WO2022107762A1 - Optical connection structure - Google Patents

Optical connection structure Download PDF

Info

Publication number
WO2022107762A1
WO2022107762A1 PCT/JP2021/042073 JP2021042073W WO2022107762A1 WO 2022107762 A1 WO2022107762 A1 WO 2022107762A1 JP 2021042073 W JP2021042073 W JP 2021042073W WO 2022107762 A1 WO2022107762 A1 WO 2022107762A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
longitudinal direction
printed wiring
thickness direction
optical fiber
Prior art date
Application number
PCT/JP2021/042073
Other languages
French (fr)
Japanese (ja)
Inventor
直人 古根川
誠喜 寺地
正高 山路
雄一 辻田
直幸 田中
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022107762A1 publication Critical patent/WO2022107762A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present invention relates to an optical connection structure.
  • An optical connection structure for connecting an optical waveguide and an optical fiber is known.
  • an optical connection structure including a substrate, an optical waveguide arranged on one side in the thickness direction of the substrate, an optical fiber having an end surface facing the end surface of the optical waveguide, and an adhesive is proposed (for example, the following). See Patent Document 1).
  • Two adhesives having an optical connection structure are provided. One adhesive contacts the end face of the optical waveguide and the end face of the optical fiber. The other adhesive contacts the concave surface of the recess formed in the substrate and the peripheral surface of the optical fiber. The two adhesives are independent of each other.
  • the present invention provides an optical connection structure that suppresses deformation of an optical fiber, improves optical connection reliability, and has excellent adhesive strength.
  • the present invention (1) is one that adheres an optical waveguide, an optical fiber optically connected to the optical waveguide, a substrate adjacent to the optical waveguide, and the optical waveguide, the optical fiber, and the substrate. Includes an optical connection structure with an adhesive member.
  • the adhesive member shrinks, there is only one adhesive member, which adheres the optical waveguide, the optical fiber, and the substrate. Therefore, it is possible to suppress the deformation of the optical fiber caused by the difference in the contracted state of the two adhesive members as in Patent Document 1. Therefore, the optical connection reliability can be improved. Since there is only one adhesive member in the optical connection structure, it is possible to suppress a decrease in adhesive strength.
  • the optical connection structure suppresses the deformation of the optical fiber, improves the optical connection reliability, and has excellent adhesive strength.
  • the present invention (2) includes the optical connection structure according to (1), wherein the substrate includes a printed wiring board.
  • the board includes a printed wiring board.
  • the printed wiring board is rigid. Therefore, the reliability of the optical connection between the optical waveguide and the optical fiber can be further improved.
  • the present invention (3) includes the optical connection structure according to (1) or (2), wherein the substrate includes an electric circuit board arranged on the main surface of the optical waveguide.
  • the substrate includes an electric circuit board arranged on the main surface of the optical waveguide. Since the optical waveguide and the electric circuit board that can support the main surface of the optical waveguide are bonded by one adhesive member, the strength is excellent.
  • the optical waveguide includes a core and a clad covering the core, and the substrate includes a support plate made of the same material as the clad.
  • the optical connection according to (1). Includes structure.
  • the substrate includes a support plate made of the same material as the clad. Therefore, the support plate can be easily formed. Further, the support plate is excellent in strength.
  • the present invention (5) includes the optical connection structure according to (1), wherein the substrate includes a pedestal.
  • the substrate includes a pedestal. Therefore, the pedestal ensures that the optical waveguide and the optical fiber are aligned. Therefore, the optical connection reliability can be improved.
  • the present invention (6) further includes a positioning member for positioning the optical fiber, and the positioning member adheres to the optical waveguide, the optical fiber, and the substrate by the one adhesive member (1).
  • the optical connection structure according to any one of (5) is included.
  • This optical connection structure further includes a positioning member for positioning the optical fiber. Therefore, the positioning member ensures that the optical waveguide and the optical fiber are aligned. Therefore, the optical connection reliability can be improved.
  • the optical connection structure of the present invention suppresses deformation of the optical fiber, improves optical connection reliability, and has excellent adhesive strength.
  • FIG. 1A and 1B are the first embodiments of the optical connection structure of the present invention.
  • FIG. 1A is a plan view.
  • FIG. 1B is a bottom view.
  • 2C to 2E are the first embodiments of the optical connection structure of the present invention.
  • FIG. 2C is a cross-sectional view taken along the line XX of FIG. 1A.
  • FIG. 2D is a cross-sectional view taken along the line YY of FIGS. 1A and 1B.
  • FIG. 2E is a cross-sectional view taken along the line ZZ of FIG. 2C.
  • FIG. 3 is a modification of the first embodiment.
  • FIG. 3 is a cross-sectional view corresponding to FIG. 2C.
  • FIG. 4 is a modification of the first embodiment.
  • FIG. 4 is a cross-sectional view corresponding to FIG. 2C.
  • FIG. 5 is a modification of the first embodiment.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 2E.
  • 6A and 6B are second embodiments of the optical connection structure of the present invention.
  • FIG. 6A is a plan view.
  • FIG. 6B is a cross-sectional view taken along the line XX of FIG. 6A.
  • FIG. 7 is a modification of the second embodiment.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 6B.
  • FIG. 8 is a cross-sectional view of a third embodiment of the optical connection structure of the present invention.
  • FIG. 9 is a cross-sectional view of a modified example of the third embodiment.
  • FIG. 10 is a cross-sectional view of a modified example of the third embodiment.
  • FIG. 11 is a cross-sectional view of a modified example of the third embodiment.
  • FIG. 12 is a cross-sectional view of a modified example of the third embodiment.
  • FIG. 13 is a cross-sectional view of a fourth embodiment of the optical connection structure of the present invention.
  • FIG. 14 is a cross-sectional view of a modified example of the fourth embodiment.
  • FIG. 15 is a cross-sectional view of a modified example of the fourth embodiment.
  • FIG. 16 is a cross-sectional view of a modified example of the fourth embodiment.
  • FIG. 17 is a cross-sectional view of a modified example of the fourth embodiment.
  • FIG. 18 is a cross-sectional view of a fifth embodiment of the optical connection structure of the present invention.
  • FIG. 19 is a cross-sectional view of a modified example of the fifth embodiment.
  • FIG. 20 is a cross-sectional view of a sixth embodiment of the optical connection structure of the present invention.
  • FIG. 21 is a cross-sectional view of a modified example of the sixth embodiment.
  • FIG. 22 is a cross-sectional view of the seventh embodiment of the optical connection structure of the present invention.
  • FIG. 23 is a cross-sectional view of a modified example of the seventh embodiment.
  • FIG. 24 is a cross-sectional view of an eighth embodiment of the optical connection structure of the present invention.
  • FIG. 25 is a cross-sectional view of a modified example of the eighth embodiment.
  • the optical connection structure 1 has, for example, a plate shape extending in one direction.
  • the direction in which the optical connection structure 1 extends is referred to as a longitudinal direction.
  • the optical connection structure 1 includes a photoelectric composite transmission unit 2, an optical fiber member 3, and an adhesive member 4.
  • the photoelectric composite transmission unit 2 has a plate shape long in the longitudinal direction.
  • the photoelectric composite transmission unit 2 includes an optical waveguide 5, an electric circuit board 6 as an example of a substrate, a photoelectric conversion unit 7, a printed wiring board 8 as an example of a substrate, and an electric connector 9.
  • the optical waveguide 5 has a film shape extending in the longitudinal direction.
  • the optical waveguide 5 has a substantially rectangular shape when viewed from the bottom.
  • the optical waveguide 5 includes an underclad 11 as an example of the cladding, a core 12, and an overclad 13.
  • the underclad 11 has the same bottom view shape as the optical waveguide 5.
  • the core 12 is arranged on the other side of the underclad 11 in the thickness direction.
  • a plurality of cores 12 are provided corresponding to a plurality of fiber cores 33 described later.
  • the plurality of cores 12 are arranged to face each other at intervals in the width direction.
  • the width direction is orthogonal to the longitudinal direction and the thickness direction. After that, the width direction is the same as described above.
  • the core 12 contacts a part of the other surface of the underclad 11 in the thickness direction and does not contact the rest.
  • Each of the plurality of cores 12 extends in the longitudinal direction.
  • One end surface in the longitudinal direction of the core 12 is flush with one end surface in the longitudinal direction of the underclad 11.
  • a mirror 10 is formed in the middle of the core 12 in the longitudinal direction.
  • the overclad 13 has the same bottom view shape as the underclad 11.
  • the overclad 13 is arranged on the other surface of the underclad 11 in the thickness direction.
  • the overclad 13 covers the core 12. Specifically, the overclad 13 contacts the other surface and side surface of the core 12 in the thickness direction and the rest of the other surface of the underclad 11 in the thickness direction.
  • One end surface in the longitudinal direction of the overclad 13 is flush with one end surface in the longitudinal direction of the underclad 11 and the core 12. As a result, the one end surface 14 in the longitudinal direction of the optical waveguide 5 is single.
  • Examples of the material of the underclad 11, the core 12, and the overclad 13 include a transparent resin.
  • the refractive index of the core 12 is higher than the refractive index of the underclad 11 and the overclad 13.
  • the electric circuit board 6 is arranged on one side (an example of the main surface) in the thickness direction of the optical waveguide 5. That is, the electric circuit board 6 is adjacent to the optical waveguide 5 in the thickness direction.
  • the electric circuit board 6 extends in the longitudinal direction.
  • the electric circuit board 6 includes, for example, a flexible printed circuit board (FPC).
  • the longitudinal length of the electric circuit board 6 is the same as the longitudinal length of the optical waveguide 5. When projected in the thickness direction, the electric circuit board 6 overlaps the entire optical waveguide 5. Specifically, the one end surface and the other end surface in the longitudinal direction of the electric circuit board 6 are flush with the one end surface 14 and the other end surface in the longitudinal direction of the optical waveguide 5, respectively.
  • the width of the electric circuit board 6 is, for example, the same as the width of the optical waveguide 5. The width is the length in the width direction.
  • the electric circuit board 6 includes, for example, a support layer 25 and a conductor layer (not shown) arranged on one side of the support layer in the thickness direction. Examples of the material of the support layer 25 include a resin and a metal.
  • the conductor layer comprises a series of terminals and wiring.
  • the material of the conductor layer is a conductor.
  • the laminated body of the optical waveguide 5 and the electric circuit board 6 forms the optical-electric mixed board 44. That is, the optical / electric mixed mounting substrate 44 includes an optical waveguide 5 and an electric circuit board 6.
  • the photoelectric mixed substrate 44 has flexibility. As shown in FIGS. 2C and 2D, the intermediate portion in the longitudinal direction of the photoelectric mixed mounting substrate 44 is curved to one side in the thickness direction.
  • the photoelectric conversion unit 7 is arranged on one side of the electric circuit board 6 in the thickness direction. Specifically, the photoelectric conversion unit 7 is electrically connected to a terminal (not shown) of the electric circuit board 6. Further, the photoelectric conversion unit 7 includes a light receiving / receiving element 17 that overlaps with the mirror 10 when projected in the thickness direction.
  • the light receiving / receiving element 17 includes a photodiode that converts an optical signal into an electric signal, and / or a laser diode that converts an electric signal into an optical signal.
  • the photoelectric conversion unit 7 may further include an auxiliary element 18.
  • the auxiliary element 18 includes, for example, a drive integrated circuit, an impedance conversion amplifier circuit, and a retimer integrated circuit.
  • the auxiliary elements 18 are arranged to face each other on the other side in the longitudinal direction of the light receiving / receiving element 17 at intervals.
  • the printed wiring board 8 is arranged on one side of the electric circuit board 6 in the thickness direction. Therefore, in the optical connection structure 1, the optical waveguide 5, the electric circuit board 6, the photoelectric conversion unit 7, and the printed wiring board 8 are arranged in order toward one side in the thickness direction. The printed wiring board 8 is adjacent to the optical waveguide 5 in the thickness direction.
  • the printed wiring board 8 has the same outer shape as the photoelectric composite transmission unit 2 in a plan view.
  • the printed wiring board 8 has a substantially flat plate shape extending in the longitudinal direction.
  • the length of the printed wiring board 8 is longer than the length of the electric circuit board 6.
  • the longitudinal end surface of the printed wiring board 8 is arranged at the same position as the longitudinal end surface of the electric circuit board 6 when projected in the thickness direction.
  • the other end surface in the longitudinal direction of the printed wiring board 8 is arranged on one side in the longitudinal direction with respect to the other end surface in the longitudinal direction of the electric circuit board 6.
  • the width of the printed wiring board 8 is wider than the width of the electric circuit board 6.
  • the printed wiring board 8 has a shape in which the central portion in the width direction is cut out from one end surface in the longitudinal direction toward the other side in the longitudinal direction. That is, the printed wiring board 8 has a notch 19.
  • the printed wiring board 8 has a substantially U-shaped (or U-shaped) shape in a plan view.
  • the notch 19 has a substantially rectangular shape in a plan view.
  • the area around the notch 19 of the printed wiring board 8 overlaps with the electric circuit board 6 when projected in the thickness direction. This region is referred to as an inner region 20.
  • the printed wiring board 8 has an inner region 20 and an outer region 21.
  • the outer region 21 is arranged outside the inner region 20.
  • the outer region 21 is arranged on both outer sides in the width direction and the other side in the longitudinal direction of the inner region 20.
  • the outer region 21 does not overlap with the electric circuit board 6 when projected in the thickness direction.
  • the printed wiring board 8 includes a substrate 26 and terminals (not shown).
  • the other side of the printed wiring board 8 in the thickness direction comes into contact with one side of the optical / electric mixed circuit board 44.
  • One side portion of the photoelectric mixed mounting substrate 44 is a portion arranged on one side in the longitudinal direction from the middle portion on one side in the thickness direction of the photoelectric mixed mounting substrate 44.
  • the other side of the printed wiring board 8 in the thickness direction comes into contact with one side of the electric circuit board 6 in the thickness direction.
  • the other side of the printed wiring board 8 in the thickness direction is separated from the other side of the one side of the electric circuit board 6 in the thickness direction in the thickness direction.
  • the other side portion is a portion arranged on the other side of the middle portion in the longitudinal direction.
  • the other side portion of the optical / electric mixed mounting substrate 44 extends toward one side in the longitudinal direction while being spaced apart from the printed wiring board 8.
  • the intermediate portion of the optical / electric mixed circuit board 44 approaches the printed wiring board 8 toward one side in the longitudinal direction.
  • One side of the optical / electric mixed circuit board 44 extends toward one side in the longitudinal direction while being in contact with the printed wiring board 8.
  • the board 26 has the above-mentioned plan view shape of the printed wiring board 8.
  • Examples of the material of the substrate 26 include a hard material.
  • Examples of the hard material include glass fiber reinforced epoxy resin.
  • the terminal (not shown) is provided on the other surface of the substrate 26 in the thickness direction.
  • the electric connector 9 is arranged on the other side of the printed wiring board 8 in the thickness direction.
  • the electric connector 9 has a substantially rectangular shape that is long in the width direction, for example, when viewed from the bottom.
  • the electric connector 9 has a substantially U-shaped (or U-shaped) cross-sectional view.
  • the electric connector 9 has an insertion port 23 and a connector terminal (not shown).
  • the insertion port 23 is configured so that the other end portion of the optical / electric mixed mounting substrate 44 in the longitudinal direction can be inserted. Specifically, the insertion port 23 is open toward one side in the longitudinal direction.
  • a connector terminal (not shown) is provided in the insertion port 23.
  • the other end of the optical / electric mixed board 44 in the longitudinal direction is inserted into the insertion port 23, and the terminal of the electric circuit board 6 comes into contact with the connector terminal, whereby the electric connector 9 is electrically connected to the electric circuit board 6.
  • the electric connector 9 include an FPC connector, a ZIF connector, and a board connector.
  • the optical fiber member 3 is arranged to face each other on one side in the longitudinal direction of the photoelectric composite transmission unit 2.
  • the optical fiber member 3 includes an optical fiber 31 and a holding member 32 as an example of a positioning member.
  • the optical fiber 31 extends in the longitudinal direction.
  • the optical fiber 31 includes a fiber core 33, a fiber clad 34, and a fiber coating layer (not shown).
  • a plurality of fiber cores 33 are arranged at intervals in the width direction.
  • the other end surface in the longitudinal direction of the fiber core 33 is arranged to face the one end surface 14 in the longitudinal direction of the core 12 in the longitudinal direction.
  • the fiber clad 34 covers the peripheral surface of the fiber core 33.
  • the other end surface in the longitudinal direction of the fiber clad 34 is flush with the other end surface in the longitudinal direction of the fiber core 33.
  • the fiber clad 34 is branched into a plurality of pieces at the other end in the longitudinal direction.
  • the plurality of branched fiber clads 34 have a substantially annular shape in cross section.
  • the fiber coating layer (not shown) covers the peripheral surface of the unbranched fiber clad 34. That is, the fiber coating layer (not shown) exposes the peripheral surface of the branched fiber clad 34.
  • Examples of the material of the fiber core 33 and the fiber clad 34 include plastic and resin.
  • the fiber core 33 has a higher refractive index than the fiber clad 34.
  • a plurality of fiber cores 33 and a plurality of fiber clads 34 corresponding thereto are connected in the width direction via a resin on one side portion in the longitudinal direction from the holding member 32. That is, the above-mentioned portion has a ribbon shape (strip shape) in which a plurality of fiber cores 33 are arranged in parallel in the width direction.
  • the plurality of fiber cores 33 may be independent of each other (separated) in the width direction without using a resin.
  • the holding member 32 is arranged at the other end of the optical fiber 31 in the longitudinal direction. As shown in FIG. 2E, the holding member 32 includes a groove plate 35 and a lid plate 36.
  • the groove plate 35 has a substantially rectangular plate shape extending in the width direction.
  • One surface of the groove plate 35 in the thickness direction has, for example, a V-shaped groove 27 and a flat portion 28.
  • the groove 27 is arranged in the middle of the width direction on one side of the groove plate 35 in the thickness direction.
  • a plurality of grooves 27 are provided corresponding to the plurality of fiber cores 33 and the plurality of fiber clads 34.
  • Each of the plurality of grooves 27 is along the longitudinal direction.
  • the bottom surface 37 of the plurality of grooves 27 comes into contact with a part of the peripheral surface of the plurality of fiber clads 34.
  • the holding member 32 positions the fiber core 33 with respect to the core 12 of the optical waveguide 5. That is, the fiber core 33 is centered with respect to the core 12.
  • the flat portions 28 are arranged at both ends in the width direction on one side in the thickness direction of the groove plate 35. Specifically, the flat portion 28 is arranged on both outer sides of the groove 27 in the width direction. The flat portion 28 is a flat surface along the width direction and the longitudinal direction.
  • the lid plate 36 is arranged on one side of the groove plate 35 in the thickness direction.
  • the lid plate 36 has a substantially rectangular plate shape extending in the width direction.
  • the other surface 38 of the lid plate 36 in the thickness direction is a flat surface.
  • the intermediate portion in the width direction of the other surface 38 in the thickness direction of the lid plate 36 comes into contact with a part of the peripheral surface of the plurality of fiber clads 34.
  • the groove plate 35 and the lid plate 36 sandwich the fiber core 33 and the fiber clad 34 in the thickness direction. Both ends in the width direction of the other surface 38 in the thickness direction of the lid plate 36 are spaced apart from the flat portion 28 of the groove plate 35 in the thickness direction.
  • the other end surface of the holding member 32 in the thickness direction and the other end surface of the optical fiber 31 (fiber core 33 and fiber clad 34) in the thickness direction are flush with each other.
  • the material of the holding member 32 include glass.
  • the glass include borosilicate glass.
  • the other end surface in the longitudinal direction of the optical fiber 31 (fiber core 33 and fiber clad 34) is in contact with the one end surface 14 in the longitudinal direction of the optical waveguide 5.
  • the other end surface in the longitudinal direction of the lid plate 36 is in contact with one end surface in the longitudinal direction of the electric circuit board 6 and one end surface in the longitudinal direction of the printed wiring board 8.
  • the above-mentioned surfaces face each other with a boundary line L (virtual line) between the photoelectric composite transmission unit 2 and the optical fiber member 3 interposed therebetween.
  • the boundary line L extends in the width direction. Specifically, the boundary line L is a boundary between the optical waveguide 5, the electric circuit board 6, and the optical fiber member 3.
  • one adhesive member 4 is provided in the optical connection structure 1.
  • the adhesive member 4 is arranged along the boundary line L.
  • the adhesive member 4 is in contact with one end in the longitudinal direction of the photoelectric composite transmission unit 2 and the other end in the longitudinal direction of the optical fiber member 3.
  • the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the optical waveguide 5.
  • the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the optical waveguide 5.
  • the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the electric circuit board 6. Further, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the electric circuit board 6.
  • the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on the inner side surface in the width direction of the printed wiring board 8. Further, as shown in FIG. 2D, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the printed wiring board 8. Further, the adhesive member 4 is in contact with one end edge in the thickness direction and its vicinity on one end surface in the longitudinal direction of the printed wiring board 8.
