WO2022105491A1 - 一种风能理论储量评估方法 - Google Patents

一种风能理论储量评估方法 Download PDF

Info

Publication number
WO2022105491A1
WO2022105491A1 PCT/CN2021/123858 CN2021123858W WO2022105491A1 WO 2022105491 A1 WO2022105491 A1 WO 2022105491A1 CN 2021123858 W CN2021123858 W CN 2021123858W WO 2022105491 A1 WO2022105491 A1 WO 2022105491A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
wind energy
target area
theoretical
wind
Prior art date
Application number
PCT/CN2021/123858
Other languages
English (en)
French (fr)
Inventor
熊丛博
岳娜娜
王善涛
王东亮
刘艳玲
张文明
迟万清
李霞
张永强
边淑华
尹则高
迟宇宁
赵宏凯
刘建强
张莞君
郝林华
Original Assignee
自然资源部第一海洋研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 自然资源部第一海洋研究所 filed Critical 自然资源部第一海洋研究所
Priority to US17/800,050 priority Critical patent/US20230082344A1/en
Publication of WO2022105491A1 publication Critical patent/WO2022105491A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Definitions

  • the invention relates to the technical field of renewable energy evaluation, in particular to a method for evaluating the theoretical reserves of wind energy.
  • the actual content of the estimate is different, that is, the concept of wind energy is different, mainly theoretical reserves, technical reserves, practical reserves, economic reserves (Theoretical potential, Technical potential, Practical potential, Economic potential) or divided into theoretical reserves, geographical restrictions Theoretical potential, Geographical potential, Technical potential, Economic potential, Net Potential. It can be seen that with the refinement of the concept, it becomes more and more difficult to accurately estimate wind energy reserves. Throughout the estimation of wind energy reserves under different concepts, it is necessary to accurately estimate the theoretical wind energy reserves (wind kinetic energy or Theoretical potential). The calculation method of the theoretical reserves of wind energy is not perfect. Some researchers believe that solar radiation is the main source of wind energy.
  • the commonly used method for evaluating wind energy is based on the concept of wind kinetic energy, that is, wind energy (wind power capacity, ) or wind power density, ), both of which are based on the kinetic energy of the wind.
  • the latter formula is the derived formula of the former formula, that is, the former formula is divided by the area.
  • the condition of wind kinetic energy satisfied by the previous formula is that the wind speed must be perpendicular to the area, which causes the wind energy density to calculate the spatial distribution of wind energy density, but it is very difficult to calculate the regional wind energy storage with this method.
  • the present invention provides a new method for evaluating the theoretical reserves of wind energy, which can provide a method for evaluating the theoretical reserves of wind energy in a limited height space in the target area.
  • the technical problem to be solved by the present invention is: to overcome the deficiencies of the prior art, a new method for evaluating the theoretical reserves of wind energy is proposed.
  • the calculation formula of theoretical reserves distribution calculates the theoretical reserves of wind energy per unit area of the target area, and combines the calculation formula of regional wind energy theoretical reserves to calculate the regional wind energy theoretical reserves and conduct wind energy resource assessment.
  • the technical scheme adopted by the present invention to solve the technical problem is: a method for evaluating the theoretical reserves of wind energy, which is characterized in that it comprises the following steps:
  • the coordinate range of the target area is the sequence of the longitude and latitude of the boundary inflection points arranged in sequence (or the projected plane rectangular coordinates); or, a description of the spatial geometric scale with a coordinate point as a reference;
  • step 2 2) Specify the spatial height of the target area described in step 1;
  • the meteorological data of the wind speed and air density are the data of one or more discrete points measured or calculated by numerical simulation methods
  • the target area is divided into small grids, the maximum grid step size is less than or equal to 1/10 of the distance from the nearest data point, and the wind speed and air density of discrete points are divided into small grids.
  • the density of meteorological data is interpolated to the grid center point;
  • step 3 According to the meteorological data obtained in step 3), calculate the theoretical reserves of wind energy per unit area of the target area;
  • the area of the target area is calculated by using equal-area projection, geometric figure area calculation method, polygon area calculation method, or by means of AutoCAD, ArcGis, MapGis, Mapinfor geographic information systems;
