WO2022108005A1 - 고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법 - Google Patents

고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법 Download PDF

Info

Publication number
WO2022108005A1
WO2022108005A1 PCT/KR2021/003289 KR2021003289W WO2022108005A1 WO 2022108005 A1 WO2022108005 A1 WO 2022108005A1 KR 2021003289 W KR2021003289 W KR 2021003289W WO 2022108005 A1 WO2022108005 A1 WO 2022108005A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
free
batch
nitrogen
reaction tank
Prior art date
Application number
PCT/KR2021/003289
Other languages
English (en)
French (fr)
Inventor
유대환
오태석
임윤수
Original Assignee
주식회사 부강테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 부강테크 filed Critical 주식회사 부강테크
Publication of WO2022108005A1 publication Critical patent/WO2022108005A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a batch reaction treatment apparatus capable of smoothly performing partial nitrite oxidation, and an apparatus for removing nitrogen from wastewater containing high concentration nitrogen including the same.
  • Pollutants present in sewage and wastewater include not only solids and organic matter, but also nutrients such as nitrogen and phosphorus and trace harmful substances.
  • Wastewater from general households and businesses contains various types of nitrogen, including inorganic nitrogen such as ammonia, ammonium compounds, nitrite compounds, and nitrate compounds, and organic nitrogen such as amino acids and proteins.
  • inorganic nitrogen such as ammonia, ammonium compounds, nitrite compounds, and nitrate compounds
  • organic nitrogen such as amino acids and proteins.
  • Wastewater containing these nitrogen components causes eutrophication of water quality, and in particular, ammonia nitrogen has a high oxygen demand, which causes a decrease in dissolved oxygen in the effluent water system, resulting in death of fish and shellfish, and toxicity to aquatic animals. Therefore, it is regulated to minimize emissions to public waters.
  • the conventional biological nitrogen treatment uses a nitrification process to oxidize ammonia nitrogen using oxygen and an organic material as an electron donor and nitrified nitrogen as an electron donor.
  • a treatment method that combines a denitrification process is mainly used.
  • the power consumption of the blower that supplies oxygen to nitrify ammonia nitrogen is 30-50% of the total operating cost of the sewage treatment plant, and oxygen supply is the main cause of the increase in operating cost.
  • oxygen supply is the main cause of the increase in operating cost.
  • the nitrogen concentration is very high, ranging from 500 to 3,000 mg/L. Therefore, a large amount of oxygen is required to nitrify the above-mentioned wastewater, and the organic material concentration is relatively low compared to the nitrogen concentration, so organic materials such as methanol have to be added for denitrification. For this reason, the conventional wastewater treatment method has a disadvantage in that the operation cost increases due to the input of a large amount of oxygen and organic matter.
  • the method developed to solve this problem oxidizes a part (57%) of ammonia nitrogen only to the nitrite (NO 2 - ) stage, and then uses the remaining (47%) ammoniacal nitrogen as an electron donor to convert nitrogen into nitrogen. It is a shortened nitrogen removal process. This process can save 60% oxygen and 100% organic matter compared to the conventional process.
  • the conventional uniaxial nitrogen removal process consists of a first step of oxidizing ammonia nitrogen to nitrite nitrogen and a second step of oxidizing ammonia nitrogen using the produced nitrite nitrogen (anaerobic ammonium oxidation, ANAMMOX: Anaerobic Ammonium Oxidation).
  • the anaerobic ammonium oxidation reaction is performed as follows by oxidizing ammonia nitrogen with nitrite nitrogen under anaerobic conditions.
  • nitrite nitrogen is required as an electron acceptor in order to remove nitrogen. Accordingly, in the conventional uniaxial nitrogen removal process, a partial nitrite oxidation process (PN: Partial Nitritation) of oxidizing a part (57%) of ammonia nitrogen in wastewater to nitrite nitrogen should be preceded.
  • PN Partial Nitritation
  • an environment in which the activity of the ammonium oxidizing microorganism (AOB) is smooth while the activity of the nitrite oxidizing microorganism (NOB) is suppressed must be created. Since the activity of both microorganisms reacts sensitively to the concentrations of free ammonia (FA) and free nitrite (FNA), respectively, the concentration of free ammonia and the concentration of free nitrous acid in the reactor must be appropriate in order to create the above-described environment.
  • AOB ammonium oxidizing microorganism
  • NOB nitrite oxidizing microorganism
  • An embodiment of the present invention has an object to provide a batch-type reactor operating apparatus and method capable of smoothly performing partial nitrite oxidation by controlling the concentrations of free ammonia and free nitrite.
  • a batch-type reactor that oxidizes ammonia nitrogen in wastewater introduced using microorganisms to nitrite nitrogen and discharges only supernatant water by precipitating microorganisms and free ammonia (FA: Free Ammonia) concentration is preset
  • FNA Free Nitrous Acid
  • the batch-type reaction tank includes a first sensor for detecting the concentration of ammonia nitrogen in the batch-type reaction tank, a second sensor for detecting pH and temperature in the batch-type reaction tank, and nitrate nitrogen in the batch reaction tank It is characterized in that it comprises a third sensor for detecting the concentration.
  • control unit calculates the free ammonia concentration and the free nitrite concentration in the batch-type reaction tank using the sensing values of the first sensor, the second sensor, and the third sensor.
  • control unit controls the free ammonia concentration and the free nitrite concentration to satisfy each of the preset ranges, and sets the concentration ratio of ammonia nitrogen and nitrite nitrogen in the introduced wastewater to a preset ratio. characterized in that it is adjusted to
  • the calculation process of calculating the free ammonia and free nitrite concentration in the batch reaction tank and the glass in the batch reaction tank A first control process of controlling the amount of influent flowing into the batch reactor according to whether the concentration of ammonia is within a preset range, and when the concentration of free nitrous acid in the batch reactor exceeds a preset value, the alkali agent to the batch reactor
  • the control process to control the supply of ammonium nitrogen and nitrite nitrogen and check whether the ratio of ammonia nitrogen and nitrite nitrogen has a preset ratio, if it has a preset ratio, a precipitation process of precipitating for a preset time and the precipitation process It provides a batch-type reactor control method comprising a discharge process of discharging the inner supernatant to the outside by a preset ratio.
  • the activity of the ammonium oxidizing microorganism can be maximized and the activity of the nitrite oxidizing microorganism can be inhibited. There is this.
  • FIG. 1 is a view showing the configuration of a nitrogen removal device in wastewater containing high concentration nitrogen according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the configuration of a batch-type reaction processing apparatus according to an embodiment of the present invention.
  • 3 is a graph showing the oxidation rate of ammonia nitrogen according to the concentration of free nitrite.
  • 5 is a graph showing changes in pH and free ammonia concentration according to reaction time in a batch reaction processing apparatus according to an embodiment of the present invention.
  • FIG. 6 is a graph showing changes in pH and free nitrite concentration according to reaction time in a batch reaction processing apparatus according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not technically contradict each other.
  • FIG. 1 is a view showing the configuration of a nitrogen removal device in wastewater containing high concentration nitrogen according to an embodiment of the present invention.
  • a nitrogen removal apparatus 100 includes a batch reaction processing apparatus 110 (hereinafter, abbreviated as 'processing apparatus'), a mixing control tank 120 and an anammox reaction tank 130 ) is included.
  • the nitrogen removal device 100 may be implemented as a single device and include the above-described components, and each of the above-described components may be implemented as a single device or process.
  • the treatment device 110 receives wastewater and air having a high concentration of nitrogen from the outside, and adjusts the concentration ratio of ammonia nitrogen and nitrite nitrogen in the wastewater to a preset ratio.
  • Wastewater having a high concentration of nitrogen particularly, a high concentration of free ammonia, is introduced into the treatment device 110 from the outside.
  • the wastewater (described above) flowing into the treatment device 110 may be a desorbent obtained by dehydrating sludge that has undergone anaerobic digestion. Wastewater having such a high concentration of nitrogen is introduced into the treatment device 110 .
  • air (or oxygen) is introduced into the processing device 110 to oxidize ammonia nitrogen into nitrite nitrogen.
  • the processing device 110 performs partial nitrification using a batch-type reactor (Sequencing Batch Reactor, hereinafter abbreviated as 'reactor'). At this time, the processing apparatus 110 performs partial nitrification only until the concentration of ammonia nitrogen and the concentration of nitrite nitrogen reach a preset ratio. To this end, the processing device 110 precisely determines the concentration of ammonia nitrogen and the concentration of nitrite nitrogen, and the concentration of free ammonia (FA: Free Ammonia) and free nitrous acid (FNA: Free Nitrous Acid) in the reaction tank. and control
  • FA Free Ammonia
  • FNA Free Nitrous Acid
  • the mixing control tank 120 receives and stores wastewater that has passed through the treatment device 110 , and supplies an appropriate amount of wastewater that can be treated by the anammox reactor 130 to the anammox reactor 130 .
  • the amount of wastewater treated and discharged by the treatment device 110 and the treatment time may not match those of the anammox reactor 130 . Accordingly, the mixing control tank 120 is disposed between the both 110 and 130 , and only the amount of wastewater that can be treated by the anammox reactor 130 is supplied to the anammox reactor 130 .
  • the anammox reactor 130 receives wastewater provided from the mixing control tank 120 through the treatment device 110 and removes nitrogen in the wastewater.
  • the anammox reaction tank 130 includes an anamox (ANAMOX) microorganism therein to induce an anammox reaction.
  • ANAMOX anamox
  • the anammox reaction corresponds to a reaction in which the anammox microorganism oxidizes ammonia nitrogen to nitrite nitrogen under anaerobic conditions (anoxia conditions). Accordingly, ammonia nitrogen is degassed with nitrogen gas, and nitrogen in the wastewater is removed.
  • the anammox reaction is as follows.
  • Anamox microorganisms degas nitrogen without consuming separate organic matter or oxygen.
  • the anammox reactor 130 is discharged after removal of nitrogen.
  • FIG. 2 is a diagram illustrating the configuration of a batch-type reaction processing apparatus according to an embodiment of the present invention.
  • the processing apparatus 110 includes a flow rate control tank 210 , an ammonia nitrogen sensor 215 , an inflow pump 220 , a flow meter 225 , and a reaction tank 230 . , a control unit 240 , a chemical storage tank 250 and a supply pump 255 .
  • the flow rate control tank 210 stores the influent containing a relatively high concentration of free ammonia, and supplies the influent to the reaction tank 230 under the control of the controller 240 .
  • the flow rate control tank 210 stores the influent (wastewater) containing free ammonia at a relatively higher concentration than the wastewater flowing into the reaction tank 230 .
  • the flow rate adjustment tank 210 receives and stores wastewater having a higher free ammonia concentration than the reaction tank 230 from the outside.
  • the flow rate adjusting tank 210 supplies the influent to the reaction tank 230 under the control of the controller 240 .
  • the flow rate adjusting tank 210 supplies a predetermined amount of influent to the reaction tank 230 so that the concentration of free ammonia in the reaction tank 230 can exist within a concentration range in which the ammonium-oxidizing microorganisms can be smoothly activated. At this time, when the concentration of free ammonia is too high, the activity of the ammonium oxidizing microorganism (AOB) in the reaction tank 230 is inhibited.
  • AOB ammonium oxidizing microorganism
  • the flow rate adjustment tank 210 receives the control of the controller 240 to increase the amount of influent water supplied to the reaction tank 230 from a preset amount. With the supply of influent water, the concentration of free ammonia in the reaction tank 230 may increase.
  • the flow rate adjusting tank 210 receives the control of the controller 240 to reduce the amount of influent water supplied to the reaction tank 230 from a preset amount. Accordingly, the concentration of free ammonia in the reaction tank 230 is reduced.
  • the ammonia nitrogen detection sensor 215 is disposed in the flow rate adjustment tank 210, and detects the concentration of ammonia nitrogen in the influent.
  • the ammonia nitrogen detection sensor 215 detects the concentration of ammonia nitrogen in the influent in the flow control tank 210 and transmits it to the controller 240 . Accordingly, the control unit 240 determines the concentration of ammonia nitrogen in the influent, so that the free ammonia concentration of the influent can be calculated.
  • a pH and temperature sensor may be additionally disposed in the flow rate adjusting tank 210 .
  • a pH and temperature sensor senses the pH and temperature of the influent in the flow control tank 210 and transmits it to the controller 240 , so that the controller 240 calculates the concentration of free ammonia in the influent.
  • the inflow pump 220 receives the control of the controller 240 to introduce the inflow water in the flow rate adjusting tank 210 into the reaction tank 230 .
  • the inflow pump 220 introduces or stops the inflow of the inflow water from the flow rate adjusting tank 210 into the reaction tank 230 according to the control of the controller 240 .
  • the flow meter 225 measures the flow rate of the influent flowing into the reaction tank 230 by the inflow pump 220 .
  • the flow meter 225 measures the flow rate of the influent flowing into the reaction tank 230 and provides it to the control unit 240 .
  • the control unit 240 may determine how much influent water has flowed into the reaction tank 230 based on the measured value of the flow meter 225 , and accordingly, the operation of the inflow pump 220 (inflow or inflow of inflow into the reaction tank) interruption) can be controlled.
  • the reaction tank 230 receives wastewater containing a high concentration of nitrogen to adjust the concentrations of ammonia nitrogen and nitrite nitrogen.
  • the reaction tank 230 includes an oxygen inlet 231 , an outlet 232 , an ammonia nitrogen sensor 233 , a pH and temperature sensor 234 , a nitrate nitrogen sensor 235 and a solids concentration sensor 236 .
  • the reaction tank 230 is implemented as a batch reaction tank (SBR) to partially nitrify ammonia nitrogen in the introduced wastewater.