  • the adhesive member 4 is in contact with the other end edge in the longitudinal direction on one surface in the thickness direction of the lid plate 36 and its vicinity. As shown in FIGS. 1B and 2C to 2E, the adhesive member 4 is in contact with the other end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the groove plate 35. Further, the adhesive member 4 is in contact with the other end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the groove plate 35 and the lid plate 36. Further, as shown in FIG.
  • the adhesive member 4 has a portion that does not come into contact with the peripheral surface of the fiber core 33 on the bottom surface 37 of the groove plate 35 and a peripheral surface of the fiber core 33 on the other surface 38 in the thickness direction of the lid plate 36. It is in contact with a part that does not contact.
  • the adhesive member 4 is in contact with the flat portion 28 of the groove plate 35 and both ends of the lid plate 36 on the other surface 38 in the thickness direction.
  • one adhesive member 4 adheres the optical waveguide 5, the electric circuit board 6, the printed wiring board 8, the optical fiber 31, and the holding member 32. Further, the holding member 32 is adhered to the optical waveguide 5, the electric circuit board 6, and the printed wiring board 8 by one adhesive member 4.
  • each of the photoelectric composite transmission unit 2 and the optical fiber member 3 is prepared.
  • a photoelectric composite transmission unit 2 is manufactured by using an optical waveguide 5, an electric circuit board 6, a photoelectric conversion unit 7, and a printed wiring board 8 by a known method.
  • the fiber coating layer (not shown) at the other end of the optical fiber 31 in the longitudinal direction is peeled from the fiber clad 34, and then the fiber clad 34 is branched corresponding to the plurality of fiber cores 33, and then a plurality.
  • the fiber clad 34 of the above is fitted into each of the plurality of grooves 27 of the groove plate 35. After that, the lid plate 36 is arranged on the plurality of fiber clads 34. As a result, the optical fiber member 3 is manufactured.
  • the one end surface in the longitudinal direction of the photoelectric composite transmission unit 2 and the other end surface in the longitudinal direction of the optical fiber member 3 are brought into contact with each other (specifically, they are butted against each other). At this time, the core 12 and the fiber core 33 are aligned.
  • the adhesive composition comprises, for example, a curable adhesive.
  • the curable adhesive include a photocurable adhesive and a thermosetting adhesive.
  • the adhesive composition include an epoxy adhesive composition and an acrylic adhesive composition.
  • the adhesive composition is a curable adhesive
  • the adhesive composition is cured.
  • the adhesive member 4 is formed.
  • the single adhesive member 4 adheres the optical waveguide 5, the electric circuit board 6, the printed wiring board 8, the optical fiber 31, and the holding member 32.
  • the optical connection structure 1 suppresses the deformation of the optical fiber 31, improves the optical connection reliability, and has excellent adhesive strength.
  • the photoelectric composite transmission unit 2 includes a printed wiring board 8 as an example of a substrate.
  • the printed wiring board 8 is rigid. Therefore, the optical connection reliability between the optical waveguide 5 and the optical fiber 31 can be further improved.
  • the photoelectric composite transmission unit 2 further includes an electric circuit board 6 as an example of the substrate. Since the optical waveguide 5 and the electric circuit board 6 capable of supporting one surface in the thickness direction thereof are bonded by one adhesive member 4, the strength is further improved.
  • the optical connection structure 1 further includes a holding member 32. Therefore, the optical waveguide 5 and the optical fiber 31 are surely aligned by the holding member 32. Therefore, the optical connection reliability can be improved.
  • the photoelectric composite transmission unit 2 and the optical fiber member 3 do not have to come into contact with each other.
  • the longitudinal end surface 14 of the optical waveguide 5 is spaced apart from the longitudinal end surface of the optical fiber 31.
  • the one end surface in the longitudinal direction of the electric circuit board 6 is spaced apart from the other end surface in the longitudinal direction of the lid plate 36.
  • the length of the above-mentioned interval in the longitudinal direction is, for example, 100 ⁇ m or less, preferably 75 ⁇ m or less, and more than 0 ⁇ m, for example, from the viewpoint of ensuring the optical connection reliability between the optical waveguide 5 and the optical fiber 31. It is preferably 10 ⁇ m or more.
  • the total light transmittance of the adhesive member 4 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and for example, 100% or less.
  • the photoelectric conversion unit 7, the electric circuit board 6, the optical waveguide 5, and the printed wiring board 8 face one side in the thickness direction.
  • the arrangement of the optical waveguide 5 and the electric circuit board 6 on the optical / electric mixed board 44 is turned upside down.
  • the one end surface in the longitudinal direction of the electric circuit board 6 comes into contact with the other end surface in the longitudinal direction of the groove plate 35.
  • the flat portion 28 of the groove plate 35 and both ends in the width direction on the other surface 38 in the thickness direction of the lid plate 36 are in contact with each other. .. There is no adhesive member 4 between them. Therefore, the adhesive member 4 does not come into contact with the flat portion 28 of the groove plate 35 and both ends in the width direction on the other surface 38 in the thickness direction of the lid plate 36.
  • the lid plate 36 in contact with the groove plate 35 comes into contact with the printed wiring plate 8 (see FIG. 2D), so that the fiber core 33 and the core 12 are well aligned.
  • the adhesive member 4 exists between the flat portion 28 of the groove plate 35 and the other surface 38 in the thickness direction of the lid plate 36, the adhesive strength is excellent.
  • the adhesive composition is arranged on either one or both of the one end surface in the longitudinal direction of the photoelectric composite transmission unit 2 and the other end surface in the longitudinal direction of the optical fiber member 3, and then the photoelectric composition is arranged.
  • the composite transmission unit 2 and the optical fiber member 3 can also be bonded to each other.
  • the printed wiring board 8 has a through hole 39 penetrating the substrate 26 in the thickness direction.
  • the through hole 39 is arranged substantially in the center of the printed wiring board 8 in a plan view.
  • the through hole 39 has a substantially rectangular shape extending in the longitudinal direction.
  • the inner region 20 of the printed wiring board 8 is arranged around the through hole 39.
  • the adhesive member 4 does not come into contact with the inner surface facing the through hole 39.
  • the adhesive member 4 comes into contact with the printed wiring board 8 arranged on one side in the thickness direction of one end in the longitudinal direction of the optical waveguide 5.
  • the adhesive member 4 is in contact with one end edge in the longitudinal direction on one side in the thickness direction of the printed wiring board 8 described above, its vicinity, and one end surface in the longitudinal direction of the printed wiring board 8 described above.
  • the contact area between the printed wiring board 8 and the adhesive member 4 can be increased as compared with the first embodiment, as shown in FIGS. 2C and 6B. Therefore, the optical connection reliability between the optical waveguide 5 and the optical fiber 31 can be further improved.
  • the photoelectric conversion unit 7, the electric circuit board 6, the optical waveguide 5, and the printed wiring board 8 face one side in the thickness direction.
  • the arrangement of the optical waveguide 5 and the electric circuit board 6 on the optical / electric mixed board 44 is turned upside down.
  • One end surface in the longitudinal direction of the electric circuit board 6 comes into contact with the other end surface in the longitudinal direction of the groove plate 35.
  • the printed wiring board 8 may have a flat plate shape in a cross section passing through the core 12. That is, the printed wiring board 8 does not have to have the notch 19 and the through hole 39. In the cross section passing through the core 12, one side of the optical / electric mixed circuit board 44 in the longitudinal direction is in contact with the printed wiring board 8.
  • the photoelectric mixed mounting substrate 44 includes a protrusion 51.
  • the protruding portion 51 projects from the printed wiring board 8 to one side in the longitudinal direction when projected in the thickness direction.
  • the adhesive member 4 comes into contact with the protruding portion 51 of the opto-electrically mixed substrate 44 and the optical fiber member 3.
  • the adhesive member 4 may come into contact with one side of the printed wiring board 8 in the thickness direction.
  • the printed wiring board 8 includes a second protrusion 52.
  • the second projecting portion 52 projects from the opto-electrically mixed substrate 44 to one side in the longitudinal direction.
  • the optical fiber member 3 does not include the holding member 32 and includes only the optical fiber 31.
  • the entire longitudinal direction of the optical fiber 31 has, for example, a ribbon shape (strip shape) in which a plurality of fiber cores 33 are arranged in parallel in the width direction.
  • the plurality of fiber cores 33 may be independent of each other (separated) in the width direction.
  • the one end surface 14 in the longitudinal direction of the optical waveguide 5 and the other end surface in the longitudinal direction of the optical fiber 31 are adjacent to each other with a minute interval in the longitudinal direction.
  • the adhesive member 4 comes into contact with one end surface 14 in the longitudinal direction of the opto-electric mixed mounting substrate 44, the other end portion in the longitudinal direction of the optical fiber member 3, and one surface in the thickness direction of the second protrusion 52.
  • the printed wiring board 8 includes a recess 53 or a pedestal 54.
  • the recess 53 is formed by removing one surface in the thickness direction at one end in the longitudinal direction of the substrate 26 of the printed wiring board 8.
  • One end surface 14 in the longitudinal direction of the optical / electric mixed substrate 44 faces the recess 53.
  • the optical fiber member 3 is placed on one side of the recess 53 in the thickness direction.
  • the adhesive member 4 includes a one end surface 14 in the longitudinal direction of the opto-electric mixed mounting substrate 44, a side surface of the recess 53, and one surface of the recess 53 in the thickness direction in which the optical fiber member 3 is not in contact with the holding member 32. Contact.
  • the printed wiring board 8 further includes a pedestal 54.
  • the pedestal 54 is arranged on the other side portion in the longitudinal direction on one side in the thickness direction of the printed wiring board 8.
  • the pedestal 54 is provided integrally with or separately from the substrate 26.
  • An optical fiber member 3 is arranged on one side of the printed wiring board 8 in the thickness direction of one side in the longitudinal direction.
  • the pedestal 54 has a plate shape extending in the longitudinal direction. One end surface in the longitudinal direction of the pedestal 54 and one end surface in the longitudinal direction of the opto-electric mixed mounting substrate 44 are flush with each other.
  • the adhesive member 4 comes into contact with one end surface in the longitudinal direction of the optical / electric mixed circuit board 44, one end surface in the longitudinal direction of the pedestal 54, the other end surface in the longitudinal direction of the optical fiber member 3, and one surface in the thickness direction of the printed wiring board 8. do.
  • the other side portion in the longitudinal direction of the optical / electric mixed circuit board 44 may come into contact with one side in the thickness direction of the printed wiring board 8.
  • the terminals (not shown) of the printed wiring board 8 are arranged to face the electrodes of the optical / electric mixed circuit board 44 in the thickness direction.
  • the longitudinal end surface 14 of the optical / electric mixed circuit board 44 is flush with the longitudinal end surface of the printed wiring board 8.
  • the adhesive member 4 comes into contact with the longitudinal end surface 14 of the optical / electric mixed circuit board 44, the longitudinal end surface of the printed wiring board 8, and the longitudinal end surface of the optical fiber member 3.
  • the opto-electric mixed mounting substrate 44 includes a protrusion 51.
  • the protruding portion 51 has the same configuration as the protruding portion 51 shown in FIG.
  • the printed wiring board 8 includes a second protrusion 52.
  • the second protruding portion 52 has the same configuration as the second protruding portion 52 shown in FIG.
  • the printed wiring board 8 includes a recess 53 or a pedestal 54.
  • the recess 53 shown in FIG. 16 has the same configuration as the recess 53 shown in FIG.
  • the pedestal 54 shown in FIG. 17 has the same configuration as the pedestal 54 shown in FIG.
  • the printed wiring board 8 overlaps the boundary line L when projected in the thickness direction. Specifically, the printed wiring board 8 straddles the boundary line L.
  • the printed wiring board 8 has an overlapping region 41 that overlaps with one end in the longitudinal direction of the electric circuit board 6, and a protruding region 42 that protrudes from the overlapping region 41 toward one side in the longitudinal direction.
  • the projecting region 42 projects from the optical waveguide 5 and the electric circuit board 6 toward one side in the longitudinal direction.
  • the protruding region 42 overlaps with the optical fiber 31 when projected in the thickness direction.
  • the protruding region 42 is adjacent to the optical waveguide 5 in the longitudinal direction.
  • the optical fiber member 3 does not include the holding member 32 but includes only the optical fiber 31.
  • the other end surface of the optical fiber 31 in the longitudinal direction comes into contact with one end surface of the optical waveguide 5 in the longitudinal direction.
  • the adhesive member 4 comes into contact with the optical waveguide 5, the electric circuit board 6, the printed wiring board 8, and the optical fiber 31. Specifically, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the optical waveguide 5. The adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the optical waveguide 5.
  • the adhesive member 4 is in contact with one end surface in the longitudinal direction of the electric circuit board 6.
  • the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction (not drawn in FIG. 18) of the electric circuit board 6.
  • the adhesive member 4 contacts the other surface in the thickness direction and one end surface in the longitudinal direction in the protruding region 42 of the printed wiring board 8. Further, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the protruding region 42.
  • the adhesive member 4 is in contact with the other end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the optical fiber 31.
  • the adhesive member 4 is in contact with a region of the printed wiring board 8 facing the protruding region 42 and a region facing the space on one side in the longitudinal direction from the protruding region 42 on one side of the optical fiber 31 in the thickness direction.
  • the adhesive member 4 contacts the protruding region 42 of the printed wiring board 8, and the adhesive member 4 contacts the optical fiber 31. From that point of view, the fifth embodiment can improve the adhesive strength.
  • the optical fiber member 3 includes the holding member 32, and the holding member 32 can align the core 12 and the fiber core 33, so that the optical connection reliability can be obtained. Excellent for.
  • the optical fiber 31 does not come into contact with the optical waveguide 5, but comes into contact with the protruding region 42.
  • the one end surface in the longitudinal direction of the optical waveguide 5 is separated from the other end surface in the longitudinal direction of the optical fiber 31.
  • the adhesive member 4 is filled between the optical waveguide 5 and the optical fiber 31. Therefore, the adhesive member 4 comes into contact with the longitudinal end surface 14 of the optical waveguide 5 and the longitudinal end surface of the optical fiber 31.
  • the other side of the protruding region 42 in the thickness direction contacts the other side of the optical fiber 31 in the thickness direction.
  • the electric circuit board 6 is spaced apart from the fiber clad 34 in the longitudinal direction.
  • the adhesive member 4 is filled between them.
  • Both the modified example and the fifth embodiment are suitable from the viewpoint of connection strength.
  • the underclad 11 of the optical waveguide 5 has a clad protruding portion 43.
  • the clad protrusion 43 is made of the same material as the underclad 11 (a portion other than the clad protrusion 43) described above.
  • the clad protrusion 43 is a support plate extending in the longitudinal direction.
  • the clad protrusion 43 is an example of a substrate.
  • the clad protrusion 43 does not overlap with the core 12 but overlaps with the optical fiber 31 when projected in the thickness direction.
  • the clad projecting portion 43 projects from one end surface 14 in the longitudinal direction of the core 12 toward one side in the longitudinal direction. Therefore, the underclad 11 including the clad protruding portion 43 overlaps the boundary line L when projected in the thickness direction. Specifically, the underclad 11 straddles the boundary line L.
  • the underclad 11 has a substantially L-shaped cross section.
  • the other surface of the clad protrusion 43 in the thickness direction is spaced apart from the optical fiber 31 in the thickness direction.
  • the adhesive member 4 is filled between them.
  • the clad protrusion 43 is adjacent to the optical waveguide 5 in the longitudinal direction.
  • the adhesive member 4 contacts the other surface in the thickness direction and one end surface in the longitudinal direction of the clad protrusion 43. Further, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the clad protrusion 43.
  • the optical connection structure 1 of the sixth embodiment does not include, for example, a printed wiring board 8. That is, the photoelectric composite transmission unit 2 includes, for example, an optical / electric mixed circuit board 44 and a photoelectric conversion unit 7, and does not include a printed wiring board 8.
  • the optical waveguide 5 includes a clad protrusion 43 as an example of the substrate. Since the clad projecting portion 43 is made of the same material as the under clad 11, it can be easily formed.
  • optical connection structure 1 does not include the printed wiring board 8
  • the configuration of the photoelectric composite transmission unit 2 is simple.
  • the optical fiber 31 does not come into contact with the underclad 11 other than the clad protrusion 43, the core 12, and the overclad 13, while the optical fiber 31 has a clad protrusion. Contact with the portion 43.
  • the one end surface in the longitudinal direction of the underclad 11 other than the clad protrusion 43, the core 12, and the overclad 13 is spaced apart from the other end surface in the longitudinal direction of the optical fiber 31.
  • the adhesive member 4 is filled between them. Therefore, the adhesive member 4 comes into contact with the one end surface of the underclad 11 other than the clad protrusion 43, the core 12 and the overclad 13 in the longitudinal direction, and the other end surface of the optical fiber 31 in the longitudinal direction.
  • the other side of the clad protrusion 43 in the thickness direction comes into contact with the other side of the optical fiber 31 in the thickness direction.
  • Both the modified example and the sixth embodiment are suitable from the viewpoint of connection strength.
  • the optical connection structure 1 of the seventh embodiment further includes a pedestal 45.
  • the pedestal 45 is a member for aligning the fiber core 33 with respect to the core 12.
  • the pedestal 45 is arranged on the other side of the electric circuit board 6 and the optical fiber 31 in the thickness direction at intervals.
  • the pedestal 45 extends in the longitudinal direction. When projected in the thickness direction, the pedestal 45 overlaps the boundary line L. Specifically, the pedestal 45 straddles the boundary line L.
  • the pedestal 45 has one side portion 46 and the other side portion 47 in order in the longitudinal direction.
  • the other side portion 47 is thicker than the one side portion 46.
  • the other surface in the thickness direction of the other side portion 47 and the other surface in the thickness direction of the one side portion 46 are flush with each other.
  • the one side in the thickness direction of the other side portion 47 is arranged on one side in the thickness direction with respect to the one side in the thickness direction of the one side portion 46.
  • the other side portion 47 contacts and supports the other surface of the optical waveguide 5 in the thickness direction.
  • the one-side portion 46 supports the other surface of the optical fiber 31 in the thickness direction via the adhesive member 4. That is, the adhesive member 4 comes into contact with the other surface of the optical fiber 31 in the thickness direction and the one surface of the one side portion 46 in the thickness direction.
  • the pedestal 45 is adjacent to the optical waveguide 5.
  • the adhesive member 4 comes into contact with one end surface in the longitudinal direction of the electric circuit board 6, one end in the longitudinal direction on one end surface in the thickness direction of the electric circuit board 6, and its vicinity.
  • the above-mentioned adhesive member 4 is single.
  • the optical connection structure 1 includes a pedestal 45 as an example of a substrate. Therefore, the pedestal 45 ensures that the core 12 and the fiber core 33 are aligned. Therefore, the optical connection reliability can be improved.
  • the optical fiber 31 does not come into contact with the optical waveguide 5. On the other hand, the optical fiber 31 comes into contact with one side portion 46 of the pedestal 45.
  • the pedestal 45 has one side portion 46 and the other side portion 47, and further has a boundary portion 48.
  • the other side portion 47 has the same thickness as the one side portion 46.
  • the boundary portion 48 is arranged between the one-sided portion 46 and the other-sided portion 47.
  • the boundary portion 48 faces between the optical fiber 31 and the optical waveguide 5.
  • the boundary portion 48 is thinner than the one-sided portion 46 and the other-sided portion 47.
  • the one-sided portion 46, the other-sided portion 47, and the boundary portion 48 described above form a recess 49.
  • the recess 49 is recessed from one side of the pedestal 45 in the thickness direction toward the other side in the thickness direction.
  • the recess 49 is filled with the adhesive member 4.
  • Both the modified example and the seventh embodiment are suitable from the viewpoint of connection strength.
  • the optical connection structure 1 of the eighth embodiment does not include the pedestal 45.
  • the photoelectric composite transmission unit 2 does not include the printed wiring board 8 and the clad protrusion 43.
  • the photoelectric composite transmission unit 2 includes a photoelectric mixed mounting substrate 44 and a photoelectric conversion unit 7.
  • the optical fiber member 3 does not include the holding member 32, but includes only the optical fiber 31.
  • the optical connection structure 1 does not have a pedestal 45, the photoelectric composite transmission unit 2 does not have a printed wiring board 8 and a clad protrusion 43, and the optical fiber member 3 has a holding member 32. Since it is not provided, the configuration of the optical connection structure 1 can be simplified.
  • the optical fiber member 3 further includes a holding member 32 as an example of the positioning member.
  • the configuration of the holding member 32 is the same as that of the first embodiment.
  • the optical connection structure 1 of the modified example further includes a holding member 32. Therefore, the optical waveguide 5 and the optical fiber 31 are surely aligned by the holding member 32. Therefore, the optical connection structure 1 of the modified example can improve the optical connection reliability as compared with the eighth embodiment.
  • the optical connection structure is used for the optical connection between the optical waveguide and the optical fiber.

