WO2022105371A1 - 钢管仓库巡查机器人系统及钢管仓库管理系统 - Google Patents

钢管仓库巡查机器人系统及钢管仓库管理系统 Download PDF

Info

Publication number
WO2022105371A1
WO2022105371A1 PCT/CN2021/116768 CN2021116768W WO2022105371A1 WO 2022105371 A1 WO2022105371 A1 WO 2022105371A1 CN 2021116768 W CN2021116768 W CN 2021116768W WO 2022105371 A1 WO2022105371 A1 WO 2022105371A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
warehouse
robot body
information
magnetic
Prior art date
Application number
PCT/CN2021/116768
Other languages
English (en)
French (fr)
Inventor
高焕兵
鲁守银
王涛
李艳萍
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Publication of WO2022105371A1 publication Critical patent/WO2022105371A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • G06K17/0025Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device the arrangement consisting of a wireless interrogation device in combination with a device for optically marking the record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to warehouse management technology, in particular to a steel pipe warehouse inspection robot system and a steel pipe warehouse management system.
  • the steel pipes After the steel pipes are produced and processed, they need to be stored in the warehouse first, and then released from the warehouse when they are sold and shipped.
  • the storage operator confirms the model and quantity of the steel pipe currently in storage.
  • the existing technology is to use a barcode scanner to scan the barcode attached to the steel pipe to automatically read the model of the steel pipe. Then, query the storage location that can be accommodated from the database, assign this batch of steel pipes to the storage location, and record it in the database.
  • the technical problem to be solved by the present invention is to provide a steel pipe warehouse inspection robot system and a steel pipe warehouse management system, which can identify the steel pipe identity through RFID technology, identify the number of steel pipes through RFID and image processing technology, and use wireless communication network and multimedia methods for bridge cranes.
  • the driver provides location prompts and location navigation, uses a mobile inspection robot to regularly inspect the storage location, reads the inventory of each storage location, and corrects the database.
  • the invention relates to a steel pipe warehouse inspection robot system, which comprises a robot body and a monitoring background;
  • the robot body includes a motion control system, a quantity inspection system, an environment perception system, and a communication module;
  • the motion control system includes a wheeled mobile platform driven by a motor, a motion controller, a magnetic navigation sensor, and a magnetic strip track.
  • the track is pre-laid on the steel pipe warehouse floor to guide the robot body to move along the track of the magnetic bar;
  • the quantity inspection system includes RFID readers and cameras;
  • the environmental perception system includes ultrasonic sensors; the quantity inspection system and environmental perception The system is arranged on the wheeled mobile platform, and is driven and moved by the wheeled mobile platform;
  • the wheeled mobile platform has a plurality of rollers, which can drive the robot body to move along a preset magnetic stripe track, the rollers are driven to rotate by a motor, and the output speed of each motor is controlled by a motion controller;
  • the magnetic navigation The sensor is set corresponding to the magnetic stripe track;
  • the magnetic navigation sensor is used to judge whether the robot body is moving on the magnetic stripe track in real time, and send out correction information to the motion controller in real time when the robot body deviates from the magnetic stripe track , the output speed of the motor is controlled by the motion controller, so that the different rollers generate a speed difference to realize the deflection adjustment of the moving direction of the robot body;
  • the RFID reader is used to read the information of different storage locations in the steel pipe warehouse and the identity information of different steel pipes on the storage location;
  • the ultrasonic sensor is used to sense obstacles around the robot body;
  • the camera is used to identify the number of steel pipes in different storage locations or to detect obstacles in front of the robot body, so as to realize double verification with the detection result of the steel pipe quantity obtained by the RFID reader by reading the identity information of the steel pipe, or with the said RFID reader. Double verification of obstacle information perceived by ultrasonic sensors;
  • the communication module is used to realize the data interaction between the robot body and the monitoring background.
  • a lifting mechanism is provided on the wheeled mobile platform, the RFID reader and the camera are arranged on the lifting mechanism, and the RFID reader is driven by the lifting mechanism , The camera is raised or lowered, and the RFID reading and shooting detection of the steel pipe heads at different heights on the warehouse location.
  • an anti-collision bumper is provided on the wheeled mobile platform, and the anti-collision bumper is arranged around the wheeled mobile platform.
  • the camera is a camera with a pan/tilt head
  • the RFID reader is installed on a bracket that can automatically adjust the pitch angle
  • the RFID reader includes a first RFID reader and a second RFID reader
  • the first RFID reader is used to read the RFID implanted in the steel pipe end, and the first RFID reader Before entering, write unique identification information corresponding to the RFID of each steel pipe
  • the second RFID reader is used to read the RFID with position or number information written on the racks in different locations in the warehouse
  • the second RFID reader Together with the camera, it is used to confirm the current position of the robot body.
  • the magnetic navigation sensor is arranged on the bottom surface of the wheeled mobile platform, and the magnetic navigation sensor uses a plurality of built-in Hall switch sensors in different positions to collect the data above the magnetic strip track.
  • each Hall switch sensor has a signal corresponding to the output, when the Hall switch sensor collects the magnetic field signal, the signal of this road will output a low level, and when the signal output of the magnetic field signal is not collected, it will be a high level.
  • the motion controller rely on the level signals output by different Hall switch sensors to determine whether the magnetic stripe track is deviated from the magnetic navigation sensor; when the Hall switch sensor located in the middle of the magnetic navigation sensor measures the maximum magnetic induction intensity, it means that the robot body is currently On the track of the magnetic stripe, the motion controller does not process the differential motor speed; on the contrary, when the Hall switch sensor that detects the maximum magnetic induction intensity is no longer in the middle position of the magnetic navigation sensor, it means that the robot body and the magnetic stripe There is a deviation in the trajectory, according to which the motion controller performs differential motor speed processing to realize the steering of the robot body and ensure that the robot body moves along the magnetic stripe trajectory.
  • the ultrasonic sensor includes at least four, and two are arranged at the front and rear of the wheeled mobile platform for real-time monitoring of obstacles around the robot body.
  • the environment perception system further includes a contact sensor, which is arranged on the surrounding edges of the robot body; once the robot body contacts or collides with the outside world, the contact sensor is triggered to send a signal to each motion controller.
  • a contact sensor which is arranged on the surrounding edges of the robot body; once the robot body contacts or collides with the outside world, the contact sensor is triggered to send a signal to each motion controller.
  • Emergency stop signal the motion controller controls each motor to stop running, so that the robot body immediately stops walking and issues an alarm.
  • the motion controller is used to control the left front wheel motion control submodule, the right front wheel motion control submodule, the left rear wheel motion control submodule, and the right rear wheel motion control submodule;
  • Each of the control sub-modules includes a driver, the motor, and a reducer; the driver drives the motor to run, and the motor outputs torque after being decelerated by the reducer to drive the roller to rotate.
  • the robot body further includes a power supply system, and the power supply system includes a power manager, a charging circuit, a rechargeable battery, and a power state monitoring module; the rechargeable battery and the charging circuit are both Connected to the power manager, the power state monitoring module is connected to the power manager, and is used to monitor the remaining power in the rechargeable battery in real time;
  • the functional modules provide power.
  • the power manager monitors the real-time power during the movement of the robot body in real time, and issues an alarm for abnormal power consumption states including low power, excessive current, and high temperature; when the robot body is charging, the power management The monitor monitors the charging status of the power supply in real time, and automatically stops charging when the battery is fully charged to prevent overcharging.
  • the robot body is provided with a touch display, which is used to display the current power level, the RFID information in the steel pipe head read by the RFID reader, and the read information on a certain location. The number and type of steel pipes that have been passed.