  • SBR batch reaction tank
  • the reaction tank 230 receives wastewater and reacts oxygen and microorganisms (mainly, ammonium oxidizing microorganisms).
  • the reaction tank 230 is settling for a predetermined time to prevent the outflow of microorganisms, and after precipitation, a predetermined ratio of supernatant water is discharged to the outside (anammox reaction tank).
  • the reaction tank 230 performs partial nitrite oxidation, and discharges the partially nitrified wastewater to the anammox reaction tank 130 .
  • the remaining sediments (microorganisms) and some wastewater that are not discharged are mixed with the newly introduced wastewater and treated again in the reaction tank 230 .
  • the oxygen inlet 231 introduces oxygen into the reaction tank 230 under the control of the controller 240 .
  • the oxygen inlet 231 moves the fluid only to the inside of the reaction tank 230 and introduces oxygen into the reaction tank 230 from the outside.
  • the outlet 232 is installed at a certain height of the reaction tank 230 and discharges supernatant water to the outside after precipitation under the control of the controller 240 .
  • the outlet 232 is installed at a certain height of the reaction tank 230 to discharge only a certain ratio of supernatant water. If all (after reaction) wastewater introduced into the reaction tank 230 is discharged, there may be a problem that all microorganisms present in the reaction tank 230 are discharged together. Accordingly, the outlet 232 is installed at a predetermined height of the reaction tank 230 so that a certain proportion of the supernatant water can remain in the reaction tank 230 .
  • the ammonia nitrogen detection sensor 233 detects the concentration of ammonia nitrogen in the wastewater or wastewater/residual water in the reaction tank 230 .
  • the concentration of ammonia nitrogen is necessary for the control unit 240 to calculate the timing to be discharged by terminating the reaction, and the control unit 240 is required for calculating the concentration of free ammonia in the reaction tank 230 .
  • the ammonia nitrogen detection sensor 233 detects the concentration of ammonia nitrogen in the reaction tank 230 and transmits it to the control unit 240 .
  • the pH and temperature sensor 234 senses the pH and temperature of wastewater or wastewater/residual water in the reaction tank 230 .
  • the pH of wastewater or wastewater/residual water in the reaction tank 230 corresponds to information necessary for the controller 240 to calculate the concentration of free ammonia in the reaction tank 230 .
  • the pH and temperature sensor 234 senses the pH in the reaction tank 230 and transmits it to the controller 240 .
  • the nitrate nitrogen detection sensor 235 detects the concentration of nitrate nitrogen in the wastewater or wastewater/residual water in the reaction tank 230 .
  • Nitrous nitrogen is a component generated by oxidizing nitrite nitrogen by nitrite oxidizing microorganisms (NOB) in the reaction tank 230 , and is derived from ammonia nitrogen.
  • NOB nitrite oxidizing microorganisms
  • the control unit 240 may increase the pH in the reaction tank 230 by operating the supply pump 255 to adjust the free ammonia concentration in the reaction tank to a reference value.
  • the solid concentration detection sensor 236 detects the concentration of the solids deposited in the reaction tank 230 .
  • the solids concentration detection sensor 236 detects the solids concentration, so that the control unit 240 can determine whether precipitation has been completely performed.
  • the solid concentration detection sensor 236 detects the concentration of the solids in the reaction tank 230 and transmits it to the control unit 240 .
  • the controller 240 controls the inflow of water or chemicals into the reaction tank 230 or the discharge of supernatant water in the reaction tank 230 based on the sensing values of the respective sensors 215 , 234 and 235 .
  • the activity of the ammonium oxidizing microorganism (AOB) and the nitrite oxidizing microorganism (NOB) in the wastewater introduced into the reaction tank 230 or the remaining residual water is greatly affected by the concentration of free ammonia and the concentration of free nitrite. This is shown in FIGS. 3 and 4 .
  • Figure 3 is a graph showing the oxidation rate of ammonia nitrogen according to the concentration of free nitrite
  • Figure 4 is a graph showing the oxidation rate of ammonia nitrogen according to the free ammonia concentration.
  • nitrite is not a substrate of ammonium oxidizing microorganisms (AOB)
  • AOB ammonium oxidizing microorganisms
  • ammonia nitrogen is a substrate of ammonium oxidizing microorganisms (AOB)
  • AOB ammonium oxidizing microorganisms
  • the activity of ammonium oxidizing microorganisms is reduced when the concentration of free ammonia is 5.0 mg/L or less.
  • the concentration of free ammonia exceeds 20 mg/L
  • the toxicity of ammonia affects ammonium-oxidizing microorganisms.
  • the activity of the ammonium-oxidizing microorganism begins to decrease when the concentration of free ammonia exceeds 20 mg/L.
  • the concentration of free ammonia exceeds 150 mg/L
  • the activity of ammonium oxidizing microorganisms begins to decrease significantly.
  • the activity of nitrite-oxidizing microorganisms decreases when the concentration of free nitrous acid is 0.02 mg/L or more and the concentration of free ammonia is 1 mg/L or less.
  • the concentration of free ammonia and free nitrite in the wastewater or residual water in the reaction tank greatly affects the activity of the ammonium-oxidizing microorganism and the nitrite-oxidizing microorganism.
  • an environment in which the activity of the ammonium oxidizing microorganism is not inhibited and the activity of the nitrite oxidizing microorganism is inhibited must be created.
  • FIG. 5 is a graph showing changes in pH and free ammonia concentration according to reaction time in a batch reaction processing apparatus according to an embodiment of the present invention
  • FIG. 6 is a reaction in a batch reaction processing apparatus according to an embodiment of the present invention It is a graph showing the change of pH and free nitrite concentration with time.
  • the concentration of free ammonia in the reactor 230 rapidly increases due to the high concentration of ammonia nitrogen in the wastewater.
  • nitrite oxidizing microorganisms (NOB) as well as ammonium oxidizing microorganisms (AOB) are inhibited.
  • AOB ammonium oxidizing microorganisms
  • the ammonium oxidation reaction by the ammonium oxidizing microorganism (AOB) gradually progresses, the alkalinity is consumed, and as a result, the concentration of nitrite nitrogen (NO 2 -N) increases and the pH decreases.
  • the free nitrite concentration gradually increases, and after a certain period of time, it rises to a level that inhibits the activity of the ammonium oxidizing microorganism and stops the activity. do.
  • the activity of the ammonium oxidizing microorganism is not inhibited according to the change in the concentration of free ammonia, and at the same time, the activity of the ammonium oxidizing microorganism is not inhibited according to the change in the concentration of free nitrite.
  • the amount of time not to be hindered is very limited. When the concentration described with reference to FIGS. 3 and 4 is applied, the activity of ammonium oxidizing microorganisms is not inhibited only for about 30 to 80 minutes of the total reaction time, and inhibition of a certain level or significant activity occurs in the remaining sections.
  • the control unit 240 controls the flow rate of the influent flowing into the reaction tank 230 based on the sensing values of the respective sensors 215 , 234 and 235 .
  • the control unit 240 adjusts the FA concentration by reducing or increasing the flow rate of the influent flowing into the reaction tank 230 in some cases.
  • the control unit 240 controls the inflow of the chemical into the reaction tank 230 to adjust the alkalinity and pH.
  • the control unit 240 controls as described above, and calculates the discharge timing of the supernatant in the reaction tank 230 to control the discharge.
  • the controller 240 controls the concentration of free ammonia or free nitrite in the reaction tank 230 based on the sensing values of the respective sensors 215 , 234 and 235 .
  • the concentration of free ammonia and the concentration of free nitrite are calculated as follows.
  • K w is the ionization constant of water
  • K b is the ionization constant of the aqueous ammonia solution
  • K a is the ionization constant of the aqueous nitrite solution.
  • the controller 240 controls the concentration of free ammonia or free nitrite in the reaction tank 230 .
  • control unit 240 calculates the concentration of free ammonia in the reaction tank (230).
  • the control unit 240 calculates the concentration of free ammonia using the sensing values respectively received from the ammonia nitrogen sensor 233 and the pH and temperature sensor 234 .
  • the control unit 240 controls the inflow pump 220 to supply a larger amount of influent than the preset amount that is (normally) supplied from the flow rate adjusting tank 210 .
  • the control unit 240 receives the amount of influent supplied to the reaction tank 230 as feedback from the flow meter 225 .
  • the concentration of free ammonia in the reaction tank 230 is greater than 50 mg/L, the activity of the ammonium-oxidizing microorganism is similarly inhibited.
  • control unit 240 controls the inflow pump 220 to supply a smaller amount of influent than the preset amount that is being supplied (normally) from the flow rate adjusting tank 210 .
  • control unit 240 can adjust the concentration of free ammonia in the reaction tank 230 to a concentration (10 to 50 mg/L, more preferably 10 to 20 mg/L) at which the activity of the ammonium oxidizing microorganism can be smooth. have.
  • the control unit 240 may calculate the free ammonia concentration of the influent stored in the flow rate control tank 210 , and basically adjust the preset amount of the influent supplied to the flow rate control tank 210 .
  • the control unit 240 receives the concentration of free ammonia in the influent from the ammonia nitrogen detection sensor 215 and the pH of the influent from the pH and temperature sensor (not shown) in the flow adjustment tank 210 to determine the concentration of free ammonia in the influent. can be calculated.
  • the preset amount of the influent supplied to the flow rate adjusting tank 210 may be reduced.
  • the preset amount of the influent supplied to the flow control tank 210 may be increased.
  • the control unit 240 controls the supply pump 255 so that the alkali agent stored in the chemical storage tank 250 can be supplied to the reaction tank 230 in order to reduce the concentration of free nitrous acid.
  • the alkali agent is supplied to the reaction tank 230
  • the pH in the reaction tank 230 is increased to decrease the concentration of free nitrite.
  • the control unit 240 maintains the activity of the ammonium oxidizing microorganism by controlling the supply pump 255 until the concentration of free nitrite is 0.1 mg/L or less.
  • the controller 240 controls the concentration of free ammonia and the concentration of free ammonium as described above, so that the oxidation of the ammonium-oxidizing microorganism can proceed for a sufficient time.
  • the control unit 240 controls the ammonium-oxidizing microorganism to oxidize for a sufficient time so that the concentration of ammonium nitrogen and the concentration of nitrite have a preset ratio.
  • the anammox reactor 130 which will be described later, does not consume organic matter and oxygen, and degass a certain ratio of ammonia nitrogen and nitrite nitrogen into nitrogen gas.
  • the preset ratio of ammonia nitrogen and nitrite nitrogen is 1: 1.32.
  • the control unit 240 allows the oxidation of ammonium nitrogen to proceed until the nitrite nitrogen is 1.32 times the concentration of ammonium nitrogen.
  • control unit 240 calculates the end point of the oxidation reaction in the reaction tank 230 using the following equation.
  • the NH 4 -N outflow is the concentration of ammonia nitrogen when flowing out from the reaction tank 230 to the anammox reaction tank 130
  • the V reaction tank is the total volume of the reaction tank 230
  • the V inflow is the reaction tank 230.
  • the volume of the introduced wastewater, NH 4 -N inflow is the concentration of ammonia nitrogen in the wastewater introduced into the reactor 230
  • V residual is the volume of residual water remaining after the previous wastewater treatment in the reactor 230
  • NH 4 -N residual means the concentration of ammonia nitrogen in the residual water remaining in the reaction tank 230
  • NO 3 -N reaction tank means the concentration of nitrate nitrogen when the reaction proceeds in the reaction tank 230.
  • the first component on the right side of the equation represents the concentration of ammonia nitrogen in the wastewater and residual water introduced into the reaction tank 230
  • the second component represents the concentration of nitrite nitrogen in the wastewater and residual water introduced into the reaction tank 230
  • the third component means the concentration of nitrate nitrogen in the reaction tank 230 .
  • the concentration of ammonia nitrogen in the wastewater and residual water introduced into the reaction tank 230 is multiplied by 1.32 (the ratio of nitrite nitrogen)/2.32 (total sum of ammonia nitrogen and nitrite nitrogen) to be oxidized.
  • the concentration of nitrite at a preset ratio to be calculated is calculated.
  • the control unit 240 By subtracting the concentration of nitrite nitrogen oxidized by a preset ratio and the concentration of nitrate nitrogen further oxidized from nitrite nitrogen from the concentration of total ammonia nitrogen in the reaction tank 230, the control unit 240 finally oxidizes It is possible to calculate the concentration of ammonia nitrogen at the timing to end and discharge. If a greater amount of ammonium nitrogen than this remains in the reaction tank 230 , it means that a sufficient amount of nitrite nitrogen required for the anammox reaction is not produced. Conversely, if only an insufficient amount of ammonium nitrogen remains in the reaction tank 230 , it is oxidized to nitrite nitrogen too much, meaning that nitrite nitrogen cannot be sufficiently removed by the anammox reaction.
  • control unit 240 calculates the timing of the end of the oxidation reaction and the discharge of the supernatant water to the outlet 232 based on whether the concentration of ammonia nitrogen in the reaction tank 230 has the concentration of ammonia nitrogen calculated by the above-mentioned formula. .
  • the control unit 240 may not include a nitrite detection sensor in the reaction tank 230 by calculating nitrite nitrogen as in the second component in the above equation. There is still no sensor that accurately detects nitrite nitrogen or there is instability in which the sensing value is inaccurate. Accordingly, the control unit 240 may not accurately calculate the timing of the end of the oxidation reaction and the discharge of the supernatant. In order to resolve this anxiety, the control unit 240 derives the concentration of nitrite nitrogen from the concentration of ammonia nitrogen.
  • the chemical storage tank 250 stores the alkali agent so that the alkali agent can be supplied to the reaction tank 230 .
  • the chemical storage tank 250 stores the alkali agent to be supplied to the reaction tank 230 .
  • the supply pump 255 supplies the alkali agent in the chemical storage tank 250 to the reaction tank 230 under the control of the controller 240 .