Abstract

An optical connection structure (1) is provided with: an optical waveguide (5); an optical fiber (31) that is optically connected to the optical waveguide (5); an electric circuit board (6) and a printed wiring board (8) that are adjacent to the optical waveguide (5); and one adhesive member (4) that adheres the optical waveguide (5), the optical fiber (31), the electric circuit board (6), and the printed wiring board (8).

Description

光学接続構造Optical connection structure
 本発明は、光学接続構造に関する。 The present invention relates to an optical connection structure.
 光導波路と、光ファイバとを接続する光学接続構造が知られている。例えば、基板と、基板の厚み方向一方面に配置される光導波路と、光導波路の端面と対向する端面を有する光ファイバと、接着体とを備える光学接続構造が提案されている(例えば、下記特許文献1参照。)。光学接続構造の接着体は、2つ設けられる。一方の接着体は、光導波路の端面と光ファイバの端面とに接触する。他方の接着体は、基板に形成された凹部の凹面と、光ファイバの周面とに接触する。2つの接着体は、互いに独立する。 An optical connection structure for connecting an optical waveguide and an optical fiber is known. For example, an optical connection structure including a substrate, an optical waveguide arranged on one side in the thickness direction of the substrate, an optical fiber having an end surface facing the end surface of the optical waveguide, and an adhesive is proposed (for example, the following). See Patent Document 1). Two adhesives having an optical connection structure are provided. One adhesive contacts the end face of the optical waveguide and the end face of the optical fiber. The other adhesive contacts the concave surface of the recess formed in the substrate and the peripheral surface of the optical fiber. The two adhesives are independent of each other.
特開2019-8115号公報Japanese Unexamined Patent Publication No. 2019-8115
 特許文献1に記載の接着体は、独立して2つ設けられるので、接着時の収縮状態が異なり易い。この場合には、光ファイバが変形する。そうすると、光学的な接続信頼性が低下するという不具合がある。また、接着体が2つに分けて配置されるので、接着強度が低下し易い不具合がある。 Since two adhesives described in Patent Document 1 are provided independently, the shrinkage state at the time of adhesion tends to be different. In this case, the optical fiber is deformed. Then, there is a problem that the optical connection reliability is lowered. Further, since the adhesive body is arranged separately in two, there is a problem that the adhesive strength tends to decrease.
 本発明は、光ファイバの変形を抑制して、光学的な接続信頼性を向上させ、接着強度に優れる光学接続構造を提供する。 The present invention provides an optical connection structure that suppresses deformation of an optical fiber, improves optical connection reliability, and has excellent adhesive strength.
 本発明(1)は、光導波路と、前記光導波路と光学的に接続される光ファイバと、前記光導波路に隣接する基板と、前記光導波路と前記光ファイバと前記基板とを接着する1つの接着部材とを備える、光学接続構造を含む。 The present invention (1) is one that adheres an optical waveguide, an optical fiber optically connected to the optical waveguide, a substrate adjacent to the optical waveguide, and the optical waveguide, the optical fiber, and the substrate. Includes an optical connection structure with an adhesive member.
 本発明では、たとえ、接着部材が収縮しても、接着部材が1つであり、それが光導波路と光ファイバと基板とを接着する。そのため、特許文献1のような、2つの接着部材の収縮状態の相異に起因する光ファイバの変形を抑制できる。そのため、光学的な接続信頼性を向上できる。光学接続構造において、接着部材は、1つであるので、接着強度の低下を抑制できる。 In the present invention, even if the adhesive member shrinks, there is only one adhesive member, which adheres the optical waveguide, the optical fiber, and the substrate. Therefore, it is possible to suppress the deformation of the optical fiber caused by the difference in the contracted state of the two adhesive members as in Patent Document 1. Therefore, the optical connection reliability can be improved. Since there is only one adhesive member in the optical connection structure, it is possible to suppress a decrease in adhesive strength.
 その結果、光学接続構造は、光ファイバの変形を抑制して、光学的な接続信頼性を向上させ、接着強度に優れる。 As a result, the optical connection structure suppresses the deformation of the optical fiber, improves the optical connection reliability, and has excellent adhesive strength.
 本発明(2)は、前記基板が、プリント配線板を含む、(1)に記載の光学接続構造を含む。 The present invention (2) includes the optical connection structure according to (1), wherein the substrate includes a printed wiring board.
 この光学接続構造では、基板が、プリント配線板を含む。プリント配線板は、硬質である。そのため、光導波路と光ファイバとの光学的な接続信頼性をより一層向上させることができる。 In this optical connection structure, the board includes a printed wiring board. The printed wiring board is rigid. Therefore, the reliability of the optical connection between the optical waveguide and the optical fiber can be further improved.
 本発明(3)は、前記基板が、前記光導波路の主面に配置される電気回路基板を含む、(1)または(2)に記載の光学接続構造を含む。 The present invention (3) includes the optical connection structure according to (1) or (2), wherein the substrate includes an electric circuit board arranged on the main surface of the optical waveguide.
 この光学接続構造では、基板が、光導波路の主面に配置される電気回路基板を含む。光導波路とこれの主面を支持できる電気回路基板とを、1つの接着部材で接着するので、強度に優れる。 In this optical connection structure, the substrate includes an electric circuit board arranged on the main surface of the optical waveguide. Since the optical waveguide and the electric circuit board that can support the main surface of the optical waveguide are bonded by one adhesive member, the strength is excellent.
 本発明(4)は、前記光導波路は、コアと、前記コアを被覆するクラッドとを含み、前記基板が、前記クラッドと同一の材料からなる支持板を含む、(1)に記載の光学接続構造を含む。 In the present invention (4), the optical waveguide includes a core and a clad covering the core, and the substrate includes a support plate made of the same material as the clad. The optical connection according to (1). Includes structure.
 この光学接続構造では、基板が、クラッドと同一の材料からなる支持板を含む。そのため、支持板を簡便に形成できる。さらに、支持板によって、強度に優れる。 In this optical connection structure, the substrate includes a support plate made of the same material as the clad. Therefore, the support plate can be easily formed. Further, the support plate is excellent in strength.
 本発明(5)は、前記基板が、台座を含む、(1)に記載の光学接続構造を含む。 The present invention (5) includes the optical connection structure according to (1), wherein the substrate includes a pedestal.
 この光学接続構造では、基板が、台座を含む。そのため、台座によって、光導波路と光ファイバとが確実に調心される。そのため、光学的な接続信頼性を向上できる。 In this optical connection structure, the substrate includes a pedestal. Therefore, the pedestal ensures that the optical waveguide and the optical fiber are aligned. Therefore, the optical connection reliability can be improved.
 本発明(6)は、前記光ファイバを位置決めする位置決め部材をさらに備え、前記位置決め部材が、前記1つの接着部材によって、前記光導波路と前記光ファイバと前記基板とに接着する、(1)から(5)のいずれか一項に記載の光学接続構造を含む。 The present invention (6) further includes a positioning member for positioning the optical fiber, and the positioning member adheres to the optical waveguide, the optical fiber, and the substrate by the one adhesive member (1). The optical connection structure according to any one of (5) is included.
 この光学接続構造は、光ファイバを位置決めする位置決め部材をさらに備える。そのため、位置決め部材によって、光導波路と光ファイバとが確実に調心される。そのため、光学的な接続信頼性を向上できる。 This optical connection structure further includes a positioning member for positioning the optical fiber. Therefore, the positioning member ensures that the optical waveguide and the optical fiber are aligned. Therefore, the optical connection reliability can be improved.
 本発明の光学接続構造は、光ファイバの変形を抑制して、光学的な接続信頼性が向上され、接着強度に優れる。 The optical connection structure of the present invention suppresses deformation of the optical fiber, improves optical connection reliability, and has excellent adhesive strength.
図1Aと図1Bとは、本発明の光学接続構造の第1実施形態である。図1Aが、平面図である。図1Bが、底面図である。1A and 1B are the first embodiments of the optical connection structure of the present invention. FIG. 1A is a plan view. FIG. 1B is a bottom view. 図2Cから図2Eは、本発明の光学接続構造の第1実施形態である。図2Cが、図1AのX-X線に沿う断面図である。図2Dが、図1Aと図1BとのY-Y線に沿う断面図である。図2Eは、図2CのZ-Z線に沿う断面図である。2C to 2E are the first embodiments of the optical connection structure of the present invention. FIG. 2C is a cross-sectional view taken along the line XX of FIG. 1A. FIG. 2D is a cross-sectional view taken along the line YY of FIGS. 1A and 1B. FIG. 2E is a cross-sectional view taken along the line ZZ of FIG. 2C. 図3は、第1実施形態の変形例である。図3は、図2Cに対応する断面図である。FIG. 3 is a modification of the first embodiment. FIG. 3 is a cross-sectional view corresponding to FIG. 2C. 図4は、第1実施形態の変形例である。図4は、図2Cに対応する断面図である。FIG. 4 is a modification of the first embodiment. FIG. 4 is a cross-sectional view corresponding to FIG. 2C. 図5は、第1実施形態の変形例である。図5は、図2Eに対応する断面図である。FIG. 5 is a modification of the first embodiment. FIG. 5 is a cross-sectional view corresponding to FIG. 2E. 図6Aと図6Bとは、本発明の光学接続構造の第2実施形態である。図6Aが、平面図である。図6Bが、図6AのX-X線に沿う断面図である。6A and 6B are second embodiments of the optical connection structure of the present invention. FIG. 6A is a plan view. FIG. 6B is a cross-sectional view taken along the line XX of FIG. 6A. 図7は、第2実施形態の変形例である。図7は、図6Bに対応する断面図である。FIG. 7 is a modification of the second embodiment. FIG. 7 is a cross-sectional view corresponding to FIG. 6B. 図8は、本発明の光学接続構造の第3実施形態の断面図である。FIG. 8 is a cross-sectional view of a third embodiment of the optical connection structure of the present invention. 図9は、第3実施形態の変形例の断面図である。FIG. 9 is a cross-sectional view of a modified example of the third embodiment. 図10は、第3実施形態の変形例の断面図である。FIG. 10 is a cross-sectional view of a modified example of the third embodiment. 図11は、第3実施形態の変形例の断面図である。FIG. 11 is a cross-sectional view of a modified example of the third embodiment. 図12は、第3実施形態の変形例の断面図である。FIG. 12 is a cross-sectional view of a modified example of the third embodiment. 図13は、本発明の光学接続構造の第4実施形態の断面図である。FIG. 13 is a cross-sectional view of a fourth embodiment of the optical connection structure of the present invention. 図14は、第4実施形態の変形例の断面図である。FIG. 14 is a cross-sectional view of a modified example of the fourth embodiment. 図15は、第4実施形態の変形例の断面図である。FIG. 15 is a cross-sectional view of a modified example of the fourth embodiment. 図16は、第4実施形態の変形例の断面図である。FIG. 16 is a cross-sectional view of a modified example of the fourth embodiment. 図17は、第4実施形態の変形例の断面図である。FIG. 17 is a cross-sectional view of a modified example of the fourth embodiment. 図18は、本発明の光学接続構造の第5実施形態の断面図である。FIG. 18 is a cross-sectional view of a fifth embodiment of the optical connection structure of the present invention. 図19は、第5実施形態の変形例の断面図である。FIG. 19 is a cross-sectional view of a modified example of the fifth embodiment. 図20は、本発明の光学接続構造の第6実施形態の断面図である。FIG. 20 is a cross-sectional view of a sixth embodiment of the optical connection structure of the present invention. 図21は、第6実施形態の変形例の断面図である。FIG. 21 is a cross-sectional view of a modified example of the sixth embodiment. 図22は、本発明の光学接続構造の第7実施形態の断面図である。FIG. 22 is a cross-sectional view of the seventh embodiment of the optical connection structure of the present invention. 図23は、第7実施形態の変形例の断面図である。FIG. 23 is a cross-sectional view of a modified example of the seventh embodiment. 図24は、本発明の光学接続構造の第8実施形態の断面図である。FIG. 24 is a cross-sectional view of an eighth embodiment of the optical connection structure of the present invention. 図25は、第8実施形態の変形例の断面図である。FIG. 25 is a cross-sectional view of a modified example of the eighth embodiment.
  [第1実施形態]
 本発明の光学接続構造の第1実施形態を、図1Aから図2Eを参照して説明する。なお、各図の部材は、構造を明確に把握するために、その寸法は、誇張して描画される場合がある。
[First Embodiment]
The first embodiment of the optical connection structure of the present invention will be described with reference to FIGS. 1A and 2E. The dimensions of the members in each figure may be exaggerated in order to clearly grasp the structure.
 図1Aから図2Eに示すように、この光学接続構造1は、例えば、一方向に延びる板形状を有する。以後、光学接続構造1が延びる方向を、長手方向と称呼する。光学接続構造1は、光電複合伝送部2と、光ファイバ部材3と、接着部材4とを備える。 As shown in FIGS. 1A to 2E, the optical connection structure 1 has, for example, a plate shape extending in one direction. Hereinafter, the direction in which the optical connection structure 1 extends is referred to as a longitudinal direction. The optical connection structure 1 includes a photoelectric composite transmission unit 2, an optical fiber member 3, and an adhesive member 4.
 光電複合伝送部2は、長手方向に長い板形状を有する。光電複合伝送部2は、光導波路5と、基板の一例としての電気回路基板6と、光電変換部7と、基板の一例としてのプリント配線板8と、電気コネクタ9とを備える。 The photoelectric composite transmission unit 2 has a plate shape long in the longitudinal direction. The photoelectric composite transmission unit 2 includes an optical waveguide 5, an electric circuit board 6 as an example of a substrate, a photoelectric conversion unit 7, a printed wiring board 8 as an example of a substrate, and an electric connector 9.
 図1Bおよび図2Cに示すように、光導波路5は、長手方向に延びるフィルム形状を有する。光導波路5は、底面視略矩形状を有する。光導波路5は、クラッドの一例としてのアンダークラッド11と、コア12と、オーバークラッド13とを備える。 As shown in FIGS. 1B and 2C, the optical waveguide 5 has a film shape extending in the longitudinal direction. The optical waveguide 5 has a substantially rectangular shape when viewed from the bottom. The optical waveguide 5 includes an underclad 11 as an example of the cladding, a core 12, and an overclad 13.
 アンダークラッド11は、光導波路5と同一の底面視形状を有する。コア12は、アンダークラッド11の厚み方向他方面に配置されている。コア12は、後述する複数のファイバコア33に対応して、複数設けられている。複数のコア12は、幅方向に間隔を隔てて対向配置されている。幅方向は、長手方向および厚み方向に直交する。以後、幅方向は、上記と同様である。コア12は、アンダークラッド11の厚み方向他方面の一部に接触し、残部に接触しない。複数のコア12のそれぞれは、長手方向に延びる。コア12の長手方向一端面は、アンダークラッド11の長手方向一端面と面一である。コア12の長手方向途中には、ミラー10が形成される。オーバークラッド13は、アンダークラッド11と同一の底面視形状を有する。オーバークラッド13は、アンダークラッド11の厚み方向他方面に配置されている。オーバークラッド13は、コア12を被覆する。具体的には、オーバークラッド13は、コア12の厚み方向他方面および側面と、アンダークラッド11の厚み方向他方面の残部とに接触する。オーバークラッド13の長手方向一端面は、アンダークラッド11およびコア12の長手方向一端面と面一である。これにより、光導波路5の長手方向一端面14は、単一である。アンダークラッド11とコア12とオーバークラッド13との材料としては、例えば、透明樹脂が挙げられる。コア12の屈折率は、アンダークラッド11とオーバークラッド13との屈折率より高い。 The underclad 11 has the same bottom view shape as the optical waveguide 5. The core 12 is arranged on the other side of the underclad 11 in the thickness direction. A plurality of cores 12 are provided corresponding to a plurality of fiber cores 33 described later. The plurality of cores 12 are arranged to face each other at intervals in the width direction. The width direction is orthogonal to the longitudinal direction and the thickness direction. After that, the width direction is the same as described above. The core 12 contacts a part of the other surface of the underclad 11 in the thickness direction and does not contact the rest. Each of the plurality of cores 12 extends in the longitudinal direction. One end surface in the longitudinal direction of the core 12 is flush with one end surface in the longitudinal direction of the underclad 11. A mirror 10 is formed in the middle of the core 12 in the longitudinal direction. The overclad 13 has the same bottom view shape as the underclad 11. The overclad 13 is arranged on the other surface of the underclad 11 in the thickness direction. The overclad 13 covers the core 12. Specifically, the overclad 13 contacts the other surface and side surface of the core 12 in the thickness direction and the rest of the other surface of the underclad 11 in the thickness direction. One end surface in the longitudinal direction of the overclad 13 is flush with one end surface in the longitudinal direction of the underclad 11 and the core 12. As a result, the one end surface 14 in the longitudinal direction of the optical waveguide 5 is single. Examples of the material of the underclad 11, the core 12, and the overclad 13 include a transparent resin. The refractive index of the core 12 is higher than the refractive index of the underclad 11 and the overclad 13.
 電気回路基板6は、光導波路5の厚み方向一方面(主面の一例)に配置されている。つまり、電気回路基板6は、光導波路5と厚み方向に隣接する。電気回路基板6は、長手方向に延びる。電気回路基板6は、例えば、フレキシブルプリント基板(FPC)を含む。 The electric circuit board 6 is arranged on one side (an example of the main surface) in the thickness direction of the optical waveguide 5. That is, the electric circuit board 6 is adjacent to the optical waveguide 5 in the thickness direction. The electric circuit board 6 extends in the longitudinal direction. The electric circuit board 6 includes, for example, a flexible printed circuit board (FPC).