  • a power supply device is further included, and the power supply device is a non-wireless charging pile, which is used for charging the robot body to supplement power.
  • Another object of the present invention is to provide a steel pipe warehouse management system, which includes the steel pipe warehouse inspection robot system of any of the above embodiments, a steel pipe ID writing subsystem, a warehouse entry and exit information recording subsystem, and an overhead crane guidance subsystem , a warehouse management server; the warehouse management server pre-stores a warehouse electronic map;
  • the steel pipe ID writing subsystem is used to write a unique identification number in the RFID implanted in the head of each steel pipe to mark the identity of the steel pipe before the steel pipe is put into storage;
  • the inbound and outbound recording subsystem is used to read the RFID of the steel pipe when the steel pipe is in or out of the warehouse, record the corresponding relationship between the RFID of the steel pipe and the storage location allocated by the warehouse management server, and record the read out of the steel pipe.
  • Warehouse information and warehousing information are written into the warehouse management server; the warehousing and warehousing information includes the type of the warehousing and warehousing steel pipe, the production batch number, the warehousing and warehousing date, and the corresponding storage location;
  • the bridge-type crane guidance subsystem includes a display set in the bridge-type crane cab; the bridge-type crane guidance subsystem is used for the warehouse management server when the steel pipe is put in or out
  • the steel pipe information of the warehouse is displayed on the display, and the storage location number corresponding to the steel pipe and the location of the storage location on the warehouse map are displayed on the display, so that the bridge crane driver can quickly and accurately find the target storage location according to the prompts on the display;
  • the steel pipe warehouse inspection robot system regularly conducts warehouse inspection and inventory, counts the remaining steel pipe quantity information, steel pipe type information, and steel pipe identity information on each warehouse location, and writes these information into the warehouse management server.
  • the steel pipe warehouse inspection robot system, the steel pipe ID writing subsystem, the warehouse entry and exit information recording subsystem, and the bridge crane guidance subsystem are connected to the existing mature warehouse data management system through interfaces and exchange data.
  • only one steel pipe warehouse inspection robot system is provided in the steel pipe warehouse, or the steel pipe warehouse is divided into several partitions, and each partition is correspondingly equipped with a set of steel pipe warehouse inspection robot system.
  • the steel pipe warehouse inspection robot system of the present invention can replace manual inspection in the steel pipe warehouse, read the inventory of each warehouse location, correct the database, avoid the inconsistency between the database inventory and the actual situation, reduce labor intensity, and improve the steel pipe warehouse.
  • the level of intelligence in management In the invention, the identity of the steel pipe is identified through the RFID technology, and the quantity of the steel pipe is double identified through the RFID and the image processing technology.
  • a display is installed in the cab of the bridge crane, and the information such as the position of the steel pipe storage location (combined with the electronic map of the warehouse) and the number of steel pipes to be put in and out of the warehouse can be displayed to the driver on the display. , so that the driver can quickly find the target storage location according to the prompts, and prevent the problem of information mistransmission caused by the difficulty of finding the target storage location due to the oversized warehouse and by means of shouting and walkie-talkies.
  • FIG. 1 is an overall frame diagram of the steel pipe warehouse inspection robot system of the present invention.
  • FIG. 2 is a schematic diagram of the working state of the steel pipe warehouse inspection robot system of the present invention.
  • FIG. 3 is a block diagram of an environment perception module of the steel pipe warehouse inspection robot system of the present invention.
  • FIG. 4 is a structural block diagram of the motion control module of the steel pipe warehouse inspection robot system of the present invention.
  • FIG. 5 is a schematic diagram of a magnetic navigation sensor on the bottom surface of the wheeled mobile platform of the steel pipe warehouse inspection robot system of the present invention.
  • FIG. 6 is a structural block diagram of the power supply system of the steel pipe warehouse inspection robot system of the present invention.
  • FIG. 7 is a block diagram of the steel pipe warehouse management system of the present invention.
  • FIG. 8 is a schematic diagram of a magnetic stripe track line preset on the ground of the steel pipe warehouse.
  • FIG. 9 is a schematic diagram of partitioning a large steel pipe warehouse.
  • the steel pipe warehouse inspection robot system includes a robot body 10 and a monitoring background 20 ; the robot body 10 exchanges data with the monitoring background 20 through its own communication module and communication layer.
  • the communication layer includes a communication interface capable of realizing wireless/wired communication with the communication module of the robot body 10, a wired broadband network, a wifi wireless network, a dedicated interface for video transmission, and the like.
  • the monitoring background 20 includes a monitoring host computer (installing a monitoring and management software system), and the monitoring host computer is provided with an instruction input terminal (for manual data processing and manual remote control of the robot body), a display (for real-time display of warehouse overall information, warehouse Each location information, electronic map display of the robot body position, robot movement status and inspection work status display), memory (used to receive and store the inspection data of the robot body).
  • a monitoring host computer installing a monitoring and management software system
  • the monitoring host computer is provided with an instruction input terminal (for manual data processing and manual remote control of the robot body), a display (for real-time display of warehouse overall information, warehouse Each location information, electronic map display of the robot body position, robot movement status and inspection work status display), memory (used to receive and store the inspection data of the robot body).
  • the robot body 10 includes a motion control system 11 , a quantity inspection system 12 , an environment perception system 13 , a power supply system 14 and a communication module 15 .
  • the communication module 15 is used to transmit the data collected by the quantity inspection system and the environment perception system, the motion state of the robot body in the motion control system, the remaining power of the robot body, and charging information to the host computer in real time through the communication layer.
  • the motion control system 11 includes a wheeled mobile platform 111 driven by a motor, a motion controller, a magnetic navigation sensor 113 (in conjunction with FIG. 5 ), and a magnetic strip track 114 , which is pre-laid on the On the ground of the steel pipe warehouse, it is used to guide the robot body 10 to move along the magnetic strip track 114 .
  • a quantity inspection system 12 is provided on the wheeled mobile platform 111 , which includes a first RFID reader 121 and a camera 122 .
  • the wheeled mobile platform 111 is also provided with an environment perception system 13 , which includes an ultrasonic sensor 131 , a second RFID reader 132 and a contact sensor 133 .
  • the quantity inspection system 12 and the environment perception system 13 are installed on the wheeled mobile platform, driven by the wheeled mobile platform 111 and moved along the magnetic strip track 114 in the warehouse, inspecting the warehouse locations one by one and checking the steel pipes on the warehouse locations .
  • the camera 122 is a camera with a PTZ, and the first RFID reader 121 is installed on a bracket that can automatically adjust the pitch angle.
  • the wheeled mobile platform 111 has four rollers 1111, and each roller 1111 is independently driven by a motor to achieve steering through differential speed. With the help of the wheeled moving platform 111 , the robot body is driven to move along the magnetic strip track 114 . The output speed of the motor corresponding to each roller 1111 is controlled by the motion controller. As shown in FIG. 4 , the motion controller is connected in communication with the magnetic navigation sensor 113 , the environment perception system 13 , the quantity inspection system 12 and the power supply system 14 (the motion controller of the robot body can be indirectly communicated with the host computer in the monitoring background).
  • the motion controller controls the motors of the different rollers 1111 to form differential rotation to adjust the moving direction of the robot body 10 .
  • the motion controller controls the motor of the roller 1111 to stop rotating, so that the robot body 10 stops moving.
  • the motion controller controls the motor of the roller 1111 to stop rotating, so that the robot body 10 stops in place to perform multiple reviews and inspections. verify.
  • the motion controller controls the rollers 1111 to rapidly reversely roll and return to the charging pile set at the starting point of the robot body 10 to supply power.