Abstract

고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법을 개시한다. 본 실시예의 일 측면에 의하면, 유리 암모니아 및 유리 아질산 농도를 조절하여 부분 아질산화를 원활히 수행할 수 있는 회분식 반응조 운전장치 및 방법을 제공한다.

Description

고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법
본 발명은 부분 아질산화를 원활히 수행할 수 있는 회분식 반응 처리장치 및 그를 포함하여 고농도 질소를 함유하고 있는 폐수 내 질소를 제거하는 장치에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
오수 및 폐수에 존재하는 오염물질에는 고형물, 유기물뿐만 아니라 질소 및 인과 같은 영양염류와 미량유해물질 등이 있다.
이러한 오염물질을 제거하는 방법에는 물리적, 화학적 및 생물학적 방법이 사용되는데, 이러한 방법 중 박테리아를 이용하여 오염물질을 제거하는 생물학적 활성슬러지 공법이 경제적으로나 효율적인 측면에서 우수하기 때문에 가장 많이 사용된다.
일반 가정이나 사업장으로부터 나오는 폐수에는 다양한 종류의 질소가 포함되어 있는데, 암모니아, 암모늄 화합물, 아질산 화합물, 질산 화합물 등의 무기성 질소와, 아미노산, 단백질 등의 유기성 질소가 있다.
이러한 질소 성분을 포함하는 폐수는, 수질의 부영양화를 발생시키며, 특히 암모니아성 질소는 산소요구량이 높기 때문에 방류수계의 용존 산소의 저하를 일으켜 어패류의 폐사를 발생시키기도 하며, 수생동물에 독성을 유발하기 때문에 공공용 수역으로의 배출량을 최소화되도록 규제되고 있다.
폐수 중의 질소 성분의 대부분이 암모니아성 질소로 존재하고 있기 때문에, 종래 행하여지고 있는 생물학적 질소처리는 암모니아성 질소를 산소를 이용하여 산화시키는 질산화 공정과 유기물을 전자공여체로 질산화된 질소를 전자공여체로 이용한 탈질 공정을 조합시킨 처리방법이 주로 이용되고 있다.
그러나 종래의 처리공정에서는 암모니아성 질소를 질산화시키기 위해 산소를 공급하는 송풍기의 전력소모량이 전체 하수처리장 운영비의 30~50%로, 산소 공급이 운영비 상승의 주요 원인이 된다. 또한, 생물학적으로 질소를 제거하는데 많은 양의 산소 및 유기물이 필요하기에, 이 역시, 운전비용의 상승을 초래하게 된다.
특히, 하수처리장 탈리액, 산업폐수, 가축분뇨 및 음폐수 등의 병합소화에서의 폐수 처리의 경우에는 질소의 농도가 500 내지 3,000 mg/L로 매우 높다. 이에 전술한 폐수를 질산화 하는데 다량의 산소가 필요하고, 질소 농도에 비해 유기물 농도가 상대적으로 낮아서 탈질을 위하여 메탄올과 같은 유기물을 투입해야만 했다. 이로 인해, 종래의 폐수 처리방법에서는 다량의 산소 및 유기물 투입으로 인해 운전비용이 증가하는 단점이 있었다.
이러한 문제를 해결하기 위해 개발된 방법이 암모니아성 질소의 일부(57%)를 아질산성(NO2 -) 단계까지만 산화한 후, 잔류(47%)하는 암모니아성 질소를 전자공여체로 활용하여 질소를 제거하는 단축질소 제거공정이다. 이 공정은 종래의 공정보다 산소는 60%, 유기물은 100%를 절감할 수 있다.
종래의 단축질소 제거공정은 암모니아성 질소를 아질산성 질소로 산화시키는 1단계 및 생성된 아질산성 질소를 이용하여 암모니아성 질소를 산화하는 2단계(혐기성암모늄산화, ANAMMOX: Anaerobic Ammonium Oxidation)로 이루어진다. 혐기성암모늄산화 반응은 혐기성 조건 하에서, 아질산성 질소로 암모니아성 질소를 산화하는 것으로 아래와 같이 수행된다.
1.0NH4 + + 1.32NO2 - + 0.066HCO3 - + 0.13H+
→ 1.02N2 + 0.26NO3 - + 0.066CH2O0.5N0.15 + 2.03H2O
전술한 반응식에서 확인할 수 있듯이, 질소가 제거되기 위해서는 전자수용체로서 아질산성 질소가 필요하다. 이에 종래의 단축질소 제거공정은 폐수 중 암모니아성 질소의 일부(57%)를 아질산성 질소로 산화하는 부분 아질산화 공정이(PN: Partial Nitritation) 선행되어야 한다.
이때, 부분 아질산화 공정이 원활히 수행되기 위해서는 암모늄 산화 미생물(AOB)의 활동이 원활한 반면, 아질산 산화 미생물(NOB)의 활동은 억제되어야 하는 환경이 조성되어야 한다. 양 미생물의 활동은 유리 암모니아(FA)와 유리 아질산(FNA) 각각의 농도에 민감하게 반응하기에, 전술한 환경이 조성되기 위해서는 반응조 내 유리 암모니아의 농도와 유리 아질산의 농도가 적절해야 한다.
그러나 종래의 단축질소 제거공정에서는 유리 암모니아의 농도와 유리 아질산의 농도를 선택적으로 또는 동시에 조절이 곤란하였기 때문에, 원활한 부분 아질산화 공정을 수행하지 못해왔다.
본 발명의 일 실시예는, 유리 암모니아 및 유리 아질산 농도를 조절하여 부분 아질산화를 원활히 수행할 수 있는 회분식 반응조 운전장치 및 방법을 제공하는 데 일 목적이 있다.
본 발명의 일 측면에 의하면, 미생물을 이용해 유입된 폐수 내 암모니아성 질소를 아질산성 질소로 산화시키며, 미생물을 침전시켜 상등수만을 배출하는 회분식 반응조와 유리 암모니아(FA: Free Ammonia)의 농도가 기 설정된 기준치 이상인 유입수를 저장하는 조정조와 알칼리제를 저장하는 약품 저장조 및 상기 회분식 반응조 내 유리 암모니아 농도 및 유리 아질산(FNA: Free Nitrous Acid) 농도를 연산하여, 상기 유리 암모니아 농도 및 상기 유리 아질산 농도가 각각 기 설정된 범위 내를 만족하도록 상기 조정조로부터 유입수가, 상기 약품 저장조로부터 알칼리제가 상기 회분식 반응조로 유입되도록 제어하는 제어부를 포함하는 것을 특징으로 하는 회분식 반응 처리장치를 제공한다.
본 발명의 일 측면에 의하면, 상기 회분식 반응조는 상기 회분식 반응조 내 암모니아성 질소의 농도를 감지하는 제1 센서, 상기 회분식 반응조 내 pH와 온도를 감지하는 제2 센서 및 상기 회분식 반응조 내 질산성 질소의 농도를 감지하는 제3 센서를 포함하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 제어부는 상기 제1 센서, 상기 제2 센서 및 상기 제3 센서의 센싱값을 이용하여 상기 회분식 반응조 내 유리 암모니아 농도 및 유리 아질산 농도를 연산하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 상기 제어부는 상기 유리 암모니아 농도 및 상기 유리 아질산 농도가 각각 기 설정된 범위 내를 만족하도록 제어하여, 유입된 폐수 내 암모니아성 질소와 아질산성 질소의 농도 비율을 기 설정된 비율로 조정하는 것을 특징으로 한다.
본 발명의 일 측면에 의하면, 회분식 반응조 내 각 미생물의 활성 조절을 위해 회분식 반응조의 동작을 제어하는 방법에 있어서, 상기 회분식 반응조 내 유리 암모니아 및 유리 아질산 농도를 연산하는 연산과정과 상기 회분식 반응조 내 유리 암모니아의 농도가 기 설정된 범위 내에 있는지 여부에 따라 상기 회분식 반응조로 유입되는 유입수의 양을 조절하는 제1 조절과정과 상기 회분식 반응조 내 유리 아질산 농도가 기 설정된 수치를 초과하는 경우, 상기 회분식 반응조로 알칼리제가 공급되도록 제어하는 제어과정과 암모니아성 질소와 아질산성 질소의 비율이 기 설정된 비율을 갖는지 확인하여, 기 설정된 비율을 가질 경우 기 설정된 시간동안 침전시키는 침전과정 및 상기 침전과정을 거친 후 상기 회분식 반응조 내 상등수를 기 설정된 비율만큼 외부로 배출하는 배출과정을 포함하는 것을 특징으로 하는 회분식 반응조 제어방법을 제공한다.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 회분식 반응 처리장치 내의 유리 암모니아 및 유리 아질산 농도를 조절하여 암모늄 산화 미생물(AOB)의 활성을 극대화하고 아질산 산화 미생물의 활성을 저해시킬 수 있는 장점이 있다.
또한, 본 발명의 일 측면에 따르면, 암모늄 산화 미생물(AOB)의 활성을 극대화하고 아질산 산화 미생물의 활성을 저해시킴으로써, 고농도 질소를 함유하고 있는 폐수의 부분 아질산화 성능을 극대화할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 고농도 질소를 함유하고 있는 폐수 내 질소 제거장치의 구성을 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 회분식 반응 처리장치의 구성을 도시한 도면이다.
