients, enriched gas and osmotic water to meet the needs of the biomass in each of the stages of development and growth.
Al final de cada ciclo de operación se puede drenar el medio que quede en los tanques a través de las salidas de drenaje de cada tanque, y enviar dicho medio a reproceso. At the end of each operating cycle, the remaining medium in the tanks can be drained through the drain outlets of each tank, and said medium sent for reprocessing.
Para lavar los tanques, se puede introducir agua osmótica de lavado al fotobiorreactor a través de las entradas de agua osmótica (8), (18), (27), (39) de los tanques (1 ), (2), (3) y (4). El tamaño de cada elemento del fotobiorreactor puede variar y escalarse dependiendo de la capacidad de producción deseada del fotobiorreactor, lo cual puede ser calculado por un experto en el ramo. To wash the tanks, osmotic wash water can be introduced into the photobioreactor through the osmotic water inlets (8), (18), (27), (39) of the tanks (1), (2), (3). ) and (4). The size of each element of the photobioreactor can be varied and scaled depending on the desired production capacity of the photobioreactor, which can be calculated by one skilled in the art.
Otro aspecto de la presente invención comprende un método para el desarrollo de biomasa de microalgas por lotes usando el fotobiorreactor anteriormente descrito, el cual comprende las etapas de: suministrar un medio acuoso para crecimiento con fotosíntesis, que comprende agua osmótica, nutrientes y aire enriquecido a un primer tanque, a un segundo tanque, a un tercer tanque y a un cuarto tanque; suministrar inoculo al medio acuoso del primer tanque; homogenizar el contenido acuoso entre el primer y segundo tanque y el tercer y cuarto tanque mediante una línea de homogenización de contenido acuoso; permitir la transferencia del medio acuoso a un primer conjunto de tuberías dispuestas en forma escalonada para captación de luz solar cuyos extremos están conectados al primer y tercer tanque y a un segundo conjunto de tuberías dispuestas en forma escalonada para captación de luz solar, cuyos extremos están conectados al segundo y cuarto tanque; permitir el suministro homogéneo de luz o proporcionar un suministro de luz homogéneo al primer y segundo conjunto de tuberías; permitir el suministro homogéneo de luz o proporcionar un suministro de luz homogéneo al interior de cada tanque; iniciar la circulación del medio acuoso: del primer y segundo tanque hacia una línea de conducción; de dicha línea de conducción hacia el tercer y cuarto tanque; del tercer tanque al primer conjunto de tuberías escalonadas y del cuarto tanque al segundo conjunto de tuberías escalonadas de manera simultánea; del primer conjunto de tuberías escalonadas de regreso al primer tanque y del segundo conjunto de tuberías escalonadas de regreso al segundo tanque. homogenizar el contenido de gases producidos entre en el primer y segundo tanque mediante una línea de homogenización de gases; retirar gases empobrecidos de CO2 (gases gastados) de los tanques; detener la circulación cuando la biomasa en los tanques alcanza una cantidad predeterminada, preferentemente un 80% en masa del volumen de inoculo introducido al fotobiorreactor; retirar la biomasa por uno de los tanques; Another aspect of the present invention comprises a method for the development of microalgal biomass in batches using the previously described photobioreactor, which comprises the steps of: supplying an aqueous medium for growth with photosynthesis, comprising osmotic water, nutrients and enriched air to a first tank, a second tank, a third tank and a fourth tank; supplying inoculum to the aqueous medium of the first tank; homogenizing the water content between the first and second tanks and the third and fourth tanks by means of a water content homogenization line; allow the transfer of the aqueous medium to a first set of pipes arranged in a staggered manner to collect sunlight whose ends are connected to the first and third tanks and to a second set of pipes arranged in a staggered manner to collect sunlight, whose ends are connected to the second and fourth tank; allow the homogeneous supply of light or provide a homogeneous supply of light to the first and second sets of pipes; allow the homogeneous supply of light or provide a homogeneous supply of light to the interior of each tank; start the circulation of the aqueous medium: from the first and second tanks towards a conduction line; from said conduction line to the third and fourth tanks; from the third tank to the first set of stepped pipes and from the fourth tank to the second set of stepped pipes simultaneously; from the first set of stepped pipes back to the first tank and from the second set of stepped pipes back to the second tank. homogenize the content of gases produced between the first and second tanks by means of a gas homogenization line; remove CO2 depleted gases (spent gases) from tanks; stopping the circulation when the biomass in the tanks reaches a predetermined amount, preferably 80% by mass of the volume of inoculum introduced into the photobioreactor; remove the biomass through one of the tanks;
El método comprende adicionalmente monitorear los niveles de temperatura, PH, Na, P, K, Br, Mg, Mn, N entre otros y agregar los nutrientes correspondientes en caso de detectar la disminución de alguno de ellos. T ambién comprende controlar que el pH no salga de parámetros establecidos y el control del flujo de gases y líquidos entre los tanques y conjunto de tuberías. The method additionally includes monitoring the levels of temperature, PH, Na, P, K, Br, Mg, Mn, N, among others, and adding the corresponding nutrients in case of detecting a decrease in any of them. It also includes checking that the pH does not exceed established parameters and controlling the flow of gases and liquids between the tanks and the set of pipes.
El monitoreo de los niveles de nutrientes, así como del monitoreo de la luz visible, garantiza conocer y registrar los parámetros críticos para la curva de crecimiento celular de las microalgas. The monitoring of nutrient levels, as well as the monitoring of visible light, guarantees knowing and recording the critical parameters for the microalgae cell growth curve.
Así mismo se controla el nivel de medio acuoso en cada tanque, para mantener en movimiento el medio acuoso en todo el biorreactor y poder controlar la cantidad de veces que pasará el medio acuoso por los conjuntos de tuberías para recibir luz solar y poder generar fotosíntesis. Likewise, the level of aqueous medium in each tank is controlled, to keep the aqueous medium moving throughout the bioreactor and to be able to control the number of times that the aqueous medium will pass through the sets of pipes to receive sunlight and be able to generate photosynthesis.
Uno o más métodos específicos de control podrán ser sugeridos por los expertos en el ramo dependiendo de las condiciones de operación presentes en un momento dado. One or more specific control methods may be suggested by those skilled in the art depending on the operating conditions present at any given time.
Deberá finalmente entenderse que el fotobiorreactor para el crecimiento de microalgas, de la presente invención no se limita a la modalidad descrita anteriormente y que los expertos en el ramo quedarán capacitados, por las enseñanzas que aquí se establecen, para efectuar cambios en el fotobiorreactor para el crecimiento de microalgas de la presente invención, cuyo alcance quedará establecido exclusivamente por las siguientes reivindicaciones. It should finally be understood that the photobioreactor for the growth of microalgae of the present invention is not limited to the embodiment described above and that those skilled in the art will be enabled, by the teachings set forth herein, to make changes to the photobioreactor for the growth of microalgae. growth of microalgae of the present invention, the scope of which will be established exclusively by the following claims.

Claims

REIVINDICACIONES Un fotobiorreactor para el crecimiento de microalgas comprendiendo: un primer tanque de crecimiento; un segundo tanque de crecimiento; un tercer tanque de crecimiento; un cuarto tanque de crecimiento; un primer conjunto de al menos dos tuberías para captación de luz, dispuestas de manera escalonada de tal manera que la o las tuberías superiores no proyectan sombra sobre la o las tuberías inferiores, cada tubería teniendo un primer y un segundo extremo; un segundo conjunto de al menos dos tuberías para captación de luz, dispuestas de manera escalonada de tal manera que la o las tuberías superiores no proyectan sombra sobre la o las tuberías inferiores, cada tubería teniendo un primer y un segundo extremo; en donde: el primer tanque de crecimiento y el segundo taque de crecimiento se encuentran conectados mediante una línea de homogenización de gases y mediante una línea de homogenización de medio acuoso; el segundo tanque de crecimiento y el tercer tanque de crecimiento se encuentran conectados mediante una línea de homogenización de gases y mediante una línea de homogenización de medio acuoso; el primer extremo de cada tubería del primer conjunto de tuberías para captación de luz se encuentra conectado al primer tanque de crecimiento y el segundo extremo de cada tubería del primer conjunto de tuberías para captación de luz se encuentra conectado al tercer tanque de crecimiento; el primer extremo de cada tubería del segundo conjunto de tuberías para captación de luz se encuentra conectado al segundo tanque de crecimiento y el segundo extremo de cada tubería del segundo conjunto de tuberías para captación de luz se encuentra conectado al cuarto tanque de crecimiento; el primer tanque de crecimiento y el segundo tanque de crecimiento se encuentran conectados hacia una línea de circulación mediante líneas de conexión independientes, y dicha línea de circulación se encuentra a su vez conectada hacia el tercer y cuarto tanque mediante líneas de conexión independientes. Un método para el desarrollo de biomasa de microalgas por lotes usando el fotobiorreactor de la reivindicación 1 , el cual comprende las etapas de: suministrar un medio acuoso para crecimiento con fotosíntesis, que comprende agua osmótica, nutrientes y aire enriquecido a un primer tanque, a un segundo tanque, a un tercer tanque y a un cuarto tanque; suministrar inoculo al medio acuoso del primer tanque; homogenizar el contenido acuoso entre el primer y segundo tanque y el tercer y cuarto tanque mediante una línea de homogenización de contenido acuoso; permitir la transferencia del medio acuoso a un primer conjunto de tuberías dispuestas en forma escalonada para captación de luz solar cuyos extremos están conectados al primer y tercer tanque y a un segundo conjunto de tuberías dispuestas en forma escalonada para captación de luz solar, cuyos extremos están conectados al segundo y cuarto tanque; permitir el suministro homogéneo de luz o proporcionar un suministro de luz homogéneo al primer y segundo conjunto de tuberías; permitir el suministro homogéneo de luz o proporcionar un suministro de luz homogéneo al interior de cada tanque; iniciar la circulación del medio acuoso: del primer y segundo tanque hacia una línea de conducción; de dicha línea de conducción hacia el tercer y cuarto tanque; del tercer tanque al primer conjunto de tuberías escalonadas y del cuarto tanque al segundo conjunto de tuberías escalonadas de manera simultánea; del primer conjunto de tuberías escalonadas de regreso al primer tanque y del segundo conjunto de tuberías escalonadas de regreso al segundo tanque. homogenizar el contenido de gases producidos entre en el primer y segundo tanque mediante una línea de homogenización de gases; retirar gases empobrecidos de CO2 (gases gastados) de los tanques; 19 detener la circulación cuando la biomasa en los tanques alcanza una cantidad predeterminada, preferentemente un 80% en masa del volumen de inoculo introducido al fotobiorreactor; y retirar la biomasa por uno de los tanques. CLAIMS A photobioreactor for the growth of microalgae comprising: a first growth tank; a second growth tank; a third growth tank; a fourth growth tank; a first set of at least two light-gathering pipes, arranged in a staggered manner such that the upper pipe(s) do not cast a shadow on the lower pipe(s), each pipe having a first and a second end; a second set of at least two light-gathering pipes, arranged in a staggered manner such that the upper pipe(s) do not cast a shadow on the lower pipe(s), each pipe having a first and a second end; where: the first growth tank and the second growth tank are connected by a gas homogenization line and by an aqueous medium homogenization line; the second growth tank and the third growth tank are connected by means of a gas homogenization line and by means of an aqueous medium homogenization line; the first end of each pipe of the first set of light harvesting pipes is connected to the first growth tank and the second end of each pipe of the first set of light harvesting pipes is connected to the third growth tank; the first end of each pipe of the second set of light harvesting pipes is connected to the second growth tank and the second end of each pipe of the second set of light harvesting pipes is connected to the fourth growth tank; the first growth tank and the second growth tank are connected to a circulation line by means of independent connection lines, and said circulation line is in turn connected to the third and fourth tank by independent connection lines. A method for the development of biomass of microalgae in batches using the photobioreactor of claim 1, which comprises the steps of: supplying an aqueous medium for growth with photosynthesis, comprising osmotic water, nutrients and enriched air to a first tank, to a second tank, a third tank and a fourth tank; supplying inoculum to the aqueous medium of the first tank; homogenizing the water content between the first and second tanks and the third and fourth tanks by means of a water content homogenization line; allow the transfer of the aqueous medium to a first set of pipes arranged in a staggered manner to collect sunlight whose ends are connected to the first and third tanks and to a second set of pipes arranged in a staggered manner to collect sunlight, whose ends are connected to the second and fourth tank; allow the homogeneous supply of light or provide a homogeneous supply of light to the first and second sets of pipes; allow the homogeneous supply of light or provide a homogeneous supply of light to the interior of each tank; start the circulation of the aqueous medium: from the first and second tanks towards a conduction line; from said conduction line to the third and fourth tanks; from the third tank to the first set of stepped pipes and from the fourth tank to the second set of stepped pipes simultaneously; from the first set of stepped pipes back to the first tank and from the second set of stepped pipes back to the second tank. homogenize the content of gases produced between the first and second tanks by means of a gas homogenization line; remove CO2 depleted gases (spent gases) from tanks; 19 stopping the circulation when the biomass in the tanks reaches a predetermined amount, preferably 80% by mass of the volume of inoculum introduced into the photobioreactor; and remove the biomass through one of the tanks.
PCT/MX2021/050078 2020-11-23 2021-11-22 Photobioreactor for growing microalgae WO2022108437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2023006031A MX2023006031A (en) 2020-11-23 2021-11-22 Photobioreactor for growing microalgae.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063117063P 2020-11-23 2020-11-23
US63/117,063 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022108437A1 true WO2022108437A1 (en) 2022-05-27

Family

ID=81709559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2021/050078 WO2022108437A1 (en) 2020-11-23 2021-11-22 Photobioreactor for growing microalgae

Country Status (2)

Country Link
MX (1) MX2023006031A (en)
WO (1) WO2022108437A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245310A (en) * 2008-03-17 2008-08-20 大连汇新钛设备开发有限公司 Series connected type unit cell algae optical biological reaction device
ES2528388A1 (en) * 2013-08-07 2015-02-09 Esteve Baena B., S.L. Procedure for obtaining biomass and derived products from unicellular algae, and installation for the execution thereof (Machine-translation by Google Translate, not legally binding)
KR20150139672A (en) * 2014-06-03 2015-12-14 가톨릭관동대학교산학협력단 Method of and Apparatus for Producing Biomass with Glycerol
US20170073622A1 (en) * 2010-10-12 2017-03-16 Jose Viriato Coelho Vargas Enhanced Photobioreactor System
MX2016016608A (en) * 2016-12-14 2018-06-13 Gibran Sidney Aleman Nava Tubular photobiorreactor with modular horizontal flow.
CN111704990A (en) * 2020-07-13 2020-09-25 浙江大学 Tube-pool combined flash bioreactor system and microalgae growth carbon sequestration method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245310A (en) * 2008-03-17 2008-08-20 大连汇新钛设备开发有限公司 Series connected type unit cell algae optical biological reaction device
US20170073622A1 (en) * 2010-10-12 2017-03-16 Jose Viriato Coelho Vargas Enhanced Photobioreactor System
ES2528388A1 (en) * 2013-08-07 2015-02-09 Esteve Baena B., S.L. Procedure for obtaining biomass and derived products from unicellular algae, and installation for the execution thereof (Machine-translation by Google Translate, not legally binding)
KR20150139672A (en) * 2014-06-03 2015-12-14 가톨릭관동대학교산학협력단 Method of and Apparatus for Producing Biomass with Glycerol
MX2016016608A (en) * 2016-12-14 2018-06-13 Gibran Sidney Aleman Nava Tubular photobiorreactor with modular horizontal flow.
CN111704990A (en) * 2020-07-13 2020-09-25 浙江大学 Tube-pool combined flash bioreactor system and microalgae growth carbon sequestration method thereof

Also Published As

Publication number Publication date
MX2023006031A (en) 2023-10-05

Similar Documents

Publication Publication Date Title
AU2012215362B2 (en) Method and bioreactor for the cultivation of microorganisms
ES2326296B1 (en) SUBMERSIBLE VERTICAL PHOTOBREACTOR FOR OBTAINING BIOFUELS.
US20210079325A1 (en) Large scale mixotrophic production systems
WO2008074906A1 (en) Electromagnetic bioaccelerator
ES2370546A1 (en) Apparatus and method for growing biological organisms for fuel and other purposes
CN108138103A (en) Bioreactor with the supply of interruptable gas
JP2007061086A (en) Photosynthesis reactor for plant algae/microorganism
JP5657938B2 (en) Circulating culture method for photosynthetic microalgae
WO2022108437A1 (en) Photobioreactor for growing microalgae
US20110281339A1 (en) System And Method To Create A Traveling Wave Within A Photobiotic Reactor To Enhance Algae Growth
CN102329732A (en) Method and special device for improving utilization rate of carbon dioxide in microalga cultivation process
CN109251847B (en) Device and method for culturing photosynthetic microorganisms by using sunlight
CN216663042U (en) Microalgae bioreactor for purifying air
WO2010103154A2 (en) Method for the culture of microorganisms and photobioreactor used in same
CN106635768B (en) Biological microalgae photosynthetic reactor and its application method
CN205874418U (en) Domestic spirulina culture apparatus
KR101916449B1 (en) Microalgae culture system
CN104195033A (en) Flat-plate type photobioreactor
ES2872728B2 (en) CONCENTRATING DEVICE FOR DIRECT OSMOSIS CULTURES OF MICROORGANISMS AND CONTINUOUS OPERATION
CN213708304U (en) Airlift pipeline photobioreactor
CN203498388U (en) Device for increasing carbon dioxide utilization rate in microalgae cultivation
KR102207820B1 (en) Microalgae cultivation facility
CN109251839B (en) Device and method for culturing photosynthetic microorganisms by using sunlight
CN109251854B (en) Device and method for culturing photosynthetic microorganisms by using sunlight
ES2621054B2 (en) METHODS AND SYSTEMS FOR THE CULTURE AND PRE-HARVESTING OF ALGAL BIOMASS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21895200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21895200

Country of ref document: EP

Kind code of ref document: A1