  • the motion controller is used to control the left front wheel motion control sub-module, the right front wheel motion control sub-module, the left rear wheel motion control sub-module, and the right rear wheel motion control sub-module; each control sub-module includes a driver, the motor, Reducer; each control sub-module independently controls the rotation of a roller 1111.
  • the driver drives the motor to run, the motor outputs torque after being decelerated by the reducer, and drives the roller to rotate.
  • the wheeled mobile platform 111 is provided with a lift mechanism 117 , which can be a lift frame driven by an air cylinder.
  • a lift mechanism 117 can be a lift frame driven by an air cylinder.
  • the air pump connected to the cylinder starts to work to inflate the cylinder, so that the lifting frame is raised, otherwise, the cylinder is lowered.
  • a lift platform can be set on the lift frame, and the first RFID reader 121 and the camera 122 in the quantity inspection system 12 are installed on the lift platform, and an alarm 16 is also installed at the same time.
  • the RFID reading and photographing detection of the steel pipe heads at different heights in a certain storage location can be performed. As shown in FIG.
  • the first RFID reader 121 obtains the quantity of a certain steel pipe by reading the RFID of the steel pipe, and the camera 122 obtains the quantity of a certain steel pipe through image recognition.
  • the corresponding relationship is sent to the upper computer through the communication module 15 .
  • the magnetic navigation sensor 113 is disposed on the bottom surface of the wheeled mobile platform 111 and is disposed corresponding to the magnetic stripe track 114 on the warehouse floor.
  • the magnetic navigation sensor 113 is used to judge in real time whether the robot body 10 is moving on the magnetic stripe track 114, and when the robot body 10 deviates from the magnetic stripe track 114, it sends out correction information to the motion controller in real time, and the motion controller controls the output speed of the motor , so that the different rollers generate a difference in rotation speed to realize the deflection adjustment of the moving direction of the robot body.
  • the magnetic navigation sensor 113 has a built-in array of multiple Hall switch sensors, for example, 3-8 Hall switch sensors, and 1-2 Hall switch sensors are arranged in the middle of the bottom surface of the wheeled mobile platform 111, and the Hall switch sensors are symmetrically arranged on both sides of the middle Hall switch sensor. These Hall switch sensors are set at different sampling points. The Hall switch sensors at different positions collect the weak magnetic field above the magnetic stripe track 114. Each Hall switch sensor has a corresponding output signal. When there is a magnetic field signal, this signal will output a low level, and when no magnetic field signal is collected, the signal output will be a high level; relying on the level signals output by different Hall switch sensors, it is judged whether the magnetic stripe track 114 is relative to the magnetic field.
  • the navigation sensor 113 is out of position. Among them, when the Hall switch sensor located in the middle of the magnetic navigation sensor 113 measures the maximum magnetic induction intensity, it means that the current middle part of the robot body is on the magnetic stripe track 114, and the motion controller does not differentiate the motor speed processing; Conversely, when the Hall switch sensor that detects the maximum magnetic induction intensity is no longer in the middle position of the magnetic navigation sensor 113, it means that there is a certain deviation between the middle part of the robot body and the magnetic stripe track 114, and the motion controller makes a difference accordingly. The processing of the rotation speed of the electric motor is adjusted to realize the steering of the robot body and ensure that the robot body returns to the magnetic stripe track 114 .
  • the wheeled mobile platform 111 is also provided with an environment perception system 13 , which includes an ultrasonic sensor 131 , a second RFID reader 132 and a contact sensor 133 .
  • the second RFID reader 132 is used to read the information of different storage locations in the steel pipe warehouse (RFID tags are also provided on the storage racks of different storage locations, and the labels are written with the number of the storage location and the location in the warehouse).
  • the camera 122 can also photograph the environment around the robot.
  • the second RFID reader 132 and the camera 122 are jointly used to confirm the current position of the robot body, and send the position information to the upper computer through the communication module 15 .
  • the warehouse electronic map is pre-stored in the host computer. Combined with the warehouse electronic map, the current position of the robot body in the warehouse can be displayed in the monitoring background.
  • ultrasonic sensors 131 there are at least four ultrasonic sensors 131 , which are respectively disposed on the front two of the wheeled mobile platform 111 and the rear two of the wheeled mobile platform 111 .
  • the ultrasonic sensor 131 is used to sense whether there are obstacles within a certain distance around in real time, so as to control the moving speed of the wheeled mobile platform 111, and the sensing result of the ultrasonic sensor 131 and the camera 122 are around.
  • the shooting results form double verification.
  • Contact sensors 133 are provided on the surrounding edges of the wheeled mobile platform 111 .
  • the contact sensor 133 is triggered to send an emergency stop signal to each motion controller, and the motion controller controls each motor to stop running, so that the robot body 10 immediately stops walking and issues an alarm.
  • the sensing results of the ultrasonic sensor 131 and the contact sensor 133 also constitute double verification.
  • an anti-collision bumper 116 is provided on the edge of the wheeled mobile platform 111 , and the contact sensor 133 is provided on the anti-collision bumper 116 .
  • the power supply system 14 includes a power manager 141 , a charging circuit 142 , a rechargeable battery 143 , and a power state monitoring module 144 .
  • the rechargeable battery 143 and the charging circuit 142 are both electrically connected to the power manager 141 .
  • the power state monitoring module 144 is connected to the power manager 141 for monitoring the remaining power in the rechargeable battery 143 in real time.
  • the power manager 141 provides power to each power-consuming functional module through power supply circuits such as RFID readers, cameras, and ultrasonic sensors.
  • the inspection robot system of the present invention further includes a wireless charging pile, which is provided in the warehouse and along one side of the magnetic strip track 114 .
  • the motion controller receives the signal of insufficient power, and sends instructions to each motion control sub-module to control the rotation direction and speed of each roller, so that the robot body returns to the Go to the wireless charging pile to complete the power supply.
  • the motion controller receives the signal that the power is full, and sends instructions to each motion control sub-module to control the operation of each roller, so that the robot body leaves the charging pile and stops automatically.
  • the charging prevents overcharging, and continues to move along the magnetic stripe track 114 for inspection work.
  • the power manager 141 also issues an alarm for abnormal power consumption states including low power, excessive current, and high temperature.
  • a touch display is provided on the robot body 10 to display the current power level, the RFID information in the steel pipe head read by the RFID reader, and the number and number of steel pipes that have been read in a certain location. model.
  • FIG. 7 it is a steel pipe warehouse management system of the present invention, which includes the above-mentioned steel pipe warehouse inspection robot system, and also includes a steel pipe ID writing subsystem, a warehouse entry and exit information recording subsystem, an overhead crane guidance subsystem, and a warehouse. Management server. Among them, the warehouse electronic map is pre-stored in the memory inside the warehouse management server.
  • the steel pipe ID writing subsystem is used to write a unique identification number in the RFID implanted in the head of each steel pipe to mark the identity of the steel pipe before the steel pipe is put into storage.
  • the entry and exit recording subsystem is used to read the RFID of the steel pipe when the steel pipe is in or out of the warehouse, record the corresponding relationship between the RFID of the steel pipe and the storage location allocated by the warehouse management server, and record the outgoing information of the steel pipe.
  • the storage and storage information is written into the warehouse management server; the storage and storage information includes the type of the storage and storage steel pipe, the production batch number, the storage and storage date, and the corresponding storage location.
  • the steel pipe warehouse inspection robot system regularly conducts warehouse inspection and inventory, counts the remaining steel pipe quantity information, steel pipe type information, and steel pipe identity information in each warehouse location, and writes this information to the warehouse management server.
  • An overhead crane guidance subsystem including a display installed in the overhead crane cab.