도 3은 유리 아질산 농도에 따른 암모니아성 질소의 산화 속도를 도시한 그래프이다.
도 4는 유리 암모니아 농도에 따른 암모니아성 질소의 산화 속도를 도시한 그래프이다.
도 5는 본 발명의 일 실시예에 따른 회분식 반응 처리장치 내 반응시간에 따른 pH 및 유리 암모니아 농도의 변화를 도시한 그래프이다.
도 6은 본 발명의 일 실시예에 따른 회분식 반응 처리장치 내 반응시간에 따른 pH 및 유리 아질산 농도의 변화를 도시한 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호간 모순되지 않는 범위 내에서 공유될 수 있다.
도 1은 본 발명의 일 실시예에 따른 고농도 질소를 함유하고 있는 폐수 내 질소 제거장치의 구성을 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 질소 제거장치(100)는 회분식 반응 처리장치(110, 이하에서 '처리장치'로 약칭함), 혼합 조정조(120) 및 아나목스 반응조(130)를 포함한다. 질소 제거장치(100)는 하나의 장치로 구현되어 전술한 구성을 포함하고 있을 수도 있고, 전술한 각 구성이 하나의 장치나 공정으로 구현될 수도 있다.
처리장치(110)는 외부로부터 고농도의 질소를 갖는 폐수 및 공기를 유입받아, 폐수 내 암모니아성 질소의 농도와 아질산성 질소의 농도 비를 기 설정된 비율로 조정한다. 처리장치(110)로는 외부로부터 고농도의 질소, 특히, 고농도의 유리 암모니아 농도를 갖는 폐수가 유입된다. 예를 들어, 처리장치(110)로 유입되는 (전술한) 폐수는 혐기 소화를 거친 슬러지를 탈수하여 나오는 탈리액일 수 있다. 처리장치(110)로는 이처럼 고농도의 질소를 갖는 폐수가 유입된다. 이와 함께, 암모니아성 질소를 아질산성 질소로 산화시킬 수 있도록 처리장치(110)로는 공기 (또는 산소)가 유입된다. 처리장치(110)는 회분식 반응조(SBR: Sequencing Batch Reactor, 이하에서 '반응조'라 약칭함)를 이용하여 부분 아질산화를 수행한다. 이때, 처리장치(110)는 암모니아성 질소의 농도와 아질산성 질소의 농도가 기 설정된 비율이 될 때까지만 부분 아질산화를 수행한다. 이를 위해, 처리장치(110)는 암모니아성 질소의 농도와 아질산성 질소의 농도에 영향을 미치는, 반응조 내 유리 암모니아(FA: Free Ammonia) 및 유리 아질산(FNA: Free Nitrous Acid) 농도를 정밀하게 판단하고 제어한다.
혼합 조정조(120)는 처리장치(110)를 거친 폐수를 유입받아 저장하며, 아나목스 반응조(130)로 아나목스 반응조(130)가 처리할 수 있는 폐수의 적정량을 공급한다. 처리장치(110)가 처리하여 배출하는 폐수의 양과 처리시간이 아나목스 반응조(130)의 그것과 일치하지 않을 수 있다. 이에, 혼합 조정조(120)는 양자(110, 130)의 사이에 배치되어, 아나목스 반응조(130)가 처리할 수 있는 양의 폐수만을 아나목스 반응조(130)로 공급한다.
아나목스 반응조(130)는 처리장치(110)를 거쳐 혼합 조정조(120)에서 제공되는 폐수를 유입받아, 폐수 내 질소를 제거한다. 아나목스 반응조(130)는 내부에 아나목스(ANAMOX) 미생물을 포함하여, 아나목스 반응을 유도한다. 아나목스 반응이란 혐기 조건(무산소 조건) 하에서 아나목스 미생물이 아질산성 질소로 암모니아성 질소를 산화시키는 반응에 해당한다. 이에, 암모니아성 질소가 질소 기체로 탈기되며, 폐수 내 질소가 제거된다. 아나목스 반응은 다음과 같다.
1.0NH4 + + 1.32NO2 - + 0.066HCO3 - + 0.13H+
→ 1.02N2 + 0.26NO3 - + 0.066CH2O0.5N0.15 + 2.03H2O
아나목스 미생물은 별도의 유기물이나 산소 소모 없이, 질소를 탈기시킨다. 아나목스 반응조(130)는 질소의 제거 후 방류한다.
도 2는 본 발명의 일 실시예에 따른 회분식 반응 처리장치의 구성을 도시한 도면이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 처리장치(110)는 유량 조정조(210), 암모니아성 질소 감지센서(215), 유입펌프(220), 유량계(225), 반응조(230), 제어부(240), 약품 저장조(250) 및 공급펌프(255)를 포함한다.
유량 조정조(210)는 상대적으로 고농도의 유리 암모니아를 포함하는 유입수를 저장하며, 제어부(240)의 제어에 따라 반응조(230)로 유입수를 공급한다.
유량 조정조(210)는 반응조(230)로 유입되는 폐수보다 상대적으로 고농도의 유리 암모니아를 포함하는 유입수(폐수)를 저장한다. 유입수의 반응조(230)로의 원활한 공급을 위해, 유량 조정조(210)는 반응조(230)보다 높은 유리 암모니아 농도를 갖는 폐수를 외부로부터 유입받아 저장해 둔다.
유량 조정조(210)는 제어부(240)의 제어에 따라 반응조(230)로 유입수를 공급한다. 반응조(230) 내 유리 암모니아의 농도가 암모늄 산화 미생물의 활성이 원활할 수 있는 농도범위 내에 존재할 수 있도록, 유량 조정조(210)는 반응조(230)로 기 설정된 양의 유입수를 공급한다. 이때, 유리 암모니아의 농도가 지나치게 높을 경우, 반응조(230) 내 암모늄 산화 미생물(AOB)의 활성이 저해된다. 한편, 암모늄 산화 미생물(AOB)의 기질로 사용되는 유리 암모니아의 농도가 지나치게 낮더라도 반응조(230) 내 암모늄 산화 미생물(AOB)의 활성이 저해된다. 이에, 반응조(230) 내 유리 암모니아의 농도가 지나치게 낮을 경우, 유량 조정조(210)는 제어부(240)의 제어를 받아 반응조(230)로의 유입수 공급량을 기 설정된 양보다 증량하여 공급한다. 유입수의 공급으로 반응조(230) 내 유리 암모니아의 농도는 상승할 수 있다. 반대로, 반응조(230) 내 유리 암모니아의 농도가 지나치게 높을 경우, 유량 조정조(210)는 제어부(240)의 제어를 받아 반응조(230)로의 유입수 공급량을 기 설정된 양보다 감량하여 공급한다. 이에, 반응조(230) 내 유리 암모니아의 농도가 감소하게 된다.
암모니아성 질소 감지센서(215)는 유량 조정조(210) 내에 배치되어, 유입수의 암모니아성 질소의 농도를 감지한다. 암모니아성 질소 감지센서(215)는 유량 조정조(210) 내 유입수의 암모니아성 질소의 농도를 감지하여 제어부(240)로 전달한다. 이에, 제어부(240)가 유입수 내 암모니아성 질소의 농도를 파악하여, 유입수의 유리 암모니아 농도를 연산할 수 있도록 한다.
도시되지 않았으나, 유량 조정조(210) 내에는 pH 및 온도 감지센서(미도시)가 추가로 배치될 수 있다. pH 및 온도 감지센서(미도시)는 유량 조정조(210) 내 유입수의 pH 및 온도를 센싱하여 제어부(240)로 전달함으로써, 제어부(240)가 유입수의 유리 암모니아의 농도를 연산하도록 할 수 있다.
유입펌프(220)는 제어부(240)의 제어를 받아, 유량 조정조(210) 내 유입수를 반응조(230)로 유입시킨다. 유입펌프(220)는 제어부(240)의 제어에 따라 유량 조정조(210) 내 유입수를 반응조(230)로 유입시키거나 유입을 중단시킨다.
유량계(225)는 유입펌프(220)에 의해 반응조(230)로 유입되는 유입수의 유량을 측정한다. 유량계(225)는 반응조(230)로 유입되는 유입수의 유량을 측정하여 제어부(240)로 제공한다. 제어부(240)는 유량계(225)의 측정값을 토대로, 얼마만큼의 유입수가 반응조(230)로 유입되었는지를 파악할 수 있으며, 이에, 유입펌프(220)의 동작(반응조로의 유입수의 유입 또는 유입 중단)을 제어할 수 있다.
반응조(230)는 고농도의 질소를 함유하고 있는 폐수를 유입받아 암모니아성 질소와 아질산성 질소의 농도를 조정한다.
반응조(230)는 산소 유입구(231), 배출구(232), 암모니아성 질소 감지센서(233), pH 및 온도 감지센서(234), 질산성 질소 감지센서(235) 및 고형물 농도 감지센서(236)를 포함한다.
반응조(230)는 회분식 반응 반응조(SBR)로 구현되어, 유입된 폐수 내 암모니아성 질소를 부분 아질산화시킨다. 제어부(240)의 제어에 따라, 반응조(230)는 폐수를 유입받아 산소와 미생물(주로, 암모늄 산화 미생물)을 반응시킨다. 반응조(230)는 미생물들의 유출을 방지하기 위해 일정 시간동안 침전시키며, 침전 후 일정 비율의 상등수를 외부(아나목스 반응조)로 배출한다. 이러한 과정을 거치며 반응조(230)는 부분 아질산화를 수행하며, 부분 아질산화된 폐수를 아나목스 반응조(130)로 배출한다. 배출하지 않고 잔류하는 침전물(미생물)들과 일부 폐수는 새로 유입되는 폐수와 함께 섞이며 다시 반응조(230) 내에서 처리된다.
