WO2022105888A1 - 信息传输方法、装置、通信设备及存储介质 - Google Patents

信息传输方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022105888A1
WO2022105888A1 PCT/CN2021/131838 CN2021131838W WO2022105888A1 WO 2022105888 A1 WO2022105888 A1 WO 2022105888A1 CN 2021131838 W CN2021131838 W CN 2021131838W WO 2022105888 A1 WO2022105888 A1 WO 2022105888A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
information
mimo
mode
antenna
Prior art date
Application number
PCT/CN2021/131838
Other languages
English (en)
French (fr)
Inventor
袁璞
姜大洁
刘劲
白永春
陈保龙
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022105888A1 publication Critical patent/WO2022105888A1/zh
Priority to US18/315,920 priority Critical patent/US20230308143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to an information transmission method, an apparatus, a communication device and a storage medium.
  • MIMO-OFDM Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing
  • MIMO-OFDM Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing
  • the purpose of the embodiments of the present application is to provide an information transmission method, apparatus, communication device, and storage medium, which can solve the problem that the MIMO solution cannot improve frequency efficiency.
  • an information transmission method is provided, which is applied to a communication device.
  • the method includes: acquiring channel qualities of multiple antennas; determining an antenna operation mode according to the channel qualities; and using the antenna operation mode to transmit information ;
  • the antenna working modes include: the multiple antennas all use the MIMO mode of multiple-input multiple-output MIMO mode, the multiple antennas all use the super-Nyquist FTN mode to work in the FTN mode, or the multiple antennas work in the MIMO mode.
  • a MIMO-FTN mode in which the same antenna port group works in the FTN mode and the MIMO mode works between different antenna port groups, wherein each antenna port group includes at least one antenna.
  • an information transmission apparatus which is applied to a communication device.
  • the apparatus includes: a first obtaining module, configured to obtain channel qualities of multiple antennas; and a first determining module, configured to, according to the channel qualities, determining an antenna working mode; a first transmission module configured to use the antenna working mode to perform information transmission;
  • the antenna working mode includes: a MIMO mode in which the multiple antennas all work in a multiple-input multiple-output MIMO mode, the The FTN mode in which multiple antennas work in the super-Nyquist FTN mode, or the MIMO-FTN mode in which the same antenna port group of the multiple antennas works in the FTN mode, and the MIMO mode works between different antenna port groups, wherein , and each antenna port group includes at least one antenna.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a communication device program or instruction, and the implementation is as described in the first aspect Methods.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • FIG. 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a signal comparison without time-domain overlap and time-domain overlap provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of an information transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of generating FTN/OVTDM symbols by a multi-antenna system provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of transmission of a MIMO-FTN mode provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method for determining an antenna working mode provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of downlink measurement provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an uplink measurement provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an information transmission apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but the techniques can also be applied to applications other than NR system applications, such as 6th generation (6th generation ) Generation, 6G) communication system.
  • 6th generation 6th generation
  • 6G 6th generation
  • FIG. 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • MIMO multiple antennas that can work simultaneously to communicate.
  • MIMO systems typically employ sophisticated signal processing techniques to significantly enhance reliability, transmission range, and throughput.
  • the transmitter uses these techniques to transmit multiple RF signals simultaneously, and the receiver recovers the information from these signals.
  • the MIMO modes in the Long Term Evolution (LTE) protocol mainly include the following:
  • Mode 1 Single antenna working mode
  • Mode 2 Open-loop transmit diversity
  • Mode 3 open-loop spatial multiplexing
  • the "multipath effect" is artificially created on different antennas, one antenna transmits normally, and a phase offset link is introduced on the other antennas.
  • the transmission relationship of multiple antennas forms a complex matrix, and different data streams are transmitted in parallel. This complex matrix is randomly selected at the transmitter and does not depend on the feedback result of the receiver, which is Open Loop spatial multiplexing.
  • Mode 4 closed-loop spatial multiplexing
  • the transmitter selects a complex matrix to create "multipath effect" according to the feedback channel estimation result, which is Close Loop spatial multiplexing.
  • Mode 5 MU-MIMO (Multi-User Multiple-Input Multiple-Output, Multi-User-Multiple Input Multiple Output);
  • Multiple data streams transmitted in parallel are realized by the combination of multiple user equipments (User Experience, UE), which is multi-user spatial multiplexing, namely MU-MIMO (Multi User MIMO).
  • UE User Equipment
  • MU-MIMO Multi User MIMO
  • Mode 7 Beamforming
  • phase offset schemes are calculated in real time according to the channel conditions of the base station and the UE, and the principle of phase interference and superposition between the antennas is used to form a beam directed to a specific UE.
  • the working modes 3 to 6 of the current MIMO system all use different antennas to transmit different data streams, so as to achieve the purpose of improving the spectral efficiency.
  • the upper limit of the number of streams for MIMO multi-stream transmission is determined by the number of antennas.
  • the system can use high-order modulation. way to further improve the spectral efficiency.
  • the minimum EVM of the receiver due to the limitation of the minimum EVM of the receiver, as the modulation order increases, the spectral efficiency of the system has the problem of decreasing marginal effect.
  • FTN/OVTDM signal generation is achieved by passing the oversampled signal through a shaping filter.
  • the sampling accuracy of the shaping filter design is determined, the higher the number of stacking layers, the higher the required signal oversampling rate, which makes the design of high-order stacking challenging for hardware.
  • signals are sent with different time delays through different antenna elements/ports, and the FTN/OVTDM signals are superimposed on the air interface.
  • FTN/OVTDM is a signal processing method that artificially introduces an appropriate amount of ISI (Symbol Interference, inter-symbol interference) and/or ICI (Carrier Interference, channel interference) by performing shift superposition processing (also known as waveform coding) on the transmitted signal. Its purpose is to speed up the symbol transmission rate, that is, to increase the number of symbols transmitted per Hertz per second (Hz*s). Among them, the full name of FTN is
  • OVXDM Overlapped X Division Multiplexing, X domain overlapping multiplexing
  • X represents any domain, time T, space S, frequency F or mixed H, etc.
  • OVTDM Overlapped Time Division Multiplexing, overlapping time division multiplexing
  • OVFDM Overlapped Frequency Division Multiplexing, frequency domain overlapping multiplexing system
  • OVCDM Overlapped code Division Multiplexing, overlapping code division multiplexing
  • Overlapped X-Domain Multiplexing that is, X-domain overlapping multiplexing, can Referred to by FTN (Faster Than Nyquist, multi-carrier super Nyquist).
  • the introduced ISI and ICI will increase the complexity of decoding, which may increase the bit error rate.
  • the negative effect caused by the increase of the bit error rate can be suppressed by the advanced decoding algorithm, and the channel capacity can still be improved by the method of speeding up the symbol transmission rate. Its expression is as follows:
  • T ⁇ ⁇ T, ⁇ (0,1)
  • the time-domain overlap coefficient.
  • the frequency domain overlap coefficient.
  • OVXDM take Hence there is
  • FTN/OVTDM signals There are two main ways to generate FTN/OVTDM signals: 1) In a single-antenna system, it can be equivalently generated by oversampling the signal + shaping filtering, and its effect is similar to a convolutional encoder acting on the modulation level. ;2) In a multi-antenna system, we can generate it in a way that is closer to its physical meaning, that is, control each antenna element/port of the multi-antenna to transmit signals with a delay of T ⁇ in turn according to the established shift and superposition principle. , the signals sent by different antenna elements/ports with different delays are superimposed on the air interface, and ISI is introduced between the sampling points of the signals to form FTN/OVTDM signals.
  • Super-Nyquist transmission is a new type of signal processing technology that is currently considered to be able to break through the Nyquist sampling rate and further approach the physical limit of channel capacity.
  • Its derivative technology is OVXDM.
  • the OVXDM/FTN technology artificially introduces ISI and/or ICI based on the waveform coding theory in the time domain/frequency domain, thereby increasing the symbol transmission rate and increasing the equivalent channel capacity.
  • the waveform encoded signal puts forward higher requirements on the performance of the receiver, which increases the complexity of the decoding algorithm and the power consumption of the hardware.
  • the larger the time-frequency overlap coefficient during waveform coding that is, the more serious the artificially introduced ISI and ICI, the more states need to be judged by the receiver side, and the higher the complexity of the receiving algorithm.
  • the above-mentioned ISI/ICI generated in the signal transmission process is superimposed with the ISI/ICI introduced by waveform coding during transmission, which imposes higher requirements on the decoding capability of the receiver.
  • Fading channels can be combated by more complex receiver algorithms. For example, methods such as channel pre-equalization and iterative algorithm of joint channel decoding are used.
  • the actual system due to the constraints of cost and power consumption, the actual system often cannot adopt an ideal receiver, and the complexity of the decoding algorithm implemented is limited.
  • the ISI/ICI exceeds a certain threshold, it will not be able to correctly decode code.
  • energy consumption will also increase, which is not conducive to saving energy and reducing consumption of the terminal.
  • each embodiment of the present application is that the prior information of the wireless channel, the channel measurement results, etc. can be used to flexibly adjust the working mode of the multi-antenna system, so that the working mode of the multi-antenna system can be adjusted between the FTN/OVTDM mode and the traditional MIMO working mode.
  • Flexible switching so that the receiver can track the time-varying characteristics of the fading channel and keep it in the best working state all the time.
  • FIG. 3 is a schematic flowchart of an information transmission method provided by an embodiment of the present application. The method is applied to a communication device. As shown in FIG. 3 , the method includes the following steps:
  • Step 300 acquiring channel quality of multiple antennas
  • Step 310 Determine an antenna working mode according to the channel quality
  • Step 320 using the antenna working mode to transmit information
  • the antenna operation modes include: a MIMO mode in which the multiple antennas work in a multiple-input multiple-output MIMO manner, a FTN mode in which the multiple antennas work in a super-Nyquist FTN manner, or the multiple antennas
  • MIMO-FTN mode the same antenna port group works in the FTN mode
  • MIMO mode works between different antenna port groups, wherein each antenna port group includes at least one antenna.
  • MIMO transmission utilizes the spatial correlation between multiple antennas, and adopts digital domain beamforming (ie, MIMO precoding according to channel characteristics, etc.) at the transmitting end to provide additional gain. Its essence is the gain obtained by using the additional spatial degrees of freedom provided by multiple antennas, which can be called MIMO gain.
  • TTI Transmission Time Interval
  • the transmitted signals on different transmit antennas are completely synchronized. That is, when the transmitted signals of different antennas are superimposed, the peaks and peaks of the signal waveforms are superimposed, and the troughs and troughs are superimposed.
  • an appropriate precoding matrix is selected to obtain additional benefits of multi-antenna systems, such as diversity gain through space-time coding, or multi-stream transmission through precoding to improve spectral efficiency.
  • the multi-antenna system in MIMO can be seamlessly switched between two or three modes.
  • the MIMO mode can obtain considerable diversity gain and ensure the reliability of transmission; while at a high SNR, multi-stream MIMO is limited by the EVM limitation of high-order modulation , the improvement of spectral efficiency is limited, and the FTN mode can be used. Therefore, the working mode switching can be triggered by the transmitting end and/or the receiving end through the measurement and feedback of the channel state information.
  • SNR signal-to-noise ratio
  • the signal transmission mode can be optimized according to the change of the channel state; therefore, the channel quality can be obtained through the measurement and feedback of the channel quality of multiple antennas, and the antenna can be determined based on the channel quality.
  • the switching is triggered by the transmitting end and/or the receiving end, and finally, based on the determined working mode of the antenna, the information transmission is completed, and the process and signaling are protected.
  • Mode 1 MIMO mode.
  • the antenna performs transmission precoding by presetting different coefficients on each antenna channel according to the traditional method to realize digital beamforming.
  • FIG. 4 is a schematic diagram of generating FTN/OVTDM symbols by a multi-antenna system provided by an embodiment of the present application. As shown in FIG. 4 , in this mode, the antennas work in the FTN mode. That is, each antenna channel sends a signal at a certain interval, and the signals are superimposed on the air interface to form an FTN signal.
  • Mode three MIMO-FTN mode.
  • some antennas form a set, that is, an antenna port group.
  • the signals of the antennas in the group are superimposed to form an FTN signal, and the information transmission between the antenna port groups is based on the MIMO working mode.
  • the antenna port group may be grouped in units of antennas, that is, multiple antennas may be grouped to obtain an antenna port group;
  • the antenna port group may also be grouped in units of antenna channels, that is, the antenna port group may be obtained by grouping multiple antenna channels.
  • FIG. 5 is a schematic diagram of transmission in a MIMO-FTN hybrid working mode provided by an embodiment of the present application.
  • the multi-antenna system in FIG. 5 has a total of eight antennas.
  • the antennas within each solid-line box are grouped into a group called an antenna port group.
  • the information of the antennas in the antenna port group 1 is transmitted with different delays [ ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ], and the information of the antennas in the antenna port group 2 is transmitted with different delays [ ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ] transmission.
  • the information of the antenna port group 1 and the antenna port group 2 is transmitted based on the MIMO working mode.
  • the multi-antenna system in MIMO can work in two states: traditional MIMO and FTN/OVTDM.
  • the protocol at least one MIMO mode needs to be added, which may be referred to as an FTN mode in this application, corresponding to the transmission of FTN/OVTDM signals generated by using multiple antennas.
  • the traditional MIMO mode may be referred to as a MIMO mode.
  • uplink refers to the terminal side, such as user equipment, to the network side, such as the base station
  • downlink refers to the network side, such as the base station, to the terminal side, such as user equipment.
  • this embodiment may also be applicable to sidelink information transmission.
  • the communication device may be a network-side device, such as a base station, the transmitting end is the network side, the receiving end is the terminal side, and the corresponding transmitted information is downlink information.
  • a network-side device such as a base station
  • the transmitting end is the network side
  • the receiving end is the terminal side
  • the corresponding transmitted information is downlink information.
  • the communication device may be a terminal, such as a UE, the transmitting end is the terminal side, the receiving end is the network side, and the corresponding transmitted information is uplink information.
  • the communication device may be a terminal, such as a UE, and its communication peer is also a terminal, then the originating end is the terminal, the receiving end is the terminal, and the corresponding transmitted information is sidelink information.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • the antenna working mode is determined, including at least one of the following:
  • the antenna operation mode is the MIMO mode
  • the antenna operation mode is the FTN mode
  • the antenna operation mode is the MIMO-FTN mode.
  • the throughput advantage of the FTN/OVTDM system over the traditional OFDM system mainly lies in the high SNR region.
  • the influence of noise on the received signal is relatively small, and the receiver is easy to decode correctly according to the known FTN/OVTDM inter-symbol coding constraints, and the bit error rate is very low.
  • the influence of noise on the received signal is relatively large, which destroys the constraint relationship between the codes and makes the bit error rate higher than that of the traditional OFDM system.
  • the determination may be based on the signal-to-interference-plus-noise ratio SINR in the channel state information.
  • FIG. 6 is a schematic diagram of a method for determining an antenna working mode provided by an embodiment of the present application.
  • the channel state is good
  • the channel quality is greater than or equal to the second threshold
  • the SNR of the received signal is greater than the second threshold
  • the FTN gain is greater than the MIMO gain
  • the FTN mode can be switched; conversely, when the channel state is not good, the channel quality is less than or equal to the first threshold, and the FTN gain is less than the MIMO gain.
  • the MIMO beamforming mode can be switched; the channel quality is greater than the first threshold and less than the second threshold, the MIMO-FTN mode can be switched; further, according to the number of available antennas and the required number of FTN overlapping layers, Determine the grouping mode of the antennas and the cooperative working mode between the antenna groups. For example, when the number of antennas is multiples of the number of FTN overlapping layers, it can be determined that the antenna working mode is the MIMO-FTN mode.
  • the first threshold and the second threshold may be predetermined, or may be configured by the network, or may be agreed in a protocol.
  • the hybrid mode is used to obtain a trade-off between the MIMO gain and the FTN gain, which further realizes the purpose of dynamically optimizing the spectral efficiency for SNR.
  • the method further includes: switching the antenna working mode according to the updated channel quality; and using the switched antenna working mode to perform information transmission.
  • the updated information transmission can be further monitored, and it is determined that the antenna working mode needs to be switched according to the information transmission.
  • the current antenna working mode is FTN mode
  • the updated channel quality can be the channel quality obtained by measuring after determining that the antenna working mode needs to be switched; it can also be the integrated value or average value of the channel quality obtained by multiple channel measurements after the antenna working mode is determined. .
  • the determination when determining whether the information transmission satisfies the condition, the determination may be performed in units of transmission of one or more data blocks.
  • the channel quality is determined according to a first channel quality parameter, and the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the channel quality is determined according to the first channel quality parameter, and may include: SNR obtained by pilot measurement, SINR (Signal to Interference plus Noise Ratio, SINR), reference signal received power RSRP (Reference Signal Receiving Power, RSRP) and reference signal receiving quality (Reference Signal Receiving Quality, RSRQ), etc., can also include Doppler frequency shift, residual frequency offset (referring to the frequency offset after frequency offset correction), multipath number and relative speed, etc., These parameters can directly affect the frequency offset of the signal, ISI and ICI, and can also be indirectly reflected in the bit error rate.
  • SINR Signal to Interference plus Noise Ratio
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the relative velocity refers to the radial velocity between the originating end and the terminating end.
  • acquiring the channel quality of multiple antennas includes: receiving a downlink reference signal through the multiple antennas; and measuring the downlink reference signal to obtain the channel quality.
  • this transmission is an uplink transmission.
  • downlink measurement can be used in an uplink transmission scenario based on channel reciprocity.
  • the downlink reference information sent by the network side device may be received through multiple antennas, and the downlink reference information may be measured to obtain the downlink channel quality, which is used as a reference for the uplink channel quality.
  • uplink measurement may also be used, and the base station measures the uplink channel and informs the terminal of the channel quality.
  • acquiring the channel quality of multiple antennas includes: sending a sidelink reference signal through the multiple antennas; receiving feedback from the communication peer.
  • the communication device when the communication device is a terminal, its communication counterpart may also be a terminal, and this transmission is a sidelink transmission, and channel measurement can also be performed.
  • the sidelink reference signal can be sent to the terminal of the communication opposite end, and after receiving the sidelink reference signal, the communication opposite end can measure the sidelink reference signal, obtain the channel quality, and inform the terminal of the originating end, and the terminal of the originating end can receive the communication opposite end Feedback channel quality.
  • acquiring the channel quality of multiple antennas includes:
  • CSI Channel State Information
  • downlink measurement can be used.
  • the network side device sends the downlink reference signal
  • the terminal measures the channel according to the downlink reference signal
  • the network side can receive the channel state information CSI fed back by the terminal.
  • acquiring the channel quality of multiple antennas includes:
  • the uplink reference signal is measured to obtain the channel quality.
  • uplink measurement can also be used based on channel reciprocity.
  • the terminal side sends an uplink reference signal
  • the network side measures the channel according to the uplink reference signal to obtain the channel quality.
  • the uplink measurement is adopted, or in the uplink transmission scenario, the premise of using the downlink measurement is the assumption of channel reciprocity. That is, the channel from the sender to the receiver is similar to the channel from the receiver to the sender, for example, it can be used in time division duplexing (TDD) scenarios.
  • TDD time division duplexing
  • the channel quality obtained by measurement can be used to determine the working mode of the antenna and the number of overlapping layers of the FTN.
  • the method further includes:
  • using the antenna operating mode to perform information transmission includes: performing information transmission according to the MIMO target operating mode and the number of overlapping layers.