  • the bridge crane guidance subsystem is used for the warehouse management server to display the location number and location on the warehouse map corresponding to the steel pipe according to the information of the steel pipe to be released or put in when the steel pipe is put in or out of the warehouse.
  • the overhead crane driver can visually see the target storage location, and quickly and accurately find the target storage location.
  • a mature warehouse data management system has been installed on the warehouse management server.
  • the steel pipe warehouse inspection robot system, the steel pipe ID writing subsystem, the warehouse entry and exit information recording subsystem, and the bridge crane guidance subsystem communicate with existing mature systems through interfaces.
  • Warehouse data management systems to connect and exchange data.
  • FIG. 8 only one steel pipe warehouse inspection robot system is installed in the steel pipe warehouse, and magnetic strip tracks 114 are pre-laid in the warehouse.
  • the robot body 10 sequentially inspects each storage location along the preset magnetic stripe track 114 .
  • FIG. 9 in order to improve the efficiency of inspection and reduce the length of inspection time, for a warehouse with a large area, the warehouse area is divided into several areas, each area is equipped with a robot body 10, and each robot body 10 is responsible for the inspection book location within the region.
  • the steel pipe warehouse inspection robot system of the present invention can replace manual inspection in the steel pipe warehouse, read the inventory of each warehouse, correct the database, avoid the inconsistency between the database inventory and the actual situation, reduce labor intensity, and improve the steel pipe warehouse.
  • the level of intelligence in management According to the invention, the identity of the steel pipe is identified through the RFID technology, and the quantity of the steel pipe is double identified through the RFID and the image processing technology.
  • a display is installed in the cab of the bridge crane, and the information such as the position of the steel pipe storage location (combined with the electronic map of the warehouse) and the number of steel pipes to be put in and out of the warehouse can be displayed to the driver on the display. , so that the driver can quickly find the target location according to the prompts, prevent the problem of information mistransmission caused by the difficulty of finding the target location due to the large warehouse, and eliminate the noise interference and improve the work efficiency of the bridge crane driver. .

Abstract

一种钢管仓库巡查机器人系统及钢管仓库管理系统,通过RFID技术识别钢管身份,通过RFID和图像处理技术识别钢管数量,使用移动巡查机器人对库位定时巡查,读取每个库位的库存情况,校正数据库,钢管仓库巡查机器人系统用于代替人工在钢管仓库内进行巡查,读取每个库位的库存情况,校正数据库,避免数据库库存与实际情况不一致的情况,减少人工劳动强度,该钢管仓库管理系统,在桥式起重机驾驶室内安装显示器,可将需要进行出入库的钢管库位位置、出入库的钢管数量等信息在显示器上显示给驾驶员,使驾驶员可以快速根据提示找到目标库位,防止喊话造成的信息误传问题,提高工作效率。

Description

钢管仓库巡查机器人系统及钢管仓库管理系统 技术领域
本发明涉及仓库管理技术,特别是涉及一种钢管仓库巡查机器人系统及钢管仓库管理系统。
背景技术
钢管生产加工完毕之后,需要先存放在仓库,销售发货时再从仓库出库。仓库内有很多库位,为钢架结构。每个库位上放置的钢管型号不统一。钢管入库时,入库操作员将当前入库的钢管型号、数量确认,现有技术是使用扫码枪扫描贴在钢管上的条形码,即可自动读取该钢管的型号。然后,从数据库中查询到可容纳的库位,将这批钢管分配到该库位,并记录进数据库。仓库内配有桥式起重机,分配好库位之后,入库操作员通过喊话形式告诉桥式起重机驾驶员,将这批钢管吊放到哪个库位,桥式起重机驾驶员通过边操作边目测的方式进行作业。出库时,仓库管理员从数据库中查询到需要出库的钢管的库位,在系统中将该批钢管记录为出库数据,并喊话告知桥式起重机驾驶员去吊取该批钢管。由于钢管仓库规模极大,管理起来有很大难度。目前该技术主要存在如下缺点:
1)入库时逐个扫描条形码,效率低下。2)通过人工喊话方式告知桥式起重机驾驶员,劳动强度大、易出现差错。3)驾驶员目测寻找库位,由于仓库很大,需要驾驶员非常熟悉仓库的布局,有较强的方位感才能胜任,对于新手或者方向感差的驾驶员,非常费时。4)库内钢管的存储情况,仅仅是出库、入库时进行系统数据库操作,如果库内钢管出现了其他人为的移动、或在出库、入库操作时人员操作失误、或系统出现错误,都有可能造成数据库库存与实际情况不一致的问题。
发明内容