  • step 6 According to the meteorological data of the wind speed and air density obtained in step 3), the spatial height of the target area specified in step 2), and the area of the target area obtained in step 5), calculate the spatial range of the target area.
  • step 4 the described theoretical reserves of wind energy per unit area are calculated using the following formula:
  • ED is the theoretical wind energy storage per unit area
  • V is the wind speed
  • is the air density
  • dz is the height of the vertical space.
  • step 6 the theoretical reserves of regional wind energy within the spatial range of the target region are calculated according to the calculation formula of the theoretical reserves of regional wind energy.
  • E R is the theoretical reserve of regional wind energy
  • V is the wind speed that varies with height
  • is the air density
  • dz is the vertical space step size, which is determined according to the vertical distribution of meteorological data
  • ⁇ dxdy is the theoretical wind energy reserve estimate
  • the present invention has the following beneficial effects: 1) a new method for calculating the distribution of theoretical wind energy reserves per unit area is provided; 2) a new method for estimating the theoretical reserves of regional wind energy is provided; 3) A quantitative evaluation method is provided for the estimation of the theoretical reserves of global wind energy, the quantitative index of wind energy resources formulated by regional or national wind energy policies, and the comparison and selection of wind farm sites; It is of great significance to develop and utilize wind energy resources and formulate wind energy policies.
  • FIG. 1 is a basic flow chart of a method for evaluating wind energy theoretical reserves according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the variation process of global wind energy theoretical reserves with time according to an embodiment of the present invention
  • FIG. 3 is a distribution diagram of the theoretical reserves of wind energy per unit area in the world according to an embodiment of the present invention.
  • a method for evaluating the theoretical reserves of wind energy includes the following steps:
  • the coordinate range of the target area is the sequence of longitude and latitude of the boundary inflection points arranged in sequence (or the projected plane rectangular coordinates).
  • the global scope is selected as the target area
  • the specific target area coordinate range is the sequence of longitude and latitude of the range coordinate points (or projected plane rectangular coordinates) in order.
  • the specific form of the area range sequence is as follows:
  • the spatial height of the target area in this embodiment is within the spatial height range of 100 m above the ground in the global scope.
  • the meteorological data of wind speed and air density in the space of the target area are the data of one or more discrete points measured; or, the data of one or more discrete points calculated by numerical simulation method;
  • the calculation result data of the spatial distribution obtained by the numerical simulation method is selected, and the grid calculated by the global atmospheric model ECMWF is 2.5° ⁇ 2.5° data of wind speed, air temperature, and atmospheric surface pressure as the meteorological data required for the calculation of the target area. data; the acquired data is 72 ⁇ 144 data.
  • the acquired data is the meteorological data of wind speed and air density of multiple discrete points.
  • the target area is divided into small grids, and the maximum grid step size is less than or equal to 1/10 of the distance from the nearest data point.
  • the meteorological data of wind speed and air density are interpolated to the center point of the grid;
  • the data is interpolated to the center point of a small grid of 0.25° ⁇ 0.25° using the inverse distance interpolation method, and the obtained data is 720 ⁇ 1440 data.
  • the air density at the center point of the grid is calculated by using the ideal gas equation of state through the obtained air temperature and atmospheric surface pressure data.
  • step 3 According to the meteorological data obtained in step 3, calculate the theoretical reserves of wind energy per unit area of the target area;
  • ED is the theoretical wind energy storage per unit area
  • V is the wind speed
  • is the air density
  • dz is the height of the vertical space.
  • the calculation results can use surfer, AutoCAD, ArcGis, MapGis, Mapinfor and other geographic information system software to make a global distribution map of wind energy theoretical reserves per unit area, see Figure 2, and evaluate the status of wind energy resources through the value of theoretical wind energy reserves per unit area in Figure 2 pros and cons.