 電気回路基板6の長手方向長さは、光導波路5の長手方向長さと同一である。厚み方向に投影したときには、電気回路基板6は、光導波路5の全部と重なる。具体的には、電気回路基板6の長手方向一端面および他端面は、それぞれ、光導波路5の長手方向一端面14および他端面と面一である。電気回路基板6の幅は、例えば、光導波路5の幅と同一である。幅は、幅方向の長さである。電気回路基板6は、例えば、支持層25と、支持層の厚み方向一方面に配置される導体層(図示せず)とを備える。支持層25の材料としては、例えば、樹脂、および、金属が挙げられる。導体層は、端子および配線を連続して備える。導体層の材料は、導体である。 The longitudinal length of the electric circuit board 6 is the same as the longitudinal length of the optical waveguide 5. When projected in the thickness direction, the electric circuit board 6 overlaps the entire optical waveguide 5. Specifically, the one end surface and the other end surface in the longitudinal direction of the electric circuit board 6 are flush with the one end surface 14 and the other end surface in the longitudinal direction of the optical waveguide 5, respectively. The width of the electric circuit board 6 is, for example, the same as the width of the optical waveguide 5. The width is the length in the width direction. The electric circuit board 6 includes, for example, a support layer 25 and a conductor layer (not shown) arranged on one side of the support layer in the thickness direction. Examples of the material of the support layer 25 include a resin and a metal. The conductor layer comprises a series of terminals and wiring. The material of the conductor layer is a conductor.
 光導波路5と電気回路基板6との積層体は、光電気混載基板44を形成する。つまり、光電気混載基板44は、光導波路5と電気回路基板6とを備える。光電気混載基板44は、可撓性を有する。図2Cおよび図2Dに示すように、光電気混載基板44の長手方向途中部は、厚み方向一方側に湾曲する。 The laminated body of the optical waveguide 5 and the electric circuit board 6 forms the optical-electric mixed board 44. That is, the optical / electric mixed mounting substrate 44 includes an optical waveguide 5 and an electric circuit board 6. The photoelectric mixed substrate 44 has flexibility. As shown in FIGS. 2C and 2D, the intermediate portion in the longitudinal direction of the photoelectric mixed mounting substrate 44 is curved to one side in the thickness direction.
 光電変換部7は、電気回路基板6の厚み方向一方面に配置されている。具体的には、光電変換部7は、電気回路基板6の端子(図示せず)と電気的に接続されている。また、光電変換部7は、厚み方向に投影したときに、ミラー10と重なる受発光素子17を含む。 The photoelectric conversion unit 7 is arranged on one side of the electric circuit board 6 in the thickness direction. Specifically, the photoelectric conversion unit 7 is electrically connected to a terminal (not shown) of the electric circuit board 6. Further, the photoelectric conversion unit 7 includes a light receiving / receiving element 17 that overlaps with the mirror 10 when projected in the thickness direction.
 受発光素子17は、光信号を電気信号に変換するフォトダイオード、および/または、電気信号を光信号に変換するレーザダイオードを含む。光電変換部7は、補助素子18をさらに含んでもよい。補助素子18は、例えば、駆動集積回路、インピーダンス変換増幅回路、および、リタイマ集積回路を含む。例えば、補助素子18は、受発光素子17の長手方向他方側に間隔を隔てて対向配置されている。 The light receiving / receiving element 17 includes a photodiode that converts an optical signal into an electric signal, and / or a laser diode that converts an electric signal into an optical signal. The photoelectric conversion unit 7 may further include an auxiliary element 18. The auxiliary element 18 includes, for example, a drive integrated circuit, an impedance conversion amplifier circuit, and a retimer integrated circuit. For example, the auxiliary elements 18 are arranged to face each other on the other side in the longitudinal direction of the light receiving / receiving element 17 at intervals.
 図2Cと図2Dとに示すように、プリント配線板8は、電気回路基板6の厚み方向一方側に配置される。そのため、この光学接続構造1では、光導波路5と、電気回路基板6と、光電変換部7と、プリント配線板8とが厚み方向一方側に向かって順に配置される。プリント配線板8は、光導波路5と厚み方向に隣接する。 As shown in FIGS. 2C and 2D, the printed wiring board 8 is arranged on one side of the electric circuit board 6 in the thickness direction. Therefore, in the optical connection structure 1, the optical waveguide 5, the electric circuit board 6, the photoelectric conversion unit 7, and the printed wiring board 8 are arranged in order toward one side in the thickness direction. The printed wiring board 8 is adjacent to the optical waveguide 5 in the thickness direction.
 図1Aと図1Bとに示すように、プリント配線板8は、平面視において光電複合伝送部2と同一の外形形状を有する。プリント配線板8は、長手方向に延びる略平板形状を有する。プリント配線板8の長さは、電気回路基板6の長さより長い。図2Dに示すように、プリント配線板8の長手方向一端面は、厚み方向に投影したときに、電気回路基板6の長手方向一端面と同一位置に配置される。一方、プリント配線板8の長手方向他端面は、電気回路基板6の長手方向他端面に対して、長手方向一方側に配置される。図1Bに示すように、プリント配線板8の幅は、電気回路基板6の幅より広い。具体的には、図1Aに示すように、プリント配線板8は、幅方向中央部が長手方向一端面から長手方向他方側に向かって切り欠かれた形状を有する。つまり、プリント配線板8は、切り欠き19を有する。換言すれば、プリント配線板8は、平面視略U字(またはコ字)形状を有する。切り欠き19は、平面視略矩形状を有する。プリント配線板8の切り欠き19の周囲の領域は、厚み方向に投影したときに、電気回路基板6と重なる。この領域を内側領域20と称呼する。プリント配線板8は、内側領域20と、外側領域21とを有する。外側領域21は、内側領域20の外側に配置される。具体的には、外側領域21は、内側領域20の幅方向両外側と長手方向他方側とに配置されている。外側領域21は、厚み方向に投影したときに電気回路基板6と重ならない。プリント配線板8は、基板26と、端子(図示せず)とを備える。 As shown in FIGS. 1A and 1B, the printed wiring board 8 has the same outer shape as the photoelectric composite transmission unit 2 in a plan view. The printed wiring board 8 has a substantially flat plate shape extending in the longitudinal direction. The length of the printed wiring board 8 is longer than the length of the electric circuit board 6. As shown in FIG. 2D, the longitudinal end surface of the printed wiring board 8 is arranged at the same position as the longitudinal end surface of the electric circuit board 6 when projected in the thickness direction. On the other hand, the other end surface in the longitudinal direction of the printed wiring board 8 is arranged on one side in the longitudinal direction with respect to the other end surface in the longitudinal direction of the electric circuit board 6. As shown in FIG. 1B, the width of the printed wiring board 8 is wider than the width of the electric circuit board 6. Specifically, as shown in FIG. 1A, the printed wiring board 8 has a shape in which the central portion in the width direction is cut out from one end surface in the longitudinal direction toward the other side in the longitudinal direction. That is, the printed wiring board 8 has a notch 19. In other words, the printed wiring board 8 has a substantially U-shaped (or U-shaped) shape in a plan view. The notch 19 has a substantially rectangular shape in a plan view. The area around the notch 19 of the printed wiring board 8 overlaps with the electric circuit board 6 when projected in the thickness direction. This region is referred to as an inner region 20. The printed wiring board 8 has an inner region 20 and an outer region 21. The outer region 21 is arranged outside the inner region 20. Specifically, the outer region 21 is arranged on both outer sides in the width direction and the other side in the longitudinal direction of the inner region 20. The outer region 21 does not overlap with the electric circuit board 6 when projected in the thickness direction. The printed wiring board 8 includes a substrate 26 and terminals (not shown).
 図2Cおよび図2Dに示すように、プリント配線板8の厚み方向他方面は、光電気混載基板44の一方側部と接触する。光電気混載基板44の一方側部は、光電気混載基板44の厚み方向一方面において途中部より長手方向一方側に配置される部である。第1実施形態では、プリント配線板8の厚み方向他方面は、電気回路基板6の厚み方向一方面における一方側部と接触する。一方、プリント配線板8の厚み方向他方面は、電気回路基板6の厚み方向一方面における他方側部と厚み方向に間隔が隔てられる。他方側部は、長手方向において途中部より他方側に配置される部である。つまり、第1実施形態では、光電気混載基板44の他方側部は、プリント配線板8に対して間隔が隔てられながら、長手方向一方側に向かって延びる。光電気混載基板44の途中部は、長手方向一方側に向かうに従って、プリント配線板8に近づく。光電気混載基板44の一方側部は、プリント配線板8に接触しながら、長手方向一方側に向かって延びる。 As shown in FIGS. 2C and 2D, the other side of the printed wiring board 8 in the thickness direction comes into contact with one side of the optical / electric mixed circuit board 44. One side portion of the photoelectric mixed mounting substrate 44 is a portion arranged on one side in the longitudinal direction from the middle portion on one side in the thickness direction of the photoelectric mixed mounting substrate 44. In the first embodiment, the other side of the printed wiring board 8 in the thickness direction comes into contact with one side of the electric circuit board 6 in the thickness direction. On the other hand, the other side of the printed wiring board 8 in the thickness direction is separated from the other side of the one side of the electric circuit board 6 in the thickness direction in the thickness direction. The other side portion is a portion arranged on the other side of the middle portion in the longitudinal direction. That is, in the first embodiment, the other side portion of the optical / electric mixed mounting substrate 44 extends toward one side in the longitudinal direction while being spaced apart from the printed wiring board 8. The intermediate portion of the optical / electric mixed circuit board 44 approaches the printed wiring board 8 toward one side in the longitudinal direction. One side of the optical / electric mixed circuit board 44 extends toward one side in the longitudinal direction while being in contact with the printed wiring board 8.
 基板26は、プリント配線板8の上記した平面視形状を有する。基板26の材料としては、例えば、硬質材料が挙げられる。硬質材料としては、例えば、ガラス繊維強化エポキシ樹脂が挙げられる。端子(図示せず)は、基板26の厚み方向他方面に設けられる。 The board 26 has the above-mentioned plan view shape of the printed wiring board 8. Examples of the material of the substrate 26 include a hard material. Examples of the hard material include glass fiber reinforced epoxy resin. The terminal (not shown) is provided on the other surface of the substrate 26 in the thickness direction.
 図2Cと図2Dとに示すように、電気コネクタ9は、プリント配線板8の厚み方向他方面に配置されている。図1Bに示すように、電気コネクタ9は、例えば、底面視において、幅方向に長い略矩形状を有する。また、図2Cと図2Dとに示すように、電気コネクタ9は、断面視略U字(またはコ字)形状を有する。電気コネクタ9は、差し込み口23と、コネクタ端子(図示せず)とを有する。差し込み口23は、光電気混載基板44の長手方向他端部が差し込み可能に構成されている。具体的には、差し込み口23は、長手方向一方側に向かって開いている。図示しないコネクタ端子は、差し込み口23内に設けられている。差し込み口23に光電気混載基板44の長手方向他端部が差し込まれ、電気回路基板6の端子がコネクタ端子と接触することにより、電気コネクタ9が電気回路基板6と電気的に接続される。電気コネクタ9としては、例えば、FPCコネクタ、ZIFコネクタ、および、基板用コネクタが挙げられる。 As shown in FIGS. 2C and 2D, the electric connector 9 is arranged on the other side of the printed wiring board 8 in the thickness direction. As shown in FIG. 1B, the electric connector 9 has a substantially rectangular shape that is long in the width direction, for example, when viewed from the bottom. Further, as shown in FIGS. 2C and 2D, the electric connector 9 has a substantially U-shaped (or U-shaped) cross-sectional view. The electric connector 9 has an insertion port 23 and a connector terminal (not shown). The insertion port 23 is configured so that the other end portion of the optical / electric mixed mounting substrate 44 in the longitudinal direction can be inserted. Specifically, the insertion port 23 is open toward one side in the longitudinal direction. A connector terminal (not shown) is provided in the insertion port 23. The other end of the optical / electric mixed board 44 in the longitudinal direction is inserted into the insertion port 23, and the terminal of the electric circuit board 6 comes into contact with the connector terminal, whereby the electric connector 9 is electrically connected to the electric circuit board 6. Examples of the electric connector 9 include an FPC connector, a ZIF connector, and a board connector.
 図1Aと図1Bとに示すように、光ファイバ部材3は、光電複合伝送部2の長手方向一方側に対向配置されている。光ファイバ部材3は、光ファイバ31と、位置決め部材の一例としての保持部材32とを備える。 As shown in FIGS. 1A and 1B, the optical fiber member 3 is arranged to face each other on one side in the longitudinal direction of the photoelectric composite transmission unit 2. The optical fiber member 3 includes an optical fiber 31 and a holding member 32 as an example of a positioning member.
 図2Cに示すように、光ファイバ31は、長手方向に延びる。光ファイバ31は、ファイバコア33と、ファイバクラッド34と、ファイバ被覆層(図示せず)とを備える。図1Bに示すように、ファイバコア33は、幅方向に間隔を隔てて複数配置されている。ファイバコア33の長手方向他端面は、コア12の長手方向一端面14と長手方向に対向配置される。 As shown in FIG. 2C, the optical fiber 31 extends in the longitudinal direction. The optical fiber 31 includes a fiber core 33, a fiber clad 34, and a fiber coating layer (not shown). As shown in FIG. 1B, a plurality of fiber cores 33 are arranged at intervals in the width direction. The other end surface in the longitudinal direction of the fiber core 33 is arranged to face the one end surface 14 in the longitudinal direction of the core 12 in the longitudinal direction.
 図2Cに示すように、ファイバクラッド34は、ファイバコア33の周面を被覆する。ファイバクラッド34の長手方向他端面は、ファイバコア33の長手方向他端面と面一である。なお、ファイバクラッド34は、長手方向他端部において複数に分岐する。分岐した複数のファイバクラッド34は、図2Eに示すように、断面略円環形状を有する。図示しないファイバ被覆層は、分岐していないファイバクラッド34の周面を被覆する。つまり、図示しないファイバ被覆層は、分岐したファイバクラッド34の周面を露出する。ファイバコア33とファイバクラッド34との材料としては、例えば、プラスチック、および、樹脂が挙げられる。ファイバコア33は、ファイバクラッド34より高い屈折率を有する。 As shown in FIG. 2C, the fiber clad 34 covers the peripheral surface of the fiber core 33. The other end surface in the longitudinal direction of the fiber clad 34 is flush with the other end surface in the longitudinal direction of the fiber core 33. The fiber clad 34 is branched into a plurality of pieces at the other end in the longitudinal direction. As shown in FIG. 2E, the plurality of branched fiber clads 34 have a substantially annular shape in cross section. The fiber coating layer (not shown) covers the peripheral surface of the unbranched fiber clad 34. That is, the fiber coating layer (not shown) exposes the peripheral surface of the branched fiber clad 34. Examples of the material of the fiber core 33 and the fiber clad 34 include plastic and resin. The fiber core 33 has a higher refractive index than the fiber clad 34.
 なお、光ファイバ31において保持部材32より長手方向一方側部分では、複数のファイバコア33およびそれにそれぞれ対応する複数のファイバクラッド34が、樹脂を介して幅方向に繋がっている。すなわち、上記した部分は、複数のファイバコア33が幅方向に並列するリボン状(帯状)を有する。あるいは、複数のファイバコア33は、樹脂を介さず、幅方向に互いに独立して(ばらばらになっていて)もよい。 In the optical fiber 31, a plurality of fiber cores 33 and a plurality of fiber clads 34 corresponding thereto are connected in the width direction via a resin on one side portion in the longitudinal direction from the holding member 32. That is, the above-mentioned portion has a ribbon shape (strip shape) in which a plurality of fiber cores 33 are arranged in parallel in the width direction. Alternatively, the plurality of fiber cores 33 may be independent of each other (separated) in the width direction without using a resin.
 図2Cと図2Dとに示すように、保持部材32は、光ファイバ31の長手方向他端部に配置される。図2Eに示すように、保持部材32は、溝板35と、蓋板36とを備える。 As shown in FIGS. 2C and 2D, the holding member 32 is arranged at the other end of the optical fiber 31 in the longitudinal direction. As shown in FIG. 2E, the holding member 32 includes a groove plate 35 and a lid plate 36.
 溝板35は、幅方向に延びる略矩形板状を有する。溝板35の厚み方向一方面は、例えば、V字形状の溝27と、平坦部28とを有する。 The groove plate 35 has a substantially rectangular plate shape extending in the width direction. One surface of the groove plate 35 in the thickness direction has, for example, a V-shaped groove 27 and a flat portion 28.
 溝27は、溝板35の厚み方向一方面における幅方向途中に配置される。溝27は、複数のファイバコア33と複数のファイバクラッド34とに対応して、複数設けられる。複数の溝27のそれぞれは、長手方向に沿う。複数の溝27の底面37は、複数のファイバクラッド34の周面の一部に接触する。保持部材32によって、ファイバコア33が光導波路5のコア12に対して位置決めされる。つまり、ファイバコア33がコア12に対して調心される。 The groove 27 is arranged in the middle of the width direction on one side of the groove plate 35 in the thickness direction. A plurality of grooves 27 are provided corresponding to the plurality of fiber cores 33 and the plurality of fiber clads 34. Each of the plurality of grooves 27 is along the longitudinal direction. The bottom surface 37 of the plurality of grooves 27 comes into contact with a part of the peripheral surface of the plurality of fiber clads 34. The holding member 32 positions the fiber core 33 with respect to the core 12 of the optical waveguide 5. That is, the fiber core 33 is centered with respect to the core 12.
 平坦部28は、溝板35の厚み方向一方面における幅方向両端部に配置される。具体的には、平坦部28は、溝27の幅方向両外側に配置される。平坦部28は、幅方向および長手方向に沿う平坦面である。 The flat portions 28 are arranged at both ends in the width direction on one side in the thickness direction of the groove plate 35. Specifically, the flat portion 28 is arranged on both outer sides of the groove 27 in the width direction. The flat portion 28 is a flat surface along the width direction and the longitudinal direction.
 蓋板36は、溝板35の厚み方向一方側に配置される。蓋板36は、幅方向に延びる略矩形板状を有する。蓋板36の厚み方向他方面38は、平坦面である。蓋板36の厚み方向他方面38の幅方向途中部は、複数のファイバクラッド34の周面の一部に接触する。
 溝板35と蓋板36とは、厚み方向において、ファイバコア33とファイバクラッド34とを挟み込んでいる。蓋板36の厚み方向他方面38の幅方向両端部は、溝板35の平坦部28と厚み方向に間隔が隔てられる。
The lid plate 36 is arranged on one side of the groove plate 35 in the thickness direction. The lid plate 36 has a substantially rectangular plate shape extending in the width direction. The other surface 38 of the lid plate 36 in the thickness direction is a flat surface. The intermediate portion in the width direction of the other surface 38 in the thickness direction of the lid plate 36 comes into contact with a part of the peripheral surface of the plurality of fiber clads 34.
The groove plate 35 and the lid plate 36 sandwich the fiber core 33 and the fiber clad 34 in the thickness direction. Both ends in the width direction of the other surface 38 in the thickness direction of the lid plate 36 are spaced apart from the flat portion 28 of the groove plate 35 in the thickness direction.