本发明要解决的技术问题是提供一种钢管仓库巡查机器人系统及钢管仓库管理系统,通过RFID技术识别钢管身份,通过RFID和图像处理技术识别钢管数量,利用无线通信网络及多媒体方式为桥式起重机驾驶员提供位置提示、位置导航,使用移动巡查机器人对库位定时巡查,读取每个库位的库存情况,校正数据库。
本发明涉及一种钢管仓库巡查机器人系统,其包括机器人本体、监控后台;
所述机器人本体包括运动控制系统、数量巡查系统、环境感知系统和通信模块;所述运动控制系统包含由电机驱动的轮式移动平台、运动控制器、磁导航传感器、磁条轨迹,所述磁条轨迹预先铺设在钢管仓库地面,以引导机器人本体沿所述磁条轨迹移动;所述数量巡查 系统包含RFID阅读器、摄像机;所述环境感知系统包含超声波传感器;所述数量巡查系统和环境感知系统设于所述轮式移动平台上,由所述轮式移动平台带动移动;
所述轮式移动平台具有多个滚轮,可带动机器人本体沿预设的磁条轨迹移动,所述各滚轮分别由电机驱动转动,且各电机的输出转速由运动控制器控制;所述磁导航传感器对应所述磁条轨迹而设置;所述磁导航传感器用于实时判断机器人本体是否在所述磁条轨迹上移动,并在机器人本体偏离所述磁条轨迹时实时向运动控制器发出纠偏信息,由运动控制器控制电机的输出转速,使不同滚轮产生转速差进而实现机器人本体移动方向的偏转调整;
所述RFID阅读器用于读取钢管仓库内不同库位信息以及库位上不同钢管的身份信息;所述超声波传感器用于感知机器人本体周围的障碍物;
所述摄像机用于识别不同库位的钢管数量或者检测机器人本体移动前方的障碍物,以与所述RFID阅读器通过阅读钢管的身份信息所获得的钢管数量检测结果实现双重验证,或者与所述超声波传感器所感知的障碍物信息双重验证;
所述通信模块用于实现所述机器人本体和监控后台之间的数据交互。
根据本发明的较佳实施例,其中,在所述轮式移动平台上设有升降机构,所述RFID阅读器、摄像机设于所述升降机构上,由所述升降机构带动所述RFID阅读器、摄像机升高或降低,对库位上处于不同高度的钢管封头中的RFID读取和拍摄检测。
根据本发明的较佳实施例,其中,在所述轮式移动平台上设有防撞保险杠,所述防撞保险杠设在所述轮式移动平台的周围。
根据本发明的较佳实施例,其中,所述摄像机为带有云台的摄像机,所述RFID阅读器设在可自动调节俯仰角度的支架上。
根据本发明的较佳实施例,其中,所述RFID阅读器包括第一RFID阅读器和第二RFID阅读器,所述第一RFID阅读器用于读取钢管封头内植入的RFID,在植入前,对应每根钢管的RFID写入唯一识别信息;所述第二RFID阅读器用于读取仓库内不同库位库架上写入了位置或编号信息的RFID;所述第二RFID阅读器与所述摄像机共同用于确认机器人本体当前的位置。
根据本发明的较佳实施例,其中,所述磁导航传感器设于所述轮式移动平台的底面,磁导航传感器利用其内置的多个处于不同位置的霍尔开关传感器采集磁条轨迹上方的微弱磁场,每一个霍尔开关传感器都有一路信号对应输出,当霍尔开关传感器采集到磁场信号时,该路信号就会输出低电平,当没有采集到磁场信号的信号输出则为高电平;依靠不同霍尔开关传感器输出的电平信号,判断磁条轨迹是否相对于磁导航传感器偏离位置;当位于磁导航传感器正中间的霍尔开关传感器测得磁感应强度最大时,表示机器人本体目前正处于磁条轨 迹上,运动控制器不做出差别化电机转速的处理;反之,当检测到最大磁感应强度的霍尔开关传感器不再处于磁导航传感器的中间位置时,表示机器人本体与磁条轨迹有偏差,据此运动控制器做出差别化电机转速的处理以实现机器人本体的转向,确保机器人本体沿磁条轨迹移动。
根据本发明的较佳实施例,其中,所述超声波传感器包括至少四个,在所述轮式移动平台的前后各布置2个,用于实时监测机器人本体四周有无障碍。
根据本发明的较佳实施例,其中,所述环境感知系统还包含接触传感器,其设在机器人本体的四周边缘;一旦机器人本体与外界发生接触或碰撞,即触发接触传感器向各运动控制器发出急停信号,运动控制器控制各电机停止运转,使机器人本体立即停止行走并发出报警。
根据本发明的较佳实施例,其中,所述运动控制器用于控制左前轮运动控制子模块、右前轮运动控制子模块、左后轮运动控制子模块、右后轮运动控制子模块;各所述控制子模块包括驱动器、所述电机、减速器;驱动器驱动电机运转,电机经减速器减速后输出扭矩,带动滚轮转动。
根据本发明的较佳实施例,其中,所述机器人本体还包括供电系统,所述供电系统包括电量管理器、充电电路、可充电电池、电源状态监控模块;所述可充电电池、充电电路均与所述电量管理器连接,所述电源状态监控模块与所述电量管理器连接,用于实时监控可充电电池中的剩余电量;所述电量管理器向机器人本体上各用电元件或用电功能模块提供电能。
所述电源管理器实时监控机器人本体运动过程中的实时电量,并对异常的用电状态包括电量过低、电流过大、温度过高的情况进行报警;当机器人本体在充电时,该电源管理器实时监控电源的充电状态,并在电量充满后自动停止充电防止过充。
根据本发明的较佳实施例,其中,所述机器人本体上设有触控显示器,用于显示当前电量、RFID阅读器读取的钢管封头中的RFID信息、以及某库位上已读取过的钢管数量和型号。
根据本发明的较佳实施例,其中,还包括电量补给装置,所述电量补给装置为非无线充电桩,用于对机器人本体进行充电补充电能。
本发明的另一发明目的是提供一种钢管仓库管理系统,其包括上述任一实施例的钢管仓库巡查机器人系统、钢管ID写入子系统、出入库信息记录子系统、桥式起重机引导子系统、仓库管理服务器;所述仓库管理服务器预存有仓库电子地图;
所述钢管ID写入子系统用于在钢管入库前,每根钢管的封头中植入的RFID写入唯一标识号,以标记该钢管的身份;
所述出入库记录子系统用于在钢管入库或出库时,读取钢管的RFID,记录该钢管的RFID与仓库管理服务器所分配的库位的对应关系,并将读取的钢管的出库信息和入库信息写入仓 库管理服务器;所述出入库信息包括出入库钢管类型、生产批号、出入库日期、对应的库位;
所述桥式起重机引导子系统,包括设于桥式起重机驾驶室内的显示器;所述桥式起重机引导子系统用于在钢管入库或出库时,所述仓库管理服务器根据所要出库或入库的钢管信息,将该钢管所对应的库位编号、库位在仓库地图上的位置显示在所述显示器上,供桥式起重机驾驶员根据显示器上的提示快速准确找到目标库位;
所述钢管仓库巡查机器人系统定期进行仓库巡查盘点,清点每个库位上的剩余钢管数量信息、钢管类型信息、钢管身份信息,并将这些信息写入仓库管理服务器。
根据本发明较佳实施例,其中,所述钢管仓库巡查机器人系统、钢管ID写入子系统、出入库信息记录子系统、桥式起重机引导子系统通过接口与已有成熟的仓库数据管理系统连接和交换数据。
根据本发明较佳实施例,其中,钢管仓库中仅配设一套钢管仓库巡查机器人系统,或者钢管仓库被分成若干个分区,每个分区对应配设一套钢管仓库巡查机器人系统。
本发明的钢管仓库巡查机器人系统,可代替人工在钢管仓库内进行巡查,读取每个库位的库存情况,校正数据库,避免数据库库存与实际情况不一致的情况,减少人工劳动强度,提高钢管仓库管理的智能化程度。本发明的通过RFID技术识别钢管身份,通过RFID和图像处理技术双重识别钢管数量。
本发明的钢管仓库管理系统,在桥式起重机驾驶室内安装显示器,可将需要进行出入库的钢管库位位置(结合仓库的电子地图)、出入库的钢管数量等信息在显示器上显示给驾驶员,使驾驶员可以快速根据提示找到目标库位,防止因仓库过大难以找到目标库位和通过喊话、对讲机等方式造成的信息误传问题。
下面结合附图对本发明作进一步说明。
附图说明
图1为本发明的钢管仓库巡查机器人系统的整体框架图。
图2为本发明的钢管仓库巡查机器人系统的工作状态示意图。
图3为本发明的钢管仓库巡查机器人系统的环境感知模块的框图。
图4为本发明的钢管仓库巡查机器人系统的运动控制模块的结构框图。
图5为本发明的钢管仓库巡查机器人系统轮式移动平台底面的磁导航传感器示意图。
图6为本发明的钢管仓库巡查机器人系统的供电系统的结构框图。
图7为本发明的钢管仓库管理系统的框图。
图8为预设在钢管仓库地面上的磁条轨迹线路示意图。
图9为将大型的钢管仓库进行分区的示意图。
具体实施方式
如图1所示为,本发明一个较佳实施例的钢管仓库巡查机器人系统的整体框架图。如图1所示,钢管仓库巡查机器人系统包括机器人本体10和监控后台20;机器人本体10通过自身所设的通信模块和通信层与监控后台20进行数据交换。其中通信层包括能够与机器人本体10的通信模块实现无线/有线通信联络的通信接口、有线宽带网络、wifi无线网络、视频传输专用接口等。监控后台20包括监控上位机(安装监控与管理软件系统),该监控上位机设有指令输入端(用于手动处理数据和手动遥控操作机器人本体)、显示器(用于实时显示仓库总体信息、仓库各库位信息、机器人本体位置电子地图显示、机器人移动状态和巡查工作状态显示),存储器(用于接收和存储机器人本体的巡查数据)。