  • For the area of the target area use equal-area projection, geometric figure area calculation method, polygon area calculation method, or use AutoCAD, ArcGis, MapGis, Mapinfor geographic information system to calculate the area area;
  • the projection of Equal Area is used to calculate each grid area of the target area, and the calculated grid area of 0.25°x0.25° is from latitude -90
  • the area from ° to 0° gradually increases from 422252m 2 to 774500608m 2 .
  • the surface area of the earth in the target area is 511206687559530m 2 .
  • step 6 According to the meteorological data of wind speed and air density obtained in step 3, the spatial height of the target area specified in step 2, and the area of the target area obtained in step 5, calculate the theoretical reserves of regional wind energy within the spatial range of the target area.
  • E R is the theoretical reserve of regional wind energy
  • V is the wind speed that varies with height
  • is the air density
  • dz is the vertical space step size, which is determined according to the vertical distribution of meteorological data
  • ⁇ dxdy is the theoretical wind energy reserve estimate
  • the air temperature and air pressure calculated by ECMWF are used to calculate the air density at the center point of the grid using the ideal gas equation of state.
  • the step size of the dz vertical space is taken as the height of 100m in this embodiment, and dxdy is the space step long, in this embodiment, the grid of 0.25° ⁇ 0.25° of ECMWF is selected.
  • the hourly wind energy from January 1, 1979 to December 31, 2019 is calculated based on the above formula to calculate the global theoretical wind energy storage in a space of 100 m above the surface.
  • the fluctuation range of the global theoretical wind energy storage is from Between 3.0 ⁇ 10 18 joules, the 41-year average is 2.4 ⁇ 10 18 joules.
  • the specific time course is shown in Figure 3.
  • a method for evaluating the theoretical reserves of wind energy includes the following steps:
  • the coordinate range of the target area is a description of the spatial geometric scale with a coordinate point as a reference.
  • a fan (geographical coordinates 119.015432°E, 37.220934°N) is selected as an example, and the specific target area coordinate range is a circular bottom surface with a radius of 200m centered on the fan base.
  • the spatial height of the target area in this embodiment is in a cylindrical space with a height of 200 m.
  • the meteorological data of the wind speed and air density of the target area space is the data of one or more discrete points measured; or, the data of one or more discrete points calculated by numerical simulation method;
  • the average measured vertical layered wind speed data of a station in 2011 is selected, and the specific data format is as follows:
  • the empirical data used for air density is 1.225kg/m 3 .
  • step 3 According to the meteorological data obtained in step 3, calculate the theoretical reserves of wind energy per unit area of the target area;
  • ED is the theoretical wind energy storage per unit area
  • V is the wind speed
  • is the air density
  • dz is the height of the vertical space.
  • the stratification is performed according to the intermediate stratification method.
  • the theoretical storage of wind energy per unit area of space in the selected area is calculated according to the above formula near a certain fan, and the calculation result is about 2020 joules/square meter.
  • the target area is a regular cylinder, which is a circle with a base area of 200m in radius, and its area is calculated to be 125600m 2 according to the geometric figure area (circle area) calculation method.
  • the space height of the target area specified in the step 2 the area of the target area gained in the step 5, calculate the regional wind energy theoretical reserves in the target area space range.
  • E R is the theoretical reserve of regional wind energy
  • V is the wind speed that varies with height
  • is the air density
  • dz is the vertical space step size, which is determined according to the vertical distribution of meteorological data
  • ⁇ dxdy is the theoretical wind energy reserve estimate
  • the empirical data used for the air density in this example is 1.225kg/m 3 .
  • the stratification is performed according to the intermediate stratification method.
  • ⁇ dxdy is the area, and the area obtained in the fourth step is selected in this embodiment.
  • the theoretical wind energy storage in the selected area space is calculated according to the above formula near a certain fan.
  • the theoretical wind energy storage in the circular bottom surface with a radius of 200 m and a cylindrical space with a height of 200 m near the fan is 2.536 ⁇ 10 8 Joules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Databases & Information Systems (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