산소 유입구(231)는 제어부(240)의 제어에 따라 반응조(230) 내로 산소를 유입시킨다. 산소 유입구(231)은 반응조(230) 내부로만 유체를 이동시키며, 외부로부터 산소를 반응조(230) 내로 유입시킨다.
배출구(232)는 반응조(230)의 일정 높이에 설치되어, 제어부(240)의 제어에 따라 침전 후 상등수를 외부로 배출한다. 배출구(232)는 반응조(230)의 일정 높이에 설치되어, 일정 비율의 상등수만을 배출한다. 반응조(230)로 유입된 모든 (반응 후의) 폐수가 배출된다면, 반응조(230) 내 존재하는 미생물 모두가 함께 배출되는 문제가 발생할 수 있다. 이에, 일정 비율의 상등수는 반응조(230) 내에 잔류할 수 있도록, 배출구(232)는 반응조(230)의 일정 높이에 설치된다.
암모니아성 질소 감지센서(233)는 반응조(230) 내 폐수 또는 폐수/잔류수의 암모니아성 질소의 농도를 감지한다. 암모니아성 질소의 농도는 제어부(240)가 반응을 종료하여 배출할 타이밍을 계산함에 있어 필요하고, 제어부(240)가 반응조(230) 내 유리 암모니아의 농도를 계산함에 있어 필요하다. 제어부(240)가 전술한 정보를 계산할 수 있도록, 암모니아성 질소 감지센서(233)는 반응조(230) 내의 암모니아성 질소의 농도를 감지하여 이를 제어부(240)로 전달한다.
pH 및 온도 감지센서(234)는 반응조(230) 내 폐수 또는 폐수/잔류수의 pH 및 온도를 감지한다. 특히, 반응조(230) 내 폐수 또는 폐수/잔류수의 pH는 제어부(240)가 반응조(230) 내 유리 암모니아의 농도를 계산함에 있어 필요한 정보에 해당한다. 이에, pH 및 온도 감지센서(234)는 반응조(230) 내의 pH를 감지하여 이를 제어부(240)로 전달한다.
질산성 질소 감지센서(235)는 반응조(230) 내 폐수 또는 폐수/잔류수의 질산성 질소의 농도를 감지한다. 질산성 질소는 반응조(230) 내 아질산 산화 미생물(NOB)에 의해 아질산성 질소가 산화됨으로써 발생하는 성분으로서, 암모니아성 질소로부터 파생된다. 질산성 질소가 많아진다는 것은, 반응조(230) 내 아질산 산화 미생물(NOB)이 활성을 띄어 축적되었다는 것을 의미한다. 이 경우는 반응조(230)내 ph가 낮아져 유리 암모니아 농도가 기준치보다 낮아진 상태를 의미한다. 제어부(240)는 공급펌프(255)를 가동시켜 반응조(230)내 pH를 상승시킴으로써, 반응조 내 유리암모니아 농도를 기준치로 맞출 수 있다.
고형물 농도 감지센서(236)는 반응조(230) 내 침전된 고형물 농도를 감지한다. 고형물 농도 감지센서(236)는 고형물 농도를 감지함으로써, 제어부(240)가 침전이 온전히 수행되었는지 여부를 판단할 수 있도록 한다. 고형물 농도 감지센서(236)는 반응조(230) 내 고형물 농도를 감지하여 제어부(240)로 전달한다.
제어부(240)는 각 센서(215, 234 및 235)의 센싱값을 토대로, 반응조(230)로의 유입수 또는 약품의 유입이나 반응조(230) 내 상등수의 배출을 제어한다.
반응조(230) 내로 유입된 폐수나 잔류하고 있던 잔류수 내의 암모늄 산화 미생물(AOB) 및 아질산 산화 미생물(NOB)의 활성은 유리 암모니아의 농도 및 유리 아질산의 농도에 많은 영향을 받는다. 이는 도 3 및 도 4에 도시되어 있다.
도 3은 유리 아질산 농도에 따른 암모니아성 질소의 산화 속도를 도시한 그래프이고, 도 4는 유리 암모니아 농도에 따른 암모니아성 질소의 산화 속도를 도시한 그래프이다.
도 3을 참조하면, 아질산성 질소는 암모늄 산화 미생물(AOB)의 기질이 아니기 때문에, 낮은 유리 아질산 농도에서 유리 아질산은 암모늄 산화 미생물의 활성(이화작용 및 동화작용)에 큰 영향을 미치지 않는다. 그러나 유리 아질산 농도가 0.1mg/L를 넘어가며 아질산의 독성이 암모늄 산화 미생물에 영향을 미치게 된다. 이에, 암모늄 산화 미생물의 활성이 저하되기 시작한다. 유리 아질산 농도가 0.25mg/L를 넘어가면, 암모늄 산화 미생물의 활성은 정지된다.
도 4를 참조하면, 암모니아성 질소는 암모늄 산화 미생물(AOB)의 기질이므로, 유리 암모니아의 농도가 5.0mg/L 이하에서는 암모늄 산화 미생물의 활성이 저하된다. 한편, 유리 암모니아의 농도가 20mg/L를 초과하게 되면, 암모니아의 독성이 암모늄 산화 미생물에 영향을 미치게 된다. 이에, 유리 암모니아의 농도가 20mg/L를 초과하면서부터 암모늄 산화 미생물의 활성이 저하되기 시작한다. 유리 암모니아의 농도가 150mg/L를 초과할 경우 암모늄 산화 미생물의 활성은 상당히 저하되기 시작한다.
한편, 아질산 산화 미생물(NOB)은 유리 아질산의 농도가 0.02mg/L 이상에서, 유리 암모니아의 농도가 1mg/L 이하에서 활성이 저하된다.
전술한 점을 참조하면, 반응조 내 폐수나 잔류수의 유리 암모니아 농도 및 유리 아질산 농도가 암모늄 산화 미생물 및 아질산 산화 미생물의 활성에 지대한 영향을 미치게 된다. 온전한 부분 아질산화가 수행되기 위해서는, 암모늄 산화 미생물의 활성이 저해되지 않으면서, 아질산 산화 미생물의 활성은 저해되는 환경이 조성되어야 한다.
한편, 제어부(240)의 별도의 제어(약품이나 유입수의 유입)가 없다면, 폐수 내 시간에 따른 pH와 유리 암모니아 또는 유리 아질산의 농도는 도 5 및 도 6과 같이 변화한다.
도 5는 본 발명의 일 실시예에 따른 회분식 반응 처리장치 내 반응시간에 따른 pH 및 유리 암모니아 농도의 변화를 도시한 그래프이고, 도 6은 본 발명의 일 실시예에 따른 회분식 반응 처리장치 내 반응시간에 따른 pH 및 유리 아질산 농도의 변화를 도시한 그래프이다.
도 5를 참조하면, 반응조(230)로 폐수가 유입될 경우, 폐수 내의 고농도 암모니아성 질소로 인해 반응조(230) 내 유리 암모니아의 농도는 급격히 증가한다. 고 농도의 유리 암모니아에 의해, 아질산 산화 미생물(NOB) 뿐만 아니라 암모늄 산화 미생물(AOB)도 저해를 받는다. 시간이 경과함에 따라, 차츰 암모늄 산화 미생물(AOB)에 의한 암모늄 산화 반응이 진행되면서, 알칼리도가 소모되고 결과적으로 아질산성 질소(NO2-N)의 농도는 증가하고 pH는 저하된다.
도 6을 참조하면, 암모늄 산화 미생물(AOB)에 의한 산화 반응이 진행되면서, 유리 아질산 농도가 차츰 증가하며, 일정 시간 이후에는 암모늄 산화 미생물의 활성을 저해하고 활성을 중단시키는 수준의 농도까지 상승하게 된다.
도 5 및 6을 참조하면, 별도의 제어부(240)의 제어가 없다면 유리 암모니아의 농도 변화에 따라 암모늄 산화 미생물의 활성이 저해를 받지 않는 동시에, 유리 아질산의 농도 변화에 따라 암모늄 산화 미생물의 활성이 저해를 받지 않는 시간은 굉장히 한정적이다. 도 3 및 4를 참조하여 설명한 농도를 적용해보면, 전체 반응시간 중 30 내지 80분 정도만이 암모늄 산화 미생물의 활성이 저해되지 않으며, 나머지 구간에서는 일정 수준 또는 상당한 활성의 저해가 발생하게 된다.
이처럼, 굉장히 제한적인 암모늄 산화 미생물의 활성 구간을 증가시키기 위해, 제어부(240)는 각 센서(215, 234 및 235)의 센싱값을 토대로, 반응조(230)로 유입되는 유입수의 유량을 제어한다. FA 농도가 암모늄 산화 미생물의 활성을 저하시키는 범위로 진입할 경우, 제어부(240)는 경우에 따라 반응조(230)로 유입되는 유입수의 유량을 감소시키거나 증가시킴으로써 FA 농도를 조절한다. 이에 추가적으로, 반응조(230) 내 알칼리도가 부족할 경우, 제어부(240)는 반응조(230)로의 약품의 유입을 제어하여 알칼리도 및 pH를 조절한다. 제어부(240)는 전술한 바와 같이 제어하며, 반응조(230) 내 상등수의 배출 타이밍을 연산하여 배출을 제어한다.
다시 도 2를 참조하면, 제어부(240)는 각 센서(215, 234 및 235)의 센싱값을 토대로, 반응조(230) 내 유리 암모니아 또는 유리 아질산 농도를 제어한다. 유리 암모니아의 농도와 유리 아질산의 농도는 다음과 같이 연산된다.
Figure PCTKR2021003289-appb-I000001
Figure PCTKR2021003289-appb-I000002
Figure PCTKR2021003289-appb-I000003
Figure PCTKR2021003289-appb-I000004