在本发明的较佳实施例中,机器人本体10包括运动控制系统11、数量巡查系统12、环境感知系统13、供电系统14和通信模块15。通信模块15用于将数量巡查系统、环境感知系统采集的数据、运动控制系统中机器人本体的运动状态、机器人本体的电量剩余量、充电信息等通过通信层实时传送给上位机。
关于机器人本体的各组成部分说明如下。
结合图2所示,运动控制系统11包含由电机驱动的轮式移动平台111、运动控制器、磁导航传感器113(结合图5)、磁条轨迹114,所述磁条轨迹114是预先铺设在钢管仓库的地面上的,用于以引导机器人本体10沿磁条轨迹114移动。在轮式移动平台111上设有数量巡查系统12,其包含第一RFID阅读器121、摄像机122。在轮式移动平台111上还设有环境感知系统13,其包含超声波传感器131、第二RFID阅读器132和接触传感器133。数量巡查系统12和环境感知系统13设于所述轮式移动平台上,由轮式移动平台111带动并在仓库内沿着磁条轨迹114移动,挨个巡查仓库库位、盘点库位上的钢管。其中,摄像机122为带有云台的摄像机,而第一RFID阅读器121设在可自动调节俯仰角度的支架上。
所述轮式移动平台111具有四个滚轮1111,每个滚轮1111独立由电机驱动,通过差动速度实现转向。借助轮式移动平台111,带动机器人本体沿磁条轨迹114移动。其中,每个滚轮1111对应的电机的输出转速由运动控制器控制。如图4所示,运动控制器与磁导航传感器113、环境感知系统13、数量巡查系统12及供电系统14通信连接(可由监控后台的上位机间接通信连接机器人本体的运动控制器)。具体地,当磁导航传感器113检测到机器人本体10不是沿着磁条轨迹114移动时,运动控制器控制不同滚轮1111的电机形成差速转动,实现机器人本体10的移动方向的调节。当环境感知系统13感知周围有障碍物、或触碰到障碍物时,运动控制器控制滚轮1111的电机停止转动,使机器人本体10停止移动。当数量巡查系统12中的第一RFID阅读器121、摄像机122所检测的某型号钢管的数量不一致时,运动 控制器控制滚轮1111的电机停止转动,使机器人本体10停在原地进行多次复核和验证。在巡查过程中,当供电系统14检测到机器人本体10中电量不足时,运动控制器控制滚轮1111快速反向滚动,回复到机器人本体10的出发点所设置的充电桩进行补给电量。
其中,运动控制器用于控制左前轮运动控制子模块、右前轮运动控制子模块、左后轮运动控制子模块、右后轮运动控制子模块;各控制子模块包括驱动器、所述电机、减速器;各控制子模块分别独立控制一个滚轮1111的转动。各各控制子模块中,驱动器驱动电机运转,电机经减速器减速后输出扭矩,带动滚轮转动。
如图2所示,轮式移动平台111上设有升降机构117,其可为一个由气缸驱动的升降架。在需要升高时,气缸所连接的气泵开始工作,对气缸充气,使升降架升起,反之则使气缸回落下降。在升降架上可设置升降平台,在升降平台上安装所述数量巡查系统12中的第一RFID阅读器121和摄像机122,同时还安装有报警器16。通过升降架的升降动作,可以对某库位上处于不同高度的钢管封头中的RFID读取和拍摄检测。如图3所示,第一RFID阅读器121通过阅读钢管的RFID获取某钢管的数量,摄像机122通过图像识别获取某钢管的数量,二者形成双重验证,并将巡查的库位信息及钢管数量的对应关系通过通信模块15发送给上位机。
结合图5及图3所示,磁导航传感器113设于轮式移动平台111的底面,对应仓库地面上的磁条轨迹114而设置。磁导航传感器113用于实时判断机器人本体10是否在磁条轨迹114上移动,并在机器人本体10偏离磁条轨迹114时,实时向运动控制器发出纠偏信息,由运动控制器控制电机的输出转速,使不同滚轮产生转速差进而实现机器人本体移动方向的偏转调整。具体地,磁导航传感器113内置内多个霍尔开关传感器组成的阵列,例如3-8个霍尔开关传感器,在轮式移动平台111底面的中间设有1-2霍尔开关传感器,并在中间霍尔开关传感器的两旁对称设有霍尔开关传感器。这些霍尔开关传感器设置在不同的采样点,处于不同位置的霍尔开关传感器采集磁条轨迹114上方的微弱磁场,每一个霍尔开关传感器都有一路信号对应输出,当霍尔开关传感器采集到磁场信号时,该路信号就会输出低电平,当没有采集到磁场信号的信号输出则为高电平;依靠不同霍尔开关传感器输出的电平信号,判断磁条轨迹114是否相对于磁导航传感器113偏离位置。其中,当位于磁导航传感器113正中间的霍尔开关传感器测得磁感应强度最大时,表示机器人本体目前的中间部位正处于磁条轨迹114上,运动控制器不做出差别化电机转速的处理;反之,当检测到最大磁感应强度的霍尔开关传感器不再处于磁导航传感器113的中间位置时,表示机器人本体的中间部位与磁条轨迹114之间有一定偏差,据此运动控制器做出差别化电机转速的处理以实现机器人本体的转向,确保机器人本体回复到磁条轨迹114上。
如图2及图3所示,在轮式移动平台111上还设有环境感知系统13,其包含超声波传感 器131、第二RFID阅读器132和接触传感器133。第二RFID阅读器132用于读取钢管仓库内不同库位(在不同库位的库架上也设有RFID标签,该标签写入了该库位的编号及在仓库中的位置)信息。其中,摄像机122也可以拍摄机器人周围所处的环境。第二RFID阅读器132与摄像机122共同用于确认机器人本体当前的位置,并将位置信息通过通信模块15发送给上位机。上位机中预存了仓库电子地图,结合仓库电子地图可在监控后台显示出机器人本体的目前在仓库中的位置。
如图3所示,超声波传感器131至少有4个,分别设于轮式移动平台111的前面两个和轮式移动平台111的后面两个。在机器人本体行进的过程中,超声波传感器131用于实时感测周围一定距离范围内是否有障碍物,从而控制轮式移动平台111的移动速度,且超声波传感器131的感测结果与摄像机122在周围的拍摄结果形成双重验证。在轮式移动平台111的四周边缘设有接触传感器133。一旦机器人本体10与外界发生接触或碰撞,即触发接触传感器133向各运动控制器发出急停信号,运动控制器控制各电机停止运转,使机器人本体10立即停止行走并发出报警。超声波传感器131和接触传感器133的感测结果也构成双重验证。此外,为了防止机器人本体10被撞坏,在轮式移动平台111的边缘设有防撞保险杠116,而接触传感器133设置在防撞保险杠116上。
如图6所示,为本发明巡查机器人系统的供电系统14。供电系统14包括电量管理器141、充电电路142、可充电电池143、电源状态监控模块144。可充电电池143、充电电路142均与电量管理器141电性连接。电源状态监控模块144与电量管理器141连接,用于实时监控可充电电池143中的剩余电量。电量管理器141通过各个用电设备,如RFID阅读器、摄像机、超声波传感器等供电电路向各用电功能模块提供电能。
此外,本发明巡查机器人系统还包括无线充电桩,其设在仓库且沿着磁条轨迹114的沿线一侧。当电源管理器141监控到机器人本体10运动过程中的电量不足时,运动控制器接收到电量不足的信号,向各个运动控制子模块发出指令、控制各滚轮的转动方向和速度,使机器人本体回到无线充电桩完成电量补给。当电源管理器141监控到机器人本体10的电量充满时,运动控制器接收到电量已满的信号,向各个运动控制子模块发出指令、控制各滚轮的运转,使机器人本体离开充电桩,自动停止充电防止过充,并继续沿磁条轨迹114移动进行巡查工作。此外,电源管理器141还对异常的用电状态包括电量过低、电流过大、温度过高的情况进行报警。
如图2所示,在机器人本体10上设有触控显示器,用于显示当前电量、RFID阅读器读取的钢管封头中的RFID信息、以及某库位上已读取过的钢管数量和型号。
结合图7所示,为本发明的钢管仓库管理系统,其包括上述的钢管仓库巡查机器人系统, 此外还包含钢管ID写入子系统、出入库信息记录子系统、桥式起重机引导子系统、仓库管理服务器。其中,仓库管理服务器内部的存储器中预存有仓库电子地图。
其中,钢管ID写入子系统用于在钢管入库前,每根钢管的封头中植入的RFID写入唯一标识号,以标记该钢管的身份。出入库记录子系统用于在钢管入库或出库时,读取钢管的RFID,记录该钢管的RFID与仓库管理服务器所分配的库位的对应关系,并将读取的钢管的出库信息和入库信息写入仓库管理服务器;所述出入库信息包括出入库钢管类型、生产批号、出入库日期、对应的库位。其中,钢管仓库巡查机器人系统定期进行仓库巡查盘点,清点每个库位上的剩余钢管数量信息、钢管类型信息、钢管身份信息,并将这些信息写入仓库管理服务器。桥式起重机引导子系统,包括设于桥式起重机驾驶室内的显示器。桥式起重机引导子系统用于在钢管入库或出库时,仓库管理服务器根据所要出库或入库的钢管信息,将该钢管所对应的库位编号、库位在仓库地图上的位置显示在显示器上,供桥式起重机驾驶员直观地看到目标库位,并快速准确找到目标库位。