风能理论储量评估方法,步骤:1)选取风能理论储量估算的目标区域,提取目标区域的坐标范围;2)指定步骤1中的目标区域的空间高度;3)获取步骤2中的目标区域空间的风速、空气密度的气象数据;4)根据步骤3中所得的气象数据,计算的目标区域的单位面积风能理论储量;5)计算的目标区域的面积;6)根据步骤3中所得的风速、空气密度的气象数据、步骤2中指定的目标区域的空间高度、步骤5中所得的目标区域的面积,计算得到的目标区域空间范围内的区域风能理论储量。优点:为全球风能理论储量的估算、风能政策制定的风电资源量化指标、风电场选址比选提供了定量化评估的方法,对于开发利用资源、制定政策具有重要意义。

Description

一种风能理论储量评估方法 技术领域
本发明涉及可再生能源评估技术领域,具体涉及一种风能理论储量的评估方法。
背景技术
目前,全球风能的估算存在着较大争议,有学者(Cristina L.Archer,2013;Feng,Jingxuan,2020)分析过各种文献的量值不同,其原因在于:
其一,估算的实际内容不同,即风能概念不同,主要为理论储量、技术储量、实用性储量、经济型储量(Theoretical potential,Technical potential,Practical potential,Economic potential)或者分为理论储量、地理限制型储量、实用型储量、经济型储量、净储量(Theoretical potential,Geographical potential,Technical potential,Economic potential,Net Potential)。可以看出,随着概念的细化,准确估算风能储量变得越来越难;纵观不同概念下风能储量的估算,都需要准确地估算风能理论储量(wind kinetic energy亦即Theoretical potential)。风能理论储量的计算方法目前也没有完善,有的学者认为太阳辐射是风能的主要来源,通过估算由大气圈吸收的太阳能量为175000TW,并且认为大气吸收的太阳能只有部分转换成风能,进而估算风能储量。诚然,如果没有太阳辐射能量,就几乎没有风,但是风能大小不只是太阳辐射能的简单转化,地球空间水陆区域比热容不同、地形地势不同、温度压力不同都会造成风力大小的不同,如果只是考虑太阳辐射能转化成风能是不合适的。
其二,常用的评估风能的方法是基于风的动能概念来计算的,也就是风能量(wind power capacity,
Figure PCTCN2021123858-appb-000001
)或者风能密度(wind power density,
Figure PCTCN2021123858-appb-000002
),两者其实都是以风的动能为理论基础的,后一个公式是前一个公式的导出公式,也就是前一个公式除以面积后得到的。前一个公式满足的风动能的条件就是风速必须与面积是垂直的,这就造成了风能密度可以计算空间上风能密度的分布,但是用这种方法计算区域风能储量非常困难。
为此,本发明提供了一个新的风能理论储量的评估方法,可以为目标区域内限定高度空间内的风能理论储量评估提供方法。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提出一种风能理论储量评估的新方法,其目的在于利用风速、空气密度数据,计算目标区域指定高度风能理论储量,利用单位面积风能理论储量分布的计算公式计算目标区域单位面积风能理论储量,结合区域风能理论储量计算公式,进行区域风能理论储量计算,并进行风能资源评估。
本发明解决其技术问题所采用的技术方案是:一种风能理论储量评估方法,其特征在于:包括以下步骤:
1)选取风能理论储量估算的目标区域,提取所述目标区域的坐标范围;
所述目标区域的坐标范围为,按顺序排列的边界拐点的经度、纬度的数列(或者投影后的平面直角坐标);或者,以一个坐标点为参照的空间几何尺度的描述;
2)指定步骤1中所述的目标区域的空间高度;
3)获取表征步骤2中所述的目标区域空间的风速、空气密度的气象数据;
所述的风速、空气密度的气象数据,为实测的、或者用数值模拟方法计算的、一个或者多个离散点的数据;
有多个离散点的风速、空气密度的气象数据时,将该目标区域剖分成小网格,最大网格步长小于或等于最近数据点距离的1/10,并将离散点的风速、空气密度的气象数据插值到网格中心点上;
4)根据步骤3)中所得的气象数据,计算所述的目标区域的单位面积风能理论储量;
5)计算所述的目标区域的面积;