  • some antennas form a set, that is, an antenna port group.
  • the antennas in the group use the FTN method to superimpose signals to form an FTN signal, and then the antenna port groups are processed based on the MIMO target working mode to obtain MIMO-FTN information. Therefore, before transmitting information, the number of overlapping layers in the antenna port group when the FTN mode is used and the MIMO target operating mode when the MIMO mode is used between the antenna port groups can be determined.
  • the number of overlapping layers can be used as a description method to represent the characteristics of the FTN/OVTDM signal.
  • the antenna port group can be regarded as a virtual antenna port, according to the MIMO target working mode and the number of overlapping layers, when performing information transmission, the FTN information of the virtual antenna port can be MIMO transmitted, and then Further determine the MIMO target working mode based on the antenna port group measurement information;
  • the MIMO target working mode can be determined according to the system conditions of the current multi-antenna system and the wireless environment in which it is located.
  • the link quality when the link quality is good, a working mode with a high degree of multiplexing can be used, and when the link quality is poor and the number of multiplexed data streams needs to be reduced, or even not multiplexed, the Space diversity or beamforming.
  • the MIMO target working mode may also be determined according to the transmission requirement. For example, if the information transmission efficiency needs to be further improved, the open-loop spatial multiplexing mode can be selected, and if the reliability of the information transmission needs to be further improved, the open-loop transmit diversity mode can be selected.
  • the MIMO target working mode can be any of the following:
  • Mode 1 Single antenna working mode
  • Mode 2 Open-loop transmit diversity
  • Mode 3 open-loop spatial multiplexing
  • Mode 4 closed-loop spatial multiplexing
  • Mode 5 MU-MIMO
  • Mode 7 Beamforming.
  • MIMO transmission may be performed based on the MIMO target working mode.
  • determine the number of overlapping layers in the antenna port group when working in the FTN mode including:
  • the number of overlapping layers is determined.
  • the number of overlapping layers may be determined based on the channel quality.
  • K antennas can be used to generate the superposition coefficient as The information is equivalent to the OVTDM information with K overlapping layers.
  • the channel quality is determined according to a second channel quality parameter, and the second channel quality parameter includes at least one of the following: SINR, RSRP, number of multipaths, relative velocity, Doppler frequency shift, frequency offset Corrected residual frequency offset and bit error rate.
  • the determination methods may include but are not limited to the following:
  • RSRP bit error rate
  • the method further includes: determining a precoding matrix indicator PMI (Precoding Matrix Indicator) of the antenna port group according to the channel measurement information of the antenna port group. Matrix Indicator, PMI); wherein, performing information transmission according to the MIMO target operating mode and the number of overlapping layers, including: performing information transmission according to the PMI and the number of overlapping layers adopted by the beamforming MIMO mode .
  • PMI Precoding Matrix Indicator
  • the precoding matrix indicator PMI of the antenna port group may be determined first according to the channel measurement information of the antenna port group.
  • determine the precoding matrix indicator PMI when the MIMO mode is used between the antenna port groups including:
  • the precoding matrix indicator PMI of the antenna port group is determined.
  • digital beamforming may be performed based on the target precoding matrix.
  • the PMI may be determined first based on the channel measurement information of the antenna port group, and the precoding matrix may be determined based on the PMI; therefore, the precoding matrix indicator PMI may be determined first.
  • channel measurement and feedback can be performed in units of the antenna port group to obtain the channel measurement information of the antenna port group, and then each group is determined based on the PMI in the channel measurement information of the antenna port group.
  • an appropriate precoding matrix can be selected as needed through the PMI and allocated to each antenna port to implement MIMO precoding transmission.
  • the precoding matrix can be obtained by real-time operation, or can be selected from a preset codebook.
  • determining the precoding matrix indicator PMI of the antenna port group according to the channel measurement information of the antenna port group includes: sending to the terminal through the antenna port group downlink reference signal and measurement trigger signaling; receiving channel state information CSI fed back by the terminal based on the measurement trigger signaling; determining the precoding matrix indicator PMI of the antenna port group according to the CSI of the antenna port group; The CSI is obtained by the terminal according to the downlink reference signal measurement, and the measurement trigger signaling includes the number of antenna port groups.
  • the measurement can be performed after the measurement trigger signaling sent by the originating end is obtained.
  • the measurement trigger signaling may include the number of antenna port groups, so that the receiving end can determine how many groups of channel CSI need to be measured.
  • the channel measurement performed in the unit of the antenna port group may be completed by the uplink measurement or the downlink measurement.
  • downlink measurement can be used.
  • FIG. 7 is a schematic diagram of downlink measurement provided by an embodiment of the present application.
  • a network side device sends a downlink reference signal and a measurement trigger signaling, and the terminal measures the channel of the antenna port group according to the downlink reference signal, and The feedback message is sent to the network side, and the network side can receive the channel state information CSI fed back by the terminal.
  • acquiring channel measurement information of an antenna port group including:
  • the measurement trigger signaling includes the number of antenna port groups.
  • the communication device when the communication device is a network-side device, its communication peer is a terminal, and this transmission is a downlink transmission.
  • the uplink measurement can also be performed in units of antenna port groups based on channel reciprocity. .
  • FIG. 8 is a schematic diagram of an uplink measurement provided by an embodiment of the present application.
  • a network-side device sends a measurement trigger signaling, and after receiving the measurement trigger signaling, the terminal sends the uplink measurement in units of antenna port groups.
  • Reference signal the network side device measures the channel according to the uplink reference signal, and obtains the channel measurement information.
  • the measurement trigger signaling may include the number of antenna port groups, so that the receiving end can determine the channel measurement information of how many groups of channels need to be measured.
  • the uplink measurement is used, or in the uplink transmission scenario, the premise of using the downlink measurement is the assumption of channel reciprocity. That is, the channel from the sender to the receiver is similar to the channel from the receiver to the sender, for example, it can be used in time division duplexing (TDD) scenarios.
  • TDD time division duplexing
  • acquiring channel measurement information of an antenna port group including:
  • the measurement request signaling includes the number of antenna port groups.
  • this transmission is an uplink transmission.
  • the antenna port group is used as the unit for downlink measurement.
  • the measurement trigger signaling is sent through the antenna port group.
  • the network side can use the antenna port group as a unit to send downlink reference information, and the terminal can measure the downlink reference information to obtain the downlink channel. Measurement information, as a reference for uplink channel measurement information.
  • uplink measurement may also be performed in units of antenna port groups, and the base station measures the uplink channel and informs the terminal of the uplink channel measurement information.
  • the measurement trigger signaling may include the number of antenna port groups, so that the receiving end can determine the channel measurement information of how many groups of channels need to be measured.
  • acquiring the channel measurement information of the antenna port group including:
  • the channel measurement information is obtained by the communication peer through measurement according to the sidelink reference signal, and the measurement trigger signaling includes the number of antenna port groups.
  • the communication device when the communication device is a terminal, its communication peer may also be a terminal, and this transmission is a sidelink transmission, and channel measurement can also be performed in units of antenna port groups.
  • the sidelink reference signal and measurement trigger signaling can be sent to the terminal of the communication peer.
  • the communication peer After receiving the sidelink reference signal, the communication peer can measure the sidelink reference signal in units of antenna port groups, obtain channel measurement information, and notify The originating terminal can receive the channel measurement information fed back by the communication peer.
  • the measurement trigger signaling may include the number of antenna port groups, so that the receiving end can determine the channel measurement information of how many groups of channels need to be measured.
  • information transmission is performed according to the PMI adopted by the beamforming MIMO mode and the number of overlapping layers, including:
  • digital beamforming is performed on the information between the antenna port groups based on a target precoding matrix to obtain MIMO-FTN information; wherein the target precoding matrix is based on the antenna Determined by the precoding matrix indicator PMI of the port group;
  • the MIMO-FTN information is transmitted.
  • FTN information can be obtained by superposition based on the number of overlapping layers
  • an antenna port group can be regarded as a whole, which is a virtual antenna port, and the FTN information of each antenna port group can be regarded as the transmission information of the virtual antenna port.
  • the target precoding matrix performs digital beamforming on the information between the antenna port groups to obtain MIMO-FTN information.
  • the antenna port group is obtained by grouping antennas
  • the grouping of the antennas includes: determining the number of groups based on the number of overlapping layers; and grouping the antennas based on the grouping rule and the number of groups.
  • the number of overlapping layers may be determined first based on the channel state information; and the number of groups may be determined based on the number of overlapping layers; and then the antennas may be grouped based on the number of groups and the grouping rule to obtain at least two antenna port groups;
  • the antennas may be grouped according to the number of antennas after the number of overlapping layers is determined. According to the number of overlapping layers K, the number of each group of antennas is determined and the number of groups S j is determined, so that the antennas are grouped into L groups, where The antennas in the same group generate the FTN signal by delaying the transmission of the signal.
  • the transmitting end can group the antennas. It can be assumed that the total number of antennas is S, and the required number of overlapping layers is K, then the number S j of each group of antennas satisfies
  • the grouping of antennas may adopt the principle of nearest grouping. Because from the point of view of the receiving end, the antennas of the transmitting ends that are relatively close can be considered to be at the same point in space, so their transmitted signals can be considered to be simply superimposed on the air interface of the transmitting side, thereby forming an FTN signal.
  • the grouping rules for antennas may be: 1) grouping by row, that is, grouping S j antennas in the same row in the horizontal direction in the antenna array; 2) grouping by column, that is, in the antenna array in the same vertical direction
  • the S j antennas in the column are grouped into a group; 3) Grouping by blocks, that is, the S j antennas adjacent in the horizontal and vertical directions in the antenna array are grouped into a group.
  • Group by antenna polarization direction When dual-polarized antennas are used, a pair of polarized antennas at the same location can be used separately to transmit the same/different information as required.
  • antenna pairs in the same row/column/block can be further grouped according to polarization directions, thereby increasing the degree of spatial freedom.
  • the antenna port group can be grouped in units of antennas, that is, multiple antennas can be grouped to obtain an antenna port group; the antenna port group can also be grouped in units of antenna channels, that is, multiple antennas can be grouped. The antenna channels are grouped to obtain an antenna port group.
  • the antennas in each antenna port group are sent to generate FTN signals through delay superposition; at the same time, the antenna groups can be considered as a dimension reduction.
  • the MIMO antenna system can use the existing MIMO working mode to transmit information to the FTN signal.
  • each antenna group can be regarded as a virtual antenna port.
  • the L virtual antenna ports can further use the MIMO working mode to work together.
  • the hybrid solution in this embodiment determines the grouping method of the antennas according to the number of available antennas and the required number of FTN overlapping layers, and selects an appropriate beamforming method for the antenna groups, further realizing the dynamic optimization of spectral efficiency for SNR the goal of.
  • the method further includes: indicating the grouping rule to the communication peer through the first indication information; and determining the MIMO target working mode when the antenna port groups work in the MIMO mode, The method includes: directly determining the MIMO target working mode based on the channel measurement information, and instructing the MIMO target working mode to the communication peer through the second indication information.
  • the communication peer needs to know the specific antenna grouping rules to correctly collect information and facilitate correct decoding. Therefore, after grouping the antenna arrays based on the preset rules, the first indication information can indicate the grouping rules to the communication peer. .
  • 2 bits can be used to indicate 4 grouping rules, that is, ⁇ 00, 01, 11, 10 ⁇ corresponds to ⁇ vertical, horizontal, block pattern 1, block pattern 2 ⁇
  • the MIMO target operation mode when the MIMO target operation mode is determined based on the antenna port group measurement information, the MIMO target operation mode can be directly determined based on the antenna port group measurement information, and the MIMO target operation mode is indicated to the communication peer through the second indication information.
  • the first indication information and/or the second indication information are carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the first indication information can be carried by downlink control information (Downlink Control Information, DCI) or dedicated-RRC, or,
  • the first indication information may be carried by a physical downlink control channel (PDCCH) or a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH);
  • the second indication information may be carried by DCI or dedicated-RRC, or, the second The indication information is carried by PDCCH or PDSCH.
  • the first indication information and/or the second indication information are carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the first indication information can be carried by the uplink control information UCI (Uplink Control Information, UCI) , or, the first indication information may be carried by a physical uplink control channel (Physical Uplink Control Channel, PUCCH) or a physical uplink shared channel (Physical Uplink Share Channel, PUSCH); the second indication information may be carried by the uplink control information UCI or, the second indication information may be carried by PUCCH or PUSCH.
  • UCI Uplink Control Information
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Share Channel
  • the first indication information and/or the second indication information are carried by sidelink control signaling or synchronization message, or, by PSCCH or PSSCH or SBCCH bearer.
  • the first indication information can be carried by a sidelink control signaling or a synchronization message, or, the first indication information It can be carried by Physical Sidelink Control Channel (PSCCH) or Physical Sidelink Share Channel (PSCCH) PSSCH or Sidelink Broadcast Control Channel (SBCCH); the second indication information can be It is carried by sidelink control signaling or synchronization message, or the second indication information can be carried by PSCCH, PSSCH or SBCCH.
  • PSCCH Physical Sidelink Control Channel
  • PSCCH Physical Sidelink Share Channel
  • SBCCH Sidelink Broadcast Control Channel
  • the second indication information can be It is carried by sidelink control signaling or synchronization message, or the second indication information can be carried by PSCCH, PSSCH or SBCCH.
  • the determining the number of groups based on the number of overlapping layers includes:
  • the method further includes:
  • the MIMO target working mode, the grouping rule and the grouping quantity corresponding to the MIMO target working mode in the MIMO working mode configuration table are indicated to the communication peer.
  • a MIMO working mode configuration table can be predefined, as shown in Table 1 below, including multiple sets of configuration information and corresponding index values, and the working mode of the receiving end antenna can be indicated by the indication information including the index value, or the MIMO target working mode can be indicated.
  • index value mode_FTN_1 ⁇ grouping rule 1, grouping quantity 1, inter-group MIMO working mode 1 ⁇ mode_FTN_2 ⁇ grouping rule 2, grouping quantity 2, inter-group MIMO working mode 2 ⁇ mode_FTN_3 ...
  • the MIMO target working mode corresponding to the number of groups can be determined in the predefined MIMO working mode configuration table based on the antenna port group measurement information, for example, the number of groups is Table 1
  • the number of groups in Table 1 is 2, and the number of groups in Table 1 corresponds to the inter-group MIMO operation mode 1, the inter-group MIMO operation mode 2, ..., the inter-group MIMO operation mode n, then the inter-group MIMO operation can be determined based on the antenna port group measurement information
  • An optimal inter-group MIMO working mode among the mode 1 to the inter-group MIMO working mode n is the MIMO target working mode.
  • the third indication information may be used to set the MIMO target working mode and the MIMO target working mode in the table.
  • the grouping rule corresponding to the table is indicated to the communication peer together with the grouping quantity.
  • the predefined MIMO working mode configuration table may be predefined by the network side and broadcast to all terminals, or may be specified by a protocol.
  • the MIMO working mode configuration table is carried by MIB or SIB, and carried by PBCH or PDSCH.
  • the third indication information includes:
  • index information is used to indicate the MIMO target working mode in the MIMO working mode configuration table, the grouping rule and the number of groups corresponding to the MIMO target working mode in the MIMO working mode configuration table.
  • the combination of the MIMO target working mode, the corresponding grouping rule, and the number of groups can be passed through
  • the third indication information is directly sent to the communication peer.
  • the determined MIMO target working mode, the corresponding grouping rule, and the number of groups can be divided into three
  • the index information corresponding to the combination is sent to the communication peer.
  • the third indication information is carried by DCI or dedicated-RRC, or the third indication information is carried by PDCCH or PDSCH.
  • the third indication information may be carried by DCI or dedicated-RRC, or the third indication information may be carried by PDCCH or PDSCH bearer.
  • the third indication information is carried by uplink control information UCI, or the third indication information is carried by PUCCH or PUSCH.
  • the third indication information may be carried by the uplink control information UCI, or the third indication information may be It is carried by PUCCH or PUSCH.
  • the third indication information is carried by sidelink control signaling or a synchronization message, or the third indication information is carried by PSCCH or PSSCH. or SBCCH bearer.
  • the third indication information can be carried by a sidelink control signaling or a synchronization message, or the third indication Information is carried by PSCCH or PSSCH or SBCCH.
  • the method further includes:
  • the number of overlapping layers is determined; wherein, using the antenna working mode to perform information transmission, including: based on the number of overlapping layers, superimposing the information of the antenna to obtain FTN information;
  • the FTN information is transmitted.
  • the number of overlapping layers may be determined based on the channel quality first, and based on the number of overlapping layers, the information of the antennas may be superimposed to obtain FTN information; finally, the FTN information may be transmitted.
  • the determination methods may include but are not limited to the following:
  • RSRP bit error rate
  • the method further includes: if it is determined that the transmission condition is not met, re-determining the number of overlapping layers;
  • the transmission conditions include: the bit error rate fed back by the communication peer end is not less than the first preset threshold; or, the number of packet loss and retransmission NACK messages received by the communication peer end reaches the second preset threshold; or, continuously received The number of NACK messages sent by the communication peer end reaches the third preset threshold; or, the SNR or RSRP of the received signal is lower than the fourth preset threshold.
  • the number of overlapping layers can be re-determined to weigh the different scenarios.
  • the antenna working mode is the MIMO-FTN mode
  • grouping can be performed based on the number of overlapping layers again, and measurement and feedback are performed again to obtain new the precoding matrix.
  • the determination when determining whether the information transmission satisfies the condition, the determination may be performed in units of transmission of one or more data blocks.
  • the transmission conditions can be:
  • the bit error rate fed back by the communication peer is not less than the first preset threshold; if it is less than the threshold, it is considered that the transmission condition is not satisfied.
  • the number of NACK messages received by the sender reaches the second preset threshold or NACK messages are continuously received. For example, within a certain period, M NACK messages are received accumulatively; or, N NACK messages are continuously received; it is considered that the transmission index is not met;
  • first preset threshold, the second preset threshold, the third preset threshold and the fourth preset threshold may be configured by the network, or may be stipulated by a protocol.
  • the method further includes: when the antenna working mode is the FTN mode, adjusting the transmission parameters of the FTN information based on the antenna measurement information; the antenna measurement information is obtained by measuring the antenna port;
  • the antenna working mode is the MIMO-FTN mode
  • the transmission parameters of the MIMO-FTN information are adjusted.
  • the transmission parameters of the information in the antenna port group such as the QAM modulation order and the channel coding rate, etc., can be adjusted to ensure the quality of information transmission.
  • the antenna measurement information may be obtained by the terminal measuring the antenna port, and the transmission parameters of the FTN information may be adjusted based on the antenna measurement information, and the adjusted transmission parameters of the FTN information may also be adjusted. It is indicated to the communication peer through second indication information, where the second indication information is carried by DCI or dedicated-RRC, or is carried by PDCCH or PDSCH.
  • the transmission parameters of the FTN information can be adjusted based on the antenna port measurement information.
  • the method further includes:
  • the adjusted sending parameters are indicated to the communication peer through the fifth indication information.
  • an instruction can be given to the communication peer end, so that the communication peer end can adjust adaptively.
  • the fourth indication information and/or the fifth indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the fourth indication information may be carried by DCI or dedicated-RRC, or the fourth indication information may be carried by PDCCH or PDSCH is carried; the fifth indication information may be carried by DCI or dedicated-RRC, or the fifth indication information may be carried by PDCCH or PDSCH.
  • the fourth indication information and/or the fifth indication information is carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the fourth indication information may be carried by the uplink control information UCI, or the fourth indication information may be carried by the PSCCH Or the PSSCH is carried; the fifth indication information may be carried by the uplink control information UCI, or the fifth indication information may be carried by the PSCCH or the PSSCH.
  • the fourth indication information and/or the fifth indication information is carried by sidelink control signaling or synchronization message, and is carried by PUCCH or PUSCH or SBCCH bearer.
  • this transmission is a sidelink transmission
  • the fourth indication information and/or the fifth indication information may be carried by the sidelink control signaling or the synchronization message , or, carried by PSCCH or PSSCH or SBCCH.
  • the method further includes:
  • Receive terminal capability information sent by the terminal where the terminal capability information includes information indicating whether the terminal supports an FTN decoding algorithm, where the FTN decoding algorithm includes: an uplink FTN decoding algorithm and/or a downlink FTN decoding algorithm.
  • the multi-antenna system when it performs mode adaptive switching, it can judge whether to adopt the FTN transmission mode according to the receiver capability and channel conditions, and then can determine the number of overlapping layers that the current transceiver can support according to the measurement result.
  • the triggering and adaptive process is as follows:
  • the originator can confirm whether the current transmission supports FTN. Mainly based on the following two points:
  • a. User equipment capability that is, whether the receiver of the user equipment supports the FTN decoding algorithm; (the UE reports to the network side whether it supports the capability of uplink FTN and downlink FTN)
  • the antenna operation mode is the MIMO mode
  • the antenna operating mode is the FTN mode
  • the antenna operating mode is the MIMO-FTN mode.
  • the above two kinds of information that is, the acquisition of the user capability and the channel state information, can be acquired through user feedback.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • the execution body may be an information transmission apparatus, or a control module in the information transmission apparatus for executing the information transmission method.
  • the information transmission device provided by the embodiment of the present application is described by taking the information transmission method performed by the information transmission device as an example.
  • FIG. 9 is a schematic structural diagram of an information transmission apparatus provided by an embodiment of the present application, which is applied to a communication device.
  • the apparatus includes: a first acquisition module 910 , a first determination module 920 and a first transmission module 930 , wherein : the first acquisition module 910 is used to acquire the channel quality of multiple antennas; the first determination module 920 is used to determine the antenna operation mode according to the channel quality; the first transmission module 930 is used to use the antenna operation mode to carry out information transmission; the antenna working modes include: the multiple antennas all work in a MIMO mode in a multiple-input multiple-output MIMO mode, the multiple antennas all work in a super-Nyquist FTN mode, or the multiple antennas work in a super-Nyquist FTN mode.
  • a MIMO-FTN mode in which the same antenna port group works in the FTN mode, and the MIMO mode works between different antenna port groups, wherein each antenna port group includes at least one antenna.
  • the information transmission apparatus obtains the channel qualities of multiple antennas through the first obtaining module 910, and then determines the antenna working mode through the first determining module 920 according to the channel quality; and finally adopts the determined antenna working mode through the first transmission module 930. , for information transmission.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • the first determining module is specifically configured to at least one of the following: in the case that the channel quality is less than or equal to a first threshold, determine that the antenna operating mode is a MIMO mode; when the channel quality is greater than or equal to a second threshold In the case of , it is determined that the antenna operation mode is the FTN mode; in the case that the channel quality is greater than the first threshold and smaller than the second threshold, the antenna operation mode is determined to be the MIMO-FTN mode.
  • it further includes: a switching module, configured to switch the antenna working mode according to the updated channel quality; and a second transmission module, configured to use the switched antenna working mode to perform information transmission.
  • a switching module configured to switch the antenna working mode according to the updated channel quality
  • a second transmission module configured to use the switched antenna working mode to perform information transmission.
  • the channel quality is determined according to a first channel quality parameter, and the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the first acquisition module is specifically configured to: receive a downlink reference signal through the multiple antennas; and measure the downlink reference signal to obtain the channel quality.
  • the first acquisition module is specifically configured to:
  • the first acquisition module is specifically configured to: send a downlink reference signal through the multiple antennas; receive channel state information CSI fed back by the terminal to obtain the channel quality, wherein the CSI is measured by the terminal according to the downlink reference signal.
  • the first acquisition module is specifically configured to: receive an uplink reference signal through the multiple antennas; and measure the uplink reference signal to obtain the channel quality.
  • the apparatus when the antenna working mode is the MIMO-FTN mode, the apparatus further includes: a second determining module, configured to determine the number of overlapping layers when the antenna port group works in the FTN mode; a third determining module, It is used to determine the MIMO target working mode when the antenna port groups work in the MIMO manner; wherein, the first transmission module is specifically configured to: perform information transmission according to the MIMO target working mode and the number of overlapping layers.
  • the second determining module is specifically configured to: determine the number of overlapping layers based on the channel quality.
  • the channel quality is determined according to a second channel quality parameter, and the second channel quality parameter includes at least one of the following: SINR, RSRP, number of multipaths, relative velocity, Doppler frequency shift, frequency offset Corrected residual frequency offset and bit error rate.
  • the apparatus when the MIMO target working mode is a beamforming MIMO mode, the apparatus further includes: a fourth determining module, configured to determine the pre-determined antenna port group according to the channel measurement information of the antenna port group. coding matrix indicator PMI; wherein, the first transmission module is specifically configured to: perform information transmission according to the PMI adopted by the beamforming MIMO mode and the number of overlapping layers.
  • the fourth determining module is specifically configured to: acquire the channel measurement information of the antenna port group; and determine the precoding matrix indicator PMI of the antenna port group according to the channel measurement information of the antenna port group.
  • the fourth determining module is specifically configured to: send a downlink reference signal and measurement trigger signaling to the terminal through the antenna port group; receive the terminal based on the measurement Channel state information CSI for triggering signaling feedback; according to the CSI of the antenna port group, determine the precoding matrix indicator PMI of the antenna port group; wherein, the CSI is obtained by the terminal according to the downlink reference signal measurement Yes, the measurement trigger signaling includes the number of antenna port groups.
  • the fourth determining module is specifically configured to: send measurement trigger signaling to the terminal through the antenna port group; receive the measurement trigger signaling sent by the terminal based on the measurement trigger signaling
  • the uplink reference signal is measured; the channel measurement information is obtained by measuring the uplink reference signal; wherein, the measurement trigger signaling includes the number of antenna port groups.
  • the fourth determination module is specifically configured to: send a measurement request signaling to the network side device through the antenna port group; receive the measurement request signaling based on the network side device. order the sent downlink reference signal; measure the downlink reference signal to obtain the channel measurement information; wherein, the measurement request signaling includes the number of antenna port groups.
  • the fourth determination module is specifically configured to: send the sidelink reference signal and the measurement trigger signaling through the multiple antennas; receive the communication peer.
  • the first transmission module is further configured to: for one of the antenna port groups, obtain FTN information based on the number of overlapping layers; for the FTN information of the at least two antenna port groups, based on the target precoding matrix pair Perform digital beamforming on the information between the antenna port groups to obtain MIMO-FTN information; wherein, the target precoding matrix is determined based on the precoding matrix indicator PMI of the antenna port group; transmit the MIMO-FTN information .
  • the antenna port group is obtained by grouping antennas; wherein, the grouping of antennas includes:
  • the number of groups is determined; based on the grouping rule and the number of groups, the antennas are grouped.
  • the apparatus further includes: a first indication module, configured to indicate the grouping rule to the communication peer through the first indication information; the third determination module is further configured to: based on channel measurement information, directly determine the MIMO target working mode, and indicate the MIMO target working mode to the communication peer through the second indication information.
  • the first indication information and/or the second indication information are carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the first indication information and/or the second indication information are carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the first indication information and/or the second indication information are carried by sidelink control signaling or synchronization message, or, by PSCCH or PSSCH or SBCCH bearer.
  • the determining the number of groups based on the number of overlapping layers includes: determining, based on the number of overlapping layers, the number of groups corresponding to the grouping rule in a predefined MIMO working mode configuration table; the grouping the antennas Afterwards, the apparatus further includes: a fourth determining module, configured to determine the MIMO target working mode corresponding to the number of groups in a predefined MIMO working mode configuration table based on the channel measurement information; a second indicating module, configured to pass The third indication information indicates the MIMO target working mode, the grouping rule and the number of groups corresponding to the MIMO target working mode in the MIMO working mode configuration table to the communication peer.
  • the third indication information includes: the MIMO target working mode, the grouping rule and the number of groups corresponding to the MIMO target working mode in the MIMO working mode configuration table; or, index information;
  • the index information is used to indicate the MIMO target working mode in the MIMO working mode configuration table, the grouping rule and the number of groups corresponding to the MIMO target working mode in the MIMO working mode configuration table.
  • the third indication information is carried by DCI or dedicated-RRC, or the third indication information is carried by PDCCH or PDSCH.
  • the third indication information is carried by uplink control information UCI, or the third indication information is carried by PUCCH or PUSCH.
  • the third indication information is carried by sidelink control signaling or a synchronization message, or the third indication information is carried by PSCCH or PSSCH. or SBCCH bearer.
  • the apparatus when the antenna working mode is the FTN mode, the apparatus further includes: a fifth determination module, configured to determine the number of overlapping layers based on channel quality; wherein the first transmission module is specifically configured to: based on the The number of overlapping layers, the information of the antenna is superimposed to obtain FTN information; the FTN information is transmitted.
  • a fifth determination module configured to determine the number of overlapping layers based on channel quality
  • the first transmission module is specifically configured to: based on the The number of overlapping layers, the information of the antenna is superimposed to obtain FTN information; the FTN information is transmitted.
  • the apparatus further includes: a sixth determination module, configured to re-determine the number of overlapping layers if it is determined that the transmission condition is not met; the transmission condition includes: the bit error rate fed back by the communication peer end is not less than the first predetermined value. set threshold; or,
  • the number of received NACK messages sent by the communication peer reaches the second preset threshold; or,
  • the number of consecutively received NACK messages sent by the communication peer reaches the third preset threshold; or,
  • the SNR or RSRP of the received signal is lower than the fourth preset threshold.
  • the apparatus further includes: a first adjustment module, configured to adjust the transmission parameters of the FTN information based on the antenna measurement information when the antenna working mode is the FTN mode; the antenna measurement information is obtained by measuring the antenna port ;
  • the second adjustment module when the antenna working mode is the MIMO-FTN mode, adjusts the transmission parameters of the MIMO-FTN information based on the channel measurement information.
  • the device further includes: a third indication module, configured to indicate the re-determined number of overlapping layers to the communication peer through fourth indication information after the number of overlapping layers is re-determined; or, the fourth indicating module, After adjusting the sending parameters, the adjusted sending parameters are indicated to the communication peer through the fifth indication information.
  • a third indication module configured to indicate the re-determined number of overlapping layers to the communication peer through fourth indication information after the number of overlapping layers is re-determined
  • the fourth indicating module After adjusting the sending parameters, the adjusted sending parameters are indicated to the communication peer through the fifth indication information.
  • the fourth indication information and/or the fifth indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the fourth indication information and/or the fifth indication information is carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the fourth indication information and/or the fifth indication information is carried by sidelink control signaling or synchronization message, or, by PSCCH or PSSCH or SBCCH bearer.
  • the apparatus when the communication device is a network-side device, the apparatus further includes:
  • a receiving module configured to receive terminal capability information sent by the terminal, where the terminal capability information includes information indicating whether the terminal supports an FTN decoding algorithm, and the FTN decoding algorithm includes: an uplink FTN decoding algorithm and/or a downlink FTN decoding algorithm.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • the information transmission device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the information transmission device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the information transmission apparatus provided in the embodiments of the present application can implement each process implemented by the method embodiments in FIG. 1 to FIG. 8 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 includes a processor 1001 and a memory 1002, which are stored in the memory 1002 and can be processed in the The program or instruction running on the processor 1001, for example, when the communication device 1000 is a terminal, when the program or instruction is executed by the processor 1001, each process of the above-mentioned embodiment of the method for transmitting the synchronization signal block can be realized, and the same technical effect can be achieved .
  • the communication device 1000 is a network-side device
  • the program or instruction is executed by the processor 1001
  • each process of the above-mentioned embodiment of the synchronization signal block transmission method can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here. .
  • the communication device in this application may be a network side device or a terminal.
  • FIG. 11 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • the network side device 1100 includes: an antenna 1101 , a radio frequency device 1102 , and a baseband device 1103 .
  • the antenna 1101 is connected to the radio frequency device 1102 .
  • the radio frequency device 1102 receives information through the antenna 1101, and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102
  • the radio frequency device 1102 processes the received information and sends it out through the antenna 1101 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1103 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1103 , and the baseband apparatus 1103 includes a processor 1104 and a memory 1105 .
  • the baseband device 1103 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 11 , one of the chips is, for example, the processor 1104 , which is connected to the memory 1105 to call the program in the memory 1105 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 1103 may further include a network interface 1106 for exchanging information with the radio frequency device 1102, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 1105 and run on the processor 1104, and the processor 1104 invokes the instructions or programs in the memory 1105 to execute the modules shown in FIG. 9 .
  • the processor 1104 is configured to acquire the channel quality of multiple antennas; determine the antenna operation mode according to the channel quality; use the antenna operation mode to perform information transmission; the antenna operation mode includes: the multiple antennas are all The MIMO mode working in the multiple-input multiple-output MIMO mode, the multiple antennas working in the FTN mode using the super-Nyquist FTN mode, or the same antenna port group working in the FTN mode among the multiple antennas, and different antenna ports working in the FTN mode.
  • a MIMO-FTN mode in which MIMO is used between groups, wherein each antenna port group includes at least one antenna.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • the processor 1104 is further configured to at least one of the following: when the channel quality is less than or equal to a first threshold, determine that the antenna operating mode is a MIMO mode; when the channel quality is greater than or equal to a second threshold In this case, the antenna operation mode is determined to be the FTN mode; in the case that the channel quality is greater than the first threshold and smaller than the second threshold, the antenna operation mode is determined to be the MIMO-FTN mode.
  • the processor 1104 is further configured to: switch the antenna working mode according to the updated channel quality; and perform information transmission using the switched antenna working mode.
  • the channel quality is determined according to a first channel quality parameter, and the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the processor 1104 is further configured to: send a downlink reference signal through the multiple antennas; receive the channel state information CSI fed back by the terminal to obtain the channel quality , where the CSI is measured by the terminal according to the downlink reference signal.
  • the processor 1104 is further configured to: receive an uplink reference signal through the multiple antennas; and measure the uplink reference signal to obtain the channel quality.
  • the processor 1104 is further configured to: determine the number of overlapping layers when the antenna port group works in the FTN mode; determine the number of overlapping layers when the antenna port group works in the MIMO mode.
  • the processor 1104 is further configured to: determine the number of overlapping layers based on the channel quality.
  • the channel quality is determined according to a second channel quality parameter, and the second channel quality parameter includes at least one of the following: SINR, RSRP, number of multipaths, relative velocity, Doppler frequency shift, frequency offset Corrected residual frequency offset and bit error rate.
  • the processor 1104 is further configured to: determine the precoding matrix indicator PMI of the antenna port group according to the channel measurement information of the antenna port group;
  • information transmission is performed, including:
  • Information transmission is performed according to the PMI adopted by the beamforming MIMO mode and the number of overlapping layers.
  • the processor 1104 is further configured to: acquire the channel measurement information of the antenna port group; and determine the precoding matrix indicator PMI of the antenna port group according to the channel measurement information of the antenna port group.
  • the processor 1104 is further configured to: send the downlink reference signal and measurement trigger signaling to the terminal through the antenna port group; receive the trigger based on the measurement by the terminal Channel state information CSI fed back by signaling; according to the CSI of the antenna port group, determine the precoding matrix indicator PMI of the antenna port group; wherein, the CSI is obtained by the terminal according to the downlink reference signal measurement , the measurement trigger signaling includes the number of antenna port groups.
  • the processor 1104 is further configured to: send measurement trigger signaling to the terminal through the antenna port group; receive the measurement trigger signaling sent by the terminal based on the measurement trigger signaling. uplink reference signal;
  • the uplink reference signal is measured to obtain the channel measurement information; wherein, the measurement trigger signaling includes the number of antenna port groups.
  • the processor 1104 is further configured to: for one of the antenna port groups, obtain FTN information based on the number of overlapping layers; for the FTN information of the at least two antenna port groups, perform a pairing of the antennas based on the target precoding matrix.
  • the information between the port groups is digitally beamformed to obtain MIMO-FTN information; wherein, the target precoding matrix is determined based on the precoding matrix indicator PMI of the antenna port group; and the MIMO-FTN information is transmitted.
  • the antenna port group is obtained by grouping antennas; wherein, the processor 1104 is further configured to:
  • the number of groups is determined; based on the grouping rule and the number of groups, the antennas are grouped.
  • the processor 1104 is further configured to: indicate the grouping rule to the communication peer through the first indication information;
  • the determining of the MIMO target working mode when the MIMO mode is used between the antenna port groups includes: directly determining the MIMO target working mode based on the channel measurement information, and indicating the MIMO target working mode to the communication peer through the second indication information .
  • the first indication information and/or the second indication information are carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the first indication information and/or the second indication information is carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the first indication information and/or the second indication information are carried by sidelink control signaling or synchronization message, or, by PSCCH or PSSCH or SBCCH bearer.
  • the processor 1104 is further configured to: determine the number of groups corresponding to the grouping rule in a predefined MIMO working mode configuration table based on the number of overlapping layers;
  • the method further includes:
  • the MIMO target working mode, the grouping rule and the grouping quantity corresponding to the MIMO target working mode in the MIMO working mode configuration table are indicated to the communication peer.
  • the third indication information includes: the MIMO target working mode, the grouping rule and the number of groups corresponding to the MIMO target working mode in the MIMO working mode configuration table; or, index information;
  • the index information is used to indicate the MIMO target working mode in the MIMO working mode configuration table, the grouping rule and the number of groups corresponding to the MIMO target working mode in the MIMO working mode configuration table.
  • the third indication information is carried by DCI or dedicated-RRC, or the third indication information is carried by PDCCH or PDSCH.
  • the processor 1104 is further configured to: determine the number of overlapping layers based on the channel quality; wherein, using the antenna working mode to perform information transmission includes: based on the overlapping The number of layers, the information of the antenna is superimposed to obtain FTN information; the FTN information is transmitted.
  • the processor 1104 is further configured to: re-determine the number of overlapping layers if it is determined that the transmission condition is not met;
  • the transmission conditions include: the bit error rate fed back by the communication peer end is not less than the first preset threshold; or
  • the number of NACK messages received by the communication peer reaches the second preset threshold
  • the number of consecutively received NACK messages sent by the communication peer reaches the third preset threshold
  • the SNR or RSRP of the received signal is lower than the fourth preset threshold.
  • the processor 1104 is further configured to: when the antenna working mode is the FTN mode, adjust the transmission parameters of the FTN information based on the antenna measurement information; the antenna measurement information is obtained by measuring the antenna port;
  • the transmission parameters of the MIMO-FTN information are adjusted based on the channel measurement information.
  • the processor 1104 is further configured to: after re-determining the number of overlapping layers, indicate the re-determined number of overlapping layers to the communication peer through the fourth indication information; or after adjusting the sending parameters, send the adjusted sending parameters It is indicated to the communication peer through the fifth indication information.
  • the fourth indication information and/or the fifth indication information is carried by DCI or dedicated-RRC, or carried by PDCCH or PDSCH.
  • the processor 1104 is further configured to:
  • Receive terminal capability information sent by the terminal where the terminal capability information includes information indicating whether the terminal supports an FTN decoding algorithm, where the FTN decoding algorithm includes: an uplink FTN decoding algorithm and/or a downlink FTN decoding algorithm.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • FIG. 12 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209, a processor 1210 and other components .
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1204 may include a graphics processor (Graphics Processing Unit, GPU) 12041 and a microphone 12042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1206 may include a display panel 12061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072 .
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 1201 processes the information from the communication peer end after receiving the information; in addition, sends the information to be transmitted to the communication peer end.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1209 may be used to store software programs or instructions as well as various data.
  • the memory 1209 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1210.
  • the processor 1210 is configured to acquire the channel quality of multiple antennas; determine an antenna working mode according to the channel quality; use the antenna working mode to perform information transmission; the antenna working mode includes: the multiple antennas All use the MIMO mode in which the multiple-input multiple-output MIMO mode works, the multiple antennas all use the FTN mode in the super-Nyquist FTN mode, or the same antenna port group in the multiple antennas works in the FTN mode, and different antennas work in the FTN mode.
  • a MIMO-FTN mode in which MIMO is used between port groups, wherein each antenna port group includes at least one antenna.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • processor 1210 is also used for at least one of the following:
  • the antenna operation mode is the MIMO mode
  • the antenna operation mode is the FTN mode
  • the antenna operation mode is the MIMO-FTN mode.
  • the processor 1210 is further configured to: switch the antenna working mode according to the updated channel quality; and perform information transmission using the switched antenna working mode.
  • the channel quality is determined according to a first channel quality parameter, and the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the first channel quality parameter includes: signal-to-noise ratio SNR, signal-to-interference-plus-noise ratio SINR, reference signal received power RSRP, and reference signal received power At least one of Quality RSRQ.
  • the processor 1210 is further configured to: receive a downlink reference signal through the multiple antennas; and measure the downlink reference signal to obtain the channel quality.
  • the processor 1210 is further configured to: send a sidelink reference signal through the multiple antennas; receive the channel quality fed back by the communication peer, Wherein, the channel quality is obtained by measuring the communication peer end according to the sidelink reference signal.
  • the processor 1210 is further configured to: determine the number of overlapping layers when the antenna port group works in the FTN mode; determine the number of overlapping layers when the antenna port group works in the MIMO mode.
  • MIMO target working mode wherein, using the antenna working mode to perform information transmission, including:
  • Information transmission is performed according to the MIMO target working mode and the number of overlapping layers.
  • the processor 1210 is further configured to: determine the number of overlapping layers based on the channel quality.
  • the channel quality is determined according to a second channel quality parameter, and the second channel quality parameter includes at least one of the following: SINR, RSRP, number of multipaths, relative velocity, Doppler frequency shift, frequency offset Corrected residual frequency offset and bit error rate.
  • the processor 1210 is further configured to: determine the precoding matrix indicator PMI of the antenna port group according to the channel measurement information of the antenna port group;
  • information transmission is performed, including:
  • Information transmission is performed according to the PMI adopted by the beamforming MIMO mode and the number of overlapping layers.
  • the processor 1210 is further configured to: acquire channel measurement information of the antenna port group; and determine the precoding matrix indicator PMI of the antenna port group according to the channel measurement information of the antenna port group.
  • the processor 1210 is further configured to:
  • the measurement request signaling includes the number of antenna port groups.
  • the processor 1210 is further configured to:
  • the channel measurement information is obtained by the communication peer through measurement according to the sidelink reference signal, and the measurement trigger signaling includes the number of antenna port groups.
  • processor 1210 is further configured to:
  • the target precoding matrix is determined based on the precoding matrix indicator PMI of the antenna port group;
  • the MIMO-FTN information is transmitted.
  • the antenna port group is obtained by grouping antennas
  • the processor 1210 is further configured to: determine the number of groups based on the number of overlapping layers;
  • the antennas are grouped based on the grouping rule and the number of groups.
  • the processor 1210 is further configured to: indicate the grouping rule to the communication peer through the first indication information;
  • the determining of the MIMO target working mode when the MIMO mode is used between the antenna port groups includes: directly determining the MIMO target working mode based on the channel measurement information, and indicating the MIMO target working mode to the communication peer through the second indication information .
  • the first indication information and/or the second indication information are carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the first indication information and/or the second indication information are carried by sidelink control signaling or synchronization message, or, by PSCCH or PSSCH or SBCCH bearer.
  • the processor 1210 is further configured to: determine the number of groups corresponding to the grouping rule in a predefined MIMO working mode configuration table based on the number of overlapping layers;
  • the method further includes:
  • the MIMO target working mode, the grouping rule and the grouping quantity corresponding to the MIMO target working mode in the MIMO working mode configuration table are indicated to the communication peer.
  • the third indication information includes:
  • index information is used to indicate the MIMO target working mode in the MIMO working mode configuration table, the grouping rule and the number of groups corresponding to the MIMO target working mode in the MIMO working mode configuration table.
  • the third indication information is carried by uplink control information UCI, or the third indication information is carried by PUCCH or PUSCH.
  • the third indication information is carried by sidelink control signaling or a synchronization message, or the third indication information is carried by PSCCH or PSSCH. or SBCCH bearer.
  • the processor 1210 is further configured to: determine the number of overlapping layers based on the channel quality; wherein, using the antenna working mode to perform information transmission includes: based on the overlapping The number of layers, the information of the antenna is superimposed to obtain FTN information; the FTN information is transmitted.
  • the processor 1210 is further configured to: re-determine the number of overlapping layers if it is determined that the transmission condition is not met;
  • the transmission conditions include: the bit error rate fed back by the communication peer end is not less than the first preset threshold; or,
  • the number of received NACK messages sent by the communication peer reaches the second preset threshold; or,
  • the number of consecutively received NACK messages sent by the communication peer reaches the third preset threshold; or,
  • the SNR or RSRP of the received signal is lower than the fourth preset threshold.
  • processor 1210 is further configured to:
  • the transmission parameters of the FTN information are adjusted based on the antenna measurement information; the antenna measurement information is obtained by measuring the antenna port;
  • the antenna working mode is the MIMO-FTN mode
  • the transmission parameters of the MIMO-FTN information are adjusted.
  • processor 1210 is further configured to:
  • the adjusted sending parameters are indicated to the communication peer through the fifth indication information.
  • the fourth indication information and/or the fifth indication information is carried by uplink control information UCI, or carried by PUCCH or PUSCH.
  • the fourth indication information and/or the fifth indication information is carried by sidelink control signaling or synchronization message, or, by PSCCH or PSSCH or SBCCH bearer.
  • an appropriate transmission mode can be adaptively selected according to the channel state for information transmission, and the multi-antenna system can be flexibly adjusted.
  • the working mode realizes the dynamic optimization of the spectrum efficiency according to the channel state, which is beneficial for the receiver to track the time-varying characteristics of the fading channel and always maintain the best working state.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing information transmission method embodiment can be achieved, and the same can be achieved. In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above information transmission method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above information transmission method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息传输方法、装置、设备及存储介质,属于通信领域,所述方法应用于通信设备,包括:获取多个天线的信道质量;根据所述信道质量,确定天线工作模式;采用所述天线工作模式,进行信息传输;所述天线工作模式包括:MIMO模式,FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线;

Description

信息传输方法、装置、通信设备及存储介质
相关申请的交叉引用
本申请主张在2020年11月20日在中国提交的中国专利申请号202011314900.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息传输方法、装置、通信设备及存储介质。
背景技术
在通信系统中,为了获得额外的分集增益或频谱效率提升,可采用多进多出-正交频分复用(Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing,MIMO-OFDM)方案,其中,多进多出(Multiple-Input Multiple-Output,MIMO)方案下不同发射天线上的发送信号是完全同步的,即不同天线的发射信号叠加时,信号波形的波峰与波峰叠加,波谷与波谷叠加。MIMO可以获取可观的分集增益,保证了传输的可靠性;但是多流MIMO受限于高阶调制的误差向量幅度(Error Vector Magnitude,EVM)限制,在某些场景下对频谱效率的提升有限。
发明内容
本申请实施例的目的是提供一种信息传输方法、装置、通信设备及存储介质,能够解决MIMO方案无法提升频率效率的问题。
第一方面,提供了一种信息传输方法,应用于通信设备,该方法包括:获取多个天线的信道质量;根据所述信道质量,确定天线工作模式;采用所述天线工作模式,进行信息传输;所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
第二方面,提供了一种信息传输装置,应用于通信设备,所述装置包括:第一获取模块,用于获取多个天线的信道质量;第一确定模块,用于根据所述信道质量,确定天线工作模式;第一传输模块,用于采用所述天线工作模式,进行信息传输;所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
第三方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行通信设备程序或指令,实现如第一方面所述的方法。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
附图说明
图1是本申请实施例提供的一种无线通信系统的框图;
图2是本申请实施例提供的无时域重叠与有时域重叠的信号对比示意图;
图3是本申请实施例提供的信息传输方法的流程示意图;
图4是本申请实施例提供的多天线系统生成FTN/OVTDM符号的示意图;
图5是本申请实施例提供的MIMO-FTN模式的传输示意图;
图6是本申请实施例提供的天线工作模式确定方法示意图;
图7是本申请实施例提供的下行测量示意图;
图8是本申请实施例提供的上行测量示意图;
图9是本申请实施例提供的信息传输装置的结构示意图;
图10是本申请实施例提供的一种通信设备的结构示意图;
图11是本申请实施例提供的一种网络侧设备的硬件结构示意图;
图12是本申请实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1是本申请实施例提供的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为更充分介绍本方案各实施例,首先对以下内容进行介绍:
1.MIMO;
在MIMO系统中,收发双方使用多副可以同时工作的天线进行通信。MIMO系统通常采用复杂的信号处理技术来显著增强可靠性、传输范围和吞吐量。发射机采用这些技术同时发送多路射频信号,接收机再从这些信号中将信息恢复出来。
不同的MIMO模式的共同目的是利用已知的空间相关性获得额外的分集增益或者频谱效率提升。例如长期演进(Long Term Evolution,LTE)协议中的MIMO模式主要有以下几种:
Mode 1:单天线工作模式;
传统无线制式的天线工作模式。
Mode 2:开环发射分集;
利用复数共轭的数学方法,在多根天线上形成了彼此正交的空间信道,发送相同的数据流,提高传输可靠性。
Mode 3:开环空间复用;
在不同的天线上人为制造“多径效应”,一个天线正常发射,其他天线上引入相位偏移环节。多个天线的发射关系构成复矩阵,并行地发射不同的数据流。这个复矩阵在发射端随机选择,不依赖于接收端的反馈结果,就是开环(Open Loop)空间复用。
Mode 4:闭环空间复用;
发射端在并行发射多个数据流的时候,根据反馈的信道估计的结果,选择制造“多径效应”的复矩阵,就是闭环(Close Loop)空间复用。
Mode 5:MU-MIMO(Multi-User Multiple-Input Multiple-Output,多用户-多输入多输出);
并行传输的多个数据流是由多个用户设备(User Experience,UE)组合实现的,就是多用户空间复用,即MU-MIMO(Multi User MIMO)。
Mode 6:Rank=1的闭环发射分集;
作为闭环空间复用的一个特例,只传输一个数据流,也就是说,空间信道的秩Rank=1。这种工作模式起到的是提高传输可靠性的作用,实际上是一种发射分集的方式。
Mode 7:波束赋形(Beamforming);
多个天线协同工作时,根据基站和UE的信道条件,实时计算不同的相位偏移方案,利用天线之间的相位干涉叠加原理,形成指向特定UE的波束。
当前MIMO系统的工作模式3~6都是利用不同的天线发送不同的数据流,以达到提升频谱效率的目的。MIMO多流传输的流数上限由天线数确定,在此基础上,在信道质量较好,或者说接收信号SNR(SIGNAL NOISE RATIO,信噪比)较大时,系统可以通过采用高阶调制的方式来进一步提升频谱效率。然而由于接收机最小EVM的限制,随着调制阶数的升高,系统的频谱效率存在着边际效应递减的问题。因此,在SNR足够大时,通过在MIMO多天线系统中引入FTN/OVTDM(Faster-than-Nyquist Signaling/Overlapped Time Division Multiplexing,超奎奈斯特/重叠时分复用)技术,利用多个天线进行信号的延时叠加发送,从而起到进一步提升频谱效率的作用。
传统的单天线系统中,FTN/OVTDM信号的生成通过将过采样后的信号通过成型滤波器来实现。在成型滤波器的设计的采样精度确定的前提下,叠加层数越高,要求的信号过采样率越高,这造成了高阶叠加对硬件的设计具有挑战性。而在多天线系统中,通过不同天线振子/端口以不同的时间延迟发送信号,在空口叠加形成FTN/OVTDM信号。通过利用MIMO系统中已有的多天线设计,实现了超奈奎斯特采样传输,减少了基带设计的复杂度和硬件成本。
2.超奈奎斯特传输,即Faster-than-Nyquist Signaling。
FTN/OVTDM是通过对发送信号进行移位叠加处理(又称波形编码),人为地引入适量ISI(Symbol Interference,符号间干扰)和/或ICI(Carrier Interference,信道干扰)一种信号处理方法,其目的是加快码元发送速率,即增加每赫兹每秒(Hz*s)内发送的符号数量。其中,FTN的全称为
Faster-than-Nyquist,即超奈奎斯特。OVXDM(Overlapped X Division Multiplexing,X域重叠复用)(X代表任何域,时间T,空间S,频率F或混合H等)包括OVTDM(Overlapped Time Division Multiplexing,重叠时分复用),OVFDM(Overlapped Frequency Division Multiplexing,频域重叠复用系统)和OVCDM(Overlapped code Division Multiplexing,重叠码分复用),以及OVTDM和OVFDM的组合技术,其全称为Overlapped X-Domain Multiplexing,即X域重叠复用,可以用FTN(Faster Than Nyquist,多载波超奈奎斯特)指代。同时,引入的ISI和ICI会增加译码的复杂度,可能造成误码率的提升。然而,通过先进的译码算法可以抑制误码率提升带来的负面效应,综合来看仍然可以通过所述加快码元发送速率的方法提升信道容量。其表达式如下:
Figure PCTCN2021131838-appb-000001
其中,T Δ=τT,τ∈(0,1),τ为时域重叠系数。特别的,在OVXDM中,取
Figure PCTCN2021131838-appb-000002
因而有
Figure PCTCN2021131838-appb-000003
Figure PCTCN2021131838-appb-000004
ζ为频域重叠系数。特别的,在OVXDM中,取
Figure PCTCN2021131838-appb-000005
因而有
Figure PCTCN2021131838-appb-000006
图2是本申请实施例提供的无时域重叠与有时域重叠的信号对比示意图,如图2所示,体现了ISI的产生,当T=0.8时,即时域波形重叠系数τ=0.8后,经处理后的信号在在各个采样点所在时刻上,携带其他采样点信息的脉冲波形幅度不为零,因此产生了ISI。
假设多径信道的冲激响应函数为h CH(t),则经过信道后的信号可以等效地表示为:
Figure PCTCN2021131838-appb-000007
其中
Figure PCTCN2021131838-appb-000008
FTN/OVTDM信号的生成主要有两种方式:1)在单天线系统中,可以通过对信号过采样+成型滤波的方式来等效生成,其效果类似为一个作用于调制级别的卷积编码器;2)在多天线系统中,我们可以采用更贴近其物理含义的方式来生成,即控制多天线的每个天线振子/端口按照既定的移位叠加原则,依次以T Δ的延迟来发送信号,不同天线振子/端口以不同延迟发送的信号在空口叠加,和信号的采样点之间引入了ISI,形成FTN/OVTDM信号。
超奈奎斯特传输是目前被认为可以突破奈奎斯特采样速率,进一步逼近信道容量物理极限的一种新型信号处理技术。其衍生技术为OVXDM。OVXDM/FTN技术在时域/频域基于波形编码理论人为引入了ISI和/或ICI,从而提高了码元发送速率,增加了等效信道容量。然而,波形编码后的信号对接收机的性能提出了更高的要求,增加了译码算法的复杂度以及硬件的功耗。一般来说,波形编码时的时频域重叠系数越大,即人为引入的ISI和ICI越严重,则接收机侧需要判断的状态数越多,接收算法的复杂度越高。
在城市里复杂的电磁波传输环境中,由于存在大量的散射、反射和折射面,造成了无线信号经不同路径到达接收天线的时刻不同,即传输的多径效应,不同路径信号造成的。当发送信号的前后符号经过不同路径同时抵达时,或者说,当后一个符号在前一个符号的时延扩展内到达时,即产生了ISI。类似的,在频域上,由于频偏效应,多普勒效应等原因,信号所在的各个子载波会产生频率上不同程度的偏移,造成原本可能正交的子载波产生重叠,即ICI。上述在信号传输过程中产生的ISI/ICI与发送时采用波形编码引入的ISI/ICI叠加,对接收机的译码能力产生了更高的要求。可以通过更加复杂的接收机算法对抗衰落信道。例如利用信道预均衡,联合信道译码的迭代算法等方法。但在实际应用中,一方面,实际系统受成本和功耗等条件限制,往往无法采用理想接收机,实现的译码算法复杂度有限,当ISI/ICI超出了一定阈值后,会无法正确译码。同时,接收机的译码复杂度增加时,也会增加能量消耗,不利于终端节能降耗。
因此,明显并不是所有的场景下FTN/OVTDM系统都优于传统MIMO系统。
因此,本申请各实施例的主要构思为:可以利用无线信道的先验信息,利用信道测量结果等,灵活调节多天线系统的工作模式,使其可以在FTN/OVTDM模式和传统MIMO工作模式间灵活切换,以利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信息传输方法及装置进行详细地说明。
图3是本申请实施例提供的信息传输方法的流程示意图,该方法应用于通信设备,如图3所示,该方法包括如下步骤:
步骤300,获取多个天线的信道质量;
步骤310,根据所述信道质量,确定天线工作模式;
步骤320,采用所述天线工作模式,进行信息传输;
所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
具体地,MIMO传输利用了多天线之间的空间相关性,在发端采用了数字域波束赋形(即根据信道特性进行的MIMO预编码等)的方式提供了额外的增益。其本质是利用多天线提供的额外的空间自由度获得的增益,可以称之为MIMO增益。
而FTN信号利用了不同天线发送信号之间的延迟叠加特性,达到了在相同发送时间间隔(Transmit Time Interval,TTI)内发送更多信息比特的效果。例如当重叠层数K=2时,相当于把采用奈奎斯特传输在2T时间内所要发送比特数在T时间内发送完成,从而获得额外的增益。其本质是利用收发端已知的信号波形叠加规则,增加了额外的编码自由度,达到了把信息按照编码规则压缩后发送提升频谱效率的作用,可以称之为FTN增益。
MIMO工作模式中,不同发射天线上的发送信号是完全同步的。即不同天线的发射信号叠加时,信号波形的波峰与波峰叠加,波谷与波谷叠加。通过对MIMO信道信息的测量,选择合适的预编码矩阵来获取多天线系统的额外好处,例如通过空时编码实现分集增益,或者通过预编码实现多流传输提升频谱效率。
具体地,本实施例中,MIMO中的多天线系统可以在两种或三种模式中无缝切换。
例如,在低信噪比(Signal Noise Ratio,SNR)下,MIMO模式可以获取可观的分集增益,保证了传输的可靠性;而在高SNR下,多流MIMO受限于高阶调制的EVM限制,对频谱效率的提升有限,则可以采用FTN模式。因此,可以通过对信道状态信息的测量和反馈,由发端和/或收端触发工作模式切换。
具体地,为了实现利用无线信道的先验信息,利用信道测量结果等,灵活调节多天线系统的工作模式,使其可以在多种工作模式间灵活切换,切换成FTN模式、MIMO模式或MIMO-FTN模式,并通过多种工作模式间灵活切换,使信号发送模式根据信道状态变化的优化;因此可以通过对多个天线的信道质量的测量和反馈,获取信道质量,并基于信道质量,确定天线工作模式,由发端和/或收端触发切换,最后基于确定的天线工作模式,完成信息传输,且对流程和信令进行了保护。
可以理解的是,本实施例中的多天线系统可以切换为以下工作模式:
1)模式一:MIMO模式。该模式下,天线按照传统方式,通过在每个天线通道上预置不同的系数,进行发送预编码,实现数字波束赋形。
2)模式二:FTN模式。图4是本申请实施例提供的多天线系统生成FTN/OVTDM符号的示意图,如图4所示,该模式下,天线按照FTN方式工作。即每个天线通道间隔一定时间发送信号,信号在空口叠加形成FTN信号。
3)模式三:MIMO-FTN模式。MIMO-FTN模式中,部分天线组成集合即天线端口组,组内天线 的信号进行叠加形成FTN信号,天线端口组间基于MIMO工作模式进行信息传输。
可以理解的是,天线端口组可以是以天线为单元进行的分组,即可以对多个天线进行分组得到天线端口组;
天线端口组也可以是以天线通道为单元进行的分组,即可以对多个天线通道进行分组得到天线端口组。
图5是本申请实施例提供的MIMO-FTN混合工作模式的传输示意图,以图5为例,图5中的多天线系统总共有八个天线。每个实线框内的天线分为一组,称为天线端口组。其中,天线端口组1内天线的信息以不同的延时[λ 0,λ 1,λ 2,λ 3]传输,天线端口组2内天线的信息以不同的延时[λ 0,λ 1,λ 2,λ 3]传输。在此基础上,天线端口组1和天线端口组2的信息,基于MIMO工作模式进行信息传输。
本申请实施例中,MIMO中的多天线系统可以工作在传统MIMO和FTN/OVTDM两种状态。在协议中,需要增加至少一种MIMO模式,本申请中可以称之为FTN模式,对应利用多天线生成FTN/OVTDM信号的传输。为方便描述,可以把传统的MIMO模式称之为MIMO模式。
本申请实施例中上下行定义如下:上行指终端侧比如用户设备到网络侧比如基站,下行指网络侧比如基站到终端侧比如用户设备。
可以理解的是,本实施例除了适用上下行信息传输,还可以适用于sidelink信息传输。
具体地,通信设备可以是网络侧设备,比如基站,则发端为网络侧,收端为终端侧,对应传输的信息为下行信息。
具体地,通信设备可以是终端,比如UE,则发端为终端侧,收端为网络侧,对应传输的信息为上行信息。
具体地,通信设备可以是终端,比如UE,其通信对端也为终端,则发端为终端,收端为终端,对应传输的信息为sidelink信息。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
可选地,根据所述信道质量,确定天线工作模式,包括以下至少一项:
在所述信道质量小于或等于第一阈值的情况下,确定天线工作模式是MIMO模式;
在所述信道质量大于或等于第二阈值的情况下,确定天线工作模式是FTN模式;
在所述信道质量大于第一阈值且小于第二阈值的情况下,确定天线工作模式是MIMO-FTN模式。
具体地,FTN/OVTDM系统相对传统OFDM系统的吞吐量优势主要在于高SNR区域。在高SNR区域,噪声对接收信号的影响程度相对较小,接收机易于根据已知的FTN/OVTDM的符号间编码的约束关系正确的进行译码,误码率很低。在低SNR区域,噪声对接收信号的影响程度相对较大,破坏了符号间编码的约束关系,使得误码率较高,不如传统的OFDM系统。
具体地,在基于信道状态信息,确定天线工作模式,可以基于信道状态信息中的信号与干扰加噪声比SINR来确定。
图6是本申请实施例提供的天线工作模式确定方法示意图,如图6所示,对某个天线集合比如天线端口组而言,当信道状态较好时,即信道质量大于或等于第二阈值,比如其接收信号SNR大于第二阈值,导致当FTN增益大于MIMO增益时,则可以切换为FTN模式;反之,当信道状态不好,信道质量小于或等于第一阈值,FTN增益小于MIMO增益时,则可以切换为MIMO波束赋形模式;信道质量大于第一阈值且小于第二阈值,则可以切换为MIMO-FTN模式;进一步的,还可以根据可用天线数量和所需的FTN重叠层数,决定天线的分组方式,和天线分组间的协作工作模式,比如当天线数量是FTN重叠层数的多倍时,可以确定天线工作模式是MIMO-FTN模式。
具体地,第一阈值及第二阈值可以是预先确定的,也可以是网络配置的,也可以是协议约定的。
本申请实施例,根据信道状况的不同,当接收SNR≥Thh(第二阈值)时利用FTN有较大增益,在接收SNR<Thl(第一阈值)时用传统MIMO效果较好,在Thl<SNR<Thh时利用混合模式,取得MIMO增益和FTN增益的权衡,进一步实现了针对SNR动态优化频谱效率的目的。
可选地,根据所述信道质量,确定天线工作模式之后,还包括:根据更新的信道质量,切换天线工作模式;采用切换后的天线工作模式,进行信息传输。
具体地,为了实现多天线系统根据信道质量进行工作模式的自适应切换,可以在确定天线工作模式之后,进一步监控更新后的信息传输情况,根据信息传输情况,确定需要切换天线工作模式。
例如,当前天线工作模式为FTN模式,可以在确定连续多次信息传输不满足传输条件的情况下,确定当前天线工作模式需要进行切换,可以根据更新的信道质量,确定可以切换至MIMO-FTN模式,适应当前信道质量的天线工作模式,因此可以对天线工作模式进行切换。
可以理解的是,更新的信道质量,可以是在确定需要切换天线工作模式后测量获得的信道质量;还可以是在确定天线工作模式之后的多次信道测量获得的信道质量的综合值或平均值。
具体地,在确定切换的天线工作模式并进行切换后,继续进行信息传输;
可以理解的是,本申请实施例中,确定信息传输是否满足条件时,可以以一个或多个数据块的传输为单位进行确定。
可选地,所述信道质量是根据第一信道质量参数确定的,所述第一信道质量参数包括:信号与噪声比SNR、信号与干扰加噪声比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的至少一项。
具体地,信道质量是根据第一信道质量参数确定的,可以包括:可由导频测量方式获取的SNR,SINR(Signal to Interference plus Noise Ratio,SINR),参考信号接收功率RSRP(Reference Signal Receiving Power,RSRP)和参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等,还可以包括多普勒频移,残留频偏(指经频偏纠正后的频率偏移),多径数量和相对速度等,这些参数可以直接影响信号的频偏,ISI和ICI,也可以间接反映在误码率上。
可以理解的是,相对速度指发端和收端之间的径向速度。
可选地,当所述通信设备为终端时,获取多个天线的信道质量,包括:通过所述多个天线,接收下行参考信号;对所述下行参考信号进行测量,得到所述信道质量。
具体地,当通信设备为终端时,其通信对端为网络侧设备,则此次传输为上行传输,可以理解的是,可以基于信道互易性,在上行传输场景下,采用下行测量。
具体地,可以通过多个天线,接收网络侧设备发送的下行参考信息,并对下行参考信息进行测量,得到下行信道质量,作为上行信道质量的参考。
可以理解的是,本申请实施例中,上行传输场景下,还可以采用上行测量,通过基站对上行信道进行测量并将信道质量告知终端。
可选地,当所述通信设备为终端,且通信对端为终端时,获取多个天线的信道质量,包括:通过所述多个天线,发送sidelink参考信号;接收所述通信对端反馈的信道质量,其中,所述信道质量是所述通信对端根据所述sidelink参考信号测量得到的。
具体地,当通信设备为终端时,其通信对端还可以为终端,则此次传输为sidelink传输,同样可以进行信道测量。
具体地,可以向通信对端的终端发送sidelink参考信号,通信对端接收到sidelink参考信号后可以对sidelink参考信号进行测量,获得信道质量,并告知发端的终端,发端的终端即可接收通信对端反馈的信道质量。
可选地,当所述通信设备为网络侧设备时,获取多个天线的信道质量,包括:
通过所述多个天线,发送下行参考信号;
接收所述终端反馈的信道状态信息(Channel State Information,CSI),得到所述信道质量,其中,所述CSI是所述终端根据所述下行参考信号测量得到的。
具体地,当通信设备为网络侧设备时,其通信对端为终端,此次传输为下行传输,则可以采用下行测量。
下行测量场景下,网络侧设备发送下行参考信号,终端根据下行参考信号测量信道,并发送反馈消息给网络侧,网络侧可以接收终端反馈的信道状态信息CSI。
可选地,当所述通信设备为网络侧设备时,获取多个天线的信道质量,包括:
通过所述多个天线,接收上行参考信号;
对所述上行参考信号进行测量,得到所述信道质量。
具体地,当通信设备为网络侧设备时,其通信对端为终端,此次传输为下行传输,还可以基于信道互易性,在下行传输场景下,采用上行测量。
上行测量场景下,终端侧发送上行参考信号,网络侧根据上行参考信号测量信道,得到所述信道质量。
可以理解的是,在下行传输场景下,采用上行测量,或者在上行传输场景下,采用下行测量的前提是信道互易性的假设。即由发端到收端的信道和从收端到发端的信道相似,比如可以用于时分复用(Time Division Duplexing,TDD)的场景。
可以理解的是,测量得到的信道质量可以用于确定天线工作模式以及确定FTN的重叠层数等。
可选地,当所述天线工作模式为MIMO-FTN模式时,所述方法还包括:
确定天线端口组内采用FTN方式工作时的重叠层数;
确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式;
其中,采用所述天线工作模式,进行信息传输,包括:根据所述MIMO目标工作模式和所述重叠层数,进行信息传输。
具体地,MIMO-FTN模式中,部分天线组成集合即天线端口组,组内天线采用FTN方式使得信号叠加形成FTN信号,随后天线端口组间基于MIMO目标工作模式进行处理,获得MIMO-FTN信息。因此,可以在传输信息前首先确定天线端口组内采用FTN方式工作时的重叠层数以及天线端口组间采用MIMO方式工作时的MIMO目标工作模式。
具体地,可以采用重叠层数作为表示FTN/OVTDM信号特征的描述方式。
具体地,由于可以将天线端口组看做是虚拟天线端口,因此根据所述MIMO目标工作模式和所述重叠层数,进行信息传输时,可以将虚拟天线端口的FTN信息进行MIMO传输,则可以基于天线端口组测量信息进一步确定MIMO目标工作模式;
具体地,可以根据当前多天线系统的系统条件,以及所处的无线环境情况,确定MIMO目标工作模式。
具体地,可以在链路质量较好的情况下,使用复用度较高的工作模式,可以在链路质量较差,需要降低复用数据流的数目,甚至不复用的情况下,选择空间分集或者波束赋形。
具体地,还可以根据传输需求确定MIMO目标工作模式。比如若需要进一步提高信息传输效率,则可以选择开环空间复用模式,若需要进一步提高信息传输的可靠性,则可以选择开环发射分集模式。
其中,MIMO目标工作模式可以是以下任一种:
Mode 1:单天线工作模式;
Mode 2:开环发射分集;
Mode 3:开环空间复用;
Mode 4:闭环空间复用;
Mode 5:MU-MIMO;
Mode 6:Rank=1的闭环发射分集;
Mode 7:波束赋形(Beamforming)。
具体地,可以在确定了MIMO目标工作模式后,对于至少两个天线组的FTN信息,基于MIMO目标工作模式进行MIMO传输。
可选地,确定天线端口组内采用FTN方式工作时的重叠层数,包括:
基于信道质量,确定重叠层数。
具体地,可以基于信道质量确定重叠层数。
具体地,本申请实施例中,采用多天线延迟叠加信息时,可以利用K个天线生成重叠系数为
Figure PCTCN2021131838-appb-000009
的信息,等价为重叠层数为K的OVTDM信息。
可选地,所述信道质量是根据第二信道质量参数确定的,所述第二信道质量参数包括以下至少一项:SINR、RSRP、多径数量、相对速度、多普勒频移、频偏纠正后的残留频率偏移和误码率。
具体地,基于信道质量确定重叠层数时,确定方法可以包括但不限于以下几种:
i.根据SINR和接收参考信号功率RSRP确定。可以协议规定一组SINR与重叠层数一一对应的表格,通过测量SINR查表确定。表格中的对应关系可以由仿真测试的经验值得出;
ii.根据S SINR,RSRP,多径数量和相对速度确定;
iii.根据SINR,RSRP,多普勒频移或残留频偏,及多径数量确定;
iv.根据误码率,RSRP,多径数量和相对速度确定;
v.根据误码率,RSRP,多普勒频移或残留频偏,相对速度确定。
可选地,所述MIMO目标工作模式是波束赋形MIMO模式的情况下,所述方法还包括:根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI(Precoding Matrix Indicator,PMI);其中,根据所述MIMO目标工作模式和所述重叠层数,进行信息传输,包括:根据所述波束赋形MIMO模式所采用的PMI和所述重叠层数,进行信息传输。
可选地,MIMO目标工作模式是波束赋形的情况下,MIMO-FTN模式中,组内信息叠加形成FTN信息,组间基于预编码矩阵指示符PMI进行MIMO预编码进行数字波束赋形,获得MIMO-FTN信息,因此可以首先根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI。
可选地,确定天线端口组间采用MIMO方式工作时的预编码矩阵指示符PMI,包括:
获取天线端口组的信道测量信息;
根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI。
具体地,对于多个天线端口组之间的信息,可以基于目标预编码矩阵进行数字波束赋形。
具体地,可以首先基于天线端口组的信道测量信息确定PMI,并基于PMI确定预编码矩阵;因此可以首先确定预编码矩阵指示符PMI。
具体地,天线分组得到天线端口组后,可以以天线端口组为单位,进行信道测量和反馈,得到天线端口组的信道测量信息,进而基于天线端口组的信道测量信息中的PMI确定每个分组所使用的预编码矩阵。
具体地,在得到天线端口组的信道测量信息后,可以通过PMI按需选取合适的预编码矩阵分配给各个天线端口,实施MIMO预编码传输。
可以理解的是,预编码矩阵可以由实时运算获取,也可以由预置的码本中选取。
可选地,当所述通信设备为网络侧设备时,根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI,包括:通过所述天线端口组,向终端发送下行参考信号和测量触发信令;接收所述终端基于所述测量触发信令反馈的信道状态信息CSI;根据所述天线端口组的CSI,确定所述天线端口组的预编码矩阵指示符PMI;其中,所述CSI是所述终端根据所述下行参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
具体地,在以天线端口组为单位,进行信道测量和反馈时,可以在得到发端发送的测量触发信令 后,进行测量。
可以理解的是,测量触发信令可以包括天线端口组的数量,使得收端可以确知需要测量多少组信道的CSI。
可以理解的是,以天线端口组为单位,进行的信道测量,可以由上行测量或者下行测量完成。
具体地,当通信设备为网络侧设备时,其通信对端为终端,此次传输为下行传输,则可以采用下行测量。
图7是本申请实施例提供的下行测量示意图,如图7所示,下行测量场景下,网络侧设备发送下行参考信号和测量触发信令,终端根据下行参考信号测量天线端口组的信道,并发送反馈消息给网络侧,网络侧可以接收终端反馈的信道状态信息CSI。
可选地,当所述通信设备为网络侧设备时,获取天线端口组的信道测量信息,包括:
通过所述天线端口组,向终端发送测量触发信令;
接收所述终端基于所述测量触发信令发送的上行参考信号;
对所述上行参考信号进行测量,得到所述信道测量信息;
其中,所述测量触发信令包括天线端口组的数量。
具体地,当通信设备为网络侧设备时,其通信对端为终端,此次传输为下行传输,还可以基于信道互易性,在下行传输场景下,以天线端口组为单位,进行上行测量。
图8是本申请实施例提供的上行测量示意图,如图8所示,上行测量场景下,网络侧设备发送测量触发信令,终端接收到测量触发信令后以天线端口组为单位,发送上行参考信号,网络侧设备根据上行参考信号测量信道,得到所述信道测量信息。
可以理解的是,测量触发信令可以包括天线端口组的数量,使得收端可以确知需要测量多少组信道的信道测量信息。
可以理解的是,在下行传输场景下,采用上行测量,或者在上行传输场景下,采用下行测量的前提是信道互易性的假设。即由发端到收端的信道和从收端到发端的信道相似,比如可以用于时分复用(Time Division Duplexing,TDD)的场景。
可选地,当所述通信设备为终端时,获取天线端口组的信道测量信息,包括:
通过所述天线端口组,向网络侧设备发送测量请求信令;
接收所述网络侧设备基于所述测量请求信令发送的下行参考信号;
对所述下行参考信号进行测量,得到所述信道测量信息;
其中,所述测量请求信令包括天线端口组的数量。
具体地,当通信设备为终端时,其通信对端为网络侧设备,则此次传输为上行传输,可以理解的是,可以基于信道互易性,在上行传输场景下,以天线端口组为单位,进行下行测量。
具体地,通过所述天线端口组,发送测量触发信令,网络侧接收到测量触发信令后可以以天线端口组为单位,发送下行参考信息,终端可以对下行参考信息进行测量,得到下行信道测量信息,作为上行信道测量信息的参考。
可以理解的是,本申请实施例中,上行传输场景下,还可以以天线端口组为单位,进行上行测量,通过基站对上行信道进行测量并将上行信道测量信息告知终端。
可以理解的是,测量触发信令可以包括天线端口组的数量,使得收端可以确知需要测量多少组信道的信道测量信息。
可选地,当所述通信设备为终端,且通信对端为终端时,获取天线端口组的信道测量信息,包括:
通过所述多个天线,发送sidelink参考信号和测量触发信令;
接收所述通信对端基于所述测量触发信令反馈的信道测量信息;
其中,所述信道测量信息是所述通信对端根据所述sidelink参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
具体地,当通信设备为终端时,其通信对端还可以为终端,则此次传输为sidelink传输,同样可以以天线端口组为单位进行信道测量。
具体地,可以向通信对端的终端发送sidelink参考信号和测量触发信令,通信对端接收到sidelink参考信号后可以以天线端口组为单位进对sidelink参考信号进行测量,获得信道测量信息,并告知发端的终端,发端的终端即可接收通信对端反馈的信道测量信息。
可以理解的是,测量触发信令可以包括天线端口组的数量,使得收端可以确知需要测量多少组信道的信道测量信息。
可选地,根据所述波束赋形MIMO模式所采用的PMI和所述重叠层数,进行信息传输,包括:
对于一个所述天线端口组,基于所述重叠层数叠加获得FTN信息;
对于所述至少两个天线端口组的FTN信息,基于目标预编码矩阵对天线端口组间的信息进行数字波束赋形,获得MIMO-FTN信息;其中,所述目标预编码矩阵是基于所述天线端口组的预编码矩阵指示符PMI确定的;
传输所述MIMO-FTN信息。
具体地,在对天线分好组获得至少一个天线端口组后,对于每一个天线端口组内的天线的信息,可以基于所述重叠层数叠加获得FTN信息;
具体地,可以将一个天线端口组看作一个整体,为一个虚拟天线端口,对于每一个天线端口组的FTN信息,可以看作是虚拟天线端口的传输信息,随后在组间MIMO时,可以基于目标预编码矩阵对天线端口组间的信息进行数字波束赋形,获得MIMO-FTN信息。
在获得MIMO-FTN信息后,可以对MIMO-FTN信息进行信息传输。
可选地,所述天线端口组通过对天线进行分组获得;
其中,所述对天线进行分组包括:基于所述重叠层数,确定分组数量;基于分组规则及所述分组数量,对天线进行分组。
具体地,在对天线进行分组时,可以首先基于信道状态信息,确定重叠层数;并基于所述重叠层数,确定分组数量;随后基于所述分组数量和分组规则,对天线进行分组,获得至少两个天线端口组;
具体地,在基于所述重叠层数,确定分组数量时,可以在重叠层数确定后根据天线数量对天线分组。根据重叠层数K,确定每组天线的数量分组数S j,从而把天线为L组,其中
Figure PCTCN2021131838-appb-000010
同一分组内的天线采用延迟发送信号的方式产生FTN信号。
比如,当天线数远大于所需重叠层数时,发端可以将天线分组。可以假设天线的总数为S,所需求的重叠层数为K,则每组天线的数量S j满足
Figure PCTCN2021131838-appb-000011
具体地,天线的分组可以采取就近分组的原则。因为在收端看来,距离较近的发端天线可认为是处在空间中同一点,因此他们的发送信号可以认为是在发送侧空口简单叠加,从而形成FTN信号。
具体地,天线的分组规则可以是:1)按照行分组,即天线阵列中水平方向处于同一行的S j个天线分为一组;2)按列分组,即天线阵列中竖直方向处于同一列的S j个天线分为一组;3)按块分组,即天线阵列中水平和竖直方向相邻的S j个天线分为一组。4)按天线极化方向分组。当采用双极化天线时,同一位置的的一对极化天线可以分开利用,根据需求发送相同/不同的信息。
可以理解的是,当天线按照行/列/块分组时,同一行/列/块的天线对可以进一步按照极化方向分组,从而增加空间自由度。
可以理解的是,天线端口组可以是以天线为单元进行的分组,即可以对多个天线进行分组得到天线端口组;天线端口组也可以是以天线通道为单元进行的分组,即可以对多个天线通道进行分组得到天线端口组。
可以理解的是,在对天线分好组获得至少一个天线端口组后,对于每一个天线端口组内天线之间通过延迟叠加发送生成FTN信号;同时,天线组之间可以认为是一个维度减少的MIMO天线系统, 可以利用现有的MIMO工作模式对FTN信号进行信息传输。
具体地,对于L个天线分组,每一个天线分组可以看作一个虚拟的天线端口。这L个虚拟的天线端口可以进一步使用MIMO工作模式进行协同工作。
本实施例中的混合解决方案,根据可用天线数量和所需的FTN重叠层数,决定天线的分组方式,以及为天线分组间选取合适的波束赋形方式,进一步实现了针对SNR动态优化频谱效率的目的。
可选地,对天线进行分组后,所述方法还包括:通过第一指示信息将所述分组规则指示给通信对端;所述确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式,包括:基于信道测量信息,直接确定MIMO目标工作模式,并通过第二指示信息将所述MIMO目标工作模式指示给通信对端。
具体地,通信对端需要知道具体的天线分组规则以正确进行信息的归集,便于正确译码,因此可以基于预设规则对天线阵分组后,通过第一指示信息指示分组规则给通信对端。例如,可以用2bit指示4种分组规则,即{00,01,11,10}对应{vertical,horizontal,block pattern 1,block pattern 2}
相应地,在基于天线端口组测量信息确定MIMO目标工作模式时,可以直接基于天线端口组测量信息确定MIMO目标工作模式,并通过第二指示信息将所述MIMO目标工作模式指示给通信对端。
可以理解的是,本实施中,分组规则与MIMO目标工作模式之间无直接对应关系,指示通信对端时可以分开指示。
可选地,当所述通信设备为网络侧设备时,所述第一指示信息和/或第二指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
具体地,当通信设备为网络侧设备时,其通信对端为终端,此次传输为下行传输,因此第一指示信息可以由下行控制信息(Downlink ControlInformation,DCI)或者dedicated-RRC携带,或,第一指示信息可以由物理下行控制信道(physical downlink control channel,PDCCH)或者物理下行共享信道(Physical Downlink Shared Channel,PDSCH)承载;第二指示信息可以由DCI或者dedicated-RRC携带,或,第二指示信息由PDCCH或者PDSCH承载。
可选地,当所述通信设备为终端时,所述第一指示信息和/或第二指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
具体地,当所述通信设备为终端时,其通信对端为网络侧设备,此次传输为上行传输,因此第一指示信息可以由上行控制信息UCI上行控制信息(Uplink Control Information,UCI)携带,或,第一指示信息可以由物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或者物理上行链路共享信道(Physical Uplink Share Channel,PUSCH)承载;第二指示信息可以由上行控制信息UCI携带,或,第二指示信息可以由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第一指示信息和/或第二指示信息由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
具体地,当所述通信设备为终端,且所述通信对端为终端时,此次传输是sidelink传输,因此第一指示信息可以由sidelink控制信令或同步消息携带,或,第一指示信息可以由物理侧链路控制信道(PysicalSidelink Control Channel,PSCCH)或者物理侧链路共享信道(PysicalSidelink Share Channel,PSCCH)PSSCH或Sidelink广播控制信道(Sidelink Broadcast Control Channel,SBCCH)承载;第二指示信息可以由sidelink控制信令或同步消息携带,或,第二指示信息可以由PSCCH或者PSSCH或SBCCH承载。
可选地,所述基于所述重叠层数,确定分组数量,包括:
基于所述重叠层数,在预定义的MIMO工作模式配置表中确定分组规则对应的分组数量;
所述对天线进行分组后,所述方法还包括:
基于信道测量信息,在预定义的MIMO工作模式配置表中确定所述分组数量对应的MIMO目标工作模式;
通过第三指示信息,将所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量指示给通信对端。
具体地,可以预定义MIMO工作模式配置表,如下表1所示,包括多组配置信息和相应的索引值,可以由含索引值的指示信息指示收端天线的工作模式,或者指示MIMO目标工作模式、MIMO目标工作模式在表中对应的所述分组规则和所述分组数量这一整体组合;可以节省信令,更方便地向通信对端进行指示,也可以实现更加方便准确地实现确定MIMO目标工作模式。
表1 MIMO工作模式配置表
索引 取值
mode_FTN_1 {分组规则1,分组数量1,组间MIMO工作模式1}
mode_FTN_2 {分组规则2,分组数量2,组间MIMO工作模式2}
mode_FTN_3
具体地,在预定义了MIMO工作模式配置表的情况下,可以基于天线端口组测量信息,在预定义的MIMO工作模式配置表中确定分组数量对应的MIMO目标工作模式,比如分组数量为表1中的分组数量2,且表1中分组数量对应有组间MIMO工作模式1,组间MIMO工作模式2,…,组间MIMO工作模式n,则可以基于天线端口组测量信息确定组间MIMO工作模式1至组间MIMO工作模式n中最优的一种组间MIMO工作模式为MIMO目标工作模式。具体地,可以在确定MIMO目标工作模式、MIMO目标工作模式在表中对应的所述分组规则和所述分组数量后,通过第三指示信息,将所述MIMO目标工作模式、MIMO目标工作模式在表中对应的所述分组规则和所述分组数量一起指示给通信对端。
可以理解的是,预定义的MIMO工作模式配置表可以是网络侧预定义后广播给所有终端的,也可以是协议规定的。
可以理解的是,网络侧预定义MIMO工作模式配置表广播给所有终端时,MIMO工作模式配置表由MIB或者SIB携带,由PBCH或者PDSCH承载。
可选地,所述第三指示信息包括:
所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量;或
索引信息;所述索引信息用于指示MIMO工作模式配置表中的MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量。
具体地,基于天线端口组测量信息确定表1中其中一种组间MIMO工作模式为MIMO目标工作模式后,可以将MIMO目标工作模式、对应的所述分组规则和所述分组数量这一组合通过第三指示信息直接发送给通信对端。
具体地,基于天线端口组测量信息确定表1中其中一种组间MIMO工作模式为MIMO目标工作模式后,可以将确定的MIMO目标工作模式、对应的所述分组规则和所述分组数量这三者的组合对应的索引信息发送给通信对端。
可选地,当所述通信设备为网络侧设备时,所述第三指示信息由DCI或者dedicated-RRC携带,或,所述第三指示信息由PDCCH或者PDSCH承载。
具体地,当通信设备为网络侧设备时,其通信对端为终端,此次传输为下行传输,因此第三指示信息可以由DCI或者dedicated-RRC携带,或,所述第三指示信息可以由PDCCH或者PDSCH承载。
可选地,当所述通信设备为终端时,所述第三指示信息由上行控制信息UCI携带,或,所述第三指示信息由PUCCH或者PUSCH承载。
具体地,当所述通信设备为终端时,其通信对端为网络侧设备,此次传输为上行传输,因此第三指示信息可以由上行控制信息UCI携带,或,所述第三指示信息可以由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第三指示信息由sidelink控制 信令或同步消息携带,或,所述第三指示信息由PSCCH或者PSSCH或SBCCH承载。
具体地,当所述通信设备为终端,且所述通信对端为终端时,此次传输是sidelink传输,因此第三指示信息可以由sidelink控制信令或同步消息携带,或所述第三指示信息由PSCCH或者PSSCH或SBCCH承载。
可选地,当所述天线工作模式为FTN模式时,所述方法还包括:
基于信道质量,确定重叠层数;其中,采用所述天线工作模式,进行信息传输,包括:基于所述重叠层数,将天线的信息叠加获得FTN信息;
传输所述FTN信息。
具体地,在FTN模式下,可以首先基于信道质量,确定重叠层数,并基于重叠层数,将天线的信息叠加获得FTN信息;最后传输所述FTN信息。
可以理解的是,在基于信道质量确定重叠层数时,确定方法可以包括但不限于以下几种:
i.根据SINR和接收参考信号功率RSRP确定。可以协议规定一组SINR与重叠层数一一对应的表格,通过测量SINR查表确定。表格中的对应关系可以由仿真测试的经验值得出;
ii.根据S SINR,RSRP,多径数量和相对速度确定;
iii.根据SINR,RSRP,多普勒频移或残留频偏,及多径数量确定;
iv.根据误码率,RSRP,多径数量和相对速度确定;
v.根据误码率,RSRP,多普勒频移或残留频偏,相对速度确定。
可选地,所述方法还包括:若确定未满足传输条件,则重新确定重叠层数;
所述传输条件包括:通信对端反馈的误码率不小于第一预设阈值;或,接收到通信对端发送的丢包重传NACK消息数量达到第二预设阈值;或,连续接收到的通信对端发送的NACK消息数量达到第三预设阈值;或,接收信号的SNR或者RSRP低于第四预设阈值。
具体地,在所述天线工作模式是FTN模式的情况下,或在所述天线工作模式是MIMO-FTN模式的情况下,可以在不满足传输条件时,重新确定重叠层数,权衡不同场景下的MIMO增益和FTN增益,来达到最大化全局吞吐量的目的,获得最优的基于MIMO-FTN模式的传输方案,最大限度提升传输质量。
具体地,在所述天线工作模式是MIMO-FTN模式的情况下,在不满足传输条件时,重新确定重叠层数后,可以重新基于重叠层数进行分组,并重新进行测量和反馈,获得新的预编码矩阵。
具体地,本申请实施例中,确定信息传输是否满足条件时,可以以一个或多个数据块的传输为单位进行确定。
具体地,传输条件可以是:
1.通信对端反馈的误码率不小于第一预设阈值;如果小于该阈值,则认为不满足传输条件。
2.发端收到的NACK消息数量达到第二预设阈值或连续接收到NACK消息。例如,在一定周期内,累计收到M个NACK消息;或者,连续收到N个NACK消息;则认为不满足传输指标;
3.接收信号的SNR或者RSRP低于第四预设阈值,则认为不满足传输条件。
可以理解的是,第一预设阈值、第二预设阈值、第三预设阈值及第四预设阈值可以是网络配置的,也可以是协议约定的。
可选地,所述方法还包括:当所述天线工作模式为FTN模式时,基于天线测量信息,调节FTN信息的发送参数;所述天线测量信息通过测量天线端口获得;
当所述天线工作模式为MIMO-FTN模式时,
基于信道测量信息,调节MIMO-FTN信息的发送参数。
具体地,可以首先根据测量结果,调节天线端口组内的信息的发送参数,例如QAM调制阶数和信道编码码率等,保证信息传输质量。
具体地,在所述天线工作模式是FTN模式的情况下,可以在终端测量天线端口得到天线测量信息, 并基于天线测量信息调节FTN信息的发送参数,还可以将调节后的FTN信息的发送参数通过第二指示信息指示给通信对端,其中,该第二指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
具体地,在天线工作模式是MIMO-FTN模式的情况下,可以基于天线端口测量信息,调节FTN信息的发送参数。
可选地,所述方法还包括:
在重新确定重叠层数后,将重新确定的重叠层数通过第四指示信息指示给通信对端;或
在调节发送参数后,将调节后的发送参数通过第五指示信息指示给通信对端。
具体地,在重新确定重叠层数后或调节发送参数后,可以对通信对端进行指示,以使通信对端进行适应性地调整。
具体地,当所述通信设备为网络侧设备时,所述第四指示信息和/或第五指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
具体地,当通信设备为网络侧设备时,其通信对端为终端,此次传输为下行传输,因此第四指示信息可以由DCI或者dedicated-RRC携带,或,第四指示信息可以由PDCCH或者PDSCH承载;第五指示信息可以由DCI或者dedicated-RRC携带,或,第五指示信息可以由PDCCH或者PDSCH承载。
可选地,当所述通信设备为终端时,所述第四指示信息和/或第五指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
具体地,当所述通信设备为终端时,其通信对端为网络侧设备,此次传输为上行传输,因此第四指示信息可以由上行控制信息UCI携带,或,第四指示信息可以由PSCCH或者PSSCH承载;第五指示信息可以由上行控制信息UCI携带,或,第五指示信息可以由PSCCH或者PSSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第四指示信息和/或第五指示信息由sidelink控制信令或同步消息携带,由PUCCH或者PUSCH或SBCCH承载。
具体地,当所述通信设备为终端,且所述通信对端为终端时,此次传输是sidelink传输,因此第四指示信息和/或第五指示信息可以由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
可选地,当所述通信设备为网络侧设备时,所述方法还包括:
接收终端发送的终端能力信息,所述终端能力信息包括指示所述终端是否支持FTN译码算法的信息,所述FTN译码算法包括:上行FTN译码算法和/或下行FTN译码算法。
具体地,多天线系统在进行模式的自适应切换时,可以根据接收机能力和信道状况来判断是否采用FTN传输模式,然后可以根据测量结果确定当前收发机所能支持的重叠层数。其触发和自适应的流程如下:
首先,发端可以确认当前传输是否支持FTN。主要根据以下两点:
a.用户设备能力,即用户设备的接收机是否支持FTN译码算法;(UE向网络侧上报自己是否支持上行FTN和下行FTN的能力)
b.当前信道状态信息,例如为接收信号SINR。
具体地,在SINR小于第一预设阈值的情况下,可以确定天线工作模式是MIMO模式;
在SINR大于第二预设阈值,且基于通信对端发送的能力信息,确定通信对端支持FTN译码算法的情况下,可以确定天线工作模式是FTN模式;
在SINR大于第一预设阈值且小于第二预设阈值,且基于通信对端发送的能力信息,确定通信对端支持FTN译码算法的情况下,可以确定天线工作模式是MIMO-FTN模式。
具体地,以上两种信息即用户能力和信道状态信息的获取,可以通过用户反馈来获取。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模 式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
需要说明的是,本申请实施例提供的信息传输方法,执行主体可以为信息传输装置,或者,该信息传输装置中的用于执行信息传输方法的控制模块。本申请实施例中以信息传输装置执行信息传输方法为例,说明本申请实施例提供的信息传输装置。
图9是本申请实施例提供的信息传输装置的结构示意图,应用于通信设备,如图9所示,该装置包括:第一获取模块910,第一确定模块920和第一传输模块930,其中:第一获取模块910用于获取多个天线的信道质量;第一确定模块920用于根据所述信道质量,确定天线工作模式;第一传输模块930用于采用所述天线工作模式,进行信息传输;所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
具体地,信息传输装置通过第一获取模块910获取多个天线的信道质量,随后通过第一确定模块920根据该信道质量,确定天线工作模式;最后通过第一传输模块930采用确定的天线工作模式,进行信息传输。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述信息传输方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
可选地,第一确定模块具体用于以下至少一项:在所述信道质量小于或等于第一阈值的情况下,确定天线工作模式是MIMO模式;在所述信道质量大于或等于第二阈值的情况下,确定天线工作模式是FTN模式;在所述信道质量大于第一阈值且小于第二阈值的情况下,确定天线工作模式是MIMO-FTN模式。
可选地,还包括:切换模块,用于根据更新的信道质量,切换天线工作模式;第二传输模块,用于采用切换后的天线工作模式,进行信息传输。
可选地,所述信道质量是根据第一信道质量参数确定的,所述第一信道质量参数包括:信号与噪声比SNR、信号与干扰加噪声比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的至少一项。
可选地,当所述通信设备为终端时,第一获取模块具体用于:通过所述多个天线,接收下行参考信号;对所述下行参考信号进行测量,得到所述信道质量。
可选地,当所述通信设备为终端,且通信对端为终端时,第一获取模块具体用于:
通过所述多个天线,发送sidelink参考信号;接收所述通信对端反馈的信道质量,其中,所述信道质量是所述通信对端根据所述sidelink参考信号测量得到的。
可选地,当所述通信设备为网络侧设备时,第一获取模块具体用于:通过所述多个天线,发送下行参考信号;接收所述终端反馈的信道状态信息CSI,得到所述信道质量,其中,所述CSI是所述终端根据所述下行参考信号测量得到的。
可选地,当所述通信设备为网络侧设备时,第一获取模块具体用于:通过所述多个天线,接收上行参考信号;对所述上行参考信号进行测量,得到所述信道质量。
可选地,当所述天线工作模式为MIMO-FTN模式时,所述装置还包括:第二确定模块,用于确定天线端口组内采用FTN方式工作时的重叠层数;第三确定模块,用于确定天线端口组间采用MIMO 方式工作时的MIMO目标工作模式;其中,第一传输模块具体用于:根据所述MIMO目标工作模式和所述重叠层数,进行信息传输。
可选地,第二确定模块具体用于:基于信道质量,确定重叠层数。
可选地,所述信道质量是根据第二信道质量参数确定的,所述第二信道质量参数包括以下至少一项:SINR、RSRP、多径数量、相对速度、多普勒频移、频偏纠正后的残留频率偏移和误码率。
可选地,所述MIMO目标工作模式是波束赋形MIMO模式的情况下,所述装置还包括:第四确定模块,用于根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI;其中,第一传输模块具体用于:根据所述波束赋形MIMO模式所采用的PMI和所述重叠层数,进行信息传输。
可选地,第四确定模块具体用于:获取天线端口组的信道测量信息;根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI。
可选地,当所述通信设备为网络侧设备时,第四确定模块具体用于:通过所述天线端口组,向终端发送下行参考信号和测量触发信令;接收所述终端基于所述测量触发信令反馈的信道状态信息CSI;根据所述天线端口组的CSI,确定所述天线端口组的预编码矩阵指示符PMI;其中,所述CSI是所述终端根据所述下行参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
可选地,当所述通信设备为网络侧设备时,第四确定模块具体用于:通过所述天线端口组,向终端发送测量触发信令;接收所述终端基于所述测量触发信令发送的上行参考信号;对所述上行参考信号进行测量,得到所述信道测量信息;其中,所述测量触发信令包括天线端口组的数量。
可选地,当所述通信设备为终端时,第四确定模块具体用于:通过所述天线端口组,向网络侧设备发送测量请求信令;接收所述网络侧设备基于所述测量请求信令发送的下行参考信号;对所述下行参考信号进行测量,得到所述信道测量信息;其中,所述测量请求信令包括天线端口组的数量。
可选地,当所述通信设备为终端,且通信对端为终端时,第四确定模块具体用于:通过所述多个天线,发送sidelink参考信号和测量触发信令;接收所述通信对端基于所述测量触发信令反馈的信道测量信息;其中,所述信道测量信息是所述通信对端根据所述sidelink参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
可选地,第一传输模块还用于:对于一个所述天线端口组,基于所述重叠层数叠加获得FTN信息;对于所述至少两个天线端口组的FTN信息,基于目标预编码矩阵对天线端口组间的信息进行数字波束赋形,获得MIMO-FTN信息;其中,所述目标预编码矩阵是基于所述天线端口组的预编码矩阵指示符PMI确定的;传输所述MIMO-FTN信息。
可选地,所述天线端口组通过对天线进行分组获得;其中,所述对天线进行分组包括:
基于所述重叠层数,确定分组数量;基于分组规则及所述分组数量,对天线进行分组。
可选地,对天线进行分组后,装置还包括:第一指示模块,用于通过第一指示信息将所述分组规则指示给通信对端;所述第三确定模块还用于:基于信道测量信息,直接确定MIMO目标工作模式,并通过第二指示信息将所述MIMO目标工作模式指示给通信对端。
可选地,当所述通信设备为网络侧设备时,所述第一指示信息和/或第二指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,当所述通信设备为终端时,所述第一指示信息和/或第二指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第一指示信息和/或第二指示信息由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
可选地,所述基于所述重叠层数,确定分组数量,包括:基于所述重叠层数,在预定义的MIMO工作模式配置表中确定分组规则对应的分组数量;所述对天线进行分组后,所述装置还包括:第四确定模块,用于基于信道测量信息,在预定义的MIMO工作模式配置表中确定所述分组数量对应的 MIMO目标工作模式;第二指示模块,用于通过第三指示信息,将所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量指示给通信对端。
可选地,所述第三指示信息包括:所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量;或,索引信息;所述索引信息用于指示MIMO工作模式配置表中的MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量。
可选地,当所述通信设备为网络侧设备时,所述第三指示信息由DCI或者dedicated-RRC携带,或,所述第三指示信息由PDCCH或者PDSCH承载。
可选地,当所述通信设备为终端时,所述第三指示信息由上行控制信息UCI携带,或,所述第三指示信息由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第三指示信息由sidelink控制信令或同步消息携带,或,所述第三指示信息由PSCCH或者PSSCH或SBCCH承载。
可选地,当所述天线工作模式为FTN模式时,所述装置还包括:第五确定模块,用于基于信道质量,确定重叠层数;其中,第一传输模块具体用于:基于所述重叠层数,将天线的信息叠加获得FTN信息;传输所述FTN信息。
可选地,所述装置还包括:第六确定模块,用于若确定未满足传输条件,则重新确定重叠层数;所述传输条件包括:通信对端反馈的误码率不小于第一预设阈值;或,
接收到通信对端发送的NACK消息数量达到第二预设阈值;或,
连续接收到的通信对端发送的NACK消息数量达到第三预设阈值;或,
接收信号的SNR或者RSRP低于第四预设阈值。
可选地,所述装置还包括:第一调节模块,用于当所述天线工作模式为FTN模式时,基于天线测量信息,调节FTN信息的发送参数;所述天线测量信息通过测量天线端口获得;第二调节模块,当所述天线工作模式为MIMO-FTN模式时,基于信道测量信息,调节MIMO-FTN信息的发送参数。
可选地,所述装置还包括:第三指示模块,用于在重新确定重叠层数后,将重新确定的重叠层数通过第四指示信息指示给通信对端;或,第四指示模块,用于在调节发送参数后,将调节后的发送参数通过第五指示信息指示给通信对端。
可选地,当所述通信设备为网络侧设备时,所述第四指示信息和/或第五指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,当所述通信设备为终端时,所述第四指示信息和/或第五指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第四指示信息和/或第五指示信息由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
可选地,当所述通信设备为网络侧设备时,所述装置还包括:
接收模块,用于接收终端发送的终端能力信息,所述终端能力信息包括指示所述终端是否支持FTN译码算法的信息,所述FTN译码算法包括:上行FTN译码算法和/或下行FTN译码算法。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
本申请实施例中的信息传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计 算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信息传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信息传输装置能够实现图1至图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图10是本申请实施例提供的一种通信设备的结构示意图,如图10所示,通信设备1000,包括处理器1001,存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为终端时,该程序或指令被处理器1001执行时实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可以理解的是,本申请中的通信设备可以是网络侧设备,也可以是终端。
图11是本申请实施例提供的一种网络侧设备的硬件结构示意图。
如图11所示,该网络侧设备1100包括:天线1101、射频装置1102、基带装置1103。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
上述频带处理装置可以位于基带装置1103中,以上实施例中网络侧设备执行的方法可以在基带装置1103中实现,该基带装置1103包括处理器1104和存储器1105。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器1104,与存储器1105连接,以调用存储器1105中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1103还可以包括网络接口1106,用于与射频装置1102交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1105上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,处理器1104用于获取多个天线的信道质量;根据所述信道质量,确定天线工作模式;采用所述天线工作模式,进行信息传输;所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
可选地,处理器1104还用于以下至少一项:在所述信道质量小于或等于第一阈值的情况下,确定天线工作模式是MIMO模式;在所述信道质量大于或等于第二阈值的情况下,确定天线工作模式是FTN模式;在所述信道质量大于第一阈值且小于第二阈值的情况下,确定天线工作模式是MIMO-FTN模式。
可选地,根据所述信道质量,确定天线工作模式之后,处理器1104还用于:根据更新的信道质量,切换天线工作模式;采用切换后的天线工作模式,进行信息传输。
可选地,所述信道质量是根据第一信道质量参数确定的,所述第一信道质量参数包括:信号与噪声比SNR、信号与干扰加噪声比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的至少一项。
可选地,当所述通信设备为网络侧设备时,处理器1104还用于:通过所述多个天线,发送下行参考信号;接收所述终端反馈的信道状态信息CSI,得到所述信道质量,其中,所述CSI是所述终端根据所述下行参考信号测量得到的。
可选地,当所述通信设备为网络侧设备时,处理器1104还用于:通过所述多个天线,接收上行参考信号;对所述上行参考信号进行测量,得到所述信道质量。
可选地,当所述天线工作模式为MIMO-FTN模式时,处理器1104还用于:确定天线端口组内采用FTN方式工作时的重叠层数;确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式;其中,采用所述天线工作模式,进行信息传输,包括:根据所述MIMO目标工作模式和所述重叠层数,进行信息传输。
可选地,处理器1104还用于:基于信道质量,确定重叠层数。
可选地,所述信道质量是根据第二信道质量参数确定的,所述第二信道质量参数包括以下至少一项:SINR、RSRP、多径数量、相对速度、多普勒频移、频偏纠正后的残留频率偏移和误码率。
可选地,所述MIMO目标工作模式是波束赋形MIMO模式的情况下,处理器1104还用于:根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI;
其中,根据所述MIMO目标工作模式和所述重叠层数,进行信息传输,包括:
根据所述波束赋形MIMO模式所采用的PMI和所述重叠层数,进行信息传输。
可选地,处理器1104还用于:获取天线端口组的信道测量信息;根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI。
可选地,当所述通信设备为网络侧设备时,处理器1104还用于:通过所述天线端口组,向终端发送下行参考信号和测量触发信令;接收所述终端基于所述测量触发信令反馈的信道状态信息CSI;根据所述天线端口组的CSI,确定所述天线端口组的预编码矩阵指示符PMI;其中,所述CSI是所述终端根据所述下行参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
可选地,当所述通信设备为网络侧设备时,处理器1104还用于:通过所述天线端口组,向终端发送测量触发信令;接收所述终端基于所述测量触发信令发送的上行参考信号;
对所述上行参考信号进行测量,得到所述信道测量信息;其中,所述测量触发信令包括天线端口组的数量。
可选地,处理器1104还用于:对于一个所述天线端口组,基于所述重叠层数叠加获得FTN信息;对于所述至少两个天线端口组的FTN信息,基于目标预编码矩阵对天线端口组间的信息进行数字波束赋形,获得MIMO-FTN信息;其中,所述目标预编码矩阵是基于所述天线端口组的预编码矩阵指示符PMI确定的;传输所述MIMO-FTN信息。
可选地,所述天线端口组通过对天线进行分组获得;其中,处理器1104还用于:
基于所述重叠层数,确定分组数量;基于分组规则及所述分组数量,对天线进行分组。
可选地,对天线进行分组后,处理器1104还用于:通过第一指示信息将所述分组规则指示给通信对端;
所述确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式,包括:基于信道测量信息,直接确定MIMO目标工作模式,并通过第二指示信息将所述MIMO目标工作模式指示给通信对端。
可选地,当所述通信设备为网络侧设备时,所述第一指示信息和/或第二指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,当所述通信设备为终端时,所述第一指示信息和/或第二指示信息由上行控制信息UCI 携带,或,由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第一指示信息和/或第二指示信息由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
可选地,处理器1104还用于:基于所述重叠层数,在预定义的MIMO工作模式配置表中确定分组规则对应的分组数量;
所述对天线进行分组后,所述方法还包括:
基于信道测量信息,在预定义的MIMO工作模式配置表中确定所述分组数量对应的MIMO目标工作模式;
通过第三指示信息,将所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量指示给通信对端。
可选地,所述第三指示信息包括:所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量;或,索引信息;所述索引信息用于指示MIMO工作模式配置表中的MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量。
可选地,当所述通信设备为网络侧设备时,所述第三指示信息由DCI或者dedicated-RRC携带,或,所述第三指示信息由PDCCH或者PDSCH承载。
可选地,当所述天线工作模式为FTN模式时,处理器1104还用于:基于信道质量,确定重叠层数;其中,采用所述天线工作模式,进行信息传输,包括:基于所述重叠层数,将天线的信息叠加获得FTN信息;传输所述FTN信息。
可选地,处理器1104还用于:若确定未满足传输条件,则重新确定重叠层数;
所述传输条件包括:通信对端反馈的误码率不小于第一预设阈值;或
接收到通信对端发送的NACK消息数量达到第二预设阈值;或
连续接收到的通信对端发送的NACK消息数量达到第三预设阈值;或
接收信号的SNR或者RSRP低于第四预设阈值。
可选地,处理器1104还用于:当所述天线工作模式为FTN模式时,基于天线测量信息,调节FTN信息的发送参数;所述天线测量信息通过测量天线端口获得;
当所述天线工作模式为MIMO-FTN模式时,基于信道测量信息,调节MIMO-FTN信息的发送参数。
可选地,处理器1104还用于:在重新确定重叠层数后,将重新确定的重叠层数通过第四指示信息指示给通信对端;或在调节发送参数后,将调节后的发送参数通过第五指示信息指示给通信对端。
可选地,当所述通信设备为网络侧设备时,所述第四指示信息和/或第五指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
可选地,当所述通信设备为网络侧设备时,处理器1104还用于:
接收终端发送的终端能力信息,所述终端能力信息包括指示所述终端是否支持FTN译码算法的信息,所述FTN译码算法包括:上行FTN译码算法和/或下行FTN译码算法。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
图12是本申请实施例提供的一种终端的硬件结构示意图。
该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、以及处理器1210等部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201将来自通信对端的信息接收后,给处理器1210处理;另外,将待传输的信息发送给通信对端。通常,射频单元1201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1210可包括一个或多个处理单元;可选的,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
其中,处理器1210,用于获取多个天线的信道质量;根据所述信道质量,确定天线工作模式;采用所述天线工作模式,进行信息传输;所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
可选地,处理器1210还用于以下至少一项:
在所述信道质量小于或等于第一阈值的情况下,确定天线工作模式是MIMO模式;
在所述信道质量大于或等于第二阈值的情况下,确定天线工作模式是FTN模式;
在所述信道质量大于第一阈值且小于第二阈值的情况下,确定天线工作模式是MIMO-FTN模式。
可选地,根据所述信道质量,确定天线工作模式之后,处理器1210还用于:根据更新的信道质量,切换天线工作模式;采用切换后的天线工作模式,进行信息传输。
可选地,所述信道质量是根据第一信道质量参数确定的,所述第一信道质量参数包括:信号与噪声比SNR、信号与干扰加噪声比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的至少一项。
可选地,当所述通信设备为终端时,处理器1210还用于:通过所述多个天线,接收下行参考信 号;对所述下行参考信号进行测量,得到所述信道质量。
可选地,当所述通信设备为终端,且通信对端为终端时,处理器1210还用于:通过所述多个天线,发送sidelink参考信号;接收所述通信对端反馈的信道质量,其中,所述信道质量是所述通信对端根据所述sidelink参考信号测量得到的。
可选地,当所述天线工作模式为MIMO-FTN模式时,处理器1210还用于:确定天线端口组内采用FTN方式工作时的重叠层数;确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式;其中,采用所述天线工作模式,进行信息传输,包括:
根据所述MIMO目标工作模式和所述重叠层数,进行信息传输。
可选地,处理器1210还用于:基于信道质量,确定重叠层数。
可选地,所述信道质量是根据第二信道质量参数确定的,所述第二信道质量参数包括以下至少一项:SINR、RSRP、多径数量、相对速度、多普勒频移、频偏纠正后的残留频率偏移和误码率。
可选地,所述MIMO目标工作模式是波束赋形MIMO模式的情况下,处理器1210还用于:根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI;
其中,根据所述MIMO目标工作模式和所述重叠层数,进行信息传输,包括:
根据所述波束赋形MIMO模式所采用的PMI和所述重叠层数,进行信息传输。
可选地,处理器1210还用于:获取天线端口组的信道测量信息;根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI。
可选地,当所述通信设备为终端时,处理器1210还用于:
通过所述天线端口组,向网络侧设备发送测量请求信令;
接收所述网络侧设备基于所述测量请求信令发送的下行参考信号;
对所述下行参考信号进行测量,得到所述信道测量信息;
其中,所述测量请求信令包括天线端口组的数量。
可选地,当所述通信设备为终端,且通信对端为终端时,处理器1210还用于:
通过所述多个天线,发送sidelink参考信号和测量触发信令;
接收所述通信对端基于所述测量触发信令反馈的信道测量信息;
其中,所述信道测量信息是所述通信对端根据所述sidelink参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
可选地,处理器1210还用于:
对于一个所述天线端口组,基于所述重叠层数叠加获得FTN信息;
对于所述至少两个天线端口组的FTN信息,基于目标预编码矩阵对天线端口组间的信息进行数字波束赋形,获得MIMO-FTN信息;
其中,所述目标预编码矩阵是基于所述天线端口组的预编码矩阵指示符PMI确定的;
传输所述MIMO-FTN信息。
可选地,所述天线端口组通过对天线进行分组获得;
其中,处理器1210还用于:基于所述重叠层数,确定分组数量;
基于分组规则及所述分组数量,对天线进行分组。
可选地,对天线进行分组后,处理器1210还用于:通过第一指示信息将所述分组规则指示给通信对端;
所述确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式,包括:基于信道测量信息,直接确定MIMO目标工作模式,并通过第二指示信息将所述MIMO目标工作模式指示给通信对端。
可选地,当所述通信设备为终端时,所述第一指示信息和/或第二指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第一指示信息和/或第二指示信息由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
可选地,处理器1210还用于:基于所述重叠层数,在预定义的MIMO工作模式配置表中确定分组规则对应的分组数量;
所述对天线进行分组后,所述方法还包括:
基于信道测量信息,在预定义的MIMO工作模式配置表中确定所述分组数量对应的MIMO目标工作模式;
通过第三指示信息,将所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量指示给通信对端。
可选地,所述第三指示信息包括:
所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量;或
索引信息;所述索引信息用于指示MIMO工作模式配置表中的MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量。
可选地,当所述通信设备为终端时,所述第三指示信息由上行控制信息UCI携带,或,所述第三指示信息由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第三指示信息由sidelink控制信令或同步消息携带,或,所述第三指示信息由PSCCH或者PSSCH或SBCCH承载。
可选地,当所述天线工作模式为FTN模式时,处理器1210还用于:基于信道质量,确定重叠层数;其中,采用所述天线工作模式,进行信息传输,包括:基于所述重叠层数,将天线的信息叠加获得FTN信息;传输所述FTN信息。
可选地,处理器1210还用于:若确定未满足传输条件,则重新确定重叠层数;
所述传输条件包括:通信对端反馈的误码率不小于第一预设阈值;或,
接收到通信对端发送的NACK消息数量达到第二预设阈值;或,
连续接收到的通信对端发送的NACK消息数量达到第三预设阈值;或,
接收信号的SNR或者RSRP低于第四预设阈值。
可选地,处理器1210还用于:
当所述天线工作模式为FTN模式时,基于天线测量信息,调节FTN信息的发送参数;所述天线测量信息通过测量天线端口获得;
当所述天线工作模式为MIMO-FTN模式时,
基于信道测量信息,调节MIMO-FTN信息的发送参数。
可选地,处理器1210还用于:
在重新确定重叠层数后,将重新确定的重叠层数通过第四指示信息指示给通信对端;或
在调节发送参数后,将调节后的发送参数通过第五指示信息指示给通信对端。
可选地,当所述通信设备为终端时,所述第四指示信息和/或第五指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
可选地,当所述通信设备为终端,且所述通信对端为终端时,所述第四指示信息和/或第五指示信息由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
在本申请实施例中,通过基于信道状态信息,确定天线工作模式,进行信息的传输,在信息传输时可以实现根据信道状态自适应地选择合适的传输模式进行信息传输,灵活调节多天线系统的工作模式,实现了针对信道状态动态优化频谱效率,利于接收机能供跟踪衰落信道的时变特性,始终保持在最佳的工作状态。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令 被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (48)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    通信设备获取多个天线的信道质量;
    所述通信设备根据所述信道质量,确定天线工作模式;
    所述通信设备采用所述天线工作模式,进行信息传输;
    所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
  2. 根据权利要求1所述的信息传输方法,其特征在于,所述通信设备根据所述信道质量,确定天线工作模式,包括以下至少一项:
    在所述信道质量小于或等于第一阈值的情况下,所述通信设备确定天线工作模式是MIMO模式;
    在所述信道质量大于或等于第二阈值的情况下,所述通信设备确定天线工作模式是FTN模式;
    在所述信道质量大于第一阈值且小于第二阈值的情况下,所述通信设备确定天线工作模式是MIMO-FTN模式。
  3. 根据权利要求1所述的信息传输方法,其特征在于,所述通信设备根据所述信道质量,确定天线工作模式之后,还包括:
    所述通信设备根据更新的信道质量,切换天线工作模式;
    所述通信设备采用切换后的天线工作模式,进行信息传输。
  4. 根据权利要求2或3所述的信息传输方法,其特征在于,所述信道质量是根据第一信道质量参数确定的,所述第一信道质量参数包括:信号与噪声比SNR、信号与干扰加噪声比SINR、参考信号接收功率RSRP和参考信号接收质量RSRQ中的至少一项。
  5. 根据权利要求1所述的信息传输方法,其特征在于,当所述通信设备为终端时,所述通信设备获取多个天线的信道质量,包括:
    所述通信设备通过所述多个天线,接收下行参考信号;
    所述通信设备对所述下行参考信号进行测量,得到所述信道质量。
  6. 根据权利要求1所述的信息传输方法,其特征在于,当所述通信设备为终端,且通信对端为终端时,所述通信设备获取多个天线的信道质量,包括:
    所述通信设备通过所述多个天线,发送旁链路sidelink参考信号;
    所述通信设备接收所述通信对端反馈的信道质量,其中,所述信道质量是所述通信对端根据所述sidelink参考信号测量得到的。
  7. 根据权利要求1所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述通信设备获取多个天线的信道质量,包括:
    所述通信设备通过所述多个天线,发送下行参考信号;
    所述通信设备接收终端反馈的信道状态信息CSI,得到所述信道质量,其中,所述CSI是所述终端根据所述下行参考信号测量得到的。
  8. 根据权利要求1所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述通信设备获取多个天线的信道质量,包括:
    所述通信设备通过所述多个天线,接收上行参考信号;
    所述通信设备对所述上行参考信号进行测量,得到所述信道质量。
  9. 根据权利要求1所述的信息传输方法,其特征在于,当所述天线工作模式为MIMO-FTN模式时,所述方法还包括:
    所述通信设备确定天线端口组内采用FTN方式工作时的重叠层数;
    所述通信设备确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式;
    其中,所述通信设备采用所述天线工作模式,进行信息传输,包括:
    所述通信设备根据所述MIMO目标工作模式和所述重叠层数,进行信息传输。
  10. 根据权利要求9所述的信息传输方法,其特征在于,所述通信设备确定天线端口组内采用FTN方式工作时的重叠层数,包括:
    所述通信设备基于所述信道质量,确定重叠层数。
  11. 根据权利要求10所述的信息传输方法,其特征在于,所述信道质量是根据第二信道质量参数确定的,所述第二信道质量参数包括以下至少一项:SINR、RSRP、多径数量、相对速度、多普勒频移、频偏纠正后的残留频率偏移和误码率。
  12. 根据权利要求9所述的信息传输方法,其特征在于,所述MIMO目标工作模式是波束赋形MIMO模式的情况下,所述方法还包括:
    所述通信设备根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI;
    其中,所述通信设备根据所述MIMO目标工作模式和所述重叠层数,进行信息传输,包括:
    所述通信设备根据所述波束赋形MIMO模式所采用的PMI和所述重叠层数,进行信息传输。
  13. 根据权利要求12所述的信息传输方法,其特征在于,所述通信设备确定天线端口组间采用MIMO方式工作时的预编码矩阵指示符PMI,包括:
    所述通信设备获取天线端口组的信道测量信息;
    所述通信设备根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI。
  14. 根据权利要求13所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述通信设备根据天线端口组的信道测量信息,确定所述天线端口组的预编码矩阵指示符PMI,包括:
    所述通信设备通过所述天线端口组,向终端发送下行参考信号和测量触发信令;
    所述通信设备接收所述终端基于所述测量触发信令反馈的信道状态信息CSI;
    所述通信设备根据所述天线端口组的CSI,确定所述天线端口组的预编码矩阵指示符PMI;
    其中,所述CSI是所述终端根据所述下行参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
  15. 根据权利要求13所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述通信设备获取天线端口组的信道测量信息,包括:
    所述通信设备通过所述天线端口组,向终端发送测量触发信令;
    所述通信设备接收所述终端基于所述测量触发信令发送的上行参考信号;
    所述通信设备对所述上行参考信号进行测量,得到所述信道测量信息;
    其中,所述测量触发信令包括天线端口组的数量。
  16. 根据权利要求13所述的信息传输方法,其特征在于,当所述通信设备为终端时,所述通信设备获取天线端口组的信道测量信息,包括:
    所述通信设备通过所述天线端口组,向网络侧设备发送测量请求信令;
    所述通信设备接收所述网络侧设备基于所述测量请求信令发送的下行参考信号;
    所述通信设备对所述下行参考信号进行测量,得到所述信道测量信息;
    其中,所述测量请求信令包括天线端口组的数量。
  17. 根据权利要求13所述的信息传输方法,其特征在于,当所述通信设备为终端,且通信对端为终端时,所述通信设备获取天线端口组的信道测量信息,包括:
    所述通信设备通过所述多个天线,发送sidelink参考信号和测量触发信令;
    所述通信设备接收所述通信对端基于所述测量触发信令反馈的信道测量信息;
    其中,所述信道测量信息是所述通信对端根据所述sidelink参考信号测量得到的,所述测量触发信令包括天线端口组的数量。
  18. 根据权利要求12所述的信息传输方法,其特征在于,所述通信设备根据所述波束赋形MIMO模式所采用的PMI和所述重叠层数,进行信息传输,包括:
    所述通信设备对于一个所述天线端口组,基于所述重叠层数叠加获得FTN信息;
    所述通信设备对于至少两个天线端口组的FTN信息,基于目标预编码矩阵对天线端口组间的信息进行数字波束赋形,获得MIMO-FTN信息;
    其中,所述目标预编码矩阵是基于所述天线端口组的预编码矩阵指示符PMI确定的;
    所述通信设备传输所述MIMO-FTN信息。
  19. 根据权利要求1所述的信息传输方法,其特征在于,所述天线端口组通过所述通信设备对天线进行分组获得;
    其中,所述通信设备对天线进行分组包括:
    所述通信设备基于所述重叠层数,确定分组数量;
    所述通信设备基于分组规则及所述分组数量,对天线进行分组。
  20. 根据权利要求9所述的信息传输方法,其特征在于,所述通信设备对天线进行分组后,所述方法还包括:
    所述通信设备通过第一指示信息将所述分组规则指示给通信对端;
    所述通信设备确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式,包括:
    所述通信设备基于信道测量信息,直接确定MIMO目标工作模式,并通过第二指示信息将所述MIMO目标工作模式指示给通信对端。
  21. 根据权利要求20所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述第一指示信息和/或第二指示信息由下行控制信息DCI或者专用无线资源控制dedicated-RRC携带,或,由物理下行控制信道PDCCH或者物理下行共享信道PDSCH承载。
  22. 根据权利要求20所述的信息传输方法,其特征在于,当所述通信设备为终端时,所述第一指示信息和/或第二指示信息由上行控制信息UCI携带,或,由物理上行链路控制信道PUCCH或者物理上行链路共享信道PUSCH承载。
  23. 根据权利要求20所述的信息传输方法,其特征在于,当所述通信设备为终端,且所述通信对端为终端时,所述第一指示信息和/或第二指示信息由sidelink控制信令或同步消息携带,或,由物理侧边链路控制信道PSCCH或者物理侧边链路共享信道PSSCH或直通链路广播控制信道SBCCH承载。
  24. 根据权利要求19所述的信息传输方法,其特征在于,所述通信设备基于所述重叠层数,确定分组数量,包括:
    所述通信设备基于所述重叠层数,在预定义的MIMO工作模式配置表中确定分组规则对应的分组数量;
    所述通信设备对天线进行分组后,所述方法还包括:
    所述通信设备基于信道测量信息,在预定义的MIMO工作模式配置表中确定所述分组数量对应的MIMO目标工作模式;
    所述通信设备通过第三指示信息,将所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量指示给通信对端。
  25. 根据权利要求24所述的信息传输方法,其特征在于,所述第三指示信息包括:
    所述MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量;或
    索引信息;所述索引信息用于指示MIMO工作模式配置表中的MIMO目标工作模式、所述MIMO目标工作模式在所述MIMO工作模式配置表中对应的所述分组规则和分组数量。
  26. 根据权利要求24所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述第三指示信息由下行控制信息DCI或者专用无线资源控制dedicated-RRC携带,或,所述第三指示信 息由物理下行控制信道PDCCH或者物理下行共享信道PDSCH承载。
  27. 根据权利要求24所述的信息传输方法,其特征在于,当所述通信设备为终端时,所述第三指示信息由上行控制信息UCI携带,或,所述第三指示信息由PUCCH或者PUSCH承载。
  28. 根据权利要求24所述的信息传输方法,其特征在于,当所述通信设备为终端,且所述通信对端为终端时,所述第三指示信息由sidelink控制信令或同步消息携带,或,所述第三指示信息由PSCCH或者PSSCH或SBCCH承载。
  29. 根据权利要求1所述的信息传输方法,其特征在于,当所述天线工作模式为FTN模式时,所述方法还包括:
    所述通信设备基于信道质量,确定重叠层数;
    其中,所述通信设备采用所述天线工作模式,进行信息传输,包括:
    所述通信设备基于所述重叠层数,将天线的信息叠加获得FTN信息;
    所述通信设备传输所述FTN信息。
  30. 根据权利要求10或29所述的信息传输方法,其特征在于,所述方法还包括:
    若确定未满足传输条件,则所述通信设备重新确定重叠层数;
    所述传输条件包括:
    所述通信设备通信对端反馈的误码率不小于第一预设阈值;或
    所述通信设备接收到通信对端发送的丢包重传NACK消息数量达到第二预设阈值;或
    所述通信设备连续接收到的通信对端发送的NACK消息数量达到第三预设阈值;或
    所述通信设备接收信号的SNR或者RSRP低于第四预设阈值。
  31. 根据权利要求30所述的信息传输方法,其特征在于,所述方法还包括:
    当所述天线工作模式为FTN模式时,所述通信设备基于天线测量信息,调节FTN信息的发送参数;所述天线测量信息通过测量天线端口获得;
    当所述天线工作模式为MIMO-FTN模式时,所述通信设备基于信道测量信息,调节MIMO-FTN信息的发送参数。
  32. 根据权利要求31所述的信息传输方法,其特征在于,所述方法还包括:
    所述通信设备在重新确定重叠层数后,将重新确定的重叠层数通过第四指示信息指示给通信对端;或
    所述通信设备在调节发送参数后,将调节后的发送参数通过第五指示信息指示给通信对端。
  33. 根据权利要求32所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述第四指示信息和/或第五指示信息由DCI或者dedicated-RRC携带,或,由PDCCH或者PDSCH承载。
  34. 根据权利要求32所述的信息传输方法,其特征在于,当所述通信设备为终端时,所述第四指示信息和/或第五指示信息由上行控制信息UCI携带,或,由PUCCH或者PUSCH承载。
  35. 根据权利要求32所述的信息传输方法,其特征在于,当所述通信设备为终端,且所述通信对端为终端时,所述第四指示信息和/或第五指示信息由sidelink控制信令或同步消息携带,或,由PSCCH或者PSSCH或SBCCH承载。
  36. 根据权利要求2所述的信息传输方法,其特征在于,当所述通信设备为网络侧设备时,所述方法还包括:
    所述通信设备接收终端发送的终端能力信息,所述终端能力信息包括指示所述终端是否支持FTN译码算法的信息,所述FTN译码算法包括:上行FTN译码算法和/或下行FTN译码算法。
  37. 一种信息传输装置,应用于通信设备,其特征在于,所述装置包括:
    第一获取模块,用于获取多个天线的信道质量;
    第一确定模块,用于根据所述信道质量,确定天线工作模式;
    第一传输模块,用于采用所述天线工作模式,进行信息传输;
    所述天线工作模式包括:所述多个天线均采用多输入多输出MIMO方式工作的MIMO模式,所述多个天线均采用超奈奎斯特FTN方式工作的FTN模式,或所述多个天线中同一天线端口组采用FTN方式工作、不同天线端口组之间采用MIMO方式工作的MIMO-FTN模式,其中,每个天线端口组内包括至少1个天线。
  38. 根据权利要求37所述的信息传输装置,其特征在于,第一确定模块具体用于以下至少一项:
    在所述信道质量小于或等于第一阈值的情况下,确定天线工作模式是MIMO模式;
    在所述信道质量大于或等于第二阈值的情况下,确定天线工作模式是FTN模式;
    在所述信道质量大于第一阈值且小于第二阈值的情况下,确定天线工作模式是MIMO-FTN模式。
  39. 根据权利要求37所述的信息传输装置,其特征在于,还包括:
    切换模块,用于根据更新的信道质量,切换天线工作模式;
    第二传输模块,用于采用切换后的天线工作模式,进行信息传输。
  40. 根据权利要求37所述的信息传输装置,其特征在于,当所述天线工作模式为MIMO-FTN模式时,所述装置还包括:
    第二确定模块,用于确定天线端口组内采用FTN方式工作时的重叠层数;
    第三确定模块,用于确定天线端口组间采用MIMO方式工作时的MIMO目标工作模式;
    其中,第一传输模块具体用于:
    根据所述MIMO目标工作模式和所述重叠层数,进行信息传输。
  41. 根据权利要求40所述的信息传输装置,其特征在于,第二确定模块具体用于:
    基于信道质量,确定重叠层数。
  42. 根据权利要求37所述的信息传输装置,其特征在于,所述天线端口组通过对天线进行分组获得;
    其中,所述对天线进行分组包括:
    基于所述重叠层数,确定分组数量;
    基于分组规则及所述分组数量,对天线进行分组。
  43. 根据权利要求42所述的信息传输装置,其特征在于,对天线进行分组后,所述装置还包括:
    第一指示模块,用于通过第一指示信息将所述分组规则指示给通信对端;
    所述第三确定模块还用于:
    基于信道测量信息,直接确定MIMO目标工作模式,并通过第二指示信息将所述MIMO目标工作模式指示给通信对端。
  44. 一种通信设备,其特征在于,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至36中任一项所述的信息传输方法的步骤。
  45. 一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至36中任一项所述的信息传输方法的步骤。
  46. 一种计算机软件产品,所述计算机软件产品被至少一个处理器执行以实现如权利要求1至36中任一项所述的信息传输方法。
  47. 一种电子设备,包括电子设备被配置成用于执行如权利要求1至36中任一项所述的信息传输方法。
  48. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至36中任一项所述的信息传输方法。
PCT/CN2021/131838 2020-11-20 2021-11-19 信息传输方法、装置、通信设备及存储介质 WO2022105888A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/315,920 US20230308143A1 (en) 2020-11-20 2023-05-11 Information transmission method and apparatus, communications device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011314900.5A CN114520681B (zh) 2020-11-20 2020-11-20 信息传输方法、装置、通信设备及存储介质
CN202011314900.5 2020-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/315,920 Continuation US20230308143A1 (en) 2020-11-20 2023-05-11 Information transmission method and apparatus, communications device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022105888A1 true WO2022105888A1 (zh) 2022-05-27

Family

ID=81594867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131838 WO2022105888A1 (zh) 2020-11-20 2021-11-19 信息传输方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230308143A1 (zh)
CN (1) CN114520681B (zh)
WO (1) WO2022105888A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118282453A (zh) * 2022-12-30 2024-07-02 RealMe重庆移动通信有限公司 天线数量控制方法、装置、通信设备、介质和程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805305A (zh) * 2005-01-13 2006-07-19 松下电器产业株式会社 采用天线选择执行自适应空时发送分集的方法和设备
CN205453730U (zh) * 2015-10-23 2016-08-10 梁小虎 一种基于ftn传输的卫星通信网络管理系统
US20180076861A1 (en) * 2015-04-15 2018-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Multi-Stream Faster-Than-Nyquist Transmission Using Bandwidth Partitioning
KR20190005466A (ko) * 2017-07-06 2019-01-16 한국전자통신연구원 Ftn 통신 환경에서 공간 다중화를 이용하는 통신을 제공하는 방법 및 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
BR112014027631A2 (pt) * 2012-05-04 2019-05-14 Rearden, Llc sistema de multipla antena (mas) e multiusuário (mu) e método
US10476559B2 (en) * 2017-05-19 2019-11-12 Micron Technology, Inc. Apparatuses and methods for adaptive spatial diversity in a MIMO-based system
KR102153470B1 (ko) * 2017-12-01 2020-09-08 고려대학교 산학협력단 광대역 및 산발성 트래픽의 효율적인 공존을 위한 ftn 기반 ofdm 전송 장치 및 그 방법
CN109150409B (zh) * 2018-09-30 2021-06-25 西安电子科技大学 基于叠加编码调制的超奈奎斯特的自适应系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805305A (zh) * 2005-01-13 2006-07-19 松下电器产业株式会社 采用天线选择执行自适应空时发送分集的方法和设备
US20180076861A1 (en) * 2015-04-15 2018-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Multi-Stream Faster-Than-Nyquist Transmission Using Bandwidth Partitioning
CN205453730U (zh) * 2015-10-23 2016-08-10 梁小虎 一种基于ftn传输的卫星通信网络管理系统
KR20190005466A (ko) * 2017-07-06 2019-01-16 한국전자통신연구원 Ftn 통신 환경에서 공간 다중화를 이용하는 통신을 제공하는 방법 및 장치

Also Published As

Publication number Publication date
CN114520681A (zh) 2022-05-20
US20230308143A1 (en) 2023-09-28
CN114520681B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US10763930B2 (en) Uplink multi-antenna transmission method in wireless communication system and apparatus therefor
JP6306052B2 (ja) 無線通信システムにおいて3−次元ビームフォーミングのためのチャネル状態情報を報告する方法及びそのための装置
EP2658154B1 (en) Method for reporting channel status information in a multi-cell cooperative wireless communication system, and device for same
US8989062B2 (en) Method and arrangement in a wireless communication system
EP3402105B1 (en) Method by which terminal receives downlink signal from base station in wireless communication system, and device therefor
WO2014209015A1 (en) Method for performing beamforming based on partial antenna array in wireless communication system and apparatus therefor
WO2015016489A1 (en) Method for reporting channel state information for partial antenna array based beamforming in wireless communication system, and apparatus therefor
WO2014208974A1 (en) Method for performing precoding for adaptive antenna scaling in wireless communication system and apparatus therefor
WO2015016487A1 (en) Method for performing antenna shuffling using partial antenna array based beamforming in wireless communication system, and apparatus therefor
EP3100366A1 (en) Feedback reporting method for massive antenna array based beamforming in wireless communication system, and apparatus therefor
WO2014129858A1 (ko) 무선 통신 시스템에서 3-차원 빔포밍을 위한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
KR20150031242A (ko) Tdd 협력 다중-포인트 및 캐리어 집성 시나리오를 위한 공간 피드백(pmi/ri)없이 cqi 피드백하기 위한 방법
WO2009152695A1 (zh) 分布式天线系统及其数据传输方法、中心控制器
WO2014035218A1 (ko) 무선 통신 시스템에서 안테나 가상화 방법 및 장치
US10637624B2 (en) Method for indicating QCL information for aperiodic CSI-RS in wireless communication system and apparatus for same
US20130303230A1 (en) Method and apparatus for aggregated cqi for coordinated multipoint transmission
KR20130127425A (ko) 보간을 이용한 프리코딩 행렬 지시자 피드백 방법 및 장치
US20200204224A1 (en) Method for transmitting feedback information for three-dimensional mimo on basis of beamformed reference signal in wireless communication system, and apparatus therefor
US9930557B2 (en) Method by which terminal reports channel status information in wireless communication system, and apparatus therefor
US20230308143A1 (en) Information transmission method and apparatus, communications device, and storage medium
US20230283359A1 (en) Information transmission method and apparatus, communications device, and storage medium
JP2015526942A (ja) 無線通信システムにおいて下りリンク信号送信方法及びそのための装置
WO2022178742A1 (en) Techniques for communicating using a reconfigurable surface
EP3269049A1 (en) Method and apparatus for reporting channel quality information for 3d mimo in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894035

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/10/2023)