其中,仓库管理服务器上已安装有成熟的仓库数据管理系统,所述钢管仓库巡查机器人系统、钢管ID写入子系统、出入库信息记录子系统、桥式起重机引导子系统通过接口与已有成熟的仓库数据管理系统连接和交换数据。
如图8所示,钢管仓库中仅配设一套钢管仓库巡查机器人系统,在仓库内预铺设了磁条轨迹114,该磁条轨迹114为依次穿过每排库位前方的巡查走道,使机器人本体10沿预设的磁条轨迹114依次巡查每个库位。如图9所示,为了提高巡查的效率,减少巡查时间长度,对于面积较大的仓库,将库区划分为若干个区域,每个区域配备一台机器人本体10,各个机器人本体10负责巡查本区域内库位。
本发明的钢管仓库巡查机器人系统,可代替人工在钢管仓库内进行巡查,读取每个库位的库存情况,校正数据库,避免数据库库存与实际情况不一致的情况,减少人工劳动强度,提高钢管仓库管理的智能化程度。本发明的通过RFID技术识别钢管身份,通过RFID和图像处理技术双重识别钢管数量。
本发明的钢管仓库管理系统,在桥式起重机驾驶室内安装显示器,可将需要进行出入库的钢管库位位置(结合仓库的电子地图)、出入库的钢管数量等信息在显示器上显示给驾驶员,使驾驶员可以快速根据提示找到目标库位,防止因仓库过大难以找到目标库位和通过喊话、对讲机等方式造成的信息误传问题,排除噪音干扰,提高桥式起重机驾驶员的工作效率。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (14)

  1. 一种钢管仓库巡查机器人系统,其特征在于,其包括:机器人本体、监控后台;
    所述机器人本体包括运动控制系统、数量巡查系统、环境感知系统和通信模块;所述运动控制系统包含由电机驱动的轮式移动平台、运动控制器、磁导航传感器、磁条轨迹,所述磁条轨迹预先铺设在钢管仓库地面,以引导机器人本体沿所述磁条轨迹移动;所述数量巡查系统包含RFID阅读器、摄像机;所述环境感知系统包含超声波传感器;所述数量巡查系统和环境感知系统设于所述轮式移动平台上,由所述轮式移动平台带动移动;
    所述轮式移动平台具有多个滚轮,可带动机器人本体沿预设的磁条轨迹移动,所述各滚轮分别由电机驱动转动,且各电机的输出转速由运动控制器控制;所述磁导航传感器对应所述磁条轨迹而设置;所述磁导航传感器用于实时判断机器人本体是否在所述磁条轨迹上移动,并在机器人本体偏离所述磁条轨迹时实时向运动控制器发出纠偏信息,由运动控制器控制电机的输出转速,使不同滚轮产生转速差进而实现机器人本体移动方向的偏转调整;
    所述RFID阅读器用于读取钢管仓库内不同库位信息以及库位上不同钢管的身份信息;所述超声波传感器用于感知机器人本体周围的障碍物;
    所述摄像机用于识别不同库位的钢管数量或者检测机器人本体移动前方的障碍物,以与所述RFID阅读器通过阅读钢管的身份信息所获得的钢管数量检测结果实现双重验证,或者与所述超声波传感器所感知的障碍物信息双重验证;
    所述通信模块用于实现所述机器人本体和监控后台之间的数据交互。
  2. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,在所述轮式移动平台上设有升降机构,所述RFID阅读器、摄像机设于所述升降机构上,由所述升降机构带动所述RFID阅读器、摄像机升高或降低,对库位上处于不同高度的钢管封头中的RFID读取和拍摄检测。
  3. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,在所述轮式移动平台上设有防撞保险杠,所述防撞保险杠设在所述轮式移动平台的周围。
  4. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,所述摄像机为带有云台的摄像机,所述RFID阅读器设在可自动调节俯仰角度的支架上。
  5. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,所述RFID阅读器包括第一RFID阅读器和第二RFID阅读器,所述第一RFID阅读器用于读取钢管封头内植入的RFID;所述第二RFID阅读器用于读取仓库内不同库位库架上写入了位置或编号信息的RFID;所述第二RFID阅读器与所述摄像机共同用于确认机器人本体当前的位置。
  6. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,所述磁导航传感器设于所述轮式移动平台的底面,磁导航传感器利用其内置的多个处于不同位置的霍尔开关传感 器采集磁条轨迹上方的微弱磁场,每一个霍尔开关传感器都有一路信号对应输出,当霍尔开关传感器采集到磁场信号时,该路信号就会输出低电平,当没有采集到磁场信号的信号输出则为高电平;依靠不同霍尔开关传感器输出的电平信号,判断磁条轨迹是否相对于磁导航传感器偏离位置;当位于磁导航传感器正中间的霍尔开关传感器测得磁感应强度最大时,表示机器人本体目前正处于磁条轨迹上,运动控制器不做出差别化电机转速的处理;反之,当检测到最大磁感应强度的霍尔开关传感器不再处于磁导航传感器的中间位置时,表示机器人本体与磁条轨迹有偏差,据此运动控制器做出差别化电机转速的处理以实现机器人本体的转向,确保机器人本体沿磁条轨迹移动。
  7. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,所述超声波传感器包括至少四个,在所述轮式移动平台的前后各布置2个,用于实时监测机器人本体四周有无障碍。
  8. 根据权利要求1或7所述的钢管仓库巡查机器人系统,其特征在于,所述环境感知系统还包含接触传感器,其设在机器人本体的四周边缘;一旦机器人本体与外界发生接触或碰撞,即触发接触传感器向运动控制器发出急停信号,运动控制器控制电机停止运转,使机器人本体立即停止行走并发出报警。
  9. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,所述运动控制器用于控制左前轮运动控制子模块、右前轮运动控制子模块、左后轮运动控制子模块、右后轮运动控制子模块;各所述控制子模块包括驱动器、所述电机、减速器;驱动器驱动电机运转,电机经减速器减速后输出扭矩,带动滚轮转动。
  10. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,所述机器人本体还包括供电系统,所述供电系统包括电量管理器、充电电路、可充电电池、电源状态监控模块;所述可充电电池、充电电路均与所述电量管理器连接,所述电源状态监控模块与所述电量管理器连接,用于实时监控可充电电池中的剩余电量;所述电量管理器向机器人本体上各用电元件或用电功能模块提供电能。
  11. 根据权利要求1所述的钢管仓库巡查机器人系统,其特征在于,还包括电量补给装置,所述电量补给装置为非无线充电桩,用于对机器人本体进行充电补充电能。
  12. 一种钢管仓库管理系统,其特征在于,其包括权利要求1-11任一项所述的钢管仓库巡查机器人系统、钢管ID写入子系统、出入库信息记录子系统、桥式起重机引导子系统、仓库管理服务器;所述仓库管理服务器预存有仓库电子地图;
    所述钢管ID写入子系统用于在钢管入库前,每根钢管的封头中植入的RFID写入唯一标识号,以标记该钢管的身份;
    所述出入库记录子系统用于在钢管入库或出库时,读取钢管的RFID,记录该钢管的RFID与仓库管理服务器所分配的库位的对应关系,并将读取的钢管的出库信息和入库信息写入仓库管理服务器;所述出入库信息包括出入库钢管类型、生产批号、出入库日期、对应的库位;
    所述桥式起重机引导子系统,包括设于桥式起重机驾驶室内的显示器;所述桥式起重机引导子系统用于在钢管入库或出库时,所述仓库管理服务器根据所要出库或入库的钢管信息,将该钢管所对应的库位编号、库位在仓库地图上的位置显示在所述显示器上,供桥式起重机驾驶员根据显示器上的提示快速准确找到目标库位;
    所述钢管仓库巡查机器人系统定期进行仓库巡查盘点,清点每个库位上的剩余钢管数量信息、钢管类型信息、钢管身份信息,并将这些信息写入仓库管理服务器。
  13. 根据权利要求12所述的钢管仓库管理系统,其特征在于,所述钢管仓库巡查机器人系统、钢管ID写入子系统、出入库信息记录子系统、桥式起重机引导子系统通过接口与已有成熟的仓库数据管理系统连接和交换数据。
  14. 根据权利要求12所述的钢管仓库管理系统,其特征在于,钢管仓库中仅配设一套钢管仓库巡查机器人系统,或者钢管仓库被分成若干个分区,每个分区对应配设一套钢管仓库巡查机器人系统。
PCT/CN2021/116768 2020-11-23 2021-09-06 钢管仓库巡查机器人系统及钢管仓库管理系统 WO2022105371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011324143.XA CN112327877A (zh) 2020-11-23 2020-11-23 钢管仓库巡查机器人系统及钢管仓库管理系统
CN202011324143.X 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022105371A1 true WO2022105371A1 (zh) 2022-05-27

Family

ID=74321064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116768 WO2022105371A1 (zh) 2020-11-23 2021-09-06 钢管仓库巡查机器人系统及钢管仓库管理系统

Country Status (2)

Country Link
CN (1) CN112327877A (zh)
WO (1) WO2022105371A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115587767A (zh) * 2022-10-14 2023-01-10 众芯汉创(北京)科技有限公司 一种基于rfid的无人机快速出入库的登记方法和系统
CN116476099A (zh) * 2023-06-21 2023-07-25 中数智科(杭州)科技有限公司 一种列车巡检机器人控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327877A (zh) * 2020-11-23 2021-02-05 山东建筑大学 钢管仓库巡查机器人系统及钢管仓库管理系统
CN114572845B (zh) * 2022-01-24 2023-06-02 杭州大杰智能传动科技有限公司 用于智能塔吊工况检测的智能辅助机器人及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844439A (zh) * 2016-03-22 2016-08-10 天津工业大学 一种基于iso14443b标准的仓库管理方案
CN106708027A (zh) * 2016-12-16 2017-05-24 盐城工学院 一种无人导航智能电动平车的在线图形化实时导航与控制系统
CN108762276A (zh) * 2018-06-07 2018-11-06 安徽理工大学 一种agv小车的自动偏轨校正装置和自动偏轨校正方法
US20200198894A1 (en) * 2016-09-30 2020-06-25 Staples, Inc. Hybrid Modular Storage Fetching System
CN111390925A (zh) * 2020-04-07 2020-07-10 青岛黄海学院 一种用于危化品仓库的巡视机器人
CN112327877A (zh) * 2020-11-23 2021-02-05 山东建筑大学 钢管仓库巡查机器人系统及钢管仓库管理系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203350716U (zh) * 2013-06-05 2013-12-18 合肥凌翔信息科技有限公司 无人搬运车导航控制系统
CN106185153A (zh) * 2016-08-26 2016-12-07 无锡卓信信息科技股份有限公司 一种基于移动机器人的仓库货物射频识别控制系统
CN106452903A (zh) * 2016-10-31 2017-02-22 华南理工大学 一种基于云辅助的智能仓管机器人系统与方法
CN106708045A (zh) * 2016-12-16 2017-05-24 盐城工学院 一种具有自动纠偏功能的大型重载式无人导航智能电动平车
CN107273791A (zh) * 2017-04-26 2017-10-20 国家电网公司 一种基于无人机航拍图像技术的仓库货物盘点方法
CN112520299A (zh) * 2020-11-23 2021-03-19 山东建筑大学 钢管仓库出入库管理引导系统及地面轨道式的巡查机器人
CN114331296A (zh) * 2022-02-15 2022-04-12 湖南金丰林印刷包装机械科技有限公司 一种基于视频和射频标签的出入库管理方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844439A (zh) * 2016-03-22 2016-08-10 天津工业大学 一种基于iso14443b标准的仓库管理方案
US20200198894A1 (en) * 2016-09-30 2020-06-25 Staples, Inc. Hybrid Modular Storage Fetching System
CN106708027A (zh) * 2016-12-16 2017-05-24 盐城工学院 一种无人导航智能电动平车的在线图形化实时导航与控制系统
CN108762276A (zh) * 2018-06-07 2018-11-06 安徽理工大学 一种agv小车的自动偏轨校正装置和自动偏轨校正方法
CN111390925A (zh) * 2020-04-07 2020-07-10 青岛黄海学院 一种用于危化品仓库的巡视机器人
CN112327877A (zh) * 2020-11-23 2021-02-05 山东建筑大学 钢管仓库巡查机器人系统及钢管仓库管理系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115587767A (zh) * 2022-10-14 2023-01-10 众芯汉创(北京)科技有限公司 一种基于rfid的无人机快速出入库的登记方法和系统
CN115587767B (zh) * 2022-10-14 2023-11-21 众芯汉创(北京)科技有限公司 一种基于rfid的无人机快速出入库的登记方法和系统
CN116476099A (zh) * 2023-06-21 2023-07-25 中数智科(杭州)科技有限公司 一种列车巡检机器人控制系统
CN116476099B (zh) * 2023-06-21 2023-08-29 中数智科(杭州)科技有限公司 一种列车巡检机器人控制系统

Also Published As

Publication number Publication date
CN112327877A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2022105371A1 (zh) 钢管仓库巡查机器人系统及钢管仓库管理系统
WO2022105360A1 (zh) 钢管仓库出入库管理引导系统及地面轨道式的巡查机器人
JP7253064B2 (ja) 軌道交通機関車巡回装置及びシステム
CN109738213B (zh) 轨道交通机车车辆巡检位姿检测系统及其方法
WO2018072712A1 (zh) Agv运输车及其控制方法
US9650139B2 (en) Freight loading system and method for determining movement of a freight item on a cargo deck
CN111267067A (zh) 一种轨道智能养护机器人
CN108022448A (zh) 反向寻车系统及停车场管理系统
CN110196586A (zh) 移动体、控制移动体的方法及计算机可读取记录媒体
CN210819569U (zh) 基于二维码定位的车底巡检机器人及巡检系统
CN210310341U (zh) 轨道交通机车车辆巡检机器人
JPH07281753A (ja) 移動ロボット
CN108549370A (zh) 数据采集方法及采集装置
CN109202852A (zh) 一种智能巡检机器人
CN209888849U (zh) 轨道交通机车车辆巡检的辅