所述目标区域的面积,用等面积投影、几何图形面积计算法、多边形面积计算法、或者借助AutoCAD、ArcGis、MapGis、Mapinfor地理信息系统,计算区域面积;
6)根据步骤3)中所得的风速、空气密度的气象数据、步骤2)中指定的目标区域的空间高度、步骤5)中所得的目标区域的面积,计算得到所述的目标区域空间范围内的区域风能理论储量。
优选的,步骤4)中,所述的单位面积风能理论储量,使用以下公式进行计算:
E D=∫(1/2ρV 2)dz;
式中:E D是单位面积风能理论储量,V是风速,ρ是空气密度,dz垂向空间的高度。
优选的,步骤6)中,所述的根据区域风能理论储量计算公式,计算所述的目标区域空间范围内的区域风能理论储量。
所述的区域风能理论储量计算公式,具体形式如下:
E R=∫∫∫(1/2ρV 2)dxdydz;
式中:E R是区域风能理论储量,V是随高度变化的风速;ρ是空气密度;dz垂向空间的步长,依据气象数据垂向分布而定;∫∫dxdy是选取风能理论储量估算的目标区域的面积,其中dxdy是空间步长,依据平面上气象数据的位置情况及目标区域气象复杂程度而定。
与现有技术相比,本发明的有益效果是:1)提供了一种新的单位面积风能理论储量分布的计算方法;2)提供了一种新的区域风能理论储量估算的方法;3)为全球风能理论储量的估算以及地区或国家的风能政策制定的风电资源量化指标、及风电场址的比选提供了一种定量化评估的方法;4)本发明具有良好的推广应用前景,对于开发利用风能资源、制定风能政策具有重要意义。
附图说明
图1为本发明实施例的风能理论储量评估方法的基本流程图;
图2为本发明实施例的全球风能理论储量随时间变化过程图;
图3为本发明实施例的全球单位面积风能理论储量分布图。
具体实施方式
下面结合说明书附图,对本发明的技术方案做进一步说明。
实施例一
如图1、2、3所示,一种风能理论储量评估方法,包括以下步骤:
1)选取风能理论储量估算的目标区域,提取目标区域的坐标范围;
目标区域的坐标范围为,按顺序排列的边界拐点的经度、纬度的数列(或者投影后的平面直角坐标)。
本实施例中,选取全球范围作为目标区域,具体的目标区域坐标范围为,按顺序排列的范围坐标点的经度、纬度的数列(或者投影后的平面直角坐标)。区域范围数列具体形式数下:
经度序列 纬度序列 备注说明
-180 -90 边界拐点号1
180 -90 边界拐点号2
180 90 边界拐点号3
-180 90 边界拐点号4
-180 90 边界拐点号1
2)指定步骤1中的目标区域的空间高度;
本实施例中的目标区域的空间高度为,全球范围内地面以上100m的空间高度范围内。
3)获取表征步骤2中的目标区域空间的风速、空气密度的气象数据;
该目标区域空间的风速、空气密度的气象数据,为实测的一个或者多个离散点的数据;或者,用数值模拟方法计算的一个或者多个离散点的数据;
本实施例中选取通过数值模拟方法获取的空间分布的计算结果数据,全球范围大气模型ECMWF计算的网格为2.5°×2.5°的风速、空气温度、大气地表压力数据作为计算目标区域所需气象数据;所获取的数据为72×144个数据。
所获取的数据为多个离散点的风速、空气密度的气象数据,将该目标区域剖分成小网格,最大网格步长小于或等于最近数据点距离的1/10,并将离散点的风速、空气密度的气象数据插值到网格中心点上;
利用反距离插值法将数据插值到0.25°×0.25°的小网格的中心点上,所获取的数据为720×1440个数据。
本实施例中通过得到的空气温度、大气地表压力数据利用理想气体状态方程计算网格中心点处的空气密度。
4)根据步骤3中所得的气象数据,计算的目标区域的单位面积风能理论储量;
目标区域的单位面积风能理论储量的计算公式具体形式如下:
E D=∫(1/2ρV 2)dz;
式中:E D是单位面积风能理论储量,V是风速,ρ是空气密度,dz垂向空间的高度。
计算结果可以利用surfer、AutoCAD、ArcGis、MapGis、Mapinfor等地理信息系统软件,进行全球单位面积风能理论储量分布图,参见图2,通过图2中单 位面积风能理论储量数值的高低来评估风能资源状况优劣。
5)计算的目标区域的面积;
目标区域的面积,用等面积投影、几何图形面积计算法、多边形面积计算法、或者借助AutoCAD、ArcGis、MapGis、Mapinfor地理信息系统,计算区域面积;
为了准确的计算全球风能理论储量,本实施例中利用等面积投影(the projection of Equal Area)计算了目标区域的各个网格面积,计算的0.25°x0.25°的网格面积从纬度-90°到0°面积由422252m 2逐渐增长到774500608m 2,通过对全球各个单元格面积加和,求得目标区域地球表面积为511206687559530m 2
6)根据步骤3中所得的风速、空气密度的气象数据、步骤2中指定的目标区域的空间高度、步骤5中所得的目标区域的面积,计算得到目标区域空间范围内的区域风能理论储量。
目标区域风能理论储量计算公式,具体形式如下:
E R=∫∫∫(1/2ρV 2)dxdydz;
式中:E R是区域风能理论储量,V是随高度变化的风速;ρ是空气密度;dz垂向空间的步长,依据气象数据垂向分布而定;∫∫dxdy是选取风能理论储量估算的目标区域的面积,其中dxdy是空间步长,依据平面上气象数据的位置情况及目标区域气象复杂程度而定。
本实施例选用的是ECMWF计算的气温、气压利用理想气体状态方程计算网格中心点处的空气密度,dz垂向空间的步长,本实施例空间的高度取为100m高,dxdy是空间步长,本实施例选用的是ECMWF的0.25°x0.25°的网格。
本实施例中对1979年1月1日到2019年12月31日的逐时风能按上述公式对全球地表100m空间理论风能储量进行了计算,全球理论风能储量波动范围在1.9×10 18焦耳到3.0×10 18焦耳之间,41年平均值为2.4×10 18焦耳。具体的时间过程线见图3。
实施例二
如图1、2、3所示,一种风能理论储量评估方法,包括以下步骤:
1)选取风能理论储量估算的目标区域,提取该目标区域的坐标范围;
目标区域的坐标范围为,以一个坐标点为参照的空间几何尺度的描述。
本实施例中选取某一个风机(地理坐标为119.015432°E,37.220934°N) 为例,具体的目标区域坐标范围是以这个风机机座为中心的以200m为半径的圆形底面。
2)指定步骤1中的目标区域的空间高度;
本实施例中的目标区域的空间高度为200m高的圆柱状空间内。
3)获取表征步骤2中的目标区域空间的风速、空气密度的气象数据;
目标区域空间的风速、空气密度的气象数据,为实测的一个或者多个离散点的数据;或者,用数值模拟方法计算的一个或者多个离散点的数据;
本实施例中选取的是一个站位的2011年平均的实测垂向分层风速数据,具体数据格式如下:
高度(m) 风速(m/s) 风向(°)
10 3.5 197
50 3.8 193
90 4.2 186
170 4.3 182
空气密度采用的经验数据1.225kg/m 3
4)根据步骤3中所得的气象数据,计算的目标区域的单位面积风能理论储量;
目标区域的单位面积风能理论储量的计算公式具体形式如下:
E D=∫(1/2ρV 2)dz;
式中:E D是单位面积风能理论储量,V是风速,ρ是空气密度,dz垂向空间的高度。
本实施例中依据获取的风速的垂向分层情况按中间分层法分层,具体层厚为(30m,40m,60m,70m),本实施例空间的高度取为200m高。
本实施例中对某一个风机附近按上述公式对选定区域空间单位面积风能理论储量进行了计算,计算结果约为2020焦耳/平方米。
5)计算的目标区域的面积;
目标区域为规则的圆柱形,为此底面积为半径200m的圆形,根据几何图形面积(圆形面积)计算法计算其面积为125600m 2
6)根据步骤3中所得的风速、空气密度的气象数据、步骤2中指定的目标区域的空间高度、步骤5中所得的目标区域的面积,计算得到目标区域空间范围 内的区域风能理论储量。
目标区域风能理论储量计算公式,具体形式如下:
E R=∫∫∫(1/2ρV 2)dxdydz;
式中:E R是区域风能理论储量,V是随高度变化的风速;ρ是空气密度;dz垂向空间的步长,依据气象数据垂向分布而定;∫∫dxdy是选取风能理论储量估算的目标区域的面积,其中dxdy是空间步长,依据平面上气象数据的位置情况及目标区域气象复杂程度而定。
本实施例中空气密度采用的经验数据1.225kg/m 3
本实施例中依据获取的风速的垂向分层情况按中间分层法分层,具体层厚为(30m,40m,60m,70m),本实施例空间的高度取为200m高。∫∫dxdy是面积,本实施例选用的是第4步得到的面积。
本实施例中对某一个风机附近按上述公式对选定区域空间理论风能储量进行了计算,该风机附近以200m为半径的圆形底面和200m高的圆柱状空间内的风能理论储量为2.536×10 8焦耳。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (3)

  1. 一种风能理论储量评估方法,其特征在于:包括以下步骤:
    1)选取风能理论储量估算的目标区域,提取所述目标区域的坐标范围;
    所述目标区域的坐标范围为,按顺序排列的边界拐点的经度、纬度的数列或者投影后的平面直角坐标;或者,以一个坐标点为参照的空间几何尺度的描述;
    2)指定步骤1)中所述的目标区域的空间高度;
    3)获取表征步骤2)中所述的目标区域空间的风速、空气密度的气象数据;
    所述的风速、空气密度的气象数据,为实测的或者用数值模拟方法计算的一个或者多个离散点的数据;
    有多个离散点的风速、空气密度的气象数据时,将该目标区域剖分成小网格,最大网格步长小于或等于最近数据点距离的1/10,并将离散点的风速、空气密度的气象数据插值到网格中心点上;
    4)根据步骤3)中所得的气象数据,计算得到所述的目标区域的单位面积风能理论储量;
    5)计算所述的目标区域的面积;
    所述目标区域的面积,使用等面积投影、几何图形面积计算法、多边形面积计算法、或者借助AutoCAD、ArcGis、MapGis、Mapinfor地理信息系统,计算区域面积;
    6)根据步骤3)中所得的风速、空气密度的气象数据、步骤2)中指定的目标区域的空间高度、步骤5)中所得的目标区域的面积,计算得到所述的目标区域空间范围内的区域风能理论储量。
  2. 根据权利要求1所述的风能理论储量评估方法,其特征在于:步骤4)中,所述的单位面积风能理论储量,使用以下公式进行计算:
    E D=∫(1/2ρV 2)dz
    式中:E D是单位面积风能理论储量,V是风速,ρ是空气密度,dz垂向空间的高度。
  3. 根据权利要求2所述的风能理论储量评估方法,其特征在于:步骤6)中,所述的根据区域风能理论储量计算公式,计算所述的目标区域空间范围内的区域风能理论储量;
    所述的区域风能理论储量计算公式,具体形式如下:
    E R=∫∫∫(1/2ρV 2)dxdydz
    式中:E R是区域风能理论储量,V是随高度变化的风速;ρ是空气密度;dz垂向空间的步长,依据气象数据垂向分布而定;∫∫dxdy是选取风能理论储量估算的目标区域的面积,其中dxdy是空间步长,依据平面上气象数据的位置情况及目标区域气象复杂程度而定。
PCT/CN2021/123858 2020-11-19 2021-10-14 一种风能理论储量评估方法 WO2022105491A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/800,050 US20230082344A1 (en) 2020-11-19 2021-10-14 Method for evaluating theoretical potential of wind energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011300812.X 2020-11-19
CN202011300812.XA CN112347657B (zh) 2020-11-19 2020-11-19 一种风能理论储量评估方法

Publications (1)

Publication Number Publication Date
WO2022105491A1 true WO2022105491A1 (zh) 2022-05-27

Family

ID=74364171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123858 WO2022105491A1 (zh) 2020-11-19 2021-10-14 一种风能理论储量评估方法

Country Status (3)

Country Link
US (1) US20230082344A1 (zh)
CN (1) CN112347657B (zh)
WO (1) WO2022105491A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112347657B (zh) * 2020-11-19 2023-09-29 自然资源部第一海洋研究所 一种风能理论储量评估方法
CN116563055B (zh) * 2023-07-07 2023-11-03 中国科学院地理科学与资源研究所 一种基于多源数据融合的风能潜力评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131207A1 (en) * 2008-11-24 2010-05-27 Itt Manufacturing Enterprises, Inc. Gas flux determination using airborne dial lidar and airborne wind measurement
CN104239662A (zh) * 2013-06-14 2014-12-24 中国科学院城市环境研究所 一种定量评价区域风能资源开发潜力的方法
CN107491860A (zh) * 2017-07-12 2017-12-19 中国农业大学 一种衡量区域风电场发电能力指标的方法
CN109961207A (zh) * 2017-12-26 2019-07-02 北京金风科创风电设备有限公司 确定风资源的方法和装置
CN110347671A (zh) * 2019-04-09 2019-10-18 清华大学深圳研究生院 构建海上风能数据资料库及海上风能发电量数据库的方法
CN112347657A (zh) * 2020-11-19 2021-02-09 自然资源部第一海洋研究所 一种风能理论储量评估方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131207A1 (en) * 2008-11-24 2010-05-27 Itt Manufacturing Enterprises, Inc. Gas flux determination using airborne dial lidar and airborne wind measurement
CN104239662A (zh) * 2013-06-14 2014-12-24 中国科学院城市环境研究所 一种定量评价区域风能资源开发潜力的方法
CN107491860A (zh) * 2017-07-12 2017-12-19 中国农业大学 一种衡量区域风电场发电能力指标的方法
CN109961207A (zh) * 2017-12-26 2019-07-02 北京金风科创风电设备有限公司 确定风资源的方法和装置
CN110347671A (zh) * 2019-04-09 2019-10-18 清华大学深圳研究生院 构建海上风能数据资料库及海上风能发电量数据库的方法
CN112347657A (zh) * 2020-11-19 2021-02-09 自然资源部第一海洋研究所 一种风能理论储量评估方法

Also Published As

Publication number Publication date
US20230082344A1 (en) 2023-03-16
CN112347657A (zh) 2021-02-09
CN112347657B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2022105491A1 (zh) 一种风能理论储量评估方法
CN110298115B (zh) 一种基于简化地形气动参数的风场动力降尺度方法
Li et al. Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis
WO2022105489A1 (zh) 一种海流能理论储量评估方法
CN111652975B (zh) 城市建筑群可利用太阳能资源评估方法及系统
Marinelli et al. Wind and photovoltaic large-scale regional models for hourly production evaluation
Fogl et al. Influence of vegetation canopies on solar potential in urban environments
CN106682282B (zh) 一种风电场多型号风力发电机排布优化方法
Li et al. A model-based climatology analysis of wind power resources at 100-m height over the Bohai Sea and the Yellow Sea
CN108649611B (zh) 一种全球大型风电基地开发潜力评估方法
CN106886833A (zh) 一种适用于复杂约束条件的风力发电机选址选型优化方法
CN108399577A (zh) 一种基于蒸散发的林地植被生态需水的定量测算方法
Kausika et al. Bottom-up analysis of the solar photovoltaic potential for a city in the Netherlands: A working model for calculating the potential using high resolution LiDAR data
CN112541654A (zh) 一种结合区域气候、局地日变化以及多尺度相互作用特征的区域风能资源精细化评估方法
CN104239662A (zh) 一种定量评价区域风能资源开发潜力的方法
CN111666725A (zh) 一种适应非复杂地形风电场的测风塔规划选址方法及系统
Ni et al. Enhancing rooftop solar energy potential evaluation in high-density cities: A Deep Learning and GIS based approach
CN108363882A (zh) 一种基于动力降尺度模式的山区输电线路设计风速推算方法
Lateef et al. Design and implementation of wind energy analysis tool (WEATb) in Iraq
CN112884269B (zh) 一种基于gis的风电场技术可开发量计算方法及系统
CN112364574B (zh) 定日镜群表面风压的检测方法
CN114154325A (zh) 一种定常与非定常混合风能资源评估方法及系统
CN106447123A (zh) 基于典型日负荷特性的变电站选址方法及变电站选址装置
Ali et al. Integrating WAsP and GIS tools for establishing best positions for wind turbines in South Iraq
Volkovaia et al. Geoinformational support of wind power development at the local level

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893640

Country of ref document: EP

Kind code of ref document: A1