여기서, Kw는 물의 이온화 상수를, Kb는 암모니아 수용액의 이온화 상수를, Ka는 아질산 수용액의 이온화 상수를 의미한다. 전술한 수식을 참조하면, 유리 암모니아의 농도는 pH가 증가할수록, 폐수의 온도가 증가할수록 증가하는 것을 확인할 수 있다. 또한, 유리 아질산의 농도는 아질산성 질소의 농도가 감소할수록, pH가 증가할수록 감소하는 것을 확인할 수 있다.
이러한 점을 이용하여, 제어부(240)는 반응조(230) 내 유리 암모니아 또는 유리 아질산 농도를 제어한다.
먼저, 유리 암모니아의 농도를 살펴보면, 제어부(240)는 반응조(230) 내 유리 암모니아의 농도를 연산한다. 제어부(240)는 암모니아성 질소 감지센서(233) 및 pH 및 온도 감지센서(234)로부터 각각 수신한 센싱값을 이용하여 유리 암모니아의 농도를 연산한다.
반응조(230) 내 유리 암모니아의 농도가 5mg/L 보다 적을 경우, 암모늄 산화 미생물의 활성이 저해된다. 이에, 제어부(240)는 유량 조정조(210)에서 (평시) 공급되고 있는 기 설정된 양보다 더 많은 양의 유입수가 공급되도록 유입펌프(220)를 제어한다. 제어부(240)는 반응조(230)로 공급되는 유입수의 양을 유량계(225)로부터 피드백받는다. 반대로, 반응조(230) 내 유리 암모니아의 농도가 50mg/L보다 많을 경우, 암모늄 산화 미생물의 활성이 마찬가지로 저해된다. 이에, 제어부(240)는 유량 조정조(210)에서 (평시) 공급되고 있는 기 설정된 양보다 더 적은 양의 유입수가 공급되도록 유입펌프(220)를 제어한다. 이처럼 제어함으로써, 제어부(240)는 반응조(230) 내 유리 암모니아의 농도를 암모늄 산화 미생물의 활성이 원활할 수 있는 농도(10 내지 50mg/L, 보다 바람직하게는 10 내지 20mg/L)로 조정할 수 있다.
이때, 제어부(240)는 유량 조정조(210) 내 저장되어 있는 유입수의 유리 암모니아 농도를 연산하여, 기본적으로 유량 조정조(210)로 공급되는 유입수의 기 설정된 양도 조정할 수 있다. 제어부(240)는 암모니아성 질소 감지센서(215)로부터 유입수의 유리 암모니아의 농도를, 유량 조정조(210) 내 pH 및 온도 감지센서(미도시)로부터 유입수의 pH를 수신하여 유입수의 유리 암모니아 농도를 연산할 수 있다. 유입수의 유리 암모니아 농도가 기 설정된 기준치보다 높을 경우, 유량 조정조(210)로 공급되는 유입수의 기 설정된 양을 감소시킬 수 있다. 반대로, 유입수의 유리 암모니아 농도가 기 설정된 기준치보다 낮을 경우, 유량 조정조(210)로 공급되는 유입수의 기 설정된 양을 증가시킬 수 있다.
한편, 반응조(230) 내 유리 아질산의 농도가 낮을 경우에는 암모늄 산화 미생물의 활성에 영향을 미치지 않으나, 유리 아질산의 농도가 0.1mg/L를 초과하게 될 경우, 암모늄 산화 미생물의 활성이 저해된다. 이에, 제어부(240)는 유리 아질산의 농도를 감소시키기 위해, 약품 저장조(250) 내 저장된 알칼리제가 반응조(230)로 공급될 수 있도록 공급펌프(255)를 제어한다. 알칼리제가 반응조(230)로 공급될 경우, 반응조(230) 내 pH가 증가하게 되어 유리 아질산의 농도가 감소하게 된다. 제어부(240)는 유리 아질산의 농도가 0.1mg/L 이하가 될 때까지, 공급펌프(255)를 제어하여 암모늄 산화 미생물의 활성을 유지한다.
제어부(240)는 전술한 대로 유리 암모니아의 농도와 유리 암모늄의 농도를 제어함으로써, 충분한 시간 동안 암모늄 산화 미생물의 산화가 진행될 수 있도록 한다.
제어부(240)는 충분한 시간 동안 암모늄 산화 미생물의 산화가 진행될 수 있도록 하여, 암모니아성 질소의 농도와 아질산성 질소의 농도가 기 설정된 비율을 갖추도록 제어한다. 후술할 아나목스 반응조(130)는 유기물 및 산소를 소모하지 않고, 암모니아성 질소와 아질산성 질소의 일정 비율을 질소기체로 탈기시킨다. 여기서, 암모니아성 질소와 아질산성 질소의 기 설정된 비율은 1: 1.32이다. 제어부(240)는 아질산성 질소가 암모니아성 질소의 농도에 1.32배가 될 때까지, 암모니아성 질소의 산화가 진행되도록 한다. 해당 비율을 초과하도록 암모니아성 질소의 산화가 진행될 경우, 반응조(230) 내 질소가 아나목스 반응조(130)로부터 온전히 제거되지 못하게 되는 문제가 발생하며, 아질산성 질소 농도의 증가로 아질산 산화 미생물(NOB)의 활성이나 질산성 질소가 증가하게 되는 문제가 발생한다. 이를 위해, 제어부(240)는 아래의 수식을 이용하여 반응조(230) 내 산화 반응의 종료시점을 연산한다.
Figure PCTKR2021003289-appb-I000005
여기서 NH4-N유출은 반응조(230)로부터 아나목스 반응조(130)로 유출될 때의 암모니아성 질소의 농도를, V반응조는 반응조(230) 전체의 부피를, V유입은 반응조(230)로 유입된 폐수의 부피를, NH4-N유입은 반응조(230)로 유입된 폐수 내 암모니아성 질소의 농도를, V잔류는 반응조(230)에서 이전 폐수 처리 후 잔류한 잔류수의 부피를, NH4-N잔류는 반응조(230)에 잔류한 잔류수 내 암모니아성 질소의 농도를, NO3-N반응조는 반응조(230) 내에서 반응이 진행될 때의 질산성 질소의 농도를 의미한다.
즉, 수식의 우항 첫 번째 성분은 반응조(230)로 유입된 폐수 및 잔류수 내의 암모니아성 질소의 농도를, 두 번째 성분은 반응조(230)로 유입된 폐수 및 잔류수 내 아질산성 질소의 농도를, 세 번째 성분은 반응조(230) 내 질산성 질소의 농도를 의미한다. 두 번째 성분에서는 반응조(230)로 유입된 폐수 및 잔류수 내의 암모니아성 질소의 농도에 1.32(아질산성 질소의 비율)/2.32(암모니아성 질소 및 아질산성 질소의 총 합)를 곱해줌으로써, 산화되어야 할 기 설정된 비율의 아질산성 질소의 농도가 연산된다. 반응조(230) 내 총 암모니아성 질소의 농도로부터 기 설정된 비율만큼 산화된 아질산성 질소의 농도 및 아질산성 질소로부터 추가로 산화된 질산성 질소의 농도를 차감함으로써, 제어부(240)는 최종적으로 산화반응을 종료하고 배출할 타이밍에서의 암모니아성 질소의 농도를 연산할 수 있다. 반응조(230) 내에 이보다 더 많은 양의 암모니아성 질소가 잔류한다면, 아나목스 반응에 필요한 충분한 양의 아질산성 질소가 만들어지지 않았음을 의미한다. 반대로, 반응조(230) 내에 이보다 부족한 양의 암모니아성 질소만이 잔류한다면, 지나치게 많이 아질산성 질소로 산화되어, 아나목스 반응으로 충분히 아질산성 질소가 제거될 수 없음을 의미한다. 이에, 제어부(240)는 반응조(230) 내 암모니아성 질소의 농도가 전술한 수식으로 연산되는 암모니아성 질소의 농도를 갖는지 여부로 산화반응의 종료 및 배출구(232)로의 상등수의 배출 타이밍을 연산한다.
제어부(240)는 전술한 수식 내 두 번째 성분과 같이 아질산성 질소를 연산함으로써, 반응조(230) 내 아질산성 질소 감지 센서가 포함되지 않을 수 있다. 아직까지 정확히 아질산성 질소를 감지하는 센서는 존재하지 않거나 센싱값이 부정확한 불안정성이 존재한다. 이에, 제어부(240)가 정확히 산화 반응의 종료 및 상등수의 배출 타이밍을 연산하지 못할 수 있다. 이러한 불안을 해소하고자, 제어부(240)는 아질산성 질소의 농도는 암모니아성 질소의 농도로부터 도출한다.
약품 저장조(250)는 알칼리제를 저장하여, 반응조(230)로 알칼리제가 공급될 수 있도록 한다. 반응조(230) 내 폐수 또는 폐수/잔류수의 pH를 증가시켜 유기 아질산 농도를 감소시킬 수 있도록, 약품 저장조(250)는 반응조(230)로 공급될 알칼리제를 저장해 둔다.
공급펌프(255)는 제어부(240)의 제어에 따라 약품 저장조(250) 내 알칼리제를 반응조(230)로 공급한다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 특허는 2019년도 대한민국 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구 결과입니다(과제 고유번호: 1415168052, 과제명: 도시·생활계 바이오매스 기반 바이오가스 생산 시설의 안정성 및 효율 향상 실증 연구).
CROSS-REFERENCE TO RELATED APPLICATION
*본 특허출원은 2020년 11월 20일 한국에 출원한 특허출원번호 제10-2020-0157024호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (5)

  1. 미생물을 이용해 유입된 폐수 내 암모니아성 질소를 아질산성 질소로 산화시키며, 미생물을 침전시켜 상등수만을 배출하는 회분식 반응조;
    유리 암모니아(FA: Free Ammonia)의 농도가 기 설정된 기준치 이상인 유입수를 저장하는 유량 조정조;
    알칼리제를 저장하는 약품 저장조; 및
    상기 회분식 반응조 내 유리 암모니아 농도 및 유리 아질산(FNA: Free Nitrous Acid) 농도를 연산하여, 상기 유리 암모니아 농도 및 상기 유리 아질산 농도가 각각 기 설정된 범위 내를 만족하도록 상기 유량 조정조로부터 유입수가, 상기 약품 저장조로부터 알칼리제가 상기 회분식 반응조로 유입되도록 제어하는 제어부
    를 포함하는 것을 특징으로 하는 회분식 반응 처리장치.
  2. 제1항에 있어서,
    상기 회분식 반응조는,
    상기 회분식 반응조 내 암모니아성 질소의 농도를 감지하는 제1 센서, 상기 회분식 반응조 내 pH와 온도를 감지하는 제2 센서 및 상기 회분식 반응조 내 질산성 질소의 농도를 감지하는 제3 센서를 포함하는 것을 특징으로 하는 회분식 반응 처리장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 제1 센서, 상기 제2 센서 및 상기 제3 센서의 센싱값을 이용하여 상기 회분식 반응조 내 유리 암모니아 농도 및 유리 아질산 농도를 연산하는 것을 특징으로 하는 회분식 반응 처리장치.
  4. 제1항에 있어서,
    상기 제어부는,
    상기 유리 암모니아 농도 및 상기 유리 아질산 농도가 각각 기 설정된 범위 내를 만족하도록 제어하여, 유입된 폐수 내 암모니아성 질소와 아질산성 질소의 농도 비율을 기 설정된 비율로 조정하는 것을 특징으로 하는 회분식 반응 처리장치.
  5. 회분식 반응조 내 각 미생물의 활성 조절을 위해 회분식 반응조의 동작을 제어하는 방법에 있어서,
    상기 회분식 반응조 내 유리 암모니아 및 유리 아질산 농도를 연산하는 연산과정;
    상기 회분식 반응조 내 유리 암모니아의 농도가 기 설정된 범위 내에 있는지 여부에 따라 상기 회분식 반응조로 유입되는 유입수의 양을 조절하는 제1 조절과정;
    상기 회분식 반응조 내 유리 아질산 농도가 기 설정된 수치를 초과하는 경우, 상기 회분식 반응조로 알칼리제가 공급되도록 제어하는 제어과정;
    암모니아성 질소와 아질산성 질소의 비율이 기 설정된 비율을 갖는지 확인하여, 기 설정된 비율을 가질 경우 기 설정된 시간동안 침전시키는 침전과정; 및
    상기 침전과정을 거친 후 상기 회분식 반응조 내 상등수를 기 설정된 비율만큼 외부로 배출하는 배출과정
    을 포함하는 것을 특징으로 하는 회분식 반응조 제어방법.
PCT/KR2021/003289 2020-11-20 2021-03-17 고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법 WO2022108005A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0157024 2020-11-20
KR1020200157024A KR102281691B1 (ko) 2020-11-20 2020-11-20 고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법

Publications (1)

Publication Number Publication Date
WO2022108005A1 true WO2022108005A1 (ko) 2022-05-27

Family

ID=77124754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003289 WO2022108005A1 (ko) 2020-11-20 2021-03-17 고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법

Country Status (2)

Country Link
KR (1) KR102281691B1 (ko)
WO (1) WO2022108005A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526149B1 (ko) * 2021-08-31 2023-05-17 피앤씨바이오매스(주) 고농도의 질소 처리가 가능한 축산 폐수 처리 시스템 및 방법
KR102396268B1 (ko) 2021-11-18 2022-05-11 주식회사 대성그린테크 물리화학적 및 생물학적 공정이 결합된 고농도 질소함유 폐수처리시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048638A (ko) * 2001-12-12 2003-06-25 주식회사 에코아이티이십일 암모니아성 질소 및 질산성 질소 분석기를 이용한 질산화탈질 자동제어 시스템
KR100980464B1 (ko) * 2010-03-23 2010-09-07 미라클워터 주식회사 하수고도처리장치
KR20110027457A (ko) * 2009-09-10 2011-03-16 주식회사 에코비젼 연속회분식 반응기 내의 폐수 질산화 반응을 이용한 폐수처리방법
KR20130127459A (ko) * 2010-10-18 2013-11-22 베올리아 워터 솔루션즈 앤드 테크놀러지스 써포트 아질산염 농도의 인-라인 측정을 포함하는 연속 회분식 반응기에서의 물을 처리하는 방법
KR101830902B1 (ko) * 2017-02-23 2018-03-30 주식회사 부강테크 암모늄 산화 박테리아 그래뉼 생성조를 연계한 회분식 부분 아질산화 반응조 및 혐기성 암모늄 산화를 이용한 고농도 질소 오폐수 처리장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048638A (ko) * 2001-12-12 2003-06-25 주식회사 에코아이티이십일 암모니아성 질소 및 질산성 질소 분석기를 이용한 질산화탈질 자동제어 시스템
KR20110027457A (ko) * 2009-09-10 2011-03-16 주식회사 에코비젼 연속회분식 반응기 내의 폐수 질산화 반응을 이용한 폐수처리방법
KR100980464B1 (ko) * 2010-03-23 2010-09-07 미라클워터 주식회사 하수고도처리장치
KR20130127459A (ko) * 2010-10-18 2013-11-22 베올리아 워터 솔루션즈 앤드 테크놀러지스 써포트 아질산염 농도의 인-라인 측정을 포함하는 연속 회분식 반응기에서의 물을 처리하는 방법
KR101830902B1 (ko) * 2017-02-23 2018-03-30 주식회사 부강테크 암모늄 산화 박테리아 그래뉼 생성조를 연계한 회분식 부분 아질산화 반응조 및 혐기성 암모늄 산화를 이용한 고농도 질소 오폐수 처리장치

Also Published As

Publication number Publication date
KR102281691B1 (ko) 2021-07-26

Similar Documents

Publication Publication Date Title
WO2018221924A1 (ko) 하수처리장 수처리공정에서 혐기성 암모늄 산화 공법 기반의 하수처리 시스템
WO2012067453A2 (ko) 생물막 및 호기성 그래뉼 슬러지를 이용한 하·폐수처리 장치 및 방법
WO2022108005A1 (ko) 고농도 질소폐수를 처리하는 회분식 반응조의 유리암모니아 및 유리아질산 농도를 조절하여 최적 부분아질산 반응을 유도하는 운전장치 및 방법
BR112015005607B1 (pt) Método e aparelho para remoção de nitrogênio no tratamento de água de rejeito
WO2022108140A1 (ko) 여재가 투입된 회분식 반응조를 이용한 부분 아질산화와 이를 이용한 단축질소제거 오폐수 처리장치 및 시스템
KR20130127459A (ko) 아질산염 농도의 인-라인 측정을 포함하는 연속 회분식 반응기에서의 물을 처리하는 방법
WO2021002693A1 (ko) 기존 생물학적 질소·인 제거공정의 반응조 모양 및 반송방법 개량과 혐기성암모늄산화공정(anammox)과의 조합을 통한 오·폐수내의 질·소인 제거방법
WO2013084973A1 (ja) 窒素含有有機性廃水の処理システム及び処理方法
CN111186960A (zh) 一种禽畜粪便污水处理工艺
Schneider et al. Nitrous oxide formation during nitritation and nitrification of high-strength wastewater
WO2017052167A1 (ko) 생물여과공정을 단축질소제거 공정의 전처리로 채용한 하폐수 처리장치
Christensson et al. ANITA™ Mox–A BioFarm Solution for Fast Start-up of Deammonifying MBBRs
WO2013084972A1 (ja) 窒素含有有機性廃水の処理システム及び処理方法
WO2021002699A1 (ko) 아질산성 질소 경유의 생물학적 질소·인 제거공정과 혐기성암모늄산화공정(anammox)과의 조합을 통한 오·폐수내의 질·소인 제거방법
CN111960538A (zh) 一种实现低氨氮废水短程硝化-厌氧氨氧化脱氮稳定运行的系统及方法
KR101871931B1 (ko) 하폐수처리 설비의 통합 질소제어 시스템의 운전방법
KR20150064574A (ko) 에너지 절감형 하폐수 처리 시스템 및 그 제어방법
CN213357071U (zh) 一种实现低氨氮废水短程硝化-厌氧氨氧化脱氮稳定运行的系统
WO2016159689A1 (ko) 하이브리드 생물학적 영양염류 처리 시스템
KR100401720B1 (en) Apparatus for treating sewage and wastewater by using anaerobic/anoxic reactor, anoxic/aerobic reactor and membrane
CN109179649B (zh) 一种从亚硝化污泥中快速诱导富集厌氧氨氧化菌的方法
KR100810960B1 (ko) 표준활성슬러지시설을 이용한 경제적인 질소, 인 제거장치
CN109399805A (zh) 一种循环式生物滤池污水处理工艺及装置
JP3608256B2 (ja) 循環式硝化脱窒法の運転制御方法
JPH1157771A (ja) 生物学的水処理方法及び設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894784

Country of ref document: EP

Kind code of ref document: A1