 図2Cと図2Dとに示すように、保持部材32の厚み方向他端面と、光ファイバ31(ファイバコア33およびファイバクラッド34)の厚み方向他端面とは、面一である。保持部材32の材料としては、例えば、ガラスが挙げられる。ガラスとして、例えば、ホウケイ酸ガラスが挙げられる。保持部材32の構成、および、保持部材32の光ファイバ31に対する保持方法は、特開2020-079862号公報に記載される。 As shown in FIGS. 2C and 2D, the other end surface of the holding member 32 in the thickness direction and the other end surface of the optical fiber 31 (fiber core 33 and fiber clad 34) in the thickness direction are flush with each other. Examples of the material of the holding member 32 include glass. Examples of the glass include borosilicate glass. A configuration of the holding member 32 and a method of holding the holding member 32 with respect to the optical fiber 31 are described in Japanese Patent Application Laid-Open No. 2020-079862.
 光ファイバ31(ファイバコア33およびファイバクラッド34)の長手方向他端面は、光導波路5の長手方向一端面14と接触している。蓋板36の長手方向他端面は、電気回路基板6の長手方向一端面とプリント配線板8の長手方向一端面とに接触している。上記した各面は、光電複合伝送部2と光ファイバ部材3との境界線L(仮想線)を挟んで対向している。 The other end surface in the longitudinal direction of the optical fiber 31 (fiber core 33 and fiber clad 34) is in contact with the one end surface 14 in the longitudinal direction of the optical waveguide 5. The other end surface in the longitudinal direction of the lid plate 36 is in contact with one end surface in the longitudinal direction of the electric circuit board 6 and one end surface in the longitudinal direction of the printed wiring board 8. The above-mentioned surfaces face each other with a boundary line L (virtual line) between the photoelectric composite transmission unit 2 and the optical fiber member 3 interposed therebetween.
 境界線Lは、幅方向に延びる。詳しくは、境界線Lは、光導波路5および電気回路基板6と、光ファイバ部材3との境界である。 The boundary line L extends in the width direction. Specifically, the boundary line L is a boundary between the optical waveguide 5, the electric circuit board 6, and the optical fiber member 3.
 図1Aと図1Bとに示すように、接着部材4は、光学接続構造1に1つ備えられる。接着部材4は、境界線Lに沿って配置されている。そして、接着部材4は、光電複合伝送部2の長手方向一端部と、光ファイバ部材3の長手方向他端部とに接触している。 As shown in FIGS. 1A and 1B, one adhesive member 4 is provided in the optical connection structure 1. The adhesive member 4 is arranged along the boundary line L. The adhesive member 4 is in contact with one end in the longitudinal direction of the photoelectric composite transmission unit 2 and the other end in the longitudinal direction of the optical fiber member 3.
 具体的には、図1Bと図2Cとに示すように、接着部材4は、光導波路5の厚み方向他方面における長手方向一端縁とその近傍とに接触している。接着部材4は、光導波路5の幅方向両側面における長手方向一端縁とその近傍とに接触している。 Specifically, as shown in FIGS. 1B and 2C, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the optical waveguide 5. The adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the optical waveguide 5.
 接着部材4は、電気回路基板6の厚み方向一方面における長手方向一端縁とその近傍とに接触している。また、接着部材4は、電気回路基板6の幅方向両側面における長手方向一端縁とその近傍とに接触している。 The adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the electric circuit board 6. Further, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the electric circuit board 6.
 図1Aと図1Bとに示すように、接着部材4は、プリント配線板8の幅方向内側面における長手方向一端縁とその近傍とに接触している。また、図2Dに示すように、接着部材4は、プリント配線板8の厚み方向一方面における長手方向一端縁とその近傍とに接触している。さらに、接着部材4は、プリント配線板8の長手方向一端面における厚み方向一端縁とその近傍とに接触している。 As shown in FIGS. 1A and 1B, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on the inner side surface in the width direction of the printed wiring board 8. Further, as shown in FIG. 2D, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the printed wiring board 8. Further, the adhesive member 4 is in contact with one end edge in the thickness direction and its vicinity on one end surface in the longitudinal direction of the printed wiring board 8.
 接着部材4は、図1Aと図2Cから図2Eとに示すように、蓋板36の厚み方向一方面における長手方向他端縁とその近傍とに接触している。図1Bと図2Cから図2Eとに示すように、接着部材4は、溝板35の厚み方向他方面における長手方向他端縁とその近傍とに接触している。また、接着部材4は、溝板35および蓋板36の幅方向両側面における長手方向他端縁とその近傍とに接触している。さらに、図2Eに示すように、接着部材4は、溝板35の底面37においてファイバコア33の周面と接触しない箇所と、蓋板36の厚み方向他方面38においてファイバコア33の周面と接触しない箇所とに接触している。接着部材4は、溝板35の平坦部28と、蓋板36の厚み方向他方面38における両端部とに接触している。 As shown in FIGS. 1A and 2C to 2E, the adhesive member 4 is in contact with the other end edge in the longitudinal direction on one surface in the thickness direction of the lid plate 36 and its vicinity. As shown in FIGS. 1B and 2C to 2E, the adhesive member 4 is in contact with the other end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the groove plate 35. Further, the adhesive member 4 is in contact with the other end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the groove plate 35 and the lid plate 36. Further, as shown in FIG. 2E, the adhesive member 4 has a portion that does not come into contact with the peripheral surface of the fiber core 33 on the bottom surface 37 of the groove plate 35 and a peripheral surface of the fiber core 33 on the other surface 38 in the thickness direction of the lid plate 36. It is in contact with a part that does not contact. The adhesive member 4 is in contact with the flat portion 28 of the groove plate 35 and both ends of the lid plate 36 on the other surface 38 in the thickness direction.
 これにより、1つの接着部材4は、光導波路5と、電気回路基板6と、プリント配線板8と、光ファイバ31と、保持部材32とを接着する。また、保持部材32は、1つの接着部材4によって、光導波路5と、電気回路基板6と、プリント配線板8とに接着する。 Thereby, one adhesive member 4 adheres the optical waveguide 5, the electric circuit board 6, the printed wiring board 8, the optical fiber 31, and the holding member 32. Further, the holding member 32 is adhered to the optical waveguide 5, the electric circuit board 6, and the printed wiring board 8 by one adhesive member 4.
 この光学接続構造1を製造するには、まず、光電複合伝送部2と光ファイバ部材3とのそれぞれを準備する。 In order to manufacture this optical connection structure 1, first, each of the photoelectric composite transmission unit 2 and the optical fiber member 3 is prepared.
 公知の方法によって、光導波路5と電気回路基板6と光電変換部7とプリント配線板8とを用いて、光電複合伝送部2を作製する。 A photoelectric composite transmission unit 2 is manufactured by using an optical waveguide 5, an electric circuit board 6, a photoelectric conversion unit 7, and a printed wiring board 8 by a known method.
 光ファイバ31の長手方向他端部におけるファイバ被覆層(図示せず)をファイバクラッド34から剥離し、続いて、ファイバクラッド34を、複数のファイバコア33に対応して分岐させて、その後、複数のファイバクラッド34を、溝板35の複数の溝27にそれぞれ嵌める。その後、蓋板36を複数のファイバクラッド34に配置する。これによって、光ファイバ部材3を作製する。 The fiber coating layer (not shown) at the other end of the optical fiber 31 in the longitudinal direction is peeled from the fiber clad 34, and then the fiber clad 34 is branched corresponding to the plurality of fiber cores 33, and then a plurality. The fiber clad 34 of the above is fitted into each of the plurality of grooves 27 of the groove plate 35. After that, the lid plate 36 is arranged on the plurality of fiber clads 34. As a result, the optical fiber member 3 is manufactured.
 次いで、光電複合伝送部2の長手方向一端面と、光ファイバ部材3の長手方向他端面とを、接触させる(具体的には、突き合わせる)。この際、コア12とファイバコア33とを調心する。 Next, the one end surface in the longitudinal direction of the photoelectric composite transmission unit 2 and the other end surface in the longitudinal direction of the optical fiber member 3 are brought into contact with each other (specifically, they are butted against each other). At this time, the core 12 and the fiber core 33 are aligned.
 その後、接着組成物を境界線Lに沿って配置する。接着組成物の性状は、液状、または、半固形状である。接着組成物は、例えば、硬化性接着剤を含む。硬化性接着剤としては、例えば、光硬化性接着剤、および、熱硬化性接着剤が挙げられる。接着組成物として、例えば、エポキシ接着組成物、および、アクリル接着組成物が挙げられる。 After that, the adhesive composition is placed along the boundary line L. The properties of the adhesive composition are liquid or semi-solid. The adhesive composition comprises, for example, a curable adhesive. Examples of the curable adhesive include a photocurable adhesive and a thermosetting adhesive. Examples of the adhesive composition include an epoxy adhesive composition and an acrylic adhesive composition.
 その後、接着組成物が硬化性接着剤であれば、接着組成物を硬化させる。これにより、接着部材4を形成する。これによって、単一の接着部材4が、光導波路5と、電気回路基板6と、プリント配線板8と、光ファイバ31と、保持部材32とを接着する。 After that, if the adhesive composition is a curable adhesive, the adhesive composition is cured. As a result, the adhesive member 4 is formed. As a result, the single adhesive member 4 adheres the optical waveguide 5, the electric circuit board 6, the printed wiring board 8, the optical fiber 31, and the holding member 32.
  [第1実施形態の作用効果]
 そして、この光学接続構造1では、たとえ、接着部材4が硬化によって収縮しても、接着部材4が1つであり、それが光導波路5と光ファイバ31と電気回路基板6とプリント配線板8とを接着する。そのため、特許文献1のような、2つの接着部材4の収縮状態の相異に起因する光ファイバ31の変形を抑制できる。そのため、光学的な接続信頼性を向上できる。光学接続構造1において、接着部材4は、1つであるので、接着強度の低下を抑制できる。
[Action and effect of the first embodiment]
In this optical connection structure 1, even if the adhesive member 4 shrinks due to curing, there is only one adhesive member 4, which is an optical waveguide 5, an optical fiber 31, an electric circuit board 6, and a printed wiring board 8. And glue. Therefore, it is possible to suppress the deformation of the optical fiber 31 due to the difference in the contracted state of the two adhesive members 4 as in Patent Document 1. Therefore, the optical connection reliability can be improved. Since there is only one adhesive member 4 in the optical connection structure 1, it is possible to suppress a decrease in adhesive strength.
 その結果、光学接続構造1は、光ファイバ31の変形を抑制して、光学的な接続信頼性を向上させ、接着強度に優れる。 As a result, the optical connection structure 1 suppresses the deformation of the optical fiber 31, improves the optical connection reliability, and has excellent adhesive strength.
 また、この光学接続構造1は、光電複合伝送部2が、基板の一例としてプリント配線板8を含む。プリント配線板8は、硬質である。そのため、光導波路5と光ファイバ31との光学的な接続信頼性をより一層向上させることができる。 Further, in this optical connection structure 1, the photoelectric composite transmission unit 2 includes a printed wiring board 8 as an example of a substrate. The printed wiring board 8 is rigid. Therefore, the optical connection reliability between the optical waveguide 5 and the optical fiber 31 can be further improved.
 さらに、この光学接続構造1では、光電複合伝送部2が、基板の一例として電気回路基板6をさらに含む。光導波路5とこれの厚み方向一方面を支持できる電気回路基板6とを、1つの接着部材4で接着するので、強度により一層優れる。 Further, in the optical connection structure 1, the photoelectric composite transmission unit 2 further includes an electric circuit board 6 as an example of the substrate. Since the optical waveguide 5 and the electric circuit board 6 capable of supporting one surface in the thickness direction thereof are bonded by one adhesive member 4, the strength is further improved.
 さらにまた、この光学接続構造1は、保持部材32をさらに備える。そのため、保持部材32によって、光導波路5と光ファイバ31とが確実に調心される。そのため、光学的な接続信頼性を向上できる。 Furthermore, the optical connection structure 1 further includes a holding member 32. Therefore, the optical waveguide 5 and the optical fiber 31 are surely aligned by the holding member 32. Therefore, the optical connection reliability can be improved.
  [第1実施形態の変形例] 
 以下の変形例において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第1実施形態と同様の作用効果を奏することができる。さらに、第1実施形態およびその変形例を適宜組み合わせることができる。
[Modified example of the first embodiment]
In the following modification, the same members and processes as those in the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the first embodiment, except for special mention. Further, the first embodiment and its modifications can be combined as appropriate.
 図3に示すように、光電複合伝送部2と、光ファイバ部材3とが接触しなくてもよい。具体的には、光導波路5の長手方向一端面14は、光ファイバ31の長手方向他端面と間隔が隔てられる。電気回路基板6の長手方向一端面は、蓋板36の長手方向他端面と間隔が隔てられる。上記した間隔の長手方向長さは、例えば、光導波路5と光ファイバ31との光学的な接続信頼性を確保する観点から、100μm以下、好ましくは、75μm以下であり、また、例えば、0μm超過、好ましくは、10μm以上である。 As shown in FIG. 3, the photoelectric composite transmission unit 2 and the optical fiber member 3 do not have to come into contact with each other. Specifically, the longitudinal end surface 14 of the optical waveguide 5 is spaced apart from the longitudinal end surface of the optical fiber 31. The one end surface in the longitudinal direction of the electric circuit board 6 is spaced apart from the other end surface in the longitudinal direction of the lid plate 36. The length of the above-mentioned interval in the longitudinal direction is, for example, 100 μm or less, preferably 75 μm or less, and more than 0 μm, for example, from the viewpoint of ensuring the optical connection reliability between the optical waveguide 5 and the optical fiber 31. It is preferably 10 μm or more.
 接着部材4の全光線透過率は、例えば、80%以上、好ましくは、90%以上、より好ましくは、95%以上であり、また、例えば、100%以下である。 The total light transmittance of the adhesive member 4 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and for example, 100% or less.
 図4に示すように、第1実施形態の変形例の光学接続構造1では、光電変換部7と、電気回路基板6と、光導波路5と、プリント配線板8とが厚み方向一方側に向かって順に配置される。つまり、光電気混載基板44における光導波路5と電気回路基板6との配置を上下反転させる。この変形例では、電気回路基板6の長手方向一端面が、溝板35の長手方向他端面と接触する。 As shown in FIG. 4, in the optical connection structure 1 of the modified example of the first embodiment, the photoelectric conversion unit 7, the electric circuit board 6, the optical waveguide 5, and the printed wiring board 8 face one side in the thickness direction. Are arranged in order. That is, the arrangement of the optical waveguide 5 and the electric circuit board 6 on the optical / electric mixed board 44 is turned upside down. In this modification, the one end surface in the longitudinal direction of the electric circuit board 6 comes into contact with the other end surface in the longitudinal direction of the groove plate 35.
 図5に示すように、第1実施形態の変形例の保持部材32では、溝板35の平坦部28と、蓋板36の厚み方向他方面38における幅方向両端部とは、接触している。それらの間に、接着部材4が存在しない。そのため、接着部材4は、溝板35の平坦部28と、蓋板36の厚み方向他方面38における幅方向両端部とに接触しない。この変形例は、溝板35に接触する蓋板36が、プリント配線板8(図2D参照)と接触するので、ファイバコア33とコア12とがよく調心される。一方、第1実施形態では、図2Eに示すように、溝板35の平坦部28と、蓋板36の厚み方向他方面38との間に接着部材4が存在するので、接着強度に優れる。 As shown in FIG. 5, in the holding member 32 of the modified example of the first embodiment, the flat portion 28 of the groove plate 35 and both ends in the width direction on the other surface 38 in the thickness direction of the lid plate 36 are in contact with each other. .. There is no adhesive member 4 between them. Therefore, the adhesive member 4 does not come into contact with the flat portion 28 of the groove plate 35 and both ends in the width direction on the other surface 38 in the thickness direction of the lid plate 36. In this modification, the lid plate 36 in contact with the groove plate 35 comes into contact with the printed wiring plate 8 (see FIG. 2D), so that the fiber core 33 and the core 12 are well aligned. On the other hand, in the first embodiment, as shown in FIG. 2E, since the adhesive member 4 exists between the flat portion 28 of the groove plate 35 and the other surface 38 in the thickness direction of the lid plate 36, the adhesive strength is excellent.
 光学接続構造1の製造方法において、光電複合伝送部2の長手方向一端面と、光ファイバ部材3の長手方向他端面とのいずれか一方、または、両方に接着組成物を配置し、その後、光電複合伝送部2と光ファイバ部材3とを接着することもできる。 In the method for manufacturing the optical connection structure 1, the adhesive composition is arranged on either one or both of the one end surface in the longitudinal direction of the photoelectric composite transmission unit 2 and the other end surface in the longitudinal direction of the optical fiber member 3, and then the photoelectric composition is arranged. The composite transmission unit 2 and the optical fiber member 3 can also be bonded to each other.
  [第2実施形態]
 以下の第2実施形態において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第2実施形態は、特記する以外、第1実施形態と同様の作用効果を奏することができる。さらに、第1実施形態、第2実施形態およびそれらの変形例を適宜組み合わせることができる。
[Second Embodiment]
In the following second embodiment, the same members and processes as those in the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the second embodiment can exhibit the same effects as those of the first embodiment, except for special mention. Further, the first embodiment, the second embodiment and their variations can be appropriately combined.
 図6Aと図6Bとに示すように、プリント配線板8は、基板26を厚み方向に貫通する貫通孔39を有する。貫通孔39は、プリント配線板8の平面視略中央に配置されている。貫通孔39は、長手方向に延びる略矩形状を有する。プリント配線板8の内側領域20は、貫通孔39の周囲に配置される。 As shown in FIGS. 6A and 6B, the printed wiring board 8 has a through hole 39 penetrating the substrate 26 in the thickness direction. The through hole 39 is arranged substantially in the center of the printed wiring board 8 in a plan view. The through hole 39 has a substantially rectangular shape extending in the longitudinal direction. The inner region 20 of the printed wiring board 8 is arranged around the through hole 39.
