WO2022108058A1 - 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강 - Google Patents

강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강 Download PDF

Info

Publication number
WO2022108058A1
WO2022108058A1 PCT/KR2021/011466 KR2021011466W WO2022108058A1 WO 2022108058 A1 WO2022108058 A1 WO 2022108058A1 KR 2021011466 W KR2021011466 W KR 2021011466W WO 2022108058 A1 WO2022108058 A1 WO 2022108058A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
corrosion resistance
stainless steel
value
ferritic stainless
Prior art date
Application number
PCT/KR2021/011466
Other languages
English (en)
French (fr)
Inventor
박지언
백종수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US18/034,951 priority Critical patent/US20230416885A1/en
Priority to CN202180076851.2A priority patent/CN116490628A/zh
Priority to EP21894831.3A priority patent/EP4249622A1/en
Priority to JP2023530070A priority patent/JP2023550410A/ja
Publication of WO2022108058A1 publication Critical patent/WO2022108058A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel having improved strength, workability and corrosion resistance.
  • Ferritic stainless steel has a beautiful surface quality and a lower price than austenitic stainless steel, so it is used in various industrial fields such as washing machines, refrigerators, and various home appliances. Recently, as the demand for premium home appliances increases, the demand for ferritic stainless steel with higher corrosion resistance and higher strength is increasing. At the same time, there is a demand for cost reduction, and it is necessary to develop steel materials to satisfy this requirement.
  • the existing high-strength ferritic stainless steel, STS 430 had high strength, but had high C and N and lack of stabilizing elements such as Ti and Nb, so corrosion resistance was poor. Corrosion resistance was improved by lowering C and N and adding Ti or Nb, but when expensive Nb is added, there is a burden of price increase. difficult to satisfy Therefore, it is necessary to develop a ferritic stainless steel with improved corrosion resistance, strength, and workability while having a low cost.
  • Patent Document 0001 Korean Patent Publication No. 10-2010-0075190 (published date: July 02, 2010)
  • the present invention is to provide a ferritic stainless steel with improved strength, workability and corrosion resistance while having a low cost.
  • the ferritic stainless steel according to an embodiment of the present invention is, by weight, C: 0.0005 to 0.02%, N: 0.005 to 0.02%, Si: 0.7 to 1.0%, Cr: 16.0 to 17.0%, Ti: 0.05 to 0.3%, the remainder contains Fe and unavoidable impurities, the value of the following formula (1) satisfies 21 or more and 25 or less, the tensile strength may be 470 MPa or more, and the elongation may be 27% or more.
  • Si and Cr mean the content (weight %) of each element.
  • the value of the following formula (2) satisfies 20 or more, and the pitting potential value may be 150 mV or more.
  • Cr, Si, Ti, C, and N mean the content (% by weight) of each element.
  • the ferritic stainless steel according to an embodiment may have a tensile strength of 470 MPa or more and an elongation of 27% or more.
  • corrosion resistance can be improved through a new composition parameter that controls the Si, Cr, Ti, C, and N content.
  • the ferritic stainless steel according to an embodiment may have a pitting potential value of 150 mV or more.
  • the ferritic stainless steel according to a preferred embodiment may have a tensile strength of 470 MPa or more, an elongation of 27% or more, and a pitting potential value of 150 mV or more.
  • 1 is a graph showing the tensile strength value of each Example according to the value of Equation (1).
  • Equation 3 is a graph showing the formula potential value of each embodiment according to the value of Equation (2).
  • Ferritic stainless steel according to an embodiment of the present invention is, by weight, C: 0.0005 to 0.02%, N: 0.005 to 0.02%, Si: 0.7 to 1.0%, Cr: 16.0 to 17.0%, Ti: 0.05 to 0.3% , the remainder may include Fe and unavoidable impurities, the value of the following formula (1) may satisfy 21 or more and 25 or less, the tensile strength may be 470 MPa or more, and the elongation may be 27% or more.
  • Si and Cr mean the content (weight %) of each element.
  • the existing high-strength ferritic stainless steel for home appliances, STS 430, has a problem of low corrosion resistance, a problem of cost increase when Nb is added to improve corrosion resistance, and a problem of a decrease in strength when Ti is added. have.
  • the present inventors have studied in depth ways to improve strength and corrosion resistance while lowering the cost. As a result, it was confirmed that the above-mentioned problems can be solved by controlling the content of alloy components of Si, Cr, Ti, C, and N with a component relational expression based on a ferritic stainless steel component system with Ti added, and the present invention came to completion.
  • Ferritic stainless steel according to an embodiment of the present invention is, by weight, C: 0.0005 to 0.02%, N: 0.005 to 0.02%, Si: 0.7 to 1.0%, Cr: 16.0 to 17.0%, Ti: 0.05 to 0.3% , the remainder may contain Fe and unavoidable impurities.
  • the content of C may be 0.0005 to 0.02% by weight.
  • the content of C is less than 0.0005% by weight, the refining price for making a high-purity product is high, and if the content of C exceeds 0.02% by weight, impurities in the material increase, and there is a problem in elongation and corrosion resistance.
  • the C content may be preferably 0.01 wt% or less.
  • the content of N may be 0.005 to 0.02% by weight.
  • the N content may be preferably 0.015 wt% or less.
  • the content of Si may be 0.7 to 1.0% by weight.
  • the Si content was as low as 0.3 to 0.6 wt%, but in the present invention, the Si content is increased to 0.7 to 1.0 wt% to secure strength and corrosion resistance. If the content of Si is less than 0.7% by weight, the high Si content is not sufficient, and the tensile strength and corrosion resistance are lowered. More preferably, the Si content may be controlled in the range of 0.8 to 1.0 wt% to improve strength and corrosion resistance. In this case, the target content of Si may be 0.9 wt%.
  • the ferritic stainless steel according to the present invention has a pitting potential of 150 mV or more, and a pitting potential of 160 mV or more can also be secured.
  • the content of Cr may be 16.0 to 17.0 wt%.
  • the content of Cr is less than 16.0 wt%, it is difficult to secure sufficient corrosion resistance and strength, and if the content of Cr exceeds 17.0 wt%, there is a problem in that the burden of price increase increases.
  • the Cr content of the existing STS 430 steel was also in the range of 16.0 to 17.0 wt%, but it had to contain 16.7 wt% or more of Cr to secure corrosion resistance.
  • the Cr content can be limited to 16.5% or less, thereby further reducing the manufacturing cost. Accordingly, the preferred Cr content may be 16.0 to 16.5 wt%.
  • the content of Cr may be more preferably 16.1 to 16.3 wt%.
  • the content of Ti may be 0.05 to 0.3 wt%.
  • the content of Ti is less than 0.05 wt%, there is a problem in that the dissolved C and N elements cannot be sufficiently fixed and corrosion resistance is lowered, and if the content of Ti exceeds 0.3 wt%, defects due to Ti-based inclusions increase.
  • the content of Ti may be preferably 0.18 to 0.25 wt%.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • Si and Cr are components closely related to corrosion resistance, strength, and workability of ferritic stainless steel.
  • Si and Cr are elements that enhance the corrosion resistance by strengthening the passivation film of ferritic stainless steel and, at the same time, are dissolved in the matrix to improve strength.
  • Si and Cr are elements that reduce machinability, it is necessary to determine the correlation between each element and the material to derive the optimal component.
  • the inventors of the present invention studied the relationship between the tensile strength and the alloy composition for improving the elongation within the above-described alloy composition, and when the value of the following formula (1) satisfies 21 or more and 25 or less, the tensile strength of 470 MPa or more , it was derived that the elongation rate of 27% or more can be satisfied.
  • Si and Cr mean the content (weight %) of each element.
  • Equation (1) When the value of Equation (1) is less than 21, it is difficult to secure a tensile strength of 470 MPa or more because the solid solution strengthening effect of Si and Cr is not sufficiently exhibited. On the other hand, when the value of Equation (1) exceeds 25, workability is lowered and it is difficult to secure an elongation of 27% or more.
  • the present inventors studied the correlation between Ti, C, N content and corrosion resistance along with Si and Cr content in order to improve corrosion resistance.
  • C forms Cr carbide at the grain boundary in the region affected by heat by heat treatment, etc., and Cr concentration decreases and depletion occurs around the Cr carbide, which may cause intergranular corrosion.
  • Ti fixes C and N to form a carbonitride of Ti(C,N) that is more stable than Cr carbide, thereby suppressing Cr precipitation and improving corrosion resistance.
  • the inventors of the present invention studied the correlation of the alloy composition for improving corrosion resistance within the above-described alloy composition, and when the value of the following formula (2) satisfies 20 or more, the pitting potential of 150 mV or more can be satisfied. derived.
  • Cr, Si, Ti, C, and N mean the content (% by weight) of each element.
  • Equation (2) If the value of Equation (2) is less than 20, it is difficult to secure a pitting potential of 150mV or higher because sufficient corrosion resistance cannot be secured.
  • Equations (1) and (2) are values derived by substituting the composition of Table 1 into the values of Equations (1) and (2) described in this specification.
  • the specimen was processed with JIS13B in the 90° direction of the rolling direction to measure the tensile strength (MPa) and elongation (%) at room temperature.
  • the pitting potential (E pit , mV) was measured. The measured results are summarized in Table 2.
  • the invention examples have a tensile strength of 470 MPa or more as a result of the alloy composition and Formula (1) value of 21 or more, and as a result of Formula (1) value of 25 or less, elongation It can be seen that this is more than 27%.
  • the pitting potential value is 150 mV or more.
  • the tensile strength is 470 MPa or more
  • the elongation is 27% or more
  • the pitting potential value is 150 mV or more.
  • the Si content was less than the lower limit of the Si content defined by the present invention of 0.7 wt%
  • the value of Equation (1) was less than 21, and the value of Equation (2) was less than 20 .
  • the elongation was as high as 30% or more, but the tensile strength was less than 470 MPa, and the pitting dislocation value was less than 150 mV.
  • the Cr content was less than 16.0 wt%, which is the lower limit of the Cr content defined by the present invention, the value of Equation (1) was less than 21, and the value of Equation (2) was less than 20.
  • the elongation was as high as 30% or more, but the tensile strength was less than 470 MPa, and the pitting dislocation value was less than 150 mV.
  • the Ti content was less than 0.05 wt%, which is the lower limit of the Ti content defined by the present invention, and the value of Equation (2) was less than 20.
  • the tensile strength was 470 MPa or more and the elongation was 27% or more, but the pitting dislocation value was less than 150 mV.
  • 1 is a graph showing the tensile strength value of each Example according to the value of Equation (1).
  • FIG. 1 it can be seen that when the value of Equation (1) is 21 or more, a tensile strength of 470 MPa or more can be secured.
  • Figure 2 it can be seen that the value of formula (1) satisfies 21 or more and the tensile strength of comparative example steels D and E of 470 MPa or more, the value of formula (1) exceeds 25, and the elongation is less than 27%. .
  • Equation 3 is a graph showing the formula potential value of each embodiment according to the value of Equation (2). According to FIG. 3, it can be seen that when the value of Equation (2) is 20 or more, a formal potential of 150 mV or more can be secured.
  • a ferritic stainless steel having a reduced cost by controlling the content of Si and Cr.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Secondary Cells (AREA)

Abstract

본 명세서에서는 세탁기, 냉장고, 각종 가전제품 등 다양한 산업분야에 적용될 수 있는 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강을 개시한다. 개시되는 페라이트계 스테인리스강의 일 실시예에 따르면, 중량%로, C: 0.0005 내지 0.02%, N: 0.005 내지 0.02%, Si: 0.7 내지 1.0%, Cr: 16.0 내지 17.0%, Ti: 0.05 내지 0.3%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)의 값이 21 이상 25 이하를 만족하고, 인장강도가 470MPa 이상, 연신율이 27% 이상일 수 있다. (1) 7*Si + Cr 상기 식 (1)에서 Si, Cr은 각 원소의 함량(중량%)을 의미한다.

Description

강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강
본 발명은 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강에 관한 것이다.
페라이트계 스테인리스강은 미려한 표면 품질과 오스테나이트계 스테인리스강 대비 저렴한 가격을 가지고 있어 세탁기, 냉장고, 각종 가전제품 등 다양한 산업분야에서 사용된다. 최근 프리미엄 가전제품에 대한 수요가 늘면서 내식성이 더 높고, 강도가 높은 페라이트계 스테인리스강에 대한 요구가 커지고 있다. 또한 동시에 원가절감도 요구되고 있어 이를 만족하기 위한 강재 개발이 필요한 실정이다.
다양한 산업분야에서 적용되기 위해서는 복잡한 형상 등으로 가공될 수 있어야 한다. 일반적으로 고용강화 효과를 통해 강도를 향상시키는 경우 가공성이 저하될 우려가 있으므로 충분한 강도와 가공성을 확보하기 위해서는 적절한 합금설계가 필요하다.
또한, 기존의 고강도 페라이트계 스테인리스강인 STS 430 강종은 강도는 높았으나 C, N이 높고 Ti, Nb와 같은 안정화 원소가 없어서 내식성이 떨어지는 문제가 있었다. C, N을 낮추고 Ti나 Nb를 첨가하여 내식성을 향상시키기도 하였으나 고가의 Nb를 첨가한 경우에는 가격 상승의 부담이 있고, Ti를 첨가한 경우에는 가격 상승의 부담은 적으나 강도가 하락하여 요구 강도를 만족시키기 어렵다. 따라서 원가가 저렴하면서도 내식성과 강도, 가공성이 향상된 페라이트계 스테인리스강의 개발이 필요하다.
(특허문헌 0001) 한국 공개특허공보 제10-2010-0075190호(공개일자:2010년07월02일)
상술한 문제점을 해결하기 위하여, 본 발명은 원가가 저렴하면서도 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강을 제공하고자 한다.
상술한 목적을 달성하기 위한 수단으로서 본 발명의 일 예에 따른 페라이트계 스테인리스강은 중량%로, C: 0.0005 내지 0.02%, N: 0.005 내지 0.02%, Si: 0.7 내지 1.0%, Cr: 16.0 내지 17.0%, Ti: 0.05 내지 0.3%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)의 값이 21 이상 25 이하를 만족하고, 인장강도가 470MPa 이상, 연신율이 27% 이상일 수 있다.
(1) 7*Si + Cr
상기 식 (1)에서 Si, Cr은 각 원소의 함량(중량%)을 의미한다.
또한, 본 발명의 각 페라이트계 스테인리스강에 있어서, 하기 식 (2)의 값이 20 이상을 만족하고, 공식전위 값이 150mV 이상일 수 있다.
(2) Cr + 4*Si + 0.1*Ti/(C+N)
상기 식 (2)에서, Cr, Si, Ti, C, N은 각 원소의 함량(중량%)을 의미한다.
본 발명에 따르면 합금조성의 설계를 통하여 원가가 저렴하면서도 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강을 제공할 수 있다.
본 발명에 따르면 Si을 상향 첨가하고, Cr 첨가량을 줄여 원료비를 저감할 수 있다.
본 발명에 따르면 Si을 상향 첨가하고, Si, Cr 함량을 조절하는 새로운 조성 파라미터를 통해 강도와 가공성을 향상시킬 수 있다. 일 실시예에 따른 페라이트계 스테인리스강은 인장강도가 470MPa 이상이면서도 연신율이 27% 이상일 수 있다.
본 발명에 따르면 Si, Cr, Ti, C, N 함량을 조절하는 새로운 조성 파라미터를 통해 내식성을 향상시킬 수 있다. 일 실시예에 따른 페라이트계 스테인리스강은 공식전위 값이 150mV 이상일 수 있다.
바람직한 일 실시예에 따른 페라이트계 스테인리스강은 인장강도가 470MPa 이상, 연신율이 27% 이상, 공식전위 값이 150mV 이상일 수 있다.
도 1은 식 (1) 값에 따른 각 실시예의 인장강도 값을 도시한 그래프이다.
도 2는 식 (1) 값에 따른 각 실시예의 연신율 값을 도시한 그래프이다.
도 3은 식 (2) 값에 따른 각 실시예의 공식전위 값을 도시한 그래프이다.
본 발명의 일 예에 따른 페라이트계 스테인리스강은 중량%로, C: 0.0005 내지 0.02%, N: 0.005 내지 0.02%, Si: 0.7 내지 1.0%, Cr: 16.0 내지 17.0%, Ti: 0.05 내지 0.3%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)의 값이 21 이상 25 이하를 만족하고, 인장강도가 470MPa 이상, 연신율이 27% 이상일 수 있다.
(1) 7*Si + Cr
상기 식 (1)에서 Si, Cr은 각 원소의 함량(중량%)을 의미한다.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
기존의 가전용 고강도 페라이트계 스테인리스강인 STS 430 강종은 내식성이 낮은 문제가 있고, 내식성을 개선하기 위해 Nb를 첨가하게 되면 원가가 상승하는 문제가 있고, Ti를 첨가하게 되면 강도가 하락하게 되는 문제가 있다. 이러한 문제를 해결하기 위해 본 발명자들은 원가를 낮추면서도 강도 및 내식성을 향상시킬 수 있는 방안에 대해 깊이 연구하였다. 그 결과, Ti를 첨가한 페라이트계 스테인리스강 성분계를 기초로 Si, Cr, Ti, C, N의 합금성분의 함량을 성분 관계식 등으로 제어함으로써 전술한 과제를 해결할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
본 발명의 일 예에 따른 페라이트계 스테인리스강은 중량%로, C: 0.0005 내지 0.02%, N: 0.005 내지 0.02%, Si: 0.7 내지 1.0%, Cr: 16.0 내지 17.0%, Ti: 0.05 내지 0.3%, 나머지는 Fe 및 불가피한 불순물을 포함할 수 있다.
각 합금원소의 성분범위를 한정한 이유를 이하에서 서술한다.
C의 함량은 0.0005 내지 0.02중량%일 수 있다.
C의 함량이 0.0005중량% 미만이면 고순도 제품을 만들기 위한 정련 가격이 비싸지고, C 함량이 0.02중량%를 초과하면 소재의 불순물이 증가하여 연신율과 내식성이 떨어지는 문제가 있다. 연신율과 내식성을 향상시키기 위하여 C 함량은 바람직하게는 0.01중량% 이하일 수 있다.
N의 함량은 0.005 내지 0.02중량%일 수 있다.
N의 함량이 0.005중량% 미만이면 TiN 정출이 줄어들어 슬라브의 등축정율이 떨어지고, N 함량이 0.02중량%를 초과하면 소재의 불순물이 증가하여 연신율과 내식성이 떨어지는 문제가 있다. 연신율과 내식성을 향상시키기 위하여 N 함량은 바람직하게는 0.015중량% 이하일 수 있다.
Si의 함량은 0.7 내지 1.0중량%일 수 있다.
기존 STS 430 강종은 Si의 함량이 0.3 내지 0.6중량%로 낮았으나, 본 발명에서는 Si의 함량을 0.7 내지 1.0중량% 범위로 상향하여 강도 및 내식성을 확보하고자 한다. Si의 함량이 0.7중량% 미만이면 Si 고용량이 충분하지 못하여 인장강도와 내식성이 저하되며, Si 함량이 1.0중량%를 초과하면 소재의 강도가 과도하게 증가하여 연신율이 저하되는 문제가 있다. 강도 및 내식성의 향상을 위해 보다 바람직하게는 Si 함량은 0.8 내지 1.0중량% 범위로 제어될 수 있다. 이때 Si의 목표 함량은 0.9중량%일 수 있다.
본 발명에 따른 스테인리스강은 기존 STS 430 강종 대비 Si 함량의 상향을 통해 내식성이 향상된다. STS 430 강종의 공식전위는 145mV 이하이지만, 본 발명에 따른 페라이트계 스테인리스강은 150mV 이상의 공식전위를 가지며, 160mV 이상의 공식전위 또한 확보 가능하다.
Cr의 함량은 16.0 내지 17.0중량%일 수 있다.
Cr의 함량이 16.0중량% 미만이면 충분한 내식성과 강도를 확보하기 어려우며, Cr의 함량이 17.0중량%를 초과하면 가격 상승의 부담이 커지는 문제가 있다. 기존 STS 430 강종의 Cr 함량 또한 16.0 내지 17.0중량% 범위였으나, 내식성 확보를 위해 16.7중량% 이상의 Cr을 함유해야 했다. 그러나, 본 발명에서는 Si 함량 증가를 통해 내식성 및 강도를 향상할 수 있으므로, Cr의 함량을 16.5% 이하로 제한 가능하여 더욱 제조 원가를 절감할 수 있다. 이에 따라, 바람직한 Cr의 함량은 16.0 내지 16.5중량%일 수 있다. Cr의 함량은 더욱 바람직하게는 16.1 내지 16.3중량%일 수 있다.
Ti의 함량은 0.05 내지 0.3중량%일 수 있다.
Ti의 함량이 0.05중량% 미만이면 고용된 C, N 원소들을 충분히 고정하지 못하여 내식성이 저하되는 문제가 있고, Ti의 함량이 0.3중량%를 초과하면 Ti계 개재물로 인한 결함이 증가하게 된다. 내식성을 향상시키기 위한 목적에서 Ti의 함량은 바람직하게는 0.18 내지 0.25중량%일 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상술한 합금조성 중 Si, Cr은 페라이트계 스테인리스강의 내식성과 강도, 가공성에 밀접한 연관이 있는 성분들이다. Si과 Cr은 페라이트계 스테인리스강의 부동태 피막을 강화하여 내식성을 향상시키며 동시에 기지에 고용되어 강도를 향상시키는 원소들이다. 그러나, Si과 Cr은 가공성을 저하시키는 원소들이기 때문에 각 원소들과 재질 간의 상관관계를 파악하여 최적의 성분을 도출해야 한다.
이에 착안하여 본 발명의 발명자들은 상술한 합금조성 내에서 인장강도와 연신율을 향상시키기 위한 합금조성의 상관관계를 연구하여 하기 식 (1)의 값이 21 이상 25 이하를 만족하는 경우 470MPa 이상의 인장강도, 27% 이상의 연신율을 만족할 수 있음을 도출하였다.
(1) 7*Si + Cr
상기 식 (1)에서 Si, Cr은 각 원소의 함량(중량%)을 의미한다.
식 (1)의 값이 21 미만인 경우 Si, Cr의 고용강화 효과가 충분히 발휘되지 못하여 470MPa 이상의 인장강도를 확보하기 어렵다. 반면, 식 (1)의 값이 25를 초과하는 경우 가공성이 저하되어 27% 이상의 연신율을 확보하기 어렵다.
또한, 본 발명자들은 내식성을 향상시키기 위하여 Si, Cr 함량과 함께 Ti, C, N 함량과 내식성 상관관계를 연구하였다. C은 열처리 등에 의해 열영향을 받은 부위의 입계에서 Cr탄화물을 형성하고, Cr탄화물 주변에는 Cr 농도 저하 및 고갈현상이 일어나 입계 부식을 유발할 수 있다. Ti은 C, N을 고정시켜 Cr탄화물보다 안정된 Ti(C,N)의 탄질화물을 형성함으로써 Cr 석출을 억제하여 내식성을 향상시킬 수 있다.
이에 착안하여 본 발명의 발명자들은 상술한 합금조성 내에서 내식성을 향상시키기 위한 합금조성의 상관관계를 연구하여 하기 식 (2)의 값이 20 이상을 만족하는 경우 150mV 이상의 공식전위를 만족할 수 있음을 도출하였다.
(2) Cr + 4*Si + 0.1*Ti/(C+N)
상기 식 (2)에서, Cr, Si, Ti, C, N은 각 원소의 함량(중량%)을 의미한다.
식 (2)의 값이 20 미만인 경우 충분한 내식성을 확보하지 못하여 150mV 이상의 공식전위를 확보하기 어렵다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
{실시예}
하기 표 1의 조성을 갖는 강을 연속주조를 통해 슬라브로 제조한 다음, 800 내지 1250℃에서 열간 압연한 후, 소둔하고, 냉간 압연한 다음, 800 내지 950℃에서 최종 소둔하여 최종 냉연제품으로 제조하였다. 표 1에서 식 (1), (2) 값은 표 1의 조성을 본 명세서 내에 기술된 식 (1), (2) 값에 대입하여 도출한 값이다.
제조된 냉연제품에 대하여 압연방향의 90° 방향으로 시편을 JIS13B로 가공하여 상온에서 인장강도(MPa)와 연신율(%)을 측정하였으며, 소재 표면을 #600 연마를 한 후 상온 3.5% NaCl 용액에서 공식전위(Epit, mV)를 측정하였다. 측정된 결과는 표 2에 정리하여 나타내었다.
강종 합금조성 (중량%)
C N Si Cr Ti 식 (1) 식 (2)


A 0.0124 0.0157 0.24 16.8 0.25 18.5 18.6
B 0.0074 0.0153 0.51 16.2 0.23 19.8 19.3
C 0.0085 0.0092 0.78 14.9 0.21 20.4 19.2
D 0.0067 0.0119 1.45 16.8 0.22 27.0 23.8
E 0.0098 0.0087 1.31 16.2 0.24 25.4 22.7
F 0.0123 0.0102 0.85 16.3 0.02 22.3 19.8


G 0.0072 0.0090 0.78 16.7 0.23 22.2 21.2
H 0.0075 0.0095 0.89 16.5 0.22 22.7 21.4
I 0.0066 0.0110 0.95 16.1 0.19 22.8 21.0
강종 인장강도(MPa) 공식전위(mV) 연신율(%)


A 422 122 32
B 457 127 31
C 461 139 31
D 567 195 25
E 534 189 26
F 491 142 29


G 481 162 30
H 491 175 29
I 507 167 29
표 1 및 표 2를 참조하면 발명예들은 본 발명에서 한정하는 합금조성 및 식 (1) 값이 21 이상인 결과, 인장강도가 470MPa 이상임을 알 수 있고, 식 (1) 값이 25 이하인 결과, 연신율이 27% 이상임을 알 수 있다. 또한, 식 (2)의 값이 20 이상인 결과, 공식전위 값이 150mV 이상임을 알 수 있다. 아울러, 식 (1)의 값이 21 이상 25 이하, 식 (2)의 값이 20 이상을 모두 만족하는 경우에는 인장강도가 470MPa 이상, 연신율이 27% 이상, 공식전위 값이 150mV 이상 모두를 만족함을 알 수 있다. 반면, 비교예 강종 A, B는 Si 함량이 본 발명이 한정하는 Si 함량의 하한인 0.7중량%에 미달이었고, 식 (1)의 값이 21 미만이었으며, 식 (2)의 값이 20 미만이었다. 그 결과, 연신율은 30% 이상으로 높았으나, 인장강도는 470MPa 미만이었으며, 공식전위 값이 150mV 미만이었다.
비교예 강종 C는 Cr 함량이 본 발명이 한정하는 Cr 함량의 하한인 16.0중량% 미달이었고, 식 (1)의 값이 21 미만이었으며, 식 (2)의 값이 20 미만이었다. 그 결과, 연신율은 30% 이상으로 높았으나, 인장강도는 470MPa 미만이었으며, 공식전위 값이 150mV 미만이었다.
비교예 강종 D, E는 Si 함량이 본 발명이 한정하는 Si 함량의 상한인 1.0중량%를 초과하였고, 식 (1)의 값이 25를 초과하였다. 그 결과, 인장강도는 470MPa 이상이었으나, 연신율이 27% 미만이었다.
비교예 강종 F는 Ti 함량이 본 발명이 한정하는 Ti 함량의 하한인 0.05중량% 미달이었고, 식 (2)의 값이 20 미만이었다. 그 결과, 인장강도가 470MPa 이상, 연신율이 27% 이상이었으나, 공식전위 값이 150mV 미만이었다.
첨부된 도 1, 2, 3은 위 결과를 가시화한 그래프이다. 도 1은 식 (1) 값에 따른 각 실시예의 인장강도 값을 도시한 그래프이다. 도 1에 따르면 식 (1)의 값이 21 이상인 경우 470MPa 이상의 인장강도를 확보할 수 있음을 알 수 있다. 다만, 도 2에 따르면 식 (1)의 값이 21 이상을 만족하여 인장강도가 470MPa 이상인 비교예 강종 D, E는 식 (1)의 값이 25를 초과하여 연신율이 27% 미만임을 알 수 있다.
도 3은 식 (2) 값에 따른 각 실시예의 공식전위 값을 도시한 그래프이다. 도 3에 따르면 식 (2)의 값이 20 이상인 경우 150mV 이상의 공식전위를 확보할 수 있음을 알 수 있다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명의 일 예에 따르면, Si 및 Cr의 함량을 조절하여 원가가 저감된 페라이트계 스테인리스강을 제공할 수 있다. 또한 본 발명의 일 예에 따르면, 조성 파라미터를 통해 강도, 가공성 및 내식성을 향상시킨 페라이트계 스테인리스강을 제공할 수 있다. 따라서, 각종 가전제품 등 다양한 산업분야에서 사용될 수 있다.

Claims (2)

  1. 중량%로, C: 0.0005 내지 0.02%, N: 0.005 내지 0.02%, Si: 0.7 내지 1.0%, Cr: 16.0 내지 17.0%, Ti: 0.05 내지 0.3%, 나머지는 Fe 및 불가피한 불순물을 포함하고,
    하기 식 (1)의 값이 21 이상 25 이하를 만족하고, 인장강도가 470MPa 이상, 연신율이 27% 이상인 페라이트계 스테인리스강:
    (1) 7*Si + Cr
    (상기 식 (1)에서 Si, Cr은 각 원소의 함량(중량%)을 의미한다).
  2. 제1항에 있어서,
    하기 식 (2)의 값이 20 이상을 만족하고, 공식전위 값이 150mV 이상인 페라이트계 스테인리스강:
    (2) Cr + 4*Si + 0.1*Ti/(C+N)
    (상기 식 (2)에서, Cr, Si, Ti, C, N은 각 원소의 함량(중량%)을 의미한다).
PCT/KR2021/011466 2020-11-19 2021-08-26 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강 WO2022108058A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/034,951 US20230416885A1 (en) 2020-11-19 2021-08-26 Ferritic stainless steel with improved strength, workability, and corrosion resistance
CN202180076851.2A CN116490628A (zh) 2020-11-19 2021-08-26 具有改善的强度、可加工性和耐腐蚀性的铁素体不锈钢
EP21894831.3A EP4249622A1 (en) 2020-11-19 2021-08-26 Ferritic stainless steel with improved strength, workability, and corrosion resistance
JP2023530070A JP2023550410A (ja) 2020-11-19 2021-08-26 強度、加工性及び耐食性が向上したフェライト系ステンレス鋼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0155838 2020-11-19
KR1020200155838A KR102424980B1 (ko) 2020-11-19 2020-11-19 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강

Publications (1)

Publication Number Publication Date
WO2022108058A1 true WO2022108058A1 (ko) 2022-05-27

Family

ID=81709315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011466 WO2022108058A1 (ko) 2020-11-19 2021-08-26 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강

Country Status (6)

Country Link
US (1) US20230416885A1 (ko)
EP (1) EP4249622A1 (ko)
JP (1) JP2023550410A (ko)
KR (1) KR102424980B1 (ko)
CN (1) CN116490628A (ko)
WO (1) WO2022108058A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176750A (ja) * 1994-12-28 1996-07-09 Nippon Steel Corp ベローズ加工用フェライト系ステンレス鋼
JP2002275595A (ja) * 2001-03-21 2002-09-25 Nisshin Steel Co Ltd 耐リジング性および深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法
KR100963109B1 (ko) * 2007-11-22 2010-06-14 주식회사 포스코 고크롬 페라이트계 스테인리스강
KR20100075190A (ko) 2008-12-24 2010-07-02 주식회사 포스코 표면 품질이 우수한 페라이트계 스테인레스 강판의 제조방법
CN104250708A (zh) * 2013-06-25 2014-12-31 宝钢不锈钢有限公司 一种食品接触用铁素体不锈钢及其制备方法
KR20170074260A (ko) * 2015-12-21 2017-06-30 주식회사 포스코 내공식성 및 내응축수 부식성이 개선된 자동차 배기계용 페라이트계 스테인리스강 및 이의 제조 방법
KR102020511B1 (ko) * 2017-12-14 2019-09-10 주식회사 포스코 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176750A (ja) * 1994-12-28 1996-07-09 Nippon Steel Corp ベローズ加工用フェライト系ステンレス鋼
JP2002275595A (ja) * 2001-03-21 2002-09-25 Nisshin Steel Co Ltd 耐リジング性および深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法
KR100963109B1 (ko) * 2007-11-22 2010-06-14 주식회사 포스코 고크롬 페라이트계 스테인리스강
KR20100075190A (ko) 2008-12-24 2010-07-02 주식회사 포스코 표면 품질이 우수한 페라이트계 스테인레스 강판의 제조방법
CN104250708A (zh) * 2013-06-25 2014-12-31 宝钢不锈钢有限公司 一种食品接触用铁素体不锈钢及其制备方法
KR20170074260A (ko) * 2015-12-21 2017-06-30 주식회사 포스코 내공식성 및 내응축수 부식성이 개선된 자동차 배기계용 페라이트계 스테인리스강 및 이의 제조 방법
KR102020511B1 (ko) * 2017-12-14 2019-09-10 주식회사 포스코 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법

Also Published As

Publication number Publication date
KR102424980B1 (ko) 2022-07-25
EP4249622A1 (en) 2023-09-27
JP2023550410A (ja) 2023-12-01
US20230416885A1 (en) 2023-12-28
KR20220068743A (ko) 2022-05-26
CN116490628A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
KR101828856B1 (ko) 철근 및 그 제조 방법
WO2020101227A1 (ko) 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2011007921A1 (ko) 고강도·고내식 탄질소 복합첨가 오스테나이트계 스테인리스강 및 이의 제조방법
KR910002872B1 (ko) 디이프 드로잉용 냉연 강판 및 그 제조방법
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2018110779A1 (ko) 강도 및 연성이 우수한 저합금 강판
WO2019039768A1 (ko) 열간가공성 및 내수소취성이 우수한 저ni 오스테나이트계 스테인리스강
WO2016105092A1 (ko) 페라이트계 스테인리스강 및 그 제조방법
WO2017111251A1 (ko) 내크립 특성 및 인장강도가 향상된 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2022108058A1 (ko) 강도, 가공성 및 내식성이 향상된 페라이트계 스테인리스강
WO2019124729A1 (ko) 열간가공성이 우수한 유틸리티 페라이트계 스테인리스강 및 그 제조방법
WO2017209431A1 (ko) 내식성 및 가공성이 향상된 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2021125564A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2021101007A1 (ko) 고투자율 페라이트계 스테인리스강
WO2023075283A1 (ko) 클래드 판재 가공성이 우수한 페라이트계 스테인리스강 및 제조방법
WO2020060050A1 (ko) 가공성과 고온강도가 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2023075391A1 (ko) 성형성이 우수한 페라이트계 스테인리스 열연강판 및 그 제조방법
WO2014098301A1 (ko) 경도와 저온 충격특성이 우수한 스테인리스 열연강판
KR20210079082A (ko) 고온 특성 및 성형성이 향상된 저Cr 페라이트계 스테인리스강 및 그 제조방법
WO2019117465A1 (ko) 구멍 확장성이 우수한 듀플렉스 스테인리스강 및 그 제조방법
KR20200131038A (ko) 내식성이 향상된 페라이트계 스테인리스강
WO2022124587A1 (ko) 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2024135997A1 (ko) 구조용 페라이트계 스테인리스강 및 그 제조방법
WO2022270814A1 (ko) 오스테나이트계 스테인리스강 및 그 제조방법
WO2017111437A1 (ko) 린 듀플렉스 스테인리스강 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18034951

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180076851.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023530070

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894831

Country of ref document: EP

Effective date: 20230619