WO2022108007A1 - Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes - Google Patents

Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes Download PDF

Info

Publication number
WO2022108007A1
WO2022108007A1 PCT/KR2021/003849 KR2021003849W WO2022108007A1 WO 2022108007 A1 WO2022108007 A1 WO 2022108007A1 KR 2021003849 W KR2021003849 W KR 2021003849W WO 2022108007 A1 WO2022108007 A1 WO 2022108007A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
alloy
metal oxide
fluoride
eutectic composition
Prior art date
Application number
PCT/KR2021/003849
Other languages
French (fr)
Korean (ko)
Inventor
이영준
김평화
유주원
류홍열
박다한
문석진
Original Assignee
주식회사 케이에스엠테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이에스엠테크놀로지 filed Critical 주식회사 케이에스엠테크놀로지
Priority to AU2021384253A priority Critical patent/AU2021384253A1/en
Priority to EP21894786.9A priority patent/EP4249644A1/en
Priority to CA3201236A priority patent/CA3201236A1/en
Priority to US18/253,348 priority patent/US20240002974A1/en
Priority to JP2023529973A priority patent/JP2023550382A/en
Priority to CN202180084243.6A priority patent/CN116685720A/en
Publication of WO2022108007A1 publication Critical patent/WO2022108007A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1277Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using other metals, e.g. Al, Si, Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/30Electrolytic production, recovery or refining of metals by electrolysis of melts of manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a method for reducing high-melting-point metal oxide. It is possible to operate in the atmosphere by breaking away from the existing inert gas atmosphere manufacturing process, and by using an eco-friendly method, the efficiency can be maximized and the metal oxide reduction is easy for commercialization. It relates to methods and systems.
  • the metal M can be obtained by reducing a raw material such as an oxide or halide.
  • a raw material such as an oxide or halide.
  • Kroll process the relatively well-known and most commonly used method in the art is a so-called Kroll process.
  • the crawl process can be summarized as a process for reducing to titanium or zirconium by using molten magnesium as a reducing agent, and adding a chloride of the desired metal M, for example, titanium chloride or zirconium chloride.
  • a chloride of the desired metal M for example, titanium chloride or zirconium chloride.
  • this crawling process is a process using chloride as a raw material
  • chlorine gas and magnesium chloride are produced as by-products during the process.
  • chlorine gas is an environmental problem that causes fatal problems to the human body and is considered a representative problem of the crawler process
  • magnesium chloride it causes a problem in the process of rapidly corroding the reaction vessel called, for example, an electrolyzer, a melting furnace, or a crucible. do.
  • the crawling process requires an additional device for resolving environmentally acceptable regulations, and frequent replacement of the reaction vessel is accompanied, and thus the cost for operating the process is high.
  • the crawling process is made in the form of a sponge in which the obtained metal contains a large number of pores, so that it is very difficult to control the oxygen that may be present in the metal.
  • the crawling process has a limit in obtaining a metal of high purity.
  • Electrolytic refining process is being studied to replace these existing processes, which has the advantage of not generating chlorine gas by directly reducing metal oxides and being simpler than the existing process, but the form of recovered metal is limited to powder, Since the particle size of the powder is also limited, there is a problem in that it is difficult to control the oxygen concentration in the metal after the process.
  • the specific surface area of the recovered metal must be lowered by manufacturing an ingot using a process such as vacuum arc melting in a state in which the recovered metal powder manufactured by the refining process is not exposed to the atmosphere. There are practical difficulties in terms of cost and difficulty in facility installation.
  • Patent Document 1 US Patent No. 5,035,404
  • Patent Document 2 Domestic Registered Patent No. 10-1757626
  • Patent Document 3 Domestic Registered Patent No. 10-1793471
  • Patent Document 4 Domestic Registered Patent No. 10-1878652
  • Non-Patent Document 1 Antoine Allanore, Journal of The Electrochemical Society, 162 (1) (2015) E13-E22
  • the present invention has been proposed to solve the problems of the prior art as described above, and an object of the present invention is to reduce a high-melting-point metal oxide in an environment-friendly and highly-efficient atmospheric environment using a fluoride-based electrolyte to produce a high-quality alloy metal
  • An object of the present invention is to provide a method and system for doing so.
  • the present invention is characterized in that a liquid metal alloy of a metal M 1 and a metal M 2 forming a eutectic phase with each other is prepared.
  • the melting point of the metal M 1 is lowered by the eutectic reaction and reduction can be effectively performed at a relatively low temperature, thereby significantly saving energy, which can lead to cost reduction.
  • the present invention can be obtained in the state of a liquid alloy (liquid metal alloy of M 1 and M 2 ) by a eutectic reaction, and the metal alloy itself can be used as a final product.
  • metal M 1 may be obtained by electrolytic refining of the obtained metal alloy.
  • the liquid alloy thus obtained can be thoroughly separated from an environment in which oxygen may exist, and thus contamination by oxygen can be remarkably prevented. That is, according to the above aspect, it is possible to obtain a high-purity metal alloy and metal M 1 .
  • An object of the present invention is to provide an alloy metal reduction method that can increase the high-quality production rate of the final product compared to the prior art and has high energy efficiency, which is advantageous for commercialization.
  • a method for reducing metal M 1 from a metal oxide is provided.
  • the method for reducing the metal M 1 from the metal oxide is a method for reducing the metal M 1 from the metal oxide
  • reducing the metal M 1 by reacting the metal oxide with the eutectic composition, and the reduced metal M 1 comprises the step of forming a liquid metal alloy with the metal M 2 ,
  • the molten salt of the fluoride-based electrolyte may be smaller than the density of the metal oxide and the eutectic composition of the metal M 2 and the metal M 3 .
  • the fluoride-based electrolyte molten salt has a volatilization rate of 10 wt% or less for 10 hours at 1,600 °C, specifically, a volatilization rate of 5 wt% or less, more specifically, a volatilization rate of 2 wt% or less can
  • the fluoride-based electrolyte may be at least one selected from the group consisting of MgF 2 , CaF 2 , SrF 2 and BaF 2 , and specifically CaF 2 .
  • the metal M 1 is Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, Nd, Pm, selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md and No. It can be one full day.
  • the metal M 2 may be at least one selected from the group consisting of Cu, Ni, Sn, Zn, Pb, Bi, Cd, and alloys thereof, and specifically Cu.
  • the metal M 3 may be at least one selected from the group consisting of Ca, Mg, Al, and alloys thereof, and specifically Mg.
  • the metal oxide may include at least one selected from the group consisting of M 1 x O z and M 1 x M 3 y O z , where x and y are each a real number of 1 to 3, z is a real number from 1 to 4.
  • the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the atmosphere or in fluoride.
  • the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the range of 900 to 1600°C.
  • a slag additive is added, and the metal oxide reacts with the eutectic composition to reduce the metal M 1 By-product and the melting
  • the method may further include forming a slag of salt, and specifically, the slag additive may include at least one selected from the group consisting of MgO, CaO, FeO, BaO, SiO 2 and Al 2 O 3 .
  • the liquid metal alloy is located at the bottom of the electrolytic cell, forming a layer distinct from the eutectic composition, and continuously obtaining the liquid metal alloy through the lower part of the electrolytic cell;
  • the slag may further include forming a separate layer on the upper portion of the eutectic composition, and continuously removing the slag through the upper portion of the electrolytic cell.
  • the electrolytic refining of the liquid metal alloy may further include the step of manufacturing M 1 .
  • the metal alloy or metal according to the present invention may be obtained by any method disclosed herein or a combination thereof, and specifically, the residual content of M 3 relative to the total weight of the metal alloy is 0.1 wt% or less, specifically 0.01 wt% or less, more specifically 0.001 wt% or less, and an oxygen content of 1800 ppm or less, specifically 1,500 ppm or less, more specifically 1,200 ppm or less may be a metal alloy.
  • a system for reducing metal M 1 from a metal oxide according to the present invention comprises:
  • It may include a liquid metal alloy of the metal M 1 and the metal M 2 positioned under the eutectic composition,
  • the density of the molten salt may be less than that of the metal oxide, the metal oxide and the metal M 3 react to reduce the metal M 1 , and the metal M 2 is the metal M 1 and the eutectic phase (eutectic phase) can form.
  • the present invention provides a system optimized for obtaining a desired metal from a metal oxide and a method for preparing such a metal without using any metal chloride or chloride as an electrolyte. Therefore, the present invention can solve the environmental problem of the above-described crawling process and the cost problem due to corrosion of the electrolytic cell.
  • the present invention is characterized in that a liquid metal alloy of a metal M 1 and a metal M 2 forming a eutectic phase with each other is prepared.
  • the melting point of the metal M 1 is lowered by the eutectic reaction and reduction can be effectively performed at a relatively low temperature, thereby significantly saving energy, which can lead to cost reduction.
  • the present invention is obtained in a liquid alloy (a liquid metal alloy of a metal M 1 and a metal M 2 ) by a eutectic reaction, and the metal alloy itself can be used as a final product.
  • metal M 1 may be obtained by electrolytic refining of the obtained metal alloy.
  • the liquid alloy thus obtained can be thoroughly separated from an environment in which oxygen may exist, and thus contamination by oxygen can be remarkably prevented. That is, according to the above aspect, it is possible to obtain a high-purity metal alloy and metal M 1 .
  • the present invention it is easy to adjust the ratio of the target alloy, and it is possible to manufacture a high-purity metal through the electrolytic refining technique using the finally manufactured alloy metal.
  • the recovery rate of high-grade metal M 1 is high, and the separation of the final product and the reaction product is easy, so that continuous operation is possible.
  • FIG. 1 is a process diagram illustrating a process for reducing a metal M 1 from a metal oxide according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a process procedure of a method for reducing metal M 1 from a metal oxide according to an embodiment of the present invention.
  • FIG. 3 is a diagram and a result table showing the difference in the volatilization rate of the fluoride-based electrolyte and the chloride-based electrolyte.
  • FIG. 4 is a view showing vapor pressures according to the temperature of the fluoride-based electrolyte and the chloride-based electrolyte.
  • FIG. 5 is a photograph taken of a metal alloy manufactured according to an embodiment of the present invention.
  • EDS 6 is a view and result table of elemental analysis of the inside of the alloy with an energy dispersive spectrometer (EDS) after cutting the metal alloy manufactured according to an embodiment of the present invention.
  • EDS energy dispersive spectrometer
  • Example 7 is a result table of measuring the oxygen content in the metal alloy prepared according to Example 2 of the present invention using ELTRA ONH2000.
  • charge may be used interchangeably with “injection”, “introduction”, “introduction”, and “injection” in this specification, and any material such as a raw material is brought into a necessary place, or It can be understood as meaning to put in.
  • the method for reducing metal M 1 from a metal oxide according to the present invention comprises:
  • the molten salt of the fluoride-based electrolyte may be smaller than the eutectic composition of the metal M 2 and the metal M 3 and the density of the metal oxide.
  • the fluoride-based electrolyte molten salt has a volatilization rate of 10 wt% or less, specifically 5 wt% or less, and more specifically 2 wt% or less, at 1,600°C for 10 hours.
  • a chloride-based electrolyte such as CaCl 2
  • a volatilization rate of about 74% by weight ( FIG. 3 ) at 1,600° C. for 10 hours, so that the advantage of such a fluoride-based electrolyte can be more clearly understood.
  • the volatilization rate can be measured by comparing the weight before and after leaving at a specific temperature for a certain time, but other methods well known to those skilled in the art may be used.
  • the electrolyte of the present invention is used in the process of reducing the metal by reacting the metal oxide with the eutectic composition, its volatilization rate should be measured within the process temperature (900 ⁇ 1600 °C) according to the present invention.
  • the process temperature 900 ⁇ 1600 °C
  • the higher the temperature the higher the volatilization rate, so it may be preferable to measure the volatilization rate at 1600° C., the highest among the allowable process temperatures, in order to ensure process stability.
  • the fluoride-based electrolyte may be a fluoride-based electrolyte of one or more metals selected from the group of alkali metals and alkaline earth metals, and the relative density difference, volatilization rate, operation may be determined in consideration of convenience, safety, and the like.
  • the fluoride-based electrolyte may be, for example, at least one selected from the group consisting of MgF 2 , CaF 2 , SrF 2 and BaF 2 , and specifically CaF 2 .
  • the metal oxide reacts with the eutectic composition to reduce and reduce metal M 1
  • the molten salt of the fluoride-based electrolyte is located at the top of the electrolytic cell, so that the eutectic composition and the metal oxide may not be exposed to the external environment, and oxygen from the outside inflow can be prevented. Accordingly, the reduction process of the metal M 1 is possible even in a normal atmospheric atmosphere rather than an inert gas atmosphere.
  • the metal M 1 is not particularly limited, but specifically Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, With Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md and No It may be one selected from the group consisting of, and more specifically, may be one selected from the group consisting of Ti, Zr, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Er and No, and more Specifically, it may be one selected from the group consisting of Ti, Zr, W, Fe, Ni, Zn, Co, Mn, and Cr, and particularly, Ti, Zr or W may be used.
  • the metal M 2 is not limited as long as it can form an eutectic phase with the metal M 1 , for example, the metal M 2 is Cu, Ni, Sn, Zn, Pb, Bi, Cd and It may be at least one selected from the group consisting of alloys thereof, and specifically Cu.
  • the reducing agent containing the metal M 3 is not limited as long as it can reduce the metal oxide containing the metal M 1 , for example, the metal M 3 is from the group consisting of Ca, Mg, Al and alloys thereof. It may be one or more selected from. In detail, the metal M 3 may be Mg.
  • the metal oxide may include at least one selected from the group consisting of M 1 x O z and M 1 x M 3 y O z , wherein x and y are each a real number of 1 to 3, z is a real number from 1 to 4.
  • Non-limiting examples of the metal oxide for better understanding include ZrO 2 , TiO 2 , MgTiO 3 , HfO 2 , Nb 2 O 5 , Dy 2 O 3 , Tb 4 O 7 , WO 3 , Co 3 O 4 , MnO,
  • One selected from the group consisting of Cr 2 O 3 , MgO, CaO, Al 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Pb 3 O 4 , SnO, NbO and Ag 2 O, or a combination of two or more thereof may include
  • the process of reducing the metal M 1 by reacting with the eutectic composition of the metal M 2 and the metal M 3 is more can be fast
  • the time required for reduction can be reduced by at least 1/3 to 1/10 compared to the case of using M 1 x O z can That is, when a composite oxide of a metal M 1 and a metal M 3 is used as the metal oxide, the reaction rate of the metal oxide and the eutectic composition may be faster than when only the oxide of the metal M 1 is used.
  • M 1 x M 3 y O z when M 1 x M 3 y O z is used, there is an advantage that the ratio of M 1 and M 2 in the liquid metal alloy produced according to the present invention can be more widely adjusted. Furthermore, when using M 1 x M 3 y O z , there is an advantage in that the required amount of M 3 used as a reducing agent is significantly reduced compared to the case of using M 1 x O z .
  • the oxide of the metal M 1 may be TiO 2
  • the composite oxide of the metal M 1 and the metal M 3 may be CaTiO 3 .
  • the method according to the present invention is different from the conventional crawling process in that a metal oxide is used instead of a metal chloride as a raw material.
  • Raw materials usually found in nature include oxides of metal M 1 , and in order to use them in the crawling process, a pretreatment process of replacing these metal oxides with chlorides is accompanied. If it goes through such a pretreatment process, it itself causes an increase in process cost.
  • hydrochloric acid is used in the pretreatment process of replacing the metal oxide with chloride, which promotes corrosion of manufacturing equipment due to strong acidity, and toxic chlorine gas may be generated during the process, which may cause environmental problems. Since the method according to the present invention does not require a pretreatment process for replacing the metal oxide with a chloride, the process cost is lower than that of the crawling process and does not cause environmental problems.
  • the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the atmosphere or in fluoride. Since the density of the molten salt of the fluoride-based electrolyte is lower than that of the eutectic composition and the metal oxide, the molten salt of the fluoride-based electrolyte is located at the top of the electrolytic cell, and the eutectic composition and the metal oxide are placed under the molten salt of the fluoride-based electrolyte. Due to this, the eutectic composition and the injected metal oxide can exist without being exposed to the external environment due to the molten salt of the fluoride-based electrolyte and the electrolyzer.
  • the process of reducing 1 may be performed. Moreover, since the volatilization rate of the molten salt of the fluoride-based electrolyte is relatively low, the generation of toxic gas is reduced even when it is performed in an atmospheric atmosphere, so that corrosion of equipment used in the process is significantly reduced, and an environment harmful to the operator is not created, You can enjoy the advantage of being able to achieve large-scale industrialization.
  • the method for reducing the metal M 1 is capable of melting a fluoride-based electrolyte, preparing a eutectic composition, and reacting a metal oxide with the eutectic composition to reduce the metal M 1 . It is free as long as the temperature is higher than the allowable temperature.
  • the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed at 900° C. or higher.
  • the temperature at which the molten salt of the fluoride-based electrolyte does not evaporate excessively is okay, and in consideration of the energy efficiency according to the heating of the furnace, it may be carried out at 1800 ° C or less, 1700 ° C or less, or 1600 ° C or less, and 1600 ° C. This can be done below. Therefore, the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the range of 900 to 1600°C.
  • the metal M 1 is Ti
  • the metal oxide (M 1 x O z ) is TiO 2
  • the metal M 2 is Cu
  • the metal M 3 is Ca
  • the metal according to Schemes 1-1 and 1-2 Ti is reduced, and then an oxide (M 3 a O b ) of the metal M 3 may be separated while obtaining a liquid metal alloy CuTi.
  • a and b are real numbers from 1 to 3, respectively.
  • the metal M 1 is Ti
  • the metal oxide (M 1 x M 3 y O z ) is CaTiO 3
  • the metal M 2 is Cu
  • the metal M 3 is Ca
  • the following Reaction Schemes 2-1 and 2-2 The metal Ti is reduced according to this, and then the oxide (M 3 a O b ) of the metal M 3 may be separated while obtaining a liquid metal alloy CuTi.
  • the oxide (M 3 a O b ) of the metal M 3 generated according to the reaction as described above is a kind of by-product, and in order to enable a continuous process, it is necessary to continuously remove these by-products. Since the by-product is not completely dissolved in the molten salt, it may not be easy to remove it or continuously operate the process.
  • the method of the present invention may further include the step of forming a slag of a molten salt of a fluoride-based electrolyte and a by-product generated in the process of reducing the metal M 1 by adding a slag additive to react the metal oxide with the eutectic composition.
  • the viscosity is relatively reduced and fluidity is increased compared to the case where the by-product and the molten salt of the fluoride-based electrolyte are present.
  • An example of the slag additive for achieving the above-described effect may include at least one selected from the group consisting of MgO, CaO, FeO, BaO, SiO 2 and Al 2 O 3 , but is not limited thereto.
  • the liquid metal alloy is located at the bottom of the electrolytic cell and forms a layer distinct from the eutectic composition, and the liquid metal alloy is continuously obtained through the lower part of the electrolytic cell step;
  • the slag may further include forming a layer to be divided on the upper portion of the eutectic composition, and continuously removing the slag through the upper portion of the electrolytic cell.
  • the slag resulting from the input of the slag additive is continuously removed through the upper part of the electrolytic cell, thereby continuously removing by-products generated in the reduction process of metal oxides.
  • the reaction product formed when the metal oxide is added to the eutectic composition is continuously removed from the electrolyzer, and all the reactions are not completed after a quantitative amount of the metal oxide is added, but the metal oxide is continuously added without interruption of the process
  • a liquid metal alloy of the metal M 1 and the metal M 2 can be obtained.
  • a method known to those skilled in the art may be used in the step of continuously obtaining a liquid metal alloy through the lower portion of the electrolytic cell or continuously removing the slag through the upper portion of the electrolytic cell.
  • the fluoride-based electrolyte is replenished during process operation to maintain the balance of the reaction system and to enable a continuous process.
  • the fluoride-based electrolyte may be continuously separated from the removed slag, and the separated fluoride-based electrolyte may be put back into the electrolytic cell.
  • Cooling for solidification of the obtained liquid metal alloy may be performed.
  • the liquid metal alloy is a state in which the metal M 1 and the metal M 2 are homogeneously mixed, the structure of the alloy obtained after solidification is greatly affected by the cooling rate of the liquid metal alloy.
  • the cooling rate is the temperature at which the process according to the present invention is performed so that the intermetallic compound phase can be stably formed, and a tissue structure in which the intermetallic compound phases of M 1 and M 2 are continuously connected to each other can be manufactured. It is preferable to slowly cool to room temperature in the range, for example, it may be at a rate of 20 °C / min.
  • the cooling rate When the cooling rate is excessively fast outside the suggested range, the intermetallic compound is not formed, or a tissue structure in which fine intermetallic compound particles are dispersed and impregnated in a large amount in the metal M 1 matrix is obtained, which is continuous and fast Material of metal M 1 There is a risk that the movement route will not be formed.
  • the cooling rate When cooling is excessively slow, the microstructural advantage is negligible, but as the time required for the process becomes excessively long, the cooling rate may be substantially 1°C/min or more, and more substantially 5°C/min or more.
  • the method according to the present invention further includes the step of electrolytic refining the alloy comprising the obtained metal M 1 and the metal M 2 after obtaining the alloy comprising the metal M 1 and the metal M 2 to obtain the metal M 1 may include
  • the electrolytic refining to obtain the metal M 1 may be a step of solidifying the obtained liquid metal alloy to obtain a solid alloy, and electrolytically refining the solid alloy to recover the metal M 1 from the alloy.
  • the electrolyte that may remain in the liquid metal alloy may be removed before electrolytic refining of the solidified alloy.
  • the distillation temperature heat treatment temperature
  • the distillation temperature is not particularly limited as long as it is a temperature above the boiling point of the electrolyte used in the system of the present invention, and may be, for example, 2,500 ° C. or higher, and may be performed by reducing the distillation temperature to increase efficiency by lowering the distillation temperature. .
  • the present invention provides a metal alloy of a metal M 1 and a metal M 2 obtained by any of the methods or combinations thereof described in the specification of the present invention.
  • the metal alloy of the metal M 1 and the metal M 2 may include: forming a molten salt of a fluoride-based electrolyte in an electrolytic cell; preparing a eutectic composition of M 2 and M 3 by introducing a reducing agent containing a metal M 3 and a metal M 2 forming a eutectic phase with the metal M 1 into the electrolytic cell; and reducing the metal M 1 by reacting the metal oxide with the eutectic composition, and the reduced metal M 1 forms a liquid metal alloy with the metal M 2
  • a method for reducing metal M 1 from a metal oxide comprising the steps of: can be obtained by
  • a metal alloy of the metal M 1 and the metal M 2 may be obtained from a process performed in the air or in the range of 900 to 1600°C.
  • a metal alloy of metal M 1 and metal M 2 is formed by adding a slag additive to react the metal oxide with the eutectic composition to form a by-product generated in the process of reducing the metal M 1 and slag of the molten salt It can be obtained by a method further comprising the step of
  • the metal alloy of the metal M 1 and the metal M 2 of the present invention may be obtained by any method described in the specification of the present invention or a combination thereof.
  • the metal alloy of the metal M 1 and the metal M 2 has a residual content of the metal M 3 relative to the total weight of the metal alloy of 0.1 wt% or less, specifically 0.01 wt% or less, more specifically 0.001 wt% % or less is a high-grade metal alloy.
  • the oxygen content of the metal alloy of the metal M 1 and the metal M 2 is 1,800 ppm or less, specifically 1,500 ppm or less, and more specifically 1,200 ppm or less, which is a high-quality metal alloy.
  • the metal alloy itself may be used as a final product.
  • M 1 is often used in the form of an alloy industrially.
  • a post-treatment process of forming an alloy with other metals may be required.
  • the present invention has high process efficiency in that a final product can be obtained in the form of a metal alloy of M 1 and M 2 at the same time as reduction without such a post-treatment process.
  • the reduced metal produced through the conventional crawling process has a small amount of production of a high grade (grade 1) metal having a low oxygen content and a relatively high residual oxygen content.
  • the metal alloy produced according to the present invention has a very low oxygen content, and most of it corresponds to a high grade grade.
  • M 1 is Ti
  • the yield of high-grade metal is very high, 98% or more, but in the conventional crawling process, it is known that the yield of high-grade metal is less than 50%, through this The superiority of the invention can be understood more clearly.
  • a system for reducing metal M 1 from a metal oxide according to the present invention comprises:
  • It may include a liquid metal alloy of the metal M 1 and the metal M 2 positioned under the eutectic composition,
  • the density of the molten salt may be less than that of the metal oxide, the metal oxide and the metal M 3 react to reduce the metal M 1 , and the metal M 2 is the metal M 1 and the eutectic phase (eutectic phase) can form.
  • the electrolytic cell may be an electrolytic reduction tank or the like, a high-frequency melting furnace to achieve a desired temperature range, or an electric furnace depending on the target metal alloy may be used, but is not limited thereto.
  • a high-frequency melting furnace to achieve a desired temperature range
  • an electric furnace depending on the target metal alloy may be used, but is not limited thereto.
  • all electrolyzers and furnaces that are easy for a person skilled in the art can be used.
  • the mass ratio of the molten salt of the fluoride-based electrolyte to the reaction by-product may be 5:1 to 2:1, preferably 3:1, but , but not limited thereto.
  • the electrolyte may further include an oxide of one or two or more metals selected from the group of alkali metals and alkaline earth metals as a reactive additive.
  • the content of the reaction additive may be 0.1 to 25% by weight based on the total weight of the electrolyte.
  • Reaction additives may include, but are not limited to, Li 2 O, Na 2 O, SrO, Cs 2 O, K 2 O, CaO, BaO, or mixtures thereof.
  • the reactive additive contained in the electrolyte may enable easier reduction of the metal oxide contained in the raw material module.
  • the method of making an alloy metal of the present invention may be performed using an electrolytic bath similar to that of FIG. 1 .
  • a fluoride-based electrolyte is charged into the electrolytic cell 1 and melted to form a molten salt 5, and then a reducing agent comprising a metal M 1 and a metal M 2 and a metal M 3 forming a eutectic phase with the metal M 1 in the electrolytic cell
  • a reducing agent comprising a metal M 1 and a metal M 2 and a metal M 3 forming a eutectic phase with the metal M 1 in the electrolytic cell
  • a eutectic composition (6) of the metal M 2 and the metal M 3 To prepare a eutectic composition (6) of the metal M 2 and the metal M 3 .
  • the molten salt 5 of the fluoride-based electrolyte is positioned on the eutectic composition 6 .
  • the metal oxide 10 is charged into the electrolytic cell using the raw material input device 1 and reacted with the eutectic composition 6 to prepare a liquid metal alloy 7 of metal M 1 and metal M 2 and the reaction is terminated.
  • the slag additive (9) is added to the reaction by-product located between the liquid metal alloy and the electrolyte.
  • the liquid metal alloy 7 is obtained through the tapping part 8 connected to the lower part of the electrolytic cell. Since the slag is located in the upper part of the electrolytic cell, about 50 to 90% of the slag is removed by tilting the electrolytic cell, and a new fluoride-based electrolyte is introduced into about 10 to 50% of the remaining slag through the electrolyte input device 2 to form a new electrolyte layer. to form After that, the metal oxide 10 is charged into the electrolytic cell using the raw material input device 1 and reacted with the eutectic composition 6 to produce the liquid metal alloy 7 may be repeated.
  • the liquid metal alloy 7 generated in the lower part of the electrolytic cell is continuously obtained through the tapping part 8 at the lower part of the electrolytic cell.
  • the electrolyzer may use, for example, a high-frequency melting furnace 3 to facilitate stirring, but is not limited thereto.
  • FIG. 1 The system as shown in FIG. 1 was used, and the process sequence of FIG. 2 was followed.
  • the electrolyte CaF 2 (40.8 g) was weighed, put into an electrolytic cell, and heated to about 1415° C. to prepare a molten salt of a fluoride-based electrolyte (FIG. 2a).
  • TiO 2 As a metal oxide, 72.1 g of TiO 2 (average particle size of 100 ⁇ m) was weighed and reacted for 10 hours ( FIGS. 2 c and d ).
  • FIG. 1 The system as shown in FIG. 1 was used, and the process sequence of FIG. 2 was followed.
  • the electrolyte CaF 2 (40.8 g) was weighed, put into an electrolytic cell, and heated to about 1415° C. to prepare a molten salt of a fluoride-based electrolyte (FIG. 2a).
  • the volatilization rates of the fluoride-based electrolyte and the chloride-based electrolyte were measured. 500 g (weight before charging) of each electrolyte was weighed and put into a crucible, and the weight of the electrolyte (weight after charging) after the crucible was charged into the melting furnace and left at 1,600° C. for 10 hours was measured. The volatilization rate was evaluated using the following method.
  • ELTRA ONH2000 was used to measure the oxygen content present in the alloy.

Abstract

The present invention relates to a metal oxide reduction method and, specifically, to a metal oxide reduction method which, in producing a high-grade alloy metal using a metal oxide as a raw material, enables operation in the atmosphere by moving away from an existing production process in an inert gas atmosphere, and is easy to commercialize and can maximize efficiency, as an eco-friendly method is used.

Description

불화물계 전해질을 이용한 고융점 금속 산화물의 환원 방법 및 시스템Method and system for reduction of high-melting-point metal oxide using fluoride-based electrolyte
본 발명은 고융점 금속 산화물 환원 방법에 관한 것으로, 기존 불활성 가스 분위기의 제조 공정에서 탈피하여 대기중에서 조업이 가능하고, 친환경적인 방법을 이용하여, 효율이 극대화될 수 있고 상업화에 용이한 금속 산화물 환원 방법 및 시스템에 관한 것이다.The present invention relates to a method for reducing high-melting-point metal oxide. It is possible to operate in the atmosphere by breaking away from the existing inert gas atmosphere manufacturing process, and by using an eco-friendly method, the efficiency can be maximized and the metal oxide reduction is easy for commercialization. It relates to methods and systems.
당업계에 전형적으로 알려진 금속을 임의의 금속 "M"이라 지칭할 때, 상기 금속 M은 산화물 또는 할로겐화물과 같은 원료를 환원시킴으로써 얻어질 수 있다. 이처럼 원하는 금속 M의 제조를 위한 방법 중 비교적 잘 알려져 있으며 당업계에서 가장 널리 일반적으로 이용되는 방법은 소위 크롤(Kroll)이라 지칭되는 공정이다. When a metal typically known in the art is referred to as any metal “M”, the metal M can be obtained by reducing a raw material such as an oxide or halide. Among the methods for the preparation of the desired metal M, the relatively well-known and most commonly used method in the art is a so-called Kroll process.
전형적으로, 크롤 공정은 용융 마그네슘을 환원제로 사용하여, 여기에 목적하는 금속 M의 염화물, 예컨대 염화 티타늄 또는 염화 지르코늄을 투입하여 티타늄 또는 지르코늄으로 환원시키는 공정으로 요약할 수 있다. 이와 관련하여, 크롤 공정의 보다 자세한 내용은 미국등록특허 5,035,404에서 확인할 수 있다. Typically, the crawl process can be summarized as a process for reducing to titanium or zirconium by using molten magnesium as a reducing agent, and adding a chloride of the desired metal M, for example, titanium chloride or zirconium chloride. In this regard, more details of the crawling process can be found in US Patent No. 5,035,404.
이러한 크롤 공정은, 원료로서 염화물을 이용하는 공정이므로, 공정 중에 부산물로서 염소 가스 및 염화 마그네슘이 생성된다. 이러한 부산물 중 염소 가스는 인체에 치명적인 문제를 유발하는 환경 문제로서 크롤 공정의 대표적인 문제로 여겨지고 있으며, 염화 마그네슘의 경우 예컨대 전해조, 용융로 또는 도가니 등으로 지칭되는 반응 용기를 빠르게 부식시키는 공정 상의 문제를 야기한다. Since this crawling process is a process using chloride as a raw material, chlorine gas and magnesium chloride are produced as by-products during the process. Among these by-products, chlorine gas is an environmental problem that causes fatal problems to the human body and is considered a representative problem of the crawler process, and in the case of magnesium chloride, it causes a problem in the process of rapidly corroding the reaction vessel called, for example, an electrolyzer, a melting furnace, or a crucible. do.
이처럼 크롤 공정은 환경적으로 용인될 수 있는 규제들을 해소하기 위한 부가적 장치를 필요로 하고, 반응 용기의 잦은 교체가 수반되어, 공정을 운용하기 위한 비용이 높은 단점이 있다.As such, the crawling process requires an additional device for resolving environmentally acceptable regulations, and frequent replacement of the reaction vessel is accompanied, and thus the cost for operating the process is high.
다른 측면에서, 크롤 공정은 수득되는 금속이 다수의 공극을 포함하는 스폰지 형태로 제조되어, 상기 금속 내에 존재할 수 있는 산소를 제어하는 것이 매우 난해하다. 환언하면, 크롤 공정은 고순도의 금속을 수득하기에는 한계가 있다.In another aspect, the crawling process is made in the form of a sponge in which the obtained metal contains a large number of pores, so that it is very difficult to control the oxygen that may be present in the metal. In other words, the crawling process has a limit in obtaining a metal of high purity.
이러한 기존의 공정들을 대체하기 위해 전해 정련 공정이 연구되고 있고, 이는 금속 산화물을 직접 환원시켜 염소 가스가 발생하지 않고 기존 공정에 비해 단순하다는 장점이 있으나, 회수되는 금속의 형태가 분말로 한정되고, 그 분말의 입도 크기 역시 제한되어, 공정 이후 금속 내 산소 농도 제어가 어려운 문제점이 있다. 이를 극복하기 위해서는, 정련 공정으로 제조된 회수 금속 분말이 대기 중 노출되지 않은 상태에서 진공 아크 용해와 같은 공정을 이용해 잉곳(ingot)을 제조하여 회수된 금속의 비표면적을 낮춰야 하나, 이 경우 대규모 산업 설비화가 어렵고 비용적인 측면에서 현실적인 어려움이 존재한다.Electrolytic refining process is being studied to replace these existing processes, which has the advantage of not generating chlorine gas by directly reducing metal oxides and being simpler than the existing process, but the form of recovered metal is limited to powder, Since the particle size of the powder is also limited, there is a problem in that it is difficult to control the oxygen concentration in the metal after the process. In order to overcome this, the specific surface area of the recovered metal must be lowered by manufacturing an ingot using a process such as vacuum arc melting in a state in which the recovered metal powder manufactured by the refining process is not exposed to the atmosphere. There are practical difficulties in terms of cost and difficulty in facility installation.
한편, 앞선 공정의 문제점들을 해결하기 위해 제안된 LCE(Liquid Copper-aided Electrolysis) 공정(특허문헌 1 내지 3 참조)은 목적 금속을 환원제를 이용하여 전해 환원 공정을 통해 합금으로 제조한 후, 전해 정련을 통해 고순도의 목적 금속을 정련하는 방안을 제안하였다. 하지만 이 전해 환원 공정에서도 휘발율이 강한 염소계 전해질이 사용되어 장비의 부식이 빨라 비용 측면의 문제점이 발생하고, 염소 가스가 발생하여 아르곤 가스 분위기의 닫힌 계에서의 조업이 요구되는 문제점이 존재한다.On the other hand, in the liquid copper-aided electrolysis (LCE) process (see Patent Documents 1 to 3) proposed to solve the problems of the preceding process, the target metal is prepared into an alloy through an electrolytic reduction process using a reducing agent, and then electrolytic refining A method for refining high-purity target metals was proposed. However, in this electrolytic reduction process, a chlorine-based electrolyte with a strong volatilization rate is used, causing a problem in terms of cost due to rapid corrosion of equipment, and there is a problem in that chlorine gas is generated and operation in a closed system in an argon gas atmosphere is required.
[특허문헌][Patent Literature]
(특허문헌 1) 미국등록특허 제5,035,404호(Patent Document 1) US Patent No. 5,035,404
(특허문헌 2) 국내등록특허 제10-1757626호(Patent Document 2) Domestic Registered Patent No. 10-1757626
(특허문헌 3) 국내등록특허 제10-1793471호(Patent Document 3) Domestic Registered Patent No. 10-1793471
(특허문헌 4) 국내등록특허 제10-1878652호(Patent Document 4) Domestic Registered Patent No. 10-1878652
[비특허문헌][Non-patent literature]
(비특허문헌 1) Antoine Allanore, Journal of The Electrochemical Society, 162 (1) (2015) E13-E22(Non-Patent Document 1) Antoine Allanore, Journal of The Electrochemical Society, 162 (1) (2015) E13-E22
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 제안된 것으로, 본 발명의 목적은 불화물계 전해질을 이용하여 고융점 금속 산화물을 친환경적이며 고-효율적인 대기 환경 하에서 환원하여 고품위의 합금 금속으로 제조하는 방법 및 시스템을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the problems of the prior art as described above, and an object of the present invention is to reduce a high-melting-point metal oxide in an environment-friendly and highly-efficient atmospheric environment using a fluoride-based electrolyte to produce a high-quality alloy metal An object of the present invention is to provide a method and system for doing so.
본 발명은, 서로 공융상을 형성하는 금속 M1과 금속 M2의 액상 금속 합금을 제조하는 것을 특징으로 한다. 공융 반응(eutectic reaction)에 의해 금속 M1의 용융점이 낮아져 상대적으로 낮은 온도에서 효과적으로 환원이 이루어질 수 있어, 에너지를 상당히 절감할 수 있고, 이는 비용의 절감으로 이어질 수 있다. 또한, 본 발명은 공융 반응에 의해 액상의 합금(M1과 M2의 액상 금속 합금) 상태로 수득되어, 금속 합금 자체를 최종 생성물로 사용할 수 있다. 또는, 수득된 금속 합금을 전해 정련하여 금속 M1을 수득할 수 있다. 이렇게 얻어진 액상의 합금은 산소가 존재할 수 있는 환경과 철저하게 분리될 수 있으며, 따라서 산소에 의한 오염이 현저하게 방지될 수 있다. 즉, 상기 측면에 따라 고순도의 금속 합금 및 금속 M1의 수득이 가능하다.The present invention is characterized in that a liquid metal alloy of a metal M 1 and a metal M 2 forming a eutectic phase with each other is prepared. The melting point of the metal M 1 is lowered by the eutectic reaction and reduction can be effectively performed at a relatively low temperature, thereby significantly saving energy, which can lead to cost reduction. In addition, the present invention can be obtained in the state of a liquid alloy (liquid metal alloy of M 1 and M 2 ) by a eutectic reaction, and the metal alloy itself can be used as a final product. Alternatively, metal M 1 may be obtained by electrolytic refining of the obtained metal alloy. The liquid alloy thus obtained can be thoroughly separated from an environment in which oxygen may exist, and thus contamination by oxygen can be remarkably prevented. That is, according to the above aspect, it is possible to obtain a high-purity metal alloy and metal M 1 .
본 발명은, 종래 기술에 비해 최종 제품의 고품위 생산 비율을 높일 수 있으며 에너지 효율이 높아 상업화에 유리한 합금 금속 환원 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an alloy metal reduction method that can increase the high-quality production rate of the final product compared to the prior art and has high energy efficiency, which is advantageous for commercialization.
본 발명에 따르면, 금속 산화물로부터 금속 M1을 환원시키기 위한 방법이 제공된다.According to the present invention, a method for reducing metal M 1 from a metal oxide is provided.
본 발명에 따르면, 상기 금속 산화물로부터 금속 M1을 환원시키기 위한 방법은,According to the present invention, the method for reducing the metal M 1 from the metal oxide,
전해조 내에 불화물계 전해질의 용융염을 형성하는 단계;forming a molten salt of a fluoride-based electrolyte in an electrolytic cell;
상기 전해조에 상기 금속 M1과 공융상(eutectic phase)을 형성하는 금속 M2 및 금속 M3을 포함하는 환원제를 투입하여 상기 금속 M2 및 금속 M3의 공융조성물을 제조하는 단계; 및preparing a eutectic composition of the metal M 2 and the metal M 3 by introducing a reducing agent containing the metal M 2 and the metal M 3 to form a eutectic phase with the metal M 1 in the electrolytic cell; and
상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하고, 환원된 금속 M1이 금속 M2와 액상 금속 합금을 형성하는 단계를 포함하며,reducing the metal M 1 by reacting the metal oxide with the eutectic composition, and the reduced metal M 1 comprises the step of forming a liquid metal alloy with the metal M 2 ,
상기 금속 산화물로부터 금속 M1을 환원시키기 위한 방법에 있어서, 불화물계 전해질의 용융염은 금속 M2와 금속 M3의 공융조성물 및 금속 산화물의 밀도보다 작을 수 있다.In the method for reducing the metal M 1 from the metal oxide, the molten salt of the fluoride-based electrolyte may be smaller than the density of the metal oxide and the eutectic composition of the metal M 2 and the metal M 3 .
본 발명에 따르면, 상기 불화물계 전해질 용융염은 1,600℃에서 10시간 동안 10 중량% 이하의 휘발율, 상세하게는 5 중량% 이하의 휘발율, 더욱 상세하게는 2 중량% 이하의 휘발율을 가질 수 있다.According to the present invention, the fluoride-based electrolyte molten salt has a volatilization rate of 10 wt% or less for 10 hours at 1,600 °C, specifically, a volatilization rate of 5 wt% or less, more specifically, a volatilization rate of 2 wt% or less can
본 발명에 따르면, 상기 불화물계 전해질은 MgF2, CaF2, SrF2 및 BaF2로 이루어지는 군으로부터 선택되는 1종 이상일 수 있고, 상세하게는 CaF2일 수 있다.According to the present invention, the fluoride-based electrolyte may be at least one selected from the group consisting of MgF 2 , CaF 2 , SrF 2 and BaF 2 , and specifically CaF 2 .
본 발명에 따르면, 상기 금속 M1은 Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md 및 No로 이루어진 군에서 선택되는 1종일 수 있다.According to the present invention, the metal M 1 is Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, Nd, Pm, selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md and No. It can be one full day.
본 발명에 따르면, 상기 금속 M2는 Cu, Ni, Sn, Zn, Pb, Bi, Cd 및 이들의 합금으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 상세하게는 Cu일 수 있다.According to the present invention, the metal M 2 may be at least one selected from the group consisting of Cu, Ni, Sn, Zn, Pb, Bi, Cd, and alloys thereof, and specifically Cu.
본 발명에 따르면, 상기 금속 M3은 Ca, Mg, Al 및 이들의 합금으로 이루어지는 군에서 선택되는 1종 이상일 수 있고, 상세하게는 Mg일 수 있다.According to the present invention, the metal M 3 may be at least one selected from the group consisting of Ca, Mg, Al, and alloys thereof, and specifically Mg.
본 발명에 따르면, 상기 금속 산화물은 M1 xOz 및 M1 xM3 yOz로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있고, 여기서, x, y는 각각 1 내지 3의 실수이고, z는 1 내지 4의 실수이다.According to the present invention, the metal oxide may include at least one selected from the group consisting of M 1 x O z and M 1 x M 3 y O z , where x and y are each a real number of 1 to 3, z is a real number from 1 to 4.
본 발명에 따르면, 상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하는 과정은 대기 또는 불화물 중에서 이루어질 수 있다.According to the present invention, the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the atmosphere or in fluoride.
본 발명에 따르면, 상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하는 과정은 900 내지 1600℃의 범위에서 수행될 수 있다.According to the present invention, the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the range of 900 to 1600°C.
본 발명에 따르면, 상기 금속 산화물로부터 금속 M1을 환원시키기 위한 방법은, 슬래그화 첨가제를 투입하여, 상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하는 과정에서 생성된 부산물과 상기 용융염의 슬래그를 형성하는 단계를 더 포함할 수 있으며, 상세하게는 상기 슬래그화 첨가제는 MgO, CaO, FeO, BaO, SiO2 및 Al2O3로 이루어진 군으로부터 선택된 1종 이상을 포함일 수 있다.According to the present invention, in the method for reducing the metal M 1 from the metal oxide, a slag additive is added, and the metal oxide reacts with the eutectic composition to reduce the metal M 1 By-product and the melting The method may further include forming a slag of salt, and specifically, the slag additive may include at least one selected from the group consisting of MgO, CaO, FeO, BaO, SiO 2 and Al 2 O 3 .
본 발명에 따르면, 상기 액상 금속 합금은 상기 전해조의 최하단에 위치하며 상기 공융조성물과 구분되는 층을 형성하고, 상기 전해조의 하부를 통해 상기 액상 금속 합금을 연속적으로 수득하는 단계; 및According to the present invention, the liquid metal alloy is located at the bottom of the electrolytic cell, forming a layer distinct from the eutectic composition, and continuously obtaining the liquid metal alloy through the lower part of the electrolytic cell; and
상기 슬래그는 상기 공융조성물의 상부에 구분되는 층을 형성하고, 상기 전해조의 상부를 통해 상기 슬래그를 연속적으로 제거하는 단계를 더 포함할 수 있다.The slag may further include forming a separate layer on the upper portion of the eutectic composition, and continuously removing the slag through the upper portion of the electrolytic cell.
본 발명에 따르면, 상기 액상 금속 합금을 전해 정련하여 M1을 제조하는 단계를 더 포함할 수 있다.According to the present invention, the electrolytic refining of the liquid metal alloy may further include the step of manufacturing M 1 .
본 발명에 따른 금속 합금 또는 금속은 본원에 개시된 임의의 방법 또는 그 조합에 의해 수득된 것일 수 있고, 상세하게는 상기 금속 합금의 전체 중량 대비 M3의 잔존 함량이 0.1 중량% 이하, 상세하게는 0.01 중량% 이하, 더욱 상세하게는 0.001 중량% 이하이고, 산소 함유량이 1,800 ppm 이하, 상세하게는 1,500 ppm 이하, 더욱 상세하게는 1,200 ppm 이하인 금속 합금일 수 있다.The metal alloy or metal according to the present invention may be obtained by any method disclosed herein or a combination thereof, and specifically, the residual content of M 3 relative to the total weight of the metal alloy is 0.1 wt% or less, specifically 0.01 wt% or less, more specifically 0.001 wt% or less, and an oxygen content of 1800 ppm or less, specifically 1,500 ppm or less, more specifically 1,200 ppm or less may be a metal alloy.
본 발명에 따른 금속 산화물로부터 금속 M1을 환원시키기 위한 시스템은,A system for reducing metal M 1 from a metal oxide according to the present invention comprises:
전해조;electrolyzer;
상기 전해조 내에 위치하는 불화물계 전해질의 용융염;a molten salt of a fluoride-based electrolyte located in the electrolytic cell;
상기 용융염의 하부에 위치하는 금속 M2와 금속 M3의 공융조성물; 및a eutectic composition of a metal M 2 and a metal M 3 positioned under the molten salt; and
상기 공융조성물의 하부에 위치하는 상기 금속 M1과 상기 금속 M2의 액상 금속 합금을 포함할 수 있고,It may include a liquid metal alloy of the metal M 1 and the metal M 2 positioned under the eutectic composition,
상기 용융염의 밀도는 상기 금속 산화물의 밀도보다 작을 수 있고, 상기 금속 산화물과 상기 금속 M3이 반응하여 상기 금속 M1을 환원시키고, 상기 금속 M2은 상기 금속 M1과 공융상(eutectic phase)를 형성할 수 있다.The density of the molten salt may be less than that of the metal oxide, the metal oxide and the metal M 3 react to reduce the metal M 1 , and the metal M 2 is the metal M 1 and the eutectic phase (eutectic phase) can form.
본 발명은, 금속 염화물 또는 전해질로서 염화물을 전혀 사용하지 않으며, 금속 산화물로부터 원하는 금속을 수득하는데 최적화된 시스템 및 이러한 금속을 제조할 수 있는 방법을 제공한다. 따라서, 본 발명은 상술한 크롤 공정의 환경적인 문제와 전해조 부식에 따른 비용 상의 문제를 해소할 수 있다.SUMMARY OF THE INVENTION The present invention provides a system optimized for obtaining a desired metal from a metal oxide and a method for preparing such a metal without using any metal chloride or chloride as an electrolyte. Therefore, the present invention can solve the environmental problem of the above-described crawling process and the cost problem due to corrosion of the electrolytic cell.
본 발명은, 서로 공융상을 형성하는 금속 M1과 금속 M2의 액상 금속 합금을 제조하는 것을 특징으로 한다. 공융 반응(eutectic reaction)에 의해 금속 M1의 용융점이 낮아져 상대적으로 낮은 온도에서 효과적으로 환원이 이루어질 수 있어, 에너지를 상당히 절감할 수 있고, 이는 비용의 절감으로 이어질 수 있다. The present invention is characterized in that a liquid metal alloy of a metal M 1 and a metal M 2 forming a eutectic phase with each other is prepared. The melting point of the metal M 1 is lowered by the eutectic reaction and reduction can be effectively performed at a relatively low temperature, thereby significantly saving energy, which can lead to cost reduction.
본 발명은 공융 반응에 의해 액상의 합금(금속 M1과 금속 M2의 액상 금속 합금) 상태로 수득되어, 금속 합금 자체를 최종 생성물로 사용할 수 있다. 또는, 수득된 금속 합금을 전해 정련하여 금속 M1을 수득할 수 있다. 이렇게 얻어진 액상의 합금은 산소가 존재할 수 있는 환경과 철저하게 분리될 수 있으며, 따라서 산소에 의한 오염이 현저하게 방지될 수 있다. 즉, 상기 측면에 따라 고순도의 금속 합금 및 금속 M1의 수득이 가능하다.The present invention is obtained in a liquid alloy (a liquid metal alloy of a metal M 1 and a metal M 2 ) by a eutectic reaction, and the metal alloy itself can be used as a final product. Alternatively, metal M 1 may be obtained by electrolytic refining of the obtained metal alloy. The liquid alloy thus obtained can be thoroughly separated from an environment in which oxygen may exist, and thus contamination by oxygen can be remarkably prevented. That is, according to the above aspect, it is possible to obtain a high-purity metal alloy and metal M 1 .
또한, 본 발명은, 목적 합금의 비율 조정이 용이하고, 최종 제조된 합금 금속을 이용하여 전해 정련 기법을 통해 고순도의 금속을 제조할 수 있다.In addition, according to the present invention, it is easy to adjust the ratio of the target alloy, and it is possible to manufacture a high-purity metal through the electrolytic refining technique using the finally manufactured alloy metal.
본 발명은, 고품위의 금속 M1의 회수 비율이 높으며, 최종 제품과 반응 생성물의 분리가 용이하여 연속식 조업이 가능하다.In the present invention, the recovery rate of high-grade metal M 1 is high, and the separation of the final product and the reaction product is easy, so that continuous operation is possible.
도 1은 본 발명의 일 실시예에 따른 금속 산화물로부터 금속 M1을 환원시키기 위한 공정을 도시한 공정도이다.1 is a process diagram illustrating a process for reducing a metal M 1 from a metal oxide according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 금속 산화물로부터 금속 M1을 환원시키기 위한 방법의 공정 절차를 도시한 도면이다.2 is a diagram illustrating a process procedure of a method for reducing metal M 1 from a metal oxide according to an embodiment of the present invention.
도 3은 불화물계 전해질과 염화물계 전해질의 휘발율의 차이를 나타내는 도면 및 결과표이다.3 is a diagram and a result table showing the difference in the volatilization rate of the fluoride-based electrolyte and the chloride-based electrolyte.
도 4는 불화물계 전해질과 염화물계 전해질의 온도에 따른 증기압을 나타낸 도면이다.4 is a view showing vapor pressures according to the temperature of the fluoride-based electrolyte and the chloride-based electrolyte.
도 5는 본 발명의 실시예에 따라 제조된 금속 합금을 촬영한 사진이다. 5 is a photograph taken of a metal alloy manufactured according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 제조된 금속 합금을 절단한 후, 합금 내부를 에너지 분광기(Energy Dispersive Spectrometer, EDS)로 원소 분석한 도면 및 결과표이다.6 is a view and result table of elemental analysis of the inside of the alloy with an energy dispersive spectrometer (EDS) after cutting the metal alloy manufactured according to an embodiment of the present invention.
도 7은 ELTRA ONH2000를 사용하여 본 발명의 실시예 2에 따라 제조된 금속 합금 내에 존재하는 산소 함량을 측정한 결과표이다.7 is a result table of measuring the oxygen content in the metal alloy prepared according to Example 2 of the present invention using ELTRA ONH2000.
이하에서는 본 발명의 실시양태와 이의 이해를 돕고 이의 실시를 위한 구체적인 설명 및 실시예를 통해, 본 발명의 의도, 작용 및 효과를 상술하기로 한다. 다만, 이하의 설명 및 실시예는 전술한 바와 같이 본 발명의 이해를 돕기 위해 예시로 제시된 것으로, 이것에 한하여 발명의 권리범위가 정해지거나 한정되는 것은 아니다.Hereinafter, the intent, action, and effect of the present invention will be described in detail through specific descriptions and examples for helping the understanding of the present invention and its implementation. However, the following description and examples are presented as examples to help the understanding of the present invention as described above, and the scope of the present invention is not limited or limited thereto.
본 발명을 구체적으로 설명하기에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to describing the present invention in detail, the terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor should explain his invention in the best way. Based on the principle that the concept of risk terms can be appropriately defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.Accordingly, since the configuration of the embodiments described in the present specification is only one of the most preferred embodiments of the present invention and does not represent all the technical spirit of the present invention, various equivalents and modifications that can be substituted for them at the time of the present application It should be understood that examples may exist.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, the singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as "comprise", "comprising" or "have" are intended to designate the existence of an embodied feature, number, step, element, or a combination thereof, but one or more other features or It should be understood that it does not preclude the possibility of the presence or addition of numbers, steps, elements, or combinations thereof.
본 명세서에 사용된 용어 "장입"은 본 명세서 내에 "투입", "도입", "유입", "주입"과 함께 혼용하여 기재될 수 있으며, 원료 등의 임의의 물질을 필요한 곳으로 들여보내거나 넣는 것을 의미하는 것으로 이해될 수 있다.As used herein, the term “charge” may be used interchangeably with “injection”, “introduction”, “introduction”, and “injection” in this specification, and any material such as a raw material is brought into a necessary place, or It can be understood as meaning to put in.
이하에서는 금속 M1의 환원 방법, 환원 시스템 및 실시예의 순으로 본 발명을 상세하게 설명할 것이다.Hereinafter, the present invention will be described in detail in the order of the reduction method of the metal M 1 , the reduction system and Examples.
1. 금속 M1의 환원 방법1. Reduction method of metal M 1
본 발명에 따른 금속 산화물로부터 금속 M1을 환원시키기 위한 방법은,The method for reducing metal M 1 from a metal oxide according to the present invention comprises:
전해조 내에 불화물계 전해질의 용융염을 형성하는 단계;forming a molten salt of a fluoride-based electrolyte in an electrolytic cell;
상기 전해조에 상기 금속 M1과 공융상(eutectic phase)을 형성하는 금속 M2 및 금속 M3을 포함하는 환원제를 투입하여 상기 금속 M2 및 금속 M3의 공융조성물을 제조하는 단계; 및preparing a eutectic composition of the metal M 2 and the metal M 3 by introducing a reducing agent containing the metal M 2 and the metal M 3 to form a eutectic phase with the metal M 1 in the electrolytic cell; and
상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하고, 환원된 금속 M1이 금속 M2와 액상 금속 합금을 형성하는 단계를 포함할 수 있다.reducing the metal M 1 by reacting the metal oxide with the eutectic composition, and forming the reduced metal M 1 and the metal M 2 and a liquid metal alloy.
본 발명의 방법에서, 불화물계 전해질의 용융염은 금속 M2와 금속 M3의 공융조성물 및 금속 산화물의 밀도보다 작을 수 있다.In the method of the present invention, the molten salt of the fluoride-based electrolyte may be smaller than the eutectic composition of the metal M 2 and the metal M 3 and the density of the metal oxide.
본 발명의 방법에서, 불화물계 전해질 용융염은 1,600℃에서 10시간 동안 10 중량% 이하의 휘발율, 상세하게는 5 중량% 이하의 휘발율, 더욱 상세하게는 2 중량% 이하의 휘발율을 가질 수 있다.In the method of the present invention, the fluoride-based electrolyte molten salt has a volatilization rate of 10 wt% or less, specifically 5 wt% or less, and more specifically 2 wt% or less, at 1,600°C for 10 hours. can
상기 불화물계 전해질의 용융염을 사용함으로써, 독성의 염소 가스가 발생되지 않는 환경적인 이점이 있으며, 이의 휘발율이 낮으므로 공정 중에 전해질의 유실이 적고, 유지 관리 비용 측면에서 유리하다. 특히, 염화물계 전해질, 예컨대, CaCl2는 1,600℃에서 10시간 동안 휘발율이 약 74 중량%(도 3)로 이와 비교할 때 이러한 불화물계 전해질의 이점을 더욱 명확하게 이해할 수 있다. 여기서 휘발율은 특정 온도에서 일정 시간 동안 방치하여, 방치 전 후의 중량을 비교하여 측정할 수 있으나, 통상의 기술자에게 널리 알려진 다른 방식을 사용하여도 무방하며, 다른 방식을 사용할 경우의 수치는 본 발명에서의 수치와 적절히 변환될 수 있다. 단, 본 발명의 전해질은 금속 산화물을 공융조성물과 반응시켜 금속을 환원하는 과정에서 사용되는 것이므로, 이의 휘발율은 본 발명에 따른 공정 온도(900 ~ 1600℃) 내에서 측정되어야 할 것이다. 특히 고온일수록 휘발율이 높게 나타나므로 공정 안정성을 담보하기 위해서는 허용되는 공정 온도 중에서 가장 높은 1600℃에서 휘발율을 측정하는 것이 바람직할 수 있다.By using the molten salt of the fluoride-based electrolyte, there is an environmental advantage that toxic chlorine gas is not generated, and since its volatilization rate is low, electrolyte loss during the process is small, and it is advantageous in terms of maintenance cost. In particular, a chloride-based electrolyte, such as CaCl 2 , has a volatilization rate of about 74% by weight ( FIG. 3 ) at 1,600° C. for 10 hours, so that the advantage of such a fluoride-based electrolyte can be more clearly understood. Here, the volatilization rate can be measured by comparing the weight before and after leaving at a specific temperature for a certain time, but other methods well known to those skilled in the art may be used. It can be appropriately converted to a numerical value in . However, since the electrolyte of the present invention is used in the process of reducing the metal by reacting the metal oxide with the eutectic composition, its volatilization rate should be measured within the process temperature (900 ~ 1600 °C) according to the present invention. In particular, since the higher the temperature, the higher the volatilization rate, so it may be preferable to measure the volatilization rate at 1600° C., the highest among the allowable process temperatures, in order to ensure process stability.
본 발명의 방법에서, 불화물계 전해질은 알칼리금속 및 알칼리토금속 군에서 선택되는 1종 이상의 금속의 불화물계 전해질일 수 있고, 목적 금속인 M1과 사용되는 환원제에 따라서 상대적인 밀도 차이, 휘발율, 조업의 편리성, 안전성 등을 고려하여 결정될 수 있다. 상기 불화물계 전해질은 예를 들어 MgF2, CaF2, SrF2 및 BaF2로 이루어지는 군으로부터 선택되는 1종 이상일 수 있고, 상세하게는 CaF2일 수 있다.In the method of the present invention, the fluoride-based electrolyte may be a fluoride-based electrolyte of one or more metals selected from the group of alkali metals and alkaline earth metals, and the relative density difference, volatilization rate, operation may be determined in consideration of convenience, safety, and the like. The fluoride-based electrolyte may be, for example, at least one selected from the group consisting of MgF 2 , CaF 2 , SrF 2 and BaF 2 , and specifically CaF 2 .
본 발명의 방법에서 금속 M2와 금속 M3의 공융조성물 및 금속 산화물의 밀도보다 낮은 밀도를 가진 불화물계 전해질 용융염을 사용함으로서, 금속 산화물이 공융조성물과 반응하여 금속 M1이 환원되고 환원된 금속 M1과 금속 M2이 액상 금속 합금을 형성하는 단계에서 불화물계 전해질의 용융염이 전해조의 상단에 위치하게 되어, 공융조성물 및 금속 산화물이 외부 환경에 노출되지 않을 수 있고, 외부로부터 산소의 유입을 막을 수 있다. 이에 따라 불활성 가스 분위기가 아닌 통상의 대기 분위기에서도 금속 M1의 환원 공정이 가능하다.In the method of the present invention, by using the eutectic composition of metal M 2 and metal M 3 and a fluoride-based electrolyte molten salt having a density lower than that of the metal oxide, the metal oxide reacts with the eutectic composition to reduce and reduce metal M 1 In the step of forming the metal M 1 and the metal M 2 in the liquid metal alloy, the molten salt of the fluoride-based electrolyte is located at the top of the electrolytic cell, so that the eutectic composition and the metal oxide may not be exposed to the external environment, and oxygen from the outside inflow can be prevented. Accordingly, the reduction process of the metal M 1 is possible even in a normal atmospheric atmosphere rather than an inert gas atmosphere.
더불어 휘발율이 낮은 불화물계 전해질을 사용함으로서, 통상의 대기 분위기에서도 유해한 가스가 허용 가능한 양으로 배출되도록 하여 조업의 편리성 및 안정성이 높아지며, 종래 사용된 전해질보다 장비 부식 정도를 현저히 낮출 수 있어 대규모 산업화에 유리하다.In addition, by using a fluoride-based electrolyte with a low volatilization rate, it allows harmful gases to be discharged in an acceptable amount even in a normal atmospheric atmosphere, thereby increasing the convenience and stability of operation, and significantly lowering the degree of equipment corrosion compared to the conventionally used electrolyte. favorable for industrialization.
상기 금속 M1은 특별히 한정되는 것은 아니나, 상세하게는 Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md 및 No로 이루어진 군으로부터 선택되는 1종일 수 있고, 보다 상세하게는 Ti, Zr, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Er 및 No로 이루어진 군으로부터 선택되는 1종일 수 있으며, 보다 더 상세하게는 Ti, Zr, W, Fe, Ni, Zn, Co, Mn, 및 Cr로 이루어진 군으로부터 선택되는 1종일 수 있으며, 특히 상세하게는 Ti, Zr 또는 W일 수 있다.The metal M 1 is not particularly limited, but specifically Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, With Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md and No It may be one selected from the group consisting of, and more specifically, may be one selected from the group consisting of Ti, Zr, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Er and No, and more Specifically, it may be one selected from the group consisting of Ti, Zr, W, Fe, Ni, Zn, Co, Mn, and Cr, and particularly, Ti, Zr or W may be used.
본 발명의 방법에서, 금속 M2는 금속 M1과 공융상(eutectic phase)를 형성할 수 있다면 제한되지 않고, 예를 들어 금속 M2은 Cu, Ni, Sn, Zn, Pb, Bi, Cd 및 이들의 합금으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 상세하게는 Cu일 수 있다.In the method of the present invention, the metal M 2 is not limited as long as it can form an eutectic phase with the metal M 1 , for example, the metal M 2 is Cu, Ni, Sn, Zn, Pb, Bi, Cd and It may be at least one selected from the group consisting of alloys thereof, and specifically Cu.
본 발명의 방법에서, 금속 M3을 포함하는 환원제는 금속 M1을 포함하는 금속 산화물을 환원시킬 수 있다면 제한되지 않고, 예를 들어 금속 M3은 Ca, Mg, Al 및 이들의 합금으로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 상세하게는 금속 M3은 Mg일 수 있다.In the method of the present invention, the reducing agent containing the metal M 3 is not limited as long as it can reduce the metal oxide containing the metal M 1 , for example, the metal M 3 is from the group consisting of Ca, Mg, Al and alloys thereof. It may be one or more selected from. In detail, the metal M 3 may be Mg.
본 발명의 방법에서, 금속 산화물은 M1 xOz 및 M1 xM3 yOz로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있고, 여기서, x, y는 각각 1 내지 3의 실수이고, z는 1 내지 4의 실수이다.In the method of the present invention, the metal oxide may include at least one selected from the group consisting of M 1 x O z and M 1 x M 3 y O z , wherein x and y are each a real number of 1 to 3, z is a real number from 1 to 4.
이해를 돕기 위한 상기 금속 산화물의 비제한적인 예는 ZrO2, TiO2, MgTiO3, HfO2, Nb2O5, Dy2O3, Tb4O7, WO3, Co3O4, MnO, Cr2O3, MgO, CaO, Al2O3, Ta2O5, Ga2O3, Pb3O4, SnO, NbO 및 Ag2O로 이루어진 군으로부터 선택되는 1종 또는 이들 중 둘 이상의 조합을 포함할 수 있다.Non-limiting examples of the metal oxide for better understanding include ZrO 2 , TiO 2 , MgTiO 3 , HfO 2 , Nb 2 O 5 , Dy 2 O 3 , Tb 4 O 7 , WO 3 , Co 3 O 4 , MnO, One selected from the group consisting of Cr 2 O 3 , MgO, CaO, Al 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Pb 3 O 4 , SnO, NbO and Ag 2 O, or a combination of two or more thereof may include
금속 산화물로 금속 M1과 금속 M3의 복합산화물(M1 xM3 yOz)을 사용하는 경우, 금속 M2 및 금속 M3의 공융조성물과 반응하여 금속 M1을 환원시키는 과정이 더욱 빠를 수 있다. 본 발명에서 확인한 바에 따르면 복합산화물(M1 xM3 yOz)을 사용하는 경우 M1 xOz를 사용하는 경우에 비해 환원에 소요되는 시간이 적어도 1/3 내지 1/10로 감소될 수 있다. 즉, 금속 산화물로 금속 M1과 금속 M3의 복합산화물을 사용하는 경우, 금속산화물과 공융조성물의 반응속도는 금속 M1의 산화물만을 사용하는 경우보다 더욱 빠를 수 있다. 또한, M1 xM3 yOz을 사용하는 경우에는 본 발명에 따라 생성되는 액상 금속 합금에서의 M1과 M2의 비율을 보다 폭넓게 조절할 수 있는 이점이 있다. 더욱이, M1 xM3 yOz을 사용하는 경우 M1 xOz를 사용하는 경우에 비해 환원제로 사용되는 M3의 요구량이 현저히 줄어드는 장점이 있다. 예를 들어, 금속 M1으로 Ti가 사용되고, 금속 M3으로 Ca가 사용된다면, 금속 M1의 산화물은 TiO2, 금속 M1과 금속 M3의 복합산화물은 CaTiO3일 수 있다.When a complex oxide (M 1 x M 3 y O z ) of a metal M 1 and a metal M 3 is used as the metal oxide, the process of reducing the metal M 1 by reacting with the eutectic composition of the metal M 2 and the metal M 3 is more can be fast According to the confirmation of the present invention, when using the composite oxide (M 1 x M 3 y O z ), the time required for reduction can be reduced by at least 1/3 to 1/10 compared to the case of using M 1 x O z can That is, when a composite oxide of a metal M 1 and a metal M 3 is used as the metal oxide, the reaction rate of the metal oxide and the eutectic composition may be faster than when only the oxide of the metal M 1 is used. In addition, when M 1 x M 3 y O z is used, there is an advantage that the ratio of M 1 and M 2 in the liquid metal alloy produced according to the present invention can be more widely adjusted. Furthermore, when using M 1 x M 3 y O z , there is an advantage in that the required amount of M 3 used as a reducing agent is significantly reduced compared to the case of using M 1 x O z . For example, if Ti is used as the metal M 1 and Ca is used as the metal M 3 , the oxide of the metal M 1 may be TiO 2 , and the composite oxide of the metal M 1 and the metal M 3 may be CaTiO 3 .
본 발명에 따른 방법은 종래의 크롤 공정과는 달리 원료로서 금속 염화물 대신 금속 산화물을 이용하는 점에서 차이가 있다. 통상 자연에서 발견되는 원료물질은 금속 M1의 산화물을 포함하고 있는데, 크롤 공정에 사용하기 위해서는 이러한 금속 산화물을 염화물로 치환하는 전처리 공정이 수반된다. 이와 같은 전처리 공정을 거치게 되면 그 자체로 공정 비용 상승의 원인이 된다. 더욱이, 금속 산화물을 염화물로 치환하는 전처리 공정에는 염산이 사용되는데, 강한 산성으로 인해 제조 설비의 부식을 촉진하며, 공정 중에 유독성인 염소 가스가 발생할 수 있어, 환경적인 문제가 유발될 수 있다. 본 발명에 따른 방법은 금속 산화물을 염화물로 치환하는 전처리 공정을 필요로 하지 않으므로, 상기 크롤 공정에 비해 공정 비용이 낮고 환경적인 문제를 유발하지 않는 장점이 있다.The method according to the present invention is different from the conventional crawling process in that a metal oxide is used instead of a metal chloride as a raw material. Raw materials usually found in nature include oxides of metal M 1 , and in order to use them in the crawling process, a pretreatment process of replacing these metal oxides with chlorides is accompanied. If it goes through such a pretreatment process, it itself causes an increase in process cost. Moreover, hydrochloric acid is used in the pretreatment process of replacing the metal oxide with chloride, which promotes corrosion of manufacturing equipment due to strong acidity, and toxic chlorine gas may be generated during the process, which may cause environmental problems. Since the method according to the present invention does not require a pretreatment process for replacing the metal oxide with a chloride, the process cost is lower than that of the crawling process and does not cause environmental problems.
본 발명의 방법에서, 금속 산화물을 공융조성물과 반응시켜 금속 M1을 환원하는 과정은 대기 또는 불화물 중에서 이루어질 수 있다. 불화물계 전해질의 용융염의 밀도가 공융조성물과 금속 산화물의 밀도보다 낮기 때문에, 전해조의 상단에는 불화물계 전해질의 용융염이 위치하고 공융조성물 및 투입된 금속 산화물은 불화물계 전해질의 용융염 아래에 위치한다. 이로 인해 공융조성물 및 투입된 금속 산화물은 불화물계 전해질의 용융염과 전해조로 인해 외부환경에 노출되지 않은 상태로 존재할 수 있어, 불활성 가스 분위기가 아닌 통상의 대기 중에서도 금속 산화물을 공융조성물과 반응시켜 금속 M1을 환원하는 과정이 이루어질 수 있다. 더욱이 불화물계 전해질의 용융염의 휘발율이 상대적으로 낮기 때문에, 대기 분위기에서 수행되어도 유독 가스의 발생이 적게 되어 공정에서 사용되는 장비들의 부식이 현저히 감소되고, 조업자에게 위해한 환경이 조성되지 않으며, 대규모 산업화를 꾀할 수 있다는 이점을 누릴 수 있다.In the method of the present invention, the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the atmosphere or in fluoride. Since the density of the molten salt of the fluoride-based electrolyte is lower than that of the eutectic composition and the metal oxide, the molten salt of the fluoride-based electrolyte is located at the top of the electrolytic cell, and the eutectic composition and the metal oxide are placed under the molten salt of the fluoride-based electrolyte. Due to this, the eutectic composition and the injected metal oxide can exist without being exposed to the external environment due to the molten salt of the fluoride-based electrolyte and the electrolyzer. The process of reducing 1 may be performed. Moreover, since the volatilization rate of the molten salt of the fluoride-based electrolyte is relatively low, the generation of toxic gas is reduced even when it is performed in an atmospheric atmosphere, so that corrosion of equipment used in the process is significantly reduced, and an environment harmful to the operator is not created, You can enjoy the advantage of being able to achieve large-scale industrialization.
본 발명의 방법에서, 금속 M1을 환원시키기 위한 방법은 불화물계 전해질의 용융이 가능하고, 공융조성물이 제조될 수 있으며, 금속 산화물을 공융조성물과 반응시켜 금속 M1을 환원하는 과정이 수행될 수 있는 온도 이상이면 무방하다. 예를 들어, 금속 산화물을 공융조성물과 반응시켜 금속 M1을 환원하는 과정은 900℃ 이상에서 수행될 수 있다. 또한, 불화물계 전해질의 용융염이 과도하게 증발하지 않는 온도 이하면 무방하고, 로의 가열에 따른 에너지 효율성을 고려하여, 1800℃ 이하, 1700℃ 이하, 또는 1600℃ 이하에서 수행될 수 있으며, 1600℃ 이하에서 수행될 수 있다. 따라서, 금속 산화물을 공융조성물과 반응시켜 금속 M1을 환원하는 과정은 900 내지 1600℃ 범위에서 수행될 수 있다.In the method of the present invention, the method for reducing the metal M 1 is capable of melting a fluoride-based electrolyte, preparing a eutectic composition, and reacting a metal oxide with the eutectic composition to reduce the metal M 1 . It is free as long as the temperature is higher than the allowable temperature. For example, the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed at 900° C. or higher. In addition, the temperature at which the molten salt of the fluoride-based electrolyte does not evaporate excessively is okay, and in consideration of the energy efficiency according to the heating of the furnace, it may be carried out at 1800 ° C or less, 1700 ° C or less, or 1600 ° C or less, and 1600 ° C. This can be done below. Therefore, the process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition may be performed in the range of 900 to 1600°C.
하나의 예로서, 금속 M1이 Ti, 금속 산화물(M1 xOz)이 TiO2, 금속 M2가 Cu, 금속 M3이 Ca인 경우 하기 반응식 1-1 및 반응식 1-2에 따라 금속 Ti이 환원되고, 이어서 액상 금속 합금 CuTi가 수득되면서 금속 M3의 산화물(M3 aOb)이 분리될 수 있다. 여기서, a 및 b는 각각 1 내지 3의 실수이다.As an example, when the metal M 1 is Ti, the metal oxide (M 1 x O z ) is TiO 2 , the metal M 2 is Cu, and the metal M 3 is Ca, the metal according to Schemes 1-1 and 1-2 Ti is reduced, and then an oxide (M 3 a O b ) of the metal M 3 may be separated while obtaining a liquid metal alloy CuTi. Here, a and b are real numbers from 1 to 3, respectively.
[반응식 1-1][Scheme 1-1]
2Ca + TiO2 -> Ti + 2CaO2Ca + TiO 2 -> Ti + 2CaO
[반응식 1-2][Scheme 1-2]
Ti + Cu + 2CaO -> CuTi(합금) + 2CaO(분리)Ti + Cu + 2CaO -> CuTi (alloy) + 2CaO (separate)
또 다른 예로서, 금속 M1이 Ti, 금속 산화물(M1 xM3 yOz)이 CaTiO3, 금속 M2가 Cu, 금속 M3이 Ca인 경우 하기 반응식 2-1 및 반응식 2-2에 따라 금속 Ti이 환원되고, 이어서 액상 금속 합금 CuTi가 수득되면서 금속 M3의 산화물(M3 aOb)이 분리될 수 있다.As another example, when the metal M 1 is Ti, the metal oxide (M 1 x M 3 y O z ) is CaTiO 3 , the metal M 2 is Cu, and the metal M 3 is Ca, the following Reaction Schemes 2-1 and 2-2 The metal Ti is reduced according to this, and then the oxide (M 3 a O b ) of the metal M 3 may be separated while obtaining a liquid metal alloy CuTi.
[반응식 2-1][Scheme 2-1]
2Ca + CaTiO3 -> Ti + 3CaO2Ca + CaTiO 3 -> Ti + 3CaO
[반응식 2-2][Scheme 2-2]
Ti + Cu + 3CaO -> CuTi(합금) + 3CaO(분리)Ti + Cu + 3CaO -> CuTi (alloy) + 3CaO (separate)
상기와 같은 반응에 따라 생성된 금속 M3의 산화물(M3 aOb)은 일종의 부산물로서 연속 공정이 가능하도록 하기 위해서는 이러한 부산물을 연속적으로 제거할 필요가 있다. 상기 부산물은 용융염에 완전히 용해되지 않아서 이를 제거하거나 공정을 연속적으로 운용하는 것이 용이하지 않을 수 있다. 본 발명의 방법은, 슬래그화 첨가제를 투입하여 금속 산화물을 공융조성물과 반응시켜 금속 M1을 환원하는 과정에서 생성된 부산물 및 불화물계 전해질의 용융염의 슬래그를 형성하는 단계를 더 포함할 수 있다. 슬래그가 형성되면 부산물과 불화물계 전해질의 용융염이 존재하는 경우에 비하여 상대적으로 점도가 감소되고 유동성이 증가되어, 부산물을 포함하고 있는 슬래그의 연속적인 제거가 가능하며 나아가서는 연속 공정을 가능하게 할 수 있다.The oxide (M 3 a O b ) of the metal M 3 generated according to the reaction as described above is a kind of by-product, and in order to enable a continuous process, it is necessary to continuously remove these by-products. Since the by-product is not completely dissolved in the molten salt, it may not be easy to remove it or continuously operate the process. The method of the present invention may further include the step of forming a slag of a molten salt of a fluoride-based electrolyte and a by-product generated in the process of reducing the metal M 1 by adding a slag additive to react the metal oxide with the eutectic composition. When the slag is formed, the viscosity is relatively reduced and fluidity is increased compared to the case where the by-product and the molten salt of the fluoride-based electrolyte are present. can
상술한 효과를 달성하게 하는 슬래그화 첨가제의 일례로 MgO, CaO, FeO, BaO, SiO2 및 Al2O3로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 제한되지 않는다.An example of the slag additive for achieving the above-described effect may include at least one selected from the group consisting of MgO, CaO, FeO, BaO, SiO 2 and Al 2 O 3 , but is not limited thereto.
본 발명에 따른 금속 산화물로부터 금속 M1을 환원시키기 위한 방법은, 액상 금속 합금은 전해조의 최하단에 위치하며 공융조성물과 구분되는 층을 형성하고, 전해조의 하부를 통해 액상 금속 합금을 연속적으로 수득하는 단계; 및, 슬래그는 공융조성물의 상부에 구분되는 층을 형성하고, 전해조의 상부를 통해 슬래그를 연속적으로 제거하는 단계를 더 포함할 수 있다. 액상 금속 합금을 전해조의 최하단에 위치하고 공융조성물과 구분되는 층을 형성함으로서, 전해조의 하부로부터 액상 금속 합금을 연속적으로 출탕할 수 있다. 또한, 슬래그화 첨가제의 투입으로 인한 슬래그를 공융조성물의 상부에 구분되는 층으로 형성함으로서, 전해조의 상부를 통해 슬래그를 연속적으로 제거하여 금속 산화물의 환원 과정에서 발생하는 부산물을 연속적으로 제거할 수 있다. 이에 따라, 공융조성물에 금속 산화물을 투입하였을 때 형성되는 반응 생성물을 전해조로부터 연속적으로 제거하여, 금속 산화물 정량을 투입한 후 모든 반응이 종결되는 것이 아닌, 금속 산화물을 연속적으로 투입하여 공정의 중단 없이 금속 M1과 금속 M2의 액상 금속 합금을 수득할 수 있다. 이 때, 전해조의 하부를 통해 액상 금속 합금을 연속적으로 수득하는 단계나 전해조의 상부를 통해 슬래그를 연속적으로 제거하는 단계는 통상의 기술자에게 알려진 방법이 사용될 수 있다.In the method for reducing metal M 1 from metal oxide according to the present invention, the liquid metal alloy is located at the bottom of the electrolytic cell and forms a layer distinct from the eutectic composition, and the liquid metal alloy is continuously obtained through the lower part of the electrolytic cell step; And, the slag may further include forming a layer to be divided on the upper portion of the eutectic composition, and continuously removing the slag through the upper portion of the electrolytic cell. By locating the liquid metal alloy at the bottom of the electrolytic cell and forming a layer distinct from the eutectic composition, it is possible to continuously tap the liquid metal alloy from the lower part of the electrolytic cell. In addition, by forming the slag resulting from the input of the slag additive as a separate layer on the upper portion of the eutectic composition, the slag is continuously removed through the upper part of the electrolytic cell, thereby continuously removing by-products generated in the reduction process of metal oxides. . Accordingly, the reaction product formed when the metal oxide is added to the eutectic composition is continuously removed from the electrolyzer, and all the reactions are not completed after a quantitative amount of the metal oxide is added, but the metal oxide is continuously added without interruption of the process A liquid metal alloy of the metal M 1 and the metal M 2 can be obtained. At this time, a method known to those skilled in the art may be used in the step of continuously obtaining a liquid metal alloy through the lower portion of the electrolytic cell or continuously removing the slag through the upper portion of the electrolytic cell.
슬래그와 불화물계 전해질을 전해조의 상부를 통해 제거하는 단계를 통해 슬래그를 제거한 후, 공정 운용 중에 불화물계 전해질을 보충하여 반응계의 균형을 유지하고, 연속 공정이 가능하도록 할 수 있다. 이때, 제거된 슬래그로부터 불화물계 전해질을 연속적으로 분리하여, 분리된 불화물계 전해질을 다시 전해조에 투입할 수 있다.After removing the slag through the step of removing the slag and the fluoride-based electrolyte through the upper part of the electrolyzer, the fluoride-based electrolyte is replenished during process operation to maintain the balance of the reaction system and to enable a continuous process. In this case, the fluoride-based electrolyte may be continuously separated from the removed slag, and the separated fluoride-based electrolyte may be put back into the electrolytic cell.
수득된 액상 금속 합금의 고화를 위한 냉각이 수행될 수 있다. 액상 금속 합금은 금속 M1과 금속 M2가 균질하게 혼재된 상태임에 따라, 액상 금속 합금의 냉각 속도에 의해 고화된 후 얻어지는 합금의 조직 구조가 크게 영향을 받게 된다. 냉각 속도는 금속간 화합물 상(phase)이 안정적으로 형성될 수 있으며, 또한 M1과 M2의 금속간 화합물 상이 연속적으로 서로 연결된 조직 구조가 제조될 수 있도록, 본 발명에 따른 공정이 수행되는 온도 범위에서 상온으로 서냉되는 것이 좋고, 예를 들어 20℃/min의 속도일 수 있다. 냉각 속도가 제시된 범위 밖으로 과도하게 빠른 경우, 금속간 화합물이 미처 형성되지 못하거나, 미세한 금속간 화합물 입자가 금속 M1 매트릭스에 다량 분산 함입된 조직 구조가 얻어져, 연속적이며 빠름 금속 M1의 물질이동 경로가 형성되지 못할 위험이 있다. 냉각이 과도하게 느린 경우, 미세 조직 구조상의 이점은 미미한 반면, 공정에 소요되는 시간이 과도하게 길어짐에 따라, 냉각속도는 실질적으로 1℃/min 이상, 보다 실질적으로 5℃/min 이상일 수 있다.Cooling for solidification of the obtained liquid metal alloy may be performed. As the liquid metal alloy is a state in which the metal M 1 and the metal M 2 are homogeneously mixed, the structure of the alloy obtained after solidification is greatly affected by the cooling rate of the liquid metal alloy. The cooling rate is the temperature at which the process according to the present invention is performed so that the intermetallic compound phase can be stably formed, and a tissue structure in which the intermetallic compound phases of M 1 and M 2 are continuously connected to each other can be manufactured. It is preferable to slowly cool to room temperature in the range, for example, it may be at a rate of 20 °C / min. When the cooling rate is excessively fast outside the suggested range, the intermetallic compound is not formed, or a tissue structure in which fine intermetallic compound particles are dispersed and impregnated in a large amount in the metal M 1 matrix is obtained, which is continuous and fast Material of metal M 1 There is a risk that the movement route will not be formed. When cooling is excessively slow, the microstructural advantage is negligible, but as the time required for the process becomes excessively long, the cooling rate may be substantially 1°C/min or more, and more substantially 5°C/min or more.
본 발명에 따른 방법은, 금속 M1 및 금속 M2를 포함하는 합금을 수득하는 단계 이후에 수득된 금속 M1 및 금속 M2를 포함하는 합금을 전해 정련하여 금속 M1을 수득하는 단계를 더 포함할 수 있다.The method according to the present invention further includes the step of electrolytic refining the alloy comprising the obtained metal M 1 and the metal M 2 after obtaining the alloy comprising the metal M 1 and the metal M 2 to obtain the metal M 1 may include
상기 전해 정련하여 금속 M1을 수득하는 단계는, 수득된 액상 금속 합금을 고화시켜 고상의 합금을 수득하고, 고상의 합금을 전해 정련하여, 합금으로부터 금속 M1을 회수하는 단계일 수 있다.The electrolytic refining to obtain the metal M 1 may be a step of solidifying the obtained liquid metal alloy to obtain a solid alloy, and electrolytically refining the solid alloy to recover the metal M 1 from the alloy.
경우에 따라서는 고화된 합금을 전해 정련하기 전, 액상 금속 합금에 잔존할 수 있는 전해질을 제거할 수 있으며, 이는 예를 들어, 액상 금속 합금을 진공 또는 불활성기체 분위기에서 열처리하여 전해질이 증류되어 제거되도록 유도함으로써 달성될 수 있다. 증류 온도(열처리 온도)는 본 발명의 시스템에 사용되는 전해질의 끓는점 이상의 온도면 특별히 한정되지 않고, 예를 들어, 2,500 ℃이상 일 수 있으며, 증류 온도를 낮춰 효율을 높이기 위해 감압시켜 수행할 수 있다. 액상 금속 합금이 다시 산화되는 것을 효과적으로 방지하기 위해서, 진공 분위기 및 불활성 기체 하에서 증류를 수행하는 것이 유리할 수 있다.In some cases, before electrolytic refining of the solidified alloy, the electrolyte that may remain in the liquid metal alloy may be removed. This can be achieved by inducing The distillation temperature (heat treatment temperature) is not particularly limited as long as it is a temperature above the boiling point of the electrolyte used in the system of the present invention, and may be, for example, 2,500 ° C. or higher, and may be performed by reducing the distillation temperature to increase efficiency by lowering the distillation temperature. . In order to effectively prevent the liquid metal alloy from being oxidized again, it may be advantageous to carry out the distillation under a vacuum atmosphere and an inert gas.
본 발명은, 본 발명의 명세서에 기재된 임의의 방법 또는 그 조합에 의해 수득된 금속 M1과 금속 M2의 금속 합금을 제공한다. 예를 들어, 금속 M1과 금속 M2의 금속 합금은, 전해조 내에 불화물계 전해질의 용융염을 형성하는 단계; 상기 전해조에 금속 M3을 포함하는 환원제 및 상기 금속 M1과 공융상(eutectic phase)을 형성하는 금속 M2을 투입하여 상기 M2 및 M3의 공융조성물을 제조하는 단계; 및, 상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하고, 환원된 금속 M1이 금속 M2과 액상 금속 합금을 형성하는 단계를 포함하는 금속 산화물로부터 금속 M1을 환원시키기 위한 방법에 의해 수득될 수 있다. 예를 들어, 금속 M1과 금속 M2의 금속 합금은, 대기 중에서 이루어지거나, 900 내지 1600℃의 범위에서 수행된 공정으로부터 수득될 수도 있다. 예를 들어, 금속 M1과 금속 M2의 금속 합금은 슬래그화 첨가제를 투입하여, 상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하는 과정에서 생성된 부산물과 상기 용융염의 슬래그를 형성하는 단계를 더 포함한 방법으로 수득될 수 있다. 이외에도 본 발명의 금속 M1과 금속 M2의 금속 합금은, 본 발명의 명세서에 기재된 임의의 방법 또는 그 조합에 의해 수득될 수 있다.The present invention provides a metal alloy of a metal M 1 and a metal M 2 obtained by any of the methods or combinations thereof described in the specification of the present invention. For example, the metal alloy of the metal M 1 and the metal M 2 may include: forming a molten salt of a fluoride-based electrolyte in an electrolytic cell; preparing a eutectic composition of M 2 and M 3 by introducing a reducing agent containing a metal M 3 and a metal M 2 forming a eutectic phase with the metal M 1 into the electrolytic cell; and reducing the metal M 1 by reacting the metal oxide with the eutectic composition, and the reduced metal M 1 forms a liquid metal alloy with the metal M 2 A method for reducing metal M 1 from a metal oxide comprising the steps of: can be obtained by For example, a metal alloy of the metal M 1 and the metal M 2 may be obtained from a process performed in the air or in the range of 900 to 1600°C. For example, a metal alloy of metal M 1 and metal M 2 is formed by adding a slag additive to react the metal oxide with the eutectic composition to form a by-product generated in the process of reducing the metal M 1 and slag of the molten salt It can be obtained by a method further comprising the step of In addition, the metal alloy of the metal M 1 and the metal M 2 of the present invention may be obtained by any method described in the specification of the present invention or a combination thereof.
하나의 실시양태에서, 금속 M1과 금속 M2의 금속 합금은, 금속 합금의 전체 중량 대비 금속 M3의 잔존 함량이 0.1 중량% 이하, 상세하게는 0.01 중량% 이하, 더욱 상세하게는 0.001 중량% 이하인 고품위의 금속 합금이다. 또한, 금속 M1과 금속 M2의 금속 합금의 산소 함유량은 1,800 ppm 이하, 상세하게는 1,500 ppm 이하, 더욱 상세하게는 1,200 ppm 이하인 고품위의 금속 합금이다. In one embodiment, the metal alloy of the metal M 1 and the metal M 2 has a residual content of the metal M 3 relative to the total weight of the metal alloy of 0.1 wt% or less, specifically 0.01 wt% or less, more specifically 0.001 wt% % or less is a high-grade metal alloy. In addition, the oxygen content of the metal alloy of the metal M 1 and the metal M 2 is 1,800 ppm or less, specifically 1,500 ppm or less, and more specifically 1,200 ppm or less, which is a high-quality metal alloy.
본 발명의 방법에 따라 수득된 액상의 합금(M1과 M2가 액상 금속 합금) 상은, 금속 합금 자체를 최종 생성물로 사용할 수 있다. M1은 산업적으로 합금의 형태로 사용되는 경우가 많은데, 종래의 크롤 공정과 같이 M1을 단일 금속으로만 생산 가능한 경우에는, 다른 금속과 합금을 형성하는 후처리 공정이 필요할 수 있다. 그러나, 본 발명은 이러한 후처리 공정 없이도, 환원과 동시에 M1과 M2의 금속 합금 형태로 최종 생성물을 얻을 수 있는 점에서 공정 효율성이 높다. 더욱이, 종래 크롤 공정을 통해 제조되는 환원 금속은 낮은 산소 함유량을 가지는 고품위(grade 1)의 금속의 생산량이 적고 상대적으로 잔존 산소 함량이 높다. 따라서, 크롤 공정에 의해 생산된 환원 금속을 이용하여 금속 합금을 제조하더라도 잔존 산소 함량이 높게 나타날 수 밖에 없는 한계가 있다. 반면에, 본 발명에 따라 제조되는 금속 합금은 산소의 함량이 매우 낮아 대부분이 고품위 등급에 해당된다. 예를 들어, M1이 Ti일 경우, 본 발명에 따른 방법에 의하면 고품위 금속의 수율이 98% 이상으로 매우 높지만, 종래의 크롤 공정은 고품위 금속의 수율이 50% 미만인 것으로 알려져 있으며, 이를 통해 본 발명의 우수성을 보다 명확하게 이해할 수 있다.As for the liquid alloy (M 1 and M 2 is a liquid metal alloy) phase obtained according to the method of the present invention, the metal alloy itself may be used as a final product. M 1 is often used in the form of an alloy industrially. In the case where M 1 can be produced only with a single metal as in the conventional crawling process, a post-treatment process of forming an alloy with other metals may be required. However, the present invention has high process efficiency in that a final product can be obtained in the form of a metal alloy of M 1 and M 2 at the same time as reduction without such a post-treatment process. Moreover, the reduced metal produced through the conventional crawling process has a small amount of production of a high grade (grade 1) metal having a low oxygen content and a relatively high residual oxygen content. Therefore, even when a metal alloy is manufactured using the reduced metal produced by the crawling process, there is a limit in that the residual oxygen content cannot but appear high. On the other hand, the metal alloy produced according to the present invention has a very low oxygen content, and most of it corresponds to a high grade grade. For example, when M 1 is Ti, according to the method according to the present invention, the yield of high-grade metal is very high, 98% or more, but in the conventional crawling process, it is known that the yield of high-grade metal is less than 50%, through this The superiority of the invention can be understood more clearly.
2. M1을 환원시키기 위한 시스템2. A system for reducing M 1
본 발명에 따른 금속 산화물로부터 금속 M1을 환원시키기 위한 시스템은,A system for reducing metal M 1 from a metal oxide according to the present invention comprises:
전해조;electrolyzer;
상기 전해조 내에 위치하는 불화물계 전해질의 용융염;a molten salt of a fluoride-based electrolyte located in the electrolytic cell;
상기 용융염의 하부에 위치하는 금속 M2 및 금속 M3의 공융조성물; 및A eutectic composition of a metal M 2 and a metal M 3 positioned under the molten salt; and
상기 공융조성물의 하부에 위치하는 상기 금속 M1과 상기 금속 M2의 액상 금속 합금을 포함할 수 있고,It may include a liquid metal alloy of the metal M 1 and the metal M 2 positioned under the eutectic composition,
상기 용융염의 밀도는 상기 금속 산화물의 밀도보다 작을 수 있고, 상기 금속 산화물과 상기 금속 M3이 반응하여 상기 금속 M1을 환원시키고, 상기 금속 M2는 상기 금속 M1과 공융상(eutectic phase)를 형성할 수 있다.The density of the molten salt may be less than that of the metal oxide, the metal oxide and the metal M 3 react to reduce the metal M 1 , and the metal M 2 is the metal M 1 and the eutectic phase (eutectic phase) can form.
하나의 실시양태에서, 상기 전해조는 전해 환원조 등이 사용될 수 있고, 목적하는 온도 범위를 달성하기 위해 고주파 용해로, 또는 목적 금속 합금에 따라 전기로를 사용할 수도 있으나, 이에 제한되지 않는다. 반응이 수행되는 온도 범위, 반응성 등을 고려하여, 통상의 기술자에게 용이한 모든 전해조 및 로가 사용될 수 있다.In one embodiment, the electrolytic cell may be an electrolytic reduction tank or the like, a high-frequency melting furnace to achieve a desired temperature range, or an electric furnace depending on the target metal alloy may be used, but is not limited thereto. In consideration of the temperature range in which the reaction is carried out, reactivity, and the like, all electrolyzers and furnaces that are easy for a person skilled in the art can be used.
하나의 실시양태에서 액상 금속 합금과 반응 부산물의 원활한 분리를 위해 불화물계 전해질의 용융염은 반응 부산물과의 질량 비율이 5:1 내지 2:1 일 수 있으며, 바람직하게는 3:1일 수 있으나, 이에 제한되지 않는다.In one embodiment, for smooth separation of the liquid metal alloy and the reaction by-product, the mass ratio of the molten salt of the fluoride-based electrolyte to the reaction by-product may be 5:1 to 2:1, preferably 3:1, but , but not limited thereto.
하나의 실시양태에서 상기 전해질은 알칼리금속 및 알칼리토금속 군에서 하나 또는 둘 이상 선택되는 금속의 산화물을 반응 첨가제로 더 포함할 수 있다. 반응 첨가제의 함량은 전해질의 총 중량을 기준으로 0.1 내지 25 중량%일 수 있다. 반응 첨가제는 비제한적으로, Li2O, Na2O, SrO, Cs2O, K2O, CaO, BaO 또는 이들의 혼합물을 포함할 수 있다. 전해질에 함유된 반응 첨가제는 원료 모듈에 함유된 금속 산화물의 보다 용이한 환원을 가능하게 할 수 있다.In one embodiment, the electrolyte may further include an oxide of one or two or more metals selected from the group of alkali metals and alkaline earth metals as a reactive additive. The content of the reaction additive may be 0.1 to 25% by weight based on the total weight of the electrolyte. Reaction additives may include, but are not limited to, Li 2 O, Na 2 O, SrO, Cs 2 O, K 2 O, CaO, BaO, or mixtures thereof. The reactive additive contained in the electrolyte may enable easier reduction of the metal oxide contained in the raw material module.
하나의 실시양태에서, 도 1과 유사한 전해조를 이용하여 본 발명의 합금 금속 제조 방법을 수행할 수 있다. 예를 들어, 불화물계 전해질을 전해조(1)에 장입하고 용융시켜 용융염(5)을 형성한 후, 전해조에 금속 M1과 공융상을 형성하는 금속 M2 및 금속 M3을 포함하는 환원제를 투입하여 금속 M2 및 금속 M3의 공융조성물(6)을 제조한다. 불화물계 전해질의 용융염의 밀도가 공융조성물의 밀도보다 작기 때문에, 공융조성물(6) 위에 불화물계 전해질의 용융염(5)이 위치한다. 그 후, 금속 산화물(10)을 원료 투입장치(1)를 이용하여 전해조에 장입하여 공융조성물(6)과 반응시켜 금속 M1 및 금속 M2의 액상 금속 합금(7)을 제조하고 반응이 종료된 후 액상 금속 합금과 전해질 사이에 위치한 반응부산물에 슬래그화 첨가제(9)를 투입하여 슬래그화 시킨다. 그 후 전해조의 하부를 통해 액상 금속 합금(7)을 전해조 하부에 연결된 출탕부(8)을 통해 수득한다. 슬래그는 전해조 상부에 위치하므로 전해조를 틸트하여 약 50~90%의 슬래그를 제거하며, 약 10~50%의 잔존 슬래그에 새로운 불화물계 전해질을 전해질 투입장치(2)를 통해 투입하여 새로운 전해질층을 형성한다. 그 후 다시 금속 산화물(10)을 원료 투입장치(1)를 이용하여 전해조에 장입하여 공융조성물(6)과 반응시켜 액상 금속 합금(7)을 제조하는 과정을 반복할 수 있다. 슬래그를 제거하기 전이나 전해조를 틸트하여 슬래그를 제거하는 단계 등 공정의 모든 단계에서, 전해조의 하부에 생성된 액상 금속 합금(7)은 전해조의 하부의 출탕부(8)를 통해 연속적으로 수득될 수 있다. 전해조는 예컨대 교반을 용이하게 하기 위해 고주파 용해로(3)를 사용할 수 있으나, 이에 제한되지 않는다.In one embodiment, the method of making an alloy metal of the present invention may be performed using an electrolytic bath similar to that of FIG. 1 . For example, a fluoride-based electrolyte is charged into the electrolytic cell 1 and melted to form a molten salt 5, and then a reducing agent comprising a metal M 1 and a metal M 2 and a metal M 3 forming a eutectic phase with the metal M 1 in the electrolytic cell To prepare a eutectic composition (6) of the metal M 2 and the metal M 3 . Since the density of the molten salt of the fluoride-based electrolyte is smaller than the density of the eutectic composition, the molten salt 5 of the fluoride-based electrolyte is positioned on the eutectic composition 6 . Thereafter, the metal oxide 10 is charged into the electrolytic cell using the raw material input device 1 and reacted with the eutectic composition 6 to prepare a liquid metal alloy 7 of metal M 1 and metal M 2 and the reaction is terminated. After the slag is formed, the slag additive (9) is added to the reaction by-product located between the liquid metal alloy and the electrolyte. Then, through the lower part of the electrolytic cell, the liquid metal alloy 7 is obtained through the tapping part 8 connected to the lower part of the electrolytic cell. Since the slag is located in the upper part of the electrolytic cell, about 50 to 90% of the slag is removed by tilting the electrolytic cell, and a new fluoride-based electrolyte is introduced into about 10 to 50% of the remaining slag through the electrolyte input device 2 to form a new electrolyte layer. to form After that, the metal oxide 10 is charged into the electrolytic cell using the raw material input device 1 and reacted with the eutectic composition 6 to produce the liquid metal alloy 7 may be repeated. In all stages of the process, such as before removing slag or removing the slag by tilting the electrolytic cell, the liquid metal alloy 7 generated in the lower part of the electrolytic cell is continuously obtained through the tapping part 8 at the lower part of the electrolytic cell. can The electrolyzer may use, for example, a high-frequency melting furnace 3 to facilitate stirring, but is not limited thereto.
3. 실시예3. Examples
이하에서는, 실시예를 상술하며, 이를 통해 본 발명의 작용 및 효과를 입증할 것이다. 그러나, 이하의 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. Hereinafter, examples will be described in detail, which will demonstrate the action and effect of the present invention. However, the following examples are merely presented as examples of the invention, and the scope of the invention is not defined thereby.
<실시예 1><Example 1>
도 1에 도시된 바와 같은 시스템을 이용하였고, 도 2의 공정 순서에 따라 진행하였다. 저항 가열로에서 전해질 CaF2(40.8 g)을 칭량하여 전해조에 투입 후 약 1415℃까지 가열하여 불화물계 전해질의 용융염을 제조하였다(도 2의 a).The system as shown in FIG. 1 was used, and the process sequence of FIG. 2 was followed. In a resistance heating furnace, the electrolyte CaF 2 (40.8 g) was weighed, put into an electrolytic cell, and heated to about 1415° C. to prepare a molten salt of a fluoride-based electrolyte (FIG. 2a).
Cu(s)와 Ca(s)를 각각 52.8 g 및 72.3 g 칭량하고 전해조 내에 투입하고 용융시켜, 공융조성물을 제조하였다(도 2의 b).Cu(s) and Ca(s) were weighed 52.8 g and 72.3 g, respectively, and put in an electrolytic cell and melted to prepare a eutectic composition (FIG. 2 b).
금속 산화물로서 72.1 g의 TiO2(평균 입자크기 100μm)를 칭량하여 10시간 동안 반응시켰다(도 2의 c 및 d).As a metal oxide, 72.1 g of TiO 2 (average particle size of 100 μm) was weighed and reacted for 10 hours ( FIGS. 2 c and d ).
부산물을 제거하기 위해 슬래그화 첨가제인 Al2O3 분말 200 g과 CaO 100 g을 투입하여 슬래그화 시킨 후(도 2의 e), 로 내에서 서냉하였다. 상기 공정은 대기 분위기에서 수행되었다. In order to remove by-products, 200 g of Al 2 O 3 powder and 100 g of CaO, which are slag additives, were added to slag (FIG. 2e), followed by slow cooling in a furnace. The process was carried out in an atmospheric atmosphere.
<실시예 2><Example 2>
도 1에 도시된 바와 같은 시스템을 이용하였고, 도 2의 공정 순서에 따라 진행하였다. 저항 가열로에서 전해질 CaF2(40.8 g)을 칭량하여 전해조에 투입 후 약 1415℃까지 가열하여 불화물계 전해질의 용융염을 제조하였다(도 2의 a).The system as shown in FIG. 1 was used, and the process sequence of FIG. 2 was followed. In a resistance heating furnace, the electrolyte CaF 2 (40.8 g) was weighed, put into an electrolytic cell, and heated to about 1415° C. to prepare a molten salt of a fluoride-based electrolyte (FIG. 2a).
Cu(s)와 Ca(s)를 각각 60 g 및 65.5 g 칭량하고 전해조 내에 투입하고 용융시켜, 공융조성물을 제조하였다(도 2의 b).60 g and 65.5 g of Cu(s) and Ca(s) were weighed, respectively, and put into an electrolytic bath and melted to prepare a eutectic composition (FIG. 2 b).
금속 산화물로서 111 g의 CaTiO3를 칭량하여 2시간 동안 반응시켰다(도 2의 c 및 d).As a metal oxide, 111 g of CaTiO 3 was weighed and reacted for 2 hours ( FIGS. 2 c and d ).
부산물을 제거하기 위해 슬래그화 첨가제인 Al2O3 분말 200 g과 CaO 100 g을 투입하여 슬래그화 시킨 후(도 2의 e), 로 내에서 서냉하였다. 상기 공정은 대기 분위기에서 수행되었다. In order to remove by-products, 200 g of Al 2 O 3 powder and 100 g of CaO, which are slag additives, were added to slag (FIG. 2e), followed by slow cooling in a furnace. The process was carried out in an atmospheric atmosphere.
<실험예 1><Experimental Example 1>
불화물계 전해질과 염화물계 전해질의 휘발율을 측정하였다. 각각의 전해질 500 g(장입 전 중량)을 칭량하여 도가니에 투입하고, 도가니를 용융로에 장입하고 1,600℃에서 10시간 동안 방치한 후의 전해질의 중량(장입 후 중량)을 측정하였다. 휘발율은 하기 방법을 이용하여 평가하였다.The volatilization rates of the fluoride-based electrolyte and the chloride-based electrolyte were measured. 500 g (weight before charging) of each electrolyte was weighed and put into a crucible, and the weight of the electrolyte (weight after charging) after the crucible was charged into the melting furnace and left at 1,600° C. for 10 hours was measured. The volatilization rate was evaluated using the following method.
- 휘발율: (장입 전 중량 - 장입 후 중량)/(장입 전 중량) x 100%- Volatility rate: (weight before charging - weight after charging)/(weight before charging) x 100%
이 결과, 불화물계 전해질로 사용된 CaF2의 경우 1.8 중량%의 낮은 휘발율을 나타내나, 염화물계 전해질인 CaCl2는 약 74 중량%의 높은 휘발율을 나타냄을 확인하였다(도 3).As a result, it was confirmed that CaF 2 used as the fluoride-based electrolyte exhibited a low volatilization rate of 1.8 wt%, but CaCl 2 , a chloride-based electrolyte, exhibited a high volatilization rate of about 74 wt% (FIG. 3).
각 온도범위에서 측정되는 불화물계 전해질인 CaF2의 휘발율과 염화물계 전해질인 CaCl2의 휘발율은 본 공정이 수행되는 공정 온도를 기준으로, 불화물계 전해질의 증기압이 현저히 낮음을 알 수 있고(도 4), 이는 불화물계 전해질의 공정에서의 휘발율이 현저하게 낮음을 나타낸다.The volatilization rate of CaF 2 , a fluoride-based electrolyte, and the volatilization rate of CaCl 2 , a chloride-based electrolyte, measured in each temperature range, based on the process temperature at which this process is performed, it can be seen that the vapor pressure of the fluoride-based electrolyte is significantly low ( 4), which indicates that the volatilization rate in the process of the fluoride-based electrolyte is remarkably low.
이로부터, 전술한 바와 같은 효율적인 공정을 위해 휘발율이 낮은 불화물계 전해질을 사용하는 것이 바람직하다.From this, it is preferable to use a fluoride-based electrolyte having a low volatilization rate for the efficient process as described above.
<실험예 2><Experimental Example 2>
실시예 1 및 2에서 수득한 합금을 하기 방법을 이용하여 특성을 평가하였다.The alloys obtained in Examples 1 and 2 were evaluated for properties using the following method.
- 회수율: 100 - {(제1 중량-제2 중량)/제2 중량 x 100%}- recovery rate: 100 - {(first weight - second weight)/second weight x 100%}
- 잔존 불순물 함량: 제조된 합금을 절단하고 합금 내부를 에너지 분산 스펙트럼을 이용하여 확인하였다.- Residual impurity content: The prepared alloy was cut and the inside of the alloy was checked using an energy dispersion spectrum.
- 산소 함유량: ELTRA ONH2000를 사용하여 합금에 존재하는 산소 함량을 측정하였다.- Oxygen content: ELTRA ONH2000 was used to measure the oxygen content present in the alloy.
Figure PCTKR2021003849-appb-T000001
Figure PCTKR2021003849-appb-T000001
표 1의 결과로부터, 본 발명에 따라 제조된 실시예의 합금은 높은 회수율을 나타내었으며, 환원제로 사용된 금속이나 산소가 실질적으로 없는 고순도의 합금이 수득되었음을 알 수 있다. 즉, 위와 같이 불활성 가스 분위기에서만 가능하였던 기존의 공정과는 달리 대기 분위기하에서 공정이 진행됨에도, 보다 우수한 목적 금속의 회수율을 보이며 현저하게 낮은 산소 함유량을 보임을 확인하였다.From the results of Table 1, it can be seen that the alloy of Examples prepared according to the present invention exhibited a high recovery rate, and a high-purity alloy substantially free of metal or oxygen used as a reducing agent was obtained. That is, it was confirmed that, unlike the existing process, which was possible only in an inert gas atmosphere, as described above, even when the process was carried out in an atmospheric atmosphere, it showed a better recovery rate of the target metal and showed a remarkably low oxygen content.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although the above has been described with reference to the embodiments of the present invention, those of ordinary skill in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above content.

Claims (19)

  1. 금속 산화물로부터 금속 M1을 환원시키기 위한 방법으로서,A method for reducing metal M 1 from a metal oxide comprising:
    전해조 내에 불화물계 전해질의 용융염을 형성하는 단계;forming a molten salt of a fluoride-based electrolyte in an electrolytic cell;
    상기 전해조에 상기 금속 M1과 공융상(eutectic phase)을 형성하는 금속 M2 및 금속 M3을 포함하는 환원제를 투입하여 금속 M2 및 금속 M3의 공융조성물을 제조하는 단계; 및preparing a eutectic composition of the metal M 2 and the metal M 3 by introducing a reducing agent including the metal M 2 and the metal M 3 to form a eutectic phase with the metal M 1 in the electrolytic cell; and
    상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하고, 환원된 금속 M1이 M2와 액상 금속 합금을 형성하는 단계를 포함하고,reducing the metal M 1 by reacting the metal oxide with the eutectic composition, and the reduced metal M 1 comprises the step of forming a liquid metal alloy with M 2 ,
    상기 용융염의 밀도는 상기 공융조성물 및 상기 금속 산화물의 밀도보다 작은 것인, 방법.The method, wherein the density of the molten salt is less than the density of the eutectic composition and the metal oxide.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 용융염은 1,600℃에서 10시간 동안 10 중량% 이하의 휘발율을 가지는 것인, 방법.The method of claim 1, wherein the molten salt has a volatilization rate of 10 wt% or less for 10 hours at 1,600 °C.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 불화물계 전해질은 MgF2, CaF2, SrF2 및 BaF2 로 이루어진 군으로부터 선택되는 1종 이상인, 방법.The fluoride-based electrolyte is at least one selected from the group consisting of MgF 2 , CaF 2 , SrF 2 and BaF 2 The method.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 불화물계 전해질은 CaF2인, 방법.The fluoride-based electrolyte is CaF 2 The method.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 금속 M1은 Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md 및 No로 이루어진 군으로부터 선택되는 1종인, 방법.The metal M 1 is Ti, Zr, Hf, W, Fe, Ni, Zn, Co, Mn, Cr, Ta, Ga, Nb, Sn, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md and No, the method is one selected from the group consisting of .
  6. 제 1 항에 있어서,The method of claim 1,
    상기 금속 M2은 Cu, Ni, Sn, Zn, Pb, Bi, Cd 및 이들의 합금으로 이루어진 군에서 선택되는 1종 이상인, 방법.The metal M 2 is Cu, Ni, Sn, Zn, Pb, Bi, Cd, and at least one selected from the group consisting of alloys thereof, the method.
  7. 제 6 항에 있어서,7. The method of claim 6,
    상기 금속 M2은 Cu인, 방법.wherein the metal M 2 is Cu.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 금속 M3은 Ca, Mg, Al 및 이들의 합금으로 이루어진 군에서 선택되는 1종 이상인, 방법.The metal M 3 is at least one selected from the group consisting of Ca, Mg, Al, and alloys thereof, the method.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 금속 산화물은 M1 xOz 및 M1 xM3 yOz로 이루어진 군에서 선택된 적어도 하나를 포함하는, 방법:The metal oxide comprises at least one selected from the group consisting of M 1 x O z and M 1 x M 3 y O z , a method:
    여기서, x, y는 각각 1 내지 3의 실수이고, z는 1 내지 4의 실수이다.Here, x and y are real numbers from 1 to 3, respectively, and z is a real number from 1 to 4.
  10. 제1항에 있어서,According to claim 1,
    상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하는 과정은 대기 또는 불화물 중에서 이루어지는, 방법.The process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition is performed in the atmosphere or in fluoride.
  11. 제 1 항에 있어서, The method of claim 1,
    상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하는 과정은 900 내지 1,600℃ 범위에서 수행되는, 방법.The process of reducing the metal M 1 by reacting the metal oxide with the eutectic composition is carried out in the range of 900 to 1,600 ℃, method.
  12. 제 1 항에 있어서, The method of claim 1,
    슬래그화 첨가제를 투입하여, 상기 금속 산화물을 상기 공융조성물과 반응시켜 금속 M1을 환원하는 과정에서 생성된 부산물과 상기 용융염의 슬래그를 형성하는 단계를 더 포함하는, 방법.The method further comprising the step of adding a slag additive to react the metal oxide with the eutectic composition to form a slag of the molten salt and a by-product generated in the process of reducing the metal M 1 .
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 슬래그화 첨가제는 MgO, CaO, FeO, BaO, SiO2 및 Al2O3로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인, 방법.The method of claim 1, wherein the slag additive comprises at least one selected from the group consisting of MgO, CaO, FeO, BaO, SiO 2 and Al 2 O 3 .
  14. 제 12 항에 있어서, 13. The method of claim 12,
    상기 액상 금속 합금은 상기 전해조의 최하단에 위치하며 상기 공융조성물과 구분되는 층을 형성하고, 상기 전해조의 하부를 통해 상기 액상 금속 합금을 연속적으로 수득하는 단계; 및The liquid metal alloy is located at the bottom of the electrolytic cell, forming a layer distinct from the eutectic composition, and continuously obtaining the liquid metal alloy through the lower part of the electrolytic cell; and
    상기 슬래그는 상기 공융조성물의 상부에 구분되는 층을 형성하고, 상기 전해조의 상부를 통해 상기 슬래그를 연속적으로 제거하는 단계를 더 포함하는, 방법.The slag forms a separate layer on the upper portion of the eutectic composition, and further comprising the step of continuously removing the slag through the upper portion of the electrolytic cell.
  15. 제1항에 있어서,The method of claim 1,
    상기 액상 금속 합금을 전해 정련하여 금속 M1을 제조하는 단계를 더 포함하는, 방법.The method further comprising the step of electrolytic refining the liquid metal alloy to produce a metal M 1 .
  16. 제15항에 따른 방법으로 수득된 금속.A metal obtained by the method according to claim 15 .
  17. 제1항에 따른 방법으로 수득된 금속 합금.A metal alloy obtained by the method according to claim 1 .
  18. 제17항에 있어서, 상기 금속 합금의 전체 중량 대비 금속 M3의 잔존 함량이 0.1 중량%이하이고, 산소 함유량이 1,800 ppm이하인, 금속 합금.The metal alloy according to claim 17, wherein the residual content of the metal M 3 relative to the total weight of the metal alloy is 0.1% by weight or less, and the oxygen content is 1,800 ppm or less.
  19. 금속 산화물로부터 금속 M1을 환원시키기 위한 시스템으로서,A system for reducing metal M 1 from a metal oxide comprising:
    전해조;electrolyzer;
    상기 전해조 내에 위치하는 불화물계 전해질의 용융염;a molten salt of a fluoride-based electrolyte located in the electrolytic cell;
    상기 용융염의 하부에 위치하는 금속 M2와 금속 M3의 공융조성물; 및 a eutectic composition of a metal M 2 and a metal M 3 positioned under the molten salt; and
    상기 공융조성물의 하부에 위치하는 상기 금속 M1과 상기 금속 M2의 액상 금속 합금을 포함하고, Including a liquid metal alloy of the metal M 1 and the metal M 2 positioned under the eutectic composition,
    상기 용융염의 밀도는 상기 금속 산화물의 밀도보다 작고, 상기 금속 산화물과 상기 금속 M3이 반응하여 상기 금속 M1을 환원시키고, 상기 금속 M2는 상기 금속 M1과 공융상(eutectic phase)을 형성하는, 시스템.The density of the molten salt is smaller than that of the metal oxide, the metal oxide and the metal M 3 react to reduce the metal M 1 , and the metal M 2 forms an eutectic phase with the metal M 1 to do, system.
PCT/KR2021/003849 2020-11-17 2021-03-29 Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes WO2022108007A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2021384253A AU2021384253A1 (en) 2020-11-17 2021-03-29 Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes
EP21894786.9A EP4249644A1 (en) 2020-11-17 2021-03-29 Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes
CA3201236A CA3201236A1 (en) 2020-11-17 2021-03-29 Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes
US18/253,348 US20240002974A1 (en) 2020-11-17 2021-03-29 Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes
JP2023529973A JP2023550382A (en) 2020-11-17 2021-03-29 Method and system for reducing high melting point metal oxides using fluoride electrolytes
CN202180084243.6A CN116685720A (en) 2020-11-17 2021-03-29 Reduction method and system for refractory metal oxides using fluoride-based electrolytes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200154083 2020-11-17
KR10-2020-0154083 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022108007A1 true WO2022108007A1 (en) 2022-05-27

Family

ID=81709275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003849 WO2022108007A1 (en) 2020-11-17 2021-03-29 Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes

Country Status (8)

Country Link
US (1) US20240002974A1 (en)
EP (1) EP4249644A1 (en)
JP (1) JP2023550382A (en)
KR (2) KR20220067533A (en)
CN (1) CN116685720A (en)
AU (1) AU2021384253A1 (en)
CA (1) CA3201236A1 (en)
WO (1) WO2022108007A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035404A (en) 1990-09-13 1991-07-30 Westinghouse Electric Corp. Retort assembly for kroll reductions
JPH06146049A (en) * 1992-10-30 1994-05-27 Kobe Steel Ltd Molten salt electrolytic sampling method for high-fusion-point active metal such as titanium
JPH1171694A (en) * 1997-08-29 1999-03-16 Mitsubishi Materials Corp Reduction of metallic oxide, and device therefor
JP2005199354A (en) * 2003-12-31 2005-07-28 General Electric Co <Ge> Apparatus for production or refining of metal, and related process
KR20090031508A (en) * 2006-10-03 2009-03-26 닛코킨조쿠 가부시키가이샤 Cu-mn alloy sputtering target and semiconductor wiring
KR101757626B1 (en) 2016-09-13 2017-07-14 충남대학교산학협력단 Manufacturing system of metal comprising zirconium
KR101793471B1 (en) 2016-07-20 2017-11-06 충남대학교산학협력단 Refining Method of Metal Using Electroreduction and Electrorefining process
KR101878652B1 (en) 2017-07-12 2018-07-16 충남대학교산학협력단 Refining Method of Metal Using Integrated Electroreduction and Electrorefining process
KR102004920B1 (en) * 2019-01-28 2019-07-29 한국지질자원연구원 Metal refining method by using liquid metal cathode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035404A (en) 1990-09-13 1991-07-30 Westinghouse Electric Corp. Retort assembly for kroll reductions
JPH06146049A (en) * 1992-10-30 1994-05-27 Kobe Steel Ltd Molten salt electrolytic sampling method for high-fusion-point active metal such as titanium
JPH1171694A (en) * 1997-08-29 1999-03-16 Mitsubishi Materials Corp Reduction of metallic oxide, and device therefor
JP2005199354A (en) * 2003-12-31 2005-07-28 General Electric Co <Ge> Apparatus for production or refining of metal, and related process
KR20090031508A (en) * 2006-10-03 2009-03-26 닛코킨조쿠 가부시키가이샤 Cu-mn alloy sputtering target and semiconductor wiring
KR101793471B1 (en) 2016-07-20 2017-11-06 충남대학교산학협력단 Refining Method of Metal Using Electroreduction and Electrorefining process
KR101757626B1 (en) 2016-09-13 2017-07-14 충남대학교산학협력단 Manufacturing system of metal comprising zirconium
KR101878652B1 (en) 2017-07-12 2018-07-16 충남대학교산학협력단 Refining Method of Metal Using Integrated Electroreduction and Electrorefining process
KR102004920B1 (en) * 2019-01-28 2019-07-29 한국지질자원연구원 Metal refining method by using liquid metal cathode

Also Published As

Publication number Publication date
EP4249644A1 (en) 2023-09-27
JP2023550382A (en) 2023-12-01
CN116685720A (en) 2023-09-01
CA3201236A1 (en) 2022-05-27
AU2021384253A1 (en) 2023-06-29
KR20220067533A (en) 2022-05-24
KR20230107170A (en) 2023-07-14
US20240002974A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2020159043A1 (en) Method for refining metal by using liquid metal cathode
US7790014B2 (en) Removal of substances from metal and semi-metal compounds
KR101370007B1 (en) Thermal and electrochemical process for metal production
WO2012015278A2 (en) Novel eco-friendly smelting process for reactograde zirconium using raw ore metal reduction and electrolytic refining integrated process
GB833767A (en) Continuous electrolytic production of titanium
KR101793471B1 (en) Refining Method of Metal Using Electroreduction and Electrorefining process
WO2010137555A1 (en) Process for producing refined metal or metalloid
US3254010A (en) Refining of silicon and germanium
WO2022108007A1 (en) Reduction method and system for high-melting-point metal oxide, using fluoride-based electrolytes
WO2021133106A1 (en) Method for recovering rare earth metal
WO2022108006A1 (en) Reduction system and method for high-melting point metal oxides, using liquid metal crucible
WO2018008850A1 (en) Reduced iron production method using electrowinning method, and reduced iron produced thereby
US2917440A (en) Titanium metal production
WO2022234884A1 (en) Method for recovering lithium from waste lithium secondary battery using dry smelting
WO2009120108A1 (en) Method for producing chemically active metals and slag recovery and a device for carrying out said method
EP3655566B1 (en) Electrolytic production of rare earth metal or beryllium
WO2016028009A1 (en) Method for preparing titanium by using electrowinning
US2821506A (en) Purification of titanium and zirconium metal
WO2010131970A1 (en) Process for separating hafnium and zirconium
CN113445080B (en) Method for preparing titanium alloy based on direct electrolysis of liquid cathode-soluble titanium-containing anode
WO2010003906A1 (en) Process for the production of copper from sulphide compounds
JPH06116773A (en) Method for recovering aluminum from foil scrap
CN116065026A (en) Comprehensive recovery method of copper anode slime smelting slag
CN115305520A (en) Method for producing rare earth metals
Niedrach et al. Uranium Metal Preparation by Electrolytic Reduction of Oxides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894786

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18253348

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3201236

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180084243.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021384253

Country of ref document: AU

Date of ref document: 20210329

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021894786

Country of ref document: EP

Effective date: 20230619