 図6Aに示すように、接着部材4は、貫通孔39に面する内側面に接触しない。図6Bに示すように、接着部材4は、光導波路5の長手方向一端部の厚み方向一方側に配置されるプリント配線板8に接触する。詳しくは、接着部材4は、上記したプリント配線板8の厚み方向一方面における長手方向一端縁と、その近傍と、上記したプリント配線板8の長手方向一端面とに接触している。 As shown in FIG. 6A, the adhesive member 4 does not come into contact with the inner surface facing the through hole 39. As shown in FIG. 6B, the adhesive member 4 comes into contact with the printed wiring board 8 arranged on one side in the thickness direction of one end in the longitudinal direction of the optical waveguide 5. Specifically, the adhesive member 4 is in contact with one end edge in the longitudinal direction on one side in the thickness direction of the printed wiring board 8 described above, its vicinity, and one end surface in the longitudinal direction of the printed wiring board 8 described above.
 第2実施形態は、第1実施形態に比べて、図2Cと図6Bとが参照されるように、プリント配線板8と接着部材4との接触面積を大きくできる。そのため、光導波路5と光ファイバ31との光学的な接続信頼性をより一層向上させることができる。 In the second embodiment, the contact area between the printed wiring board 8 and the adhesive member 4 can be increased as compared with the first embodiment, as shown in FIGS. 2C and 6B. Therefore, the optical connection reliability between the optical waveguide 5 and the optical fiber 31 can be further improved.
  [第2実施形態の変形例]
 以下の変形例において、上記した第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第2実施形態と同様の作用効果を奏することができる。さらに、第2実施形態およびその変形例を適宜組み合わせることができる。
[Modified example of the second embodiment]
In the following modification, the same members and processes as those in the second embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the second embodiment, except for special mention. Further, the second embodiment and its modifications can be combined as appropriate.
 図7に示すように、第2実施形態の変形例の光学接続構造1では、光電変換部7と、電気回路基板6と、光導波路5と、プリント配線板8とが厚み方向一方側に向かって順に配置される。つまり、光電気混載基板44における光導波路5と電気回路基板6の配置を上下反転させる。電気回路基板6の長手方向一端面が、溝板35の長手方向他端面と接触する。 As shown in FIG. 7, in the optical connection structure 1 of the modified example of the second embodiment, the photoelectric conversion unit 7, the electric circuit board 6, the optical waveguide 5, and the printed wiring board 8 face one side in the thickness direction. Are arranged in order. That is, the arrangement of the optical waveguide 5 and the electric circuit board 6 on the optical / electric mixed board 44 is turned upside down. One end surface in the longitudinal direction of the electric circuit board 6 comes into contact with the other end surface in the longitudinal direction of the groove plate 35.
  [第3実施形態]
 以下の第3実施形態において、上記した第1および第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第3実施形態は、特記する以外、第1および第2実施形態と同様の作用効果を奏することができる。さらに、第1実施形態、第2実施形態、第3実施形態およびそれらの変形例を適宜組み合わせることができる。
[Third Embodiment]
In the following third embodiment, the same members and processes as those in the first and second embodiments described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the third embodiment can exhibit the same effects as those of the first and second embodiments, except for special mention. Further, the first embodiment, the second embodiment, the third embodiment and their modified examples can be appropriately combined.
 図8に示すように、プリント配線板8は、コア12を通過する断面において、平板形状を有してもよい。つまり、プリント配線板8は、切り欠き19および貫通孔39を有さなくてもよい。コア12を通過する断面において、光電気混載基板44の長手方向一方側部は、プリント配線板8と接触している。 As shown in FIG. 8, the printed wiring board 8 may have a flat plate shape in a cross section passing through the core 12. That is, the printed wiring board 8 does not have to have the notch 19 and the through hole 39. In the cross section passing through the core 12, one side of the optical / electric mixed circuit board 44 in the longitudinal direction is in contact with the printed wiring board 8.
  [第3実施形態の変形例] 
 以下の変形例において、上記した第3実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第3実施形態と同様の作用効果を奏することができる。さらに、第3実施形態およびその変形例を適宜組み合わせることができる。
[Modified example of the third embodiment]
In the following modification, the same members and processes as those in the third embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the third embodiment, except for special mention. Further, the third embodiment and its modifications can be combined as appropriate.
 図9に示すように、光電気混載基板44は、突出部51を備える。突出部51は、厚み方向に投影したときに、プリント配線板8から長手方向一方側に突出する。接着部材4は、光電気混載基板44の突出部51と、光ファイバ部材3とに接触する。 As shown in FIG. 9, the photoelectric mixed mounting substrate 44 includes a protrusion 51. The protruding portion 51 projects from the printed wiring board 8 to one side in the longitudinal direction when projected in the thickness direction. The adhesive member 4 comes into contact with the protruding portion 51 of the opto-electrically mixed substrate 44 and the optical fiber member 3.
 図10から図12に示すように、接着部材4は、プリント配線板8の厚み方向一方面に接触してもよい。 As shown in FIGS. 10 to 12, the adhesive member 4 may come into contact with one side of the printed wiring board 8 in the thickness direction.
 図10に示すように、プリント配線板8は、第2突出部52を備える。第2突出部52は、厚み方向に投影したときに、光電気混載基板44から長手方向一方側に突出する。この変形例では、光ファイバ部材3は、保持部材32を含まず、光ファイバ31のみを備える。光ファイバ31の長手方向全体は、例えば、複数のファイバコア33が幅方向に並列するリボン状(帯状)を有する。あるいは、光ファイバ31は、複数のファイバコア33が幅方向に互いに独立して(ばらばらになっていて)もよい。光導波路5の長手方向一端面14と、光ファイバ31の長手方向他端面とは、長手方向において微小な間隔を隔てて隣り合う。接着部材4は、光電気混載基板44の長手方向一端面14と、光ファイバ部材3の長手方向他端部と、第2突出部52の厚み方向一方面とに接触する。 As shown in FIG. 10, the printed wiring board 8 includes a second protrusion 52. When projected in the thickness direction, the second projecting portion 52 projects from the opto-electrically mixed substrate 44 to one side in the longitudinal direction. In this modification, the optical fiber member 3 does not include the holding member 32 and includes only the optical fiber 31. The entire longitudinal direction of the optical fiber 31 has, for example, a ribbon shape (strip shape) in which a plurality of fiber cores 33 are arranged in parallel in the width direction. Alternatively, in the optical fiber 31, the plurality of fiber cores 33 may be independent of each other (separated) in the width direction. The one end surface 14 in the longitudinal direction of the optical waveguide 5 and the other end surface in the longitudinal direction of the optical fiber 31 are adjacent to each other with a minute interval in the longitudinal direction. The adhesive member 4 comes into contact with one end surface 14 in the longitudinal direction of the opto-electric mixed mounting substrate 44, the other end portion in the longitudinal direction of the optical fiber member 3, and one surface in the thickness direction of the second protrusion 52.
 図11および図12に示すように、プリント配線板8は、凹部53または台座54を備える。 As shown in FIGS. 11 and 12, the printed wiring board 8 includes a recess 53 or a pedestal 54.
 図11に示すように、凹部53は、プリント配線板8の基板26の長手方向一端部における厚み方向一方面が除去されて形成されている。凹部53に、光電気混載基板44の長手方向一端面14が面する。凹部53の厚み方向一方面には、光ファイバ部材3が載置される。接着部材4は、光電気混載基板44の長手方向一端面14と、凹部53の側面と、凹部53の厚み方向一方面のうち、光ファイバ部材3が接触していない面と、保持部材32とに接触する。 As shown in FIG. 11, the recess 53 is formed by removing one surface in the thickness direction at one end in the longitudinal direction of the substrate 26 of the printed wiring board 8. One end surface 14 in the longitudinal direction of the optical / electric mixed substrate 44 faces the recess 53. The optical fiber member 3 is placed on one side of the recess 53 in the thickness direction. The adhesive member 4 includes a one end surface 14 in the longitudinal direction of the opto-electric mixed mounting substrate 44, a side surface of the recess 53, and one surface of the recess 53 in the thickness direction in which the optical fiber member 3 is not in contact with the holding member 32. Contact.
 図12に示すように、プリント配線板8は、台座54をさらに備える。台座54は、プリント配線板8の厚み方向一方面における長手方向他方側部分に配置されている。台座54は、基板26と一体または別体で設けられる。プリント配線板8における長手方向一方側部分の厚み方向一方面には、光ファイバ部材3が配置されている。台座54は、長手方向に延びる板形状を有する。台座54の長手方向一端面と、光電気混載基板44の長手方向一端面とは、面一である。接着部材4は、光電気混載基板44の長手方向一端面14と、台座54の長手方向一端面と、光ファイバ部材3の長手方向他端面と、プリント配線板8の厚み方向一方面とに接触する。 As shown in FIG. 12, the printed wiring board 8 further includes a pedestal 54. The pedestal 54 is arranged on the other side portion in the longitudinal direction on one side in the thickness direction of the printed wiring board 8. The pedestal 54 is provided integrally with or separately from the substrate 26. An optical fiber member 3 is arranged on one side of the printed wiring board 8 in the thickness direction of one side in the longitudinal direction. The pedestal 54 has a plate shape extending in the longitudinal direction. One end surface in the longitudinal direction of the pedestal 54 and one end surface in the longitudinal direction of the opto-electric mixed mounting substrate 44 are flush with each other. The adhesive member 4 comes into contact with one end surface in the longitudinal direction of the optical / electric mixed circuit board 44, one end surface in the longitudinal direction of the pedestal 54, the other end surface in the longitudinal direction of the optical fiber member 3, and one surface in the thickness direction of the printed wiring board 8. do.
 図13から図17に示すように、光電気混載基板44の長手方向他方側部分が、プリント配線板8の厚み方向一方面に接触してもよい。プリント配線板8の図示しない端子は、光電気混載基板44の電極と厚み方向に対向配置される。 As shown in FIGS. 13 to 17, the other side portion in the longitudinal direction of the optical / electric mixed circuit board 44 may come into contact with one side in the thickness direction of the printed wiring board 8. The terminals (not shown) of the printed wiring board 8 are arranged to face the electrodes of the optical / electric mixed circuit board 44 in the thickness direction.
 図13に示すように、光電気混載基板44の長手方向一端面14は、プリント配線板8の長手方向一端面と面一である。接着部材4は、光電気混載基板44の長手方向一端面14と、プリント配線板8の長手方向一端面と、光ファイバ部材3の長手方向他端面とに接触する。 As shown in FIG. 13, the longitudinal end surface 14 of the optical / electric mixed circuit board 44 is flush with the longitudinal end surface of the printed wiring board 8. The adhesive member 4 comes into contact with the longitudinal end surface 14 of the optical / electric mixed circuit board 44, the longitudinal end surface of the printed wiring board 8, and the longitudinal end surface of the optical fiber member 3.
 図14に示すように、光電気混載基板44は、突出部51を備える。突出部51は、図9で示す突出部51と同じ構成を有する。 As shown in FIG. 14, the opto-electric mixed mounting substrate 44 includes a protrusion 51. The protruding portion 51 has the same configuration as the protruding portion 51 shown in FIG.
 図15において、プリント配線板8は、第2突出部52を備える。第2突出部52は、図10で示す第2突出部52と同じ構成を有する。 In FIG. 15, the printed wiring board 8 includes a second protrusion 52. The second protruding portion 52 has the same configuration as the second protruding portion 52 shown in FIG.
 図16および図17に示すように、プリント配線板8は、凹部53または台座54を備える。図16に示す凹部53は、図11に示す凹部53と同一の構成を有する。図17に示す台座54は、図12に示す台座54と同一の構成を有する。 As shown in FIGS. 16 and 17, the printed wiring board 8 includes a recess 53 or a pedestal 54. The recess 53 shown in FIG. 16 has the same configuration as the recess 53 shown in FIG. The pedestal 54 shown in FIG. 17 has the same configuration as the pedestal 54 shown in FIG.
  [第5実施形態]
 以下の第5実施形態において、上記した第1および第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第5実施形態は、特記する以外、第1および第2実施形態と同様の作用効果を奏することができる。さらに、第1実施形態から第5実施形態およびそれらの変形例を適宜組み合わせることができる。
[Fifth Embodiment]
In the following fifth embodiment, the same members and processes as those in the first and second embodiments described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the fifth embodiment can exhibit the same effects as those of the first and second embodiments, except for special mention. Further, the first to fifth embodiments and variations thereof can be appropriately combined.
 図18に示すように、第5実施形態の光学接続構造1では、プリント配線板8は、厚み方向に投影したときに、境界線Lに重なる。具体的には、プリント配線板8は、境界線Lを跨ぐ。 As shown in FIG. 18, in the optical connection structure 1 of the fifth embodiment, the printed wiring board 8 overlaps the boundary line L when projected in the thickness direction. Specifically, the printed wiring board 8 straddles the boundary line L.
 プリント配線板8は、電気回路基板6の長手方向一端部と重なる重なり領域41と、重なり領域41から長手方向一方側に向かって突出する突出領域42とを有する。突出領域42は、光導波路5と電気回路基板6とから長手方向一方側に向かって突出する。突出領域42は、厚み方向に投影したときに、光ファイバ31と重なる。突出領域42は、長手方向において光導波路5に隣接する。 The printed wiring board 8 has an overlapping region 41 that overlaps with one end in the longitudinal direction of the electric circuit board 6, and a protruding region 42 that protrudes from the overlapping region 41 toward one side in the longitudinal direction. The projecting region 42 projects from the optical waveguide 5 and the electric circuit board 6 toward one side in the longitudinal direction. The protruding region 42 overlaps with the optical fiber 31 when projected in the thickness direction. The protruding region 42 is adjacent to the optical waveguide 5 in the longitudinal direction.
 一方、この第5実施形態では、光ファイバ部材3は、保持部材32を含まず、光ファイバ31のみを含む。光ファイバ31の長手方向他端面は、光導波路5の長手方向一端面と接触する。 On the other hand, in the fifth embodiment, the optical fiber member 3 does not include the holding member 32 but includes only the optical fiber 31. The other end surface of the optical fiber 31 in the longitudinal direction comes into contact with one end surface of the optical waveguide 5 in the longitudinal direction.
 この第5実施形態では、接着部材4は、光導波路5と、電気回路基板6と、プリント配線板8と、光ファイバ31とに接触する。具体的には、接着部材4は、光導波路5の厚み方向他方面における長手方向一端縁とその近傍とに接触している。接着部材4は、光導波路5の幅方向両側面における長手方向一端縁とその近傍とに接触している。 In this fifth embodiment, the adhesive member 4 comes into contact with the optical waveguide 5, the electric circuit board 6, the printed wiring board 8, and the optical fiber 31. Specifically, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the optical waveguide 5. The adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction of the optical waveguide 5.
 接着部材4は、電気回路基板6の長手方向一端面に接触している。接着部材4は、電気回路基板6の幅方向両側面(図18において描画されず)における長手方向一端縁とその近傍とに接触している。 The adhesive member 4 is in contact with one end surface in the longitudinal direction of the electric circuit board 6. The adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on both side surfaces in the width direction (not drawn in FIG. 18) of the electric circuit board 6.
 接着部材4は、プリント配線板8の突出領域42における厚み方向他方面および長手方向一端面に接触する。また、接着部材4は、突出領域42の厚み方向一方面における長手方向一端縁とその近傍とに接触している。 The adhesive member 4 contacts the other surface in the thickness direction and one end surface in the longitudinal direction in the protruding region 42 of the printed wiring board 8. Further, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the protruding region 42.
 接着部材4は、光ファイバ31の厚み方向他方面における長手方向他端縁とその近傍とに接触している。接着部材4は、光ファイバ31の厚み方向一方面において、プリント配線板8の突出領域42と対向する領域と、突出領域42より長手方向一方側の空間に臨む領域とに接触している。 The adhesive member 4 is in contact with the other end edge in the longitudinal direction and its vicinity on the other surface in the thickness direction of the optical fiber 31. The adhesive member 4 is in contact with a region of the printed wiring board 8 facing the protruding region 42 and a region facing the space on one side in the longitudinal direction from the protruding region 42 on one side of the optical fiber 31 in the thickness direction.
 第1実施形態から第5実施形態を比べる。第5実施形態では、接着部材4が、プリント配線板8の突出領域42に接触し、かかる接着部材4が光ファイバ31に接触する。その観点から、第5実施形態は、接着強度を向上できる。一方、第1実施形態と第2実施形態とは、光ファイバ部材3が保持部材32を備え、かかる保持部材32によって、コア12とファイバコア33とを調心できるので、光学的な接続信頼性に優れる。 Compare the first to fifth embodiments. In the fifth embodiment, the adhesive member 4 contacts the protruding region 42 of the printed wiring board 8, and the adhesive member 4 contacts the optical fiber 31. From that point of view, the fifth embodiment can improve the adhesive strength. On the other hand, in the first embodiment and the second embodiment, the optical fiber member 3 includes the holding member 32, and the holding member 32 can align the core 12 and the fiber core 33, so that the optical connection reliability can be obtained. Excellent for.
  [第5実施形態の変形例] 
 以下の変形例において、上記した第5実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第5実施形態と同様の作用効果を奏することができる。さらに、第5実施形態およびその変形例を適宜組み合わせることができる。
[Variation example of the fifth embodiment]
In the following modification, the same members and processes as in the above-mentioned fifth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the fifth embodiment, except for special mention. Further, the fifth embodiment and its modifications can be combined as appropriate.
 図19に示すように、第5実施形態の変形例では、光ファイバ31は、光導波路5と接触しない一方、突出領域42と接触する。 As shown in FIG. 19, in the modified example of the fifth embodiment, the optical fiber 31 does not come into contact with the optical waveguide 5, but comes into contact with the protruding region 42.
 具体的には、光導波路5の長手方向一端面は、光ファイバ31の長手方向他端面と間隔が隔てられる。光導波路5と光ファイバ31との間に、接着部材4が充填される。そのため、接着部材4が、光導波路5の長手方向一端面14と、光ファイバ31の長手方向他端面とに接触する。 Specifically, the one end surface in the longitudinal direction of the optical waveguide 5 is separated from the other end surface in the longitudinal direction of the optical fiber 31. The adhesive member 4 is filled between the optical waveguide 5 and the optical fiber 31. Therefore, the adhesive member 4 comes into contact with the longitudinal end surface 14 of the optical waveguide 5 and the longitudinal end surface of the optical fiber 31.
 突出領域42の厚み方向他方面は、光ファイバ31の厚み方向一方面に接触する。 The other side of the protruding region 42 in the thickness direction contacts the other side of the optical fiber 31 in the thickness direction.
 また、電気回路基板6は、ファイバクラッド34と長手方向に間隔が隔てられる。それらの間に接着部材4が充填される。 Further, the electric circuit board 6 is spaced apart from the fiber clad 34 in the longitudinal direction. The adhesive member 4 is filled between them.
 変形例と第5実施形態とは、接続強度の観点から、いずれも好適である。 Both the modified example and the fifth embodiment are suitable from the viewpoint of connection strength.
  [第6実施形態]
 以下の第6実施形態において、上記した第1から第5実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第6実施形態は、特記する以外、第1から第5実施形態と同様の作用効果を奏することができる。さらに、第1実施形態から第6実施形態およびそれらの変形例を適宜組み合わせることができる。
[Sixth Embodiment]
In the following sixth embodiment, the same members and processes as those in the first to fifth embodiments described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the sixth embodiment can exhibit the same effects as those of the first to fifth embodiments, except for special mention. Further, the first to sixth embodiments and variations thereof can be appropriately combined.
 図20に示すように、第6実施形態の光電複合伝送部2では、光導波路5のアンダークラッド11は、クラッド突出部43を有する。クラッド突出部43は、上記したアンダークラッド11(クラッド突出部43以外の部分)と同一の材料からなる。クラッド突出部43は、長手方向に延びる支持板である。クラッド突出部43は、基板の一例である。 As shown in FIG. 20, in the photoelectric composite transmission unit 2 of the sixth embodiment, the underclad 11 of the optical waveguide 5 has a clad protruding portion 43. The clad protrusion 43 is made of the same material as the underclad 11 (a portion other than the clad protrusion 43) described above. The clad protrusion 43 is a support plate extending in the longitudinal direction. The clad protrusion 43 is an example of a substrate.
 クラッド突出部43は、厚み方向に投影したときに、コア12と重ならず、光ファイバ31と重なる。クラッド突出部43は、コア12の長手方向一端面14から長手方向一方側に向かって突出する。そのため、クラッド突出部43を含むアンダークラッド11は、厚み方向に投影したときに、境界線Lに重なる。具体的には、アンダークラッド11は、境界線Lを跨ぐ。アンダークラッド11は、断面視略L字形状を有する。クラッド突出部43の厚み方向他方面は、光ファイバ31と厚み方向に間隔が隔てられる。それらの間に、接着部材4が充填される。なお、クラッド突出部43は、長手方向において光導波路5に隣接する。 The clad protrusion 43 does not overlap with the core 12 but overlaps with the optical fiber 31 when projected in the thickness direction. The clad projecting portion 43 projects from one end surface 14 in the longitudinal direction of the core 12 toward one side in the longitudinal direction. Therefore, the underclad 11 including the clad protruding portion 43 overlaps the boundary line L when projected in the thickness direction. Specifically, the underclad 11 straddles the boundary line L. The underclad 11 has a substantially L-shaped cross section. The other surface of the clad protrusion 43 in the thickness direction is spaced apart from the optical fiber 31 in the thickness direction. The adhesive member 4 is filled between them. The clad protrusion 43 is adjacent to the optical waveguide 5 in the longitudinal direction.
 接着部材4は、クラッド突出部43の厚み方向他方面および長手方向一端面に接触する。また、接着部材4は、クラッド突出部43の厚み方向一方面における長手方向一端縁とその近傍とに接触している。 The adhesive member 4 contacts the other surface in the thickness direction and one end surface in the longitudinal direction of the clad protrusion 43. Further, the adhesive member 4 is in contact with one end edge in the longitudinal direction and its vicinity on one surface in the thickness direction of the clad protrusion 43.
 なお、第6実施形態の光学接続構造1は、例えば、プリント配線板8を備えない。つまり、光電複合伝送部2は、例えば、光電気混載基板44と、光電変換部7とを備え、プリント配線板8を備えない。 The optical connection structure 1 of the sixth embodiment does not include, for example, a printed wiring board 8. That is, the photoelectric composite transmission unit 2 includes, for example, an optical / electric mixed circuit board 44 and a photoelectric conversion unit 7, and does not include a printed wiring board 8.
  [第6実施形態の作用効果]
 第6実施形態の光学接続構造1では、光導波路5が、基板の一例としてのクラッド突出部43を含む。クラッド突出部43は、アンダークラッド11と同一の材料からなるので、簡便に形成できる。
[Action and effect of the sixth embodiment]
In the optical connection structure 1 of the sixth embodiment, the optical waveguide 5 includes a clad protrusion 43 as an example of the substrate. Since the clad projecting portion 43 is made of the same material as the under clad 11, it can be easily formed.
 また、光学接続構造1は、プリント配線板8を備えないので、光電複合伝送部2の構成が簡単である。 Further, since the optical connection structure 1 does not include the printed wiring board 8, the configuration of the photoelectric composite transmission unit 2 is simple.
  [第6実施形態の変形例] 
 以下の変形例において、上記した第6実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第6実施形態と同様の作用効果を奏することができる。さらに、第6実施形態およびその変形例を適宜組み合わせることができる。
[Variation example of the sixth embodiment]
In the following modification, the same members and processes as those in the sixth embodiment will be designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same action and effect as those of the sixth embodiment, except for special mention. Further, the sixth embodiment and its modifications can be combined as appropriate.
 図21に示すように、第6実施形態の変形例では、光ファイバ31は、クラッド突出部43以外のアンダークラッド11とコア12とオーバークラッド13とに接触しない一方、光ファイバ31は、クラッド突出部43と接触する。 As shown in FIG. 21, in the modified example of the sixth embodiment, the optical fiber 31 does not come into contact with the underclad 11 other than the clad protrusion 43, the core 12, and the overclad 13, while the optical fiber 31 has a clad protrusion. Contact with the portion 43.
 具体的には、クラッド突出部43以外のアンダークラッド11とコア12とオーバークラッド13との長手方向一端面は、光ファイバ31の長手方向他端面と間隔が隔てられる。それらの間に、接着部材4が充填される。そのため、接着部材4が、クラッド突出部43以外のアンダークラッド11とコア12とオーバークラッド13との長手方向一端面と、光ファイバ31の長手方向他端面とに接触する。 Specifically, the one end surface in the longitudinal direction of the underclad 11 other than the clad protrusion 43, the core 12, and the overclad 13 is spaced apart from the other end surface in the longitudinal direction of the optical fiber 31. The adhesive member 4 is filled between them. Therefore, the adhesive member 4 comes into contact with the one end surface of the underclad 11 other than the clad protrusion 43, the core 12 and the overclad 13 in the longitudinal direction, and the other end surface of the optical fiber 31 in the longitudinal direction.
 クラッド突出部43の厚み方向他方面は、光ファイバ31の厚み方向一方面に接触する。 The other side of the clad protrusion 43 in the thickness direction comes into contact with the other side of the optical fiber 31 in the thickness direction.
 変形例と第6実施形態とは、接続強度の観点から、いずれも好適である。 Both the modified example and the sixth embodiment are suitable from the viewpoint of connection strength.
  [第7実施形態]
 以下の第7実施形態において、上記した第1から第6実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第7実施形態は、特記する以外、第1から第6実施形態と同様の作用効果を奏することができる。さらに、第1実施形態から第7実施形態およびそれらの変形例を適宜組み合わせることができる。
[7th Embodiment]
In the following seventh embodiment, the same members and processes as those in the first to sixth embodiments described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the seventh embodiment can exhibit the same effects as those of the first to sixth embodiments, except for special mention. Further, the first to seventh embodiments and variations thereof can be appropriately combined.
 図22に示すように、第7実施形態の光学接続構造1は、台座45をさらに備える。台座45は、ファイバコア33をコア12に対して調心するための部材である。台座45は、電気回路基板6および光ファイバ31の厚み方向他方側に間隔を隔てて配置されている。台座45は、長手方向に延びる。厚み方向に投影したときに、台座45は、境界線Lに重なる。具体的には、台座45は、境界線Lを跨ぐ。台座45は、一方側部分46と、他方側部分47とを長手方向に順に有する。 As shown in FIG. 22, the optical connection structure 1 of the seventh embodiment further includes a pedestal 45. The pedestal 45 is a member for aligning the fiber core 33 with respect to the core 12. The pedestal 45 is arranged on the other side of the electric circuit board 6 and the optical fiber 31 in the thickness direction at intervals. The pedestal 45 extends in the longitudinal direction. When projected in the thickness direction, the pedestal 45 overlaps the boundary line L. Specifically, the pedestal 45 straddles the boundary line L. The pedestal 45 has one side portion 46 and the other side portion 47 in order in the longitudinal direction.
 他方側部分47は、一方側部分46より厚い。他方側部分47の厚み方向他方面と、一方側部分46の厚み方向他方面とは、面一である。一方、他方側部分47の厚み方向一方面は、一方側部分46の厚み方向一方面に対して、厚み方向一方側に配置されている。他方側部分47は、光導波路5の厚み方向他方面に接触し、それを支持する。一方側部分46は、接着部材4を介して光ファイバ31の厚み方向他方面を支持する。つまり、接着部材4は、光ファイバ31の厚み方向他方面と、一方側部分46の厚み方向一方面とに接触する。台座45は、光導波路5と隣接する。 The other side portion 47 is thicker than the one side portion 46. The other surface in the thickness direction of the other side portion 47 and the other surface in the thickness direction of the one side portion 46 are flush with each other. On the other hand, the one side in the thickness direction of the other side portion 47 is arranged on one side in the thickness direction with respect to the one side in the thickness direction of the one side portion 46. The other side portion 47 contacts and supports the other surface of the optical waveguide 5 in the thickness direction. The one-side portion 46 supports the other surface of the optical fiber 31 in the thickness direction via the adhesive member 4. That is, the adhesive member 4 comes into contact with the other surface of the optical fiber 31 in the thickness direction and the one surface of the one side portion 46 in the thickness direction. The pedestal 45 is adjacent to the optical waveguide 5.
 また、接着部材4は、電気回路基板6の長手方向一端面と、電気回路基板6の厚み方向一方面における長手方向一端と、その近傍とに接触する。上記した接着部材4は、単一である。 Further, the adhesive member 4 comes into contact with one end surface in the longitudinal direction of the electric circuit board 6, one end in the longitudinal direction on one end surface in the thickness direction of the electric circuit board 6, and its vicinity. The above-mentioned adhesive member 4 is single.
  [第7実施形態の作用効果]
 この光学接続構造1は、基板の一例としての台座45を含む。そのため、台座45によって、コア12とファイバコア33とが確実に調心される。そのため、光学的な接続信頼性を向上できる。
[Action and effect of the seventh embodiment]
The optical connection structure 1 includes a pedestal 45 as an example of a substrate. Therefore, the pedestal 45 ensures that the core 12 and the fiber core 33 are aligned. Therefore, the optical connection reliability can be improved.
  [第7実施形態の変形例]
 以下の変形例において、上記した第7実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第7実施形態と同様の作用効果を奏することができる。さらに、第7実施形態およびその変形例を適宜組み合わせることができる。
[Modified example of the seventh embodiment]
In the following modification, the same members and processes as those in the above-mentioned seventh embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the seventh embodiment, except for special mention. Further, the seventh embodiment and its modifications can be combined as appropriate.
 図23に示すように、第7実施形態の変形例では、光ファイバ31は、光導波路5とに接触しない。一方、光ファイバ31は、台座45の一方側部分46と接触する。 As shown in FIG. 23, in the modified example of the seventh embodiment, the optical fiber 31 does not come into contact with the optical waveguide 5. On the other hand, the optical fiber 31 comes into contact with one side portion 46 of the pedestal 45.
 台座45は、一方側部分46と、他方側部分47とを有し、境界部分48をさらに有する。他方側部分47は、一方側部分46と同じ厚みを有する。境界部分48は、一方側部分46と他方側部分47との間に配置される。境界部分48は、光ファイバ31と光導波路5との間に面する。境界部分48は、一方側部分46および他方側部分47より薄い。 The pedestal 45 has one side portion 46 and the other side portion 47, and further has a boundary portion 48. The other side portion 47 has the same thickness as the one side portion 46. The boundary portion 48 is arranged between the one-sided portion 46 and the other-sided portion 47. The boundary portion 48 faces between the optical fiber 31 and the optical waveguide 5. The boundary portion 48 is thinner than the one-sided portion 46 and the other-sided portion 47.
 上記した一方側部分46と他方側部分47と境界部分48とは、凹部49を形成する。凹部49は、台座45の厚み方向一方面から厚み方向他方側に向かって凹む。凹部49に接着部材4が充填される。 The one-sided portion 46, the other-sided portion 47, and the boundary portion 48 described above form a recess 49. The recess 49 is recessed from one side of the pedestal 45 in the thickness direction toward the other side in the thickness direction. The recess 49 is filled with the adhesive member 4.
 変形例と第7実施形態とは、接続強度の観点から、いずれも好適である。 Both the modified example and the seventh embodiment are suitable from the viewpoint of connection strength.
  [第8実施形態]
 以下の第8実施形態において、上記した第1から第7実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第8実施形態は、特記する以外、第1から第7実施形態と同様の作用効果を奏することができる。さらに、第1実施形態から第8実施形態およびそれらの変形例を適宜組み合わせることができる。
[Eighth Embodiment]
In the following eighth embodiment, the same members and processes as those in the first to seventh embodiments described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the eighth embodiment can exhibit the same effects as those of the first to seventh embodiments, except for special mention. Further, the first to eighth embodiments and variations thereof can be appropriately combined.
 図24に示すように、第8実施形態の光学接続構造1は、台座45を備えない。 As shown in FIG. 24, the optical connection structure 1 of the eighth embodiment does not include the pedestal 45.
 光電複合伝送部2は、プリント配線板8、および、クラッド突出部43を備えない。光電複合伝送部2は、光電気混載基板44と、光電変換部7とを備える。 The photoelectric composite transmission unit 2 does not include the printed wiring board 8 and the clad protrusion 43. The photoelectric composite transmission unit 2 includes a photoelectric mixed mounting substrate 44 and a photoelectric conversion unit 7.
 光ファイバ部材3は、保持部材32を備えず、光ファイバ31のみを備える。 The optical fiber member 3 does not include the holding member 32, but includes only the optical fiber 31.
  [第8実施形態の作用効果]
 第8実施形態では、光学接続構造1は、台座45を備えず、光電複合伝送部2は、プリント配線板8、および、クラッド突出部43を備えず、光ファイバ部材3は、保持部材32を備えないので、光学接続構造1の構成を簡単にできる。
[Action and effect of the eighth embodiment]
In the eighth embodiment, the optical connection structure 1 does not have a pedestal 45, the photoelectric composite transmission unit 2 does not have a printed wiring board 8 and a clad protrusion 43, and the optical fiber member 3 has a holding member 32. Since it is not provided, the configuration of the optical connection structure 1 can be simplified.
  [第8実施形態の変形例]
 以下の変形例において、上記した第8実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第1実施形態と同様の作用効果を奏することができる。さらに、第8実施形態およびその変形例を適宜組み合わせることができる。
[Variation example of the eighth embodiment]
In the following modification, the same members and processes as those in the eighth embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the first embodiment, except for special mention. Further, the eighth embodiment and its modifications can be combined as appropriate.
 図25に示すように、光ファイバ部材3は、位置決め部材の一例としての保持部材32をさらに備える。保持部材32の構成は、第1実施形態のそれと同様である。 As shown in FIG. 25, the optical fiber member 3 further includes a holding member 32 as an example of the positioning member. The configuration of the holding member 32 is the same as that of the first embodiment.
 変形例の光学接続構造1は、保持部材32をさらに備える。そのため、保持部材32によって、光導波路5と光ファイバ31とが確実に調心される。そのため、変形例の光学接続構造1は、第8実施形態に比べて、光学的な接続信頼性を向上できる。 The optical connection structure 1 of the modified example further includes a holding member 32. Therefore, the optical waveguide 5 and the optical fiber 31 are surely aligned by the holding member 32. Therefore, the optical connection structure 1 of the modified example can improve the optical connection reliability as compared with the eighth embodiment.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the invention that are apparent to those skilled in the art are included in the claims below.
光学接続構造は、光導波路と光ファイバとの光学的な接続に用いられる。 The optical connection structure is used for the optical connection between the optical waveguide and the optical fiber.
1 光学接続構造
4 接着部材
5 光導波路
6 電気回路基板
8 プリント配線板
11 アンダークラッド
12 コア
26 基板
31 光ファイバ
32 保持部材(位置決め部材の一例)
43 クラッド突出部
42 突出領域
45 台座
1 Optical connection structure 4 Adhesive member 5 Optical waveguide 6 Electric circuit board 8 Printed wiring board 11 Underclad 12 Core 26 Board 31 Optical fiber 32 Holding member (example of positioning member)
43 Clad protrusion 42 Projection area 45 Pedestal

Claims (6)

  1.  光導波路と、
     前記光導波路と光学的に接続される光ファイバと、
     前記光導波路に隣接する基板と、
     前記光導波路と前記光ファイバと前記基板とを接着する1つの接着部材とを備えることを特徴とする、光学接続構造。
    Optical waveguide and
    An optical fiber optically connected to the optical waveguide,
    The substrate adjacent to the optical waveguide and
    An optical connection structure comprising one adhesive member for adhering the optical waveguide, the optical fiber, and the substrate.
  2.  前記基板が、プリント配線板を含むことを特徴とする、請求項1に記載の光学接続構造。 The optical connection structure according to claim 1, wherein the substrate includes a printed wiring board.
  3.  前記基板が、前記光導波路の主面に配置される電気回路基板を含むことを特徴とする、請求項1または2に記載の光学接続構造。 The optical connection structure according to claim 1 or 2, wherein the substrate includes an electric circuit board arranged on the main surface of the optical waveguide.
  4.  前記光導波路は、コアと、前記コアを被覆するクラッドとを含み、
     前記基板が、前記クラッドと同一の材料からなる支持板を含むことを特徴とする、請求項1に記載の光学接続構造。
    The optical waveguide includes a core and a cladding covering the core.
    The optical connection structure according to claim 1, wherein the substrate includes a support plate made of the same material as the clad.
  5.  前記基板が、台座を含むことを特徴とする、請求項1に記載の光学接続構造。 The optical connection structure according to claim 1, wherein the substrate includes a pedestal.
  6.  前記光ファイバを位置決めする位置決め部材をさらに備え、
     前記位置決め部材が、前記1つの接着部材によって、前記光導波路と前記光ファイバと前記基板とに接着することを特徴とする、請求項1から5のいずれか一項に記載の光学接続構造。
    Further provided with a positioning member for positioning the optical fiber,
    The optical connection structure according to any one of claims 1 to 5, wherein the positioning member is adhered to the optical waveguide, the optical fiber, and the substrate by the one adhesive member.
PCT/JP2021/042073 2020-11-18 2021-11-16 Optical connection structure WO2022107762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-191988 2020-11-18
JP2020191988 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022107762A1 true WO2022107762A1 (en) 2022-05-27

Family

ID=81708979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042073 WO2022107762A1 (en) 2020-11-18 2021-11-16 Optical connection structure

Country Status (2)

Country Link
TW (1) TW202227867A (en)
WO (1) WO2022107762A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162467A (en) * 1998-11-25 2000-06-16 Kyocera Corp Connecting structure for connecting optical waveguide with optical fiber
JP2000310722A (en) * 1999-04-27 2000-11-07 Oki Electric Ind Co Ltd Manufacture of optical waveguide component
WO2005103777A1 (en) * 2004-04-22 2005-11-03 Hamamatsu Photonics K.K. Optical waveguide chip and method of manufacturing the same
WO2005124411A1 (en) * 2004-06-16 2005-12-29 Hitachi Chemical Company, Ltd. Optical waveguide structure, optical waveguide type optical module, and optical fiber array
JP2012181442A (en) * 2011-03-02 2012-09-20 Hitachi Cable Ltd Photoelectric transmission module
JP2013041020A (en) * 2011-08-12 2013-02-28 Hitachi Cable Ltd Connection method and connection device of optical fiber
JP2013057721A (en) * 2011-09-07 2013-03-28 Panasonic Corp Optical module
JP2013072939A (en) * 2011-09-27 2013-04-22 Hitachi Cable Ltd Optical module and cable with optical module
JP2016206308A (en) * 2015-04-17 2016-12-08 日本電信電話株式会社 Optical connection component
JP2017194578A (en) * 2016-04-20 2017-10-26 パナソニックIpマネジメント株式会社 Optical module and optical transmission system
US20190154931A1 (en) * 2016-07-29 2019-05-23 Corning Optical Communications LLC Optical assemblies, interconnection substrates and methods for forming optical links in interconnection substrates
US10324260B1 (en) * 2018-10-15 2019-06-18 Corning Research & Development Corporation Optical assembly using low DN/DT optical adhesive

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162467A (en) * 1998-11-25 2000-06-16 Kyocera Corp Connecting structure for connecting optical waveguide with optical fiber
JP2000310722A (en) * 1999-04-27 2000-11-07 Oki Electric Ind Co Ltd Manufacture of optical waveguide component
WO2005103777A1 (en) * 2004-04-22 2005-11-03 Hamamatsu Photonics K.K. Optical waveguide chip and method of manufacturing the same
WO2005124411A1 (en) * 2004-06-16 2005-12-29 Hitachi Chemical Company, Ltd. Optical waveguide structure, optical waveguide type optical module, and optical fiber array
JP2012181442A (en) * 2011-03-02 2012-09-20 Hitachi Cable Ltd Photoelectric transmission module
JP2013041020A (en) * 2011-08-12 2013-02-28 Hitachi Cable Ltd Connection method and connection device of optical fiber
JP2013057721A (en) * 2011-09-07 2013-03-28 Panasonic Corp Optical module
JP2013072939A (en) * 2011-09-27 2013-04-22 Hitachi Cable Ltd Optical module and cable with optical module
JP2016206308A (en) * 2015-04-17 2016-12-08 日本電信電話株式会社 Optical connection component
JP2017194578A (en) * 2016-04-20 2017-10-26 パナソニックIpマネジメント株式会社 Optical module and optical transmission system
US20190154931A1 (en) * 2016-07-29 2019-05-23 Corning Optical Communications LLC Optical assemblies, interconnection substrates and methods for forming optical links in interconnection substrates
US10324260B1 (en) * 2018-10-15 2019-06-18 Corning Research & Development Corporation Optical assembly using low DN/DT optical adhesive

Also Published As

Publication number Publication date
TW202227867A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
JP5664905B2 (en) Photoelectric conversion module
KR20070024440A (en) Optical waveguide substrate and method of fabricating the same
JP3881611B2 (en) Optical fiber block assembly for minimizing stress concentration and bonding apparatus employing the same
KR20030059684A (en) Optical fiber block
JP3821971B2 (en) Fiber optic array
WO2022107762A1 (en) Optical connection structure
JP2002048949A (en) Optical waveguide connecting structure, and optical element/optical fiber mounting structure
JP5223879B2 (en) Transceiver module
JPH04130304A (en) Optical connector
JP2002040290A (en) Fiber array part and its manufacturing method
WO2018042984A1 (en) Optical connection structure
JPH05181036A (en) Optical device having optical integrated element and manufacture thereof
US6328481B1 (en) Arrayed optical fiber connector
JP2000292654A (en) Optical fiber connector, and its manufacture
KR20020095866A (en) Optical fiber array
US7043107B2 (en) Flexible optical connecting part
JP2001108873A (en) Optical transmission module
JP6551077B2 (en) Optical module
JP4155203B2 (en) Optical connector, optical module, and optical module unit
US20220291463A1 (en) Opto-electric composite transmission module
JP7348550B2 (en) optical circuit module
WO2020045282A1 (en) Optical connection member
JPH05288963A (en) Waveguide device
JP4763497B2 (en) Optical module coupling structure and assembly method thereof
WO2020022428A1 (en) Optical waveguide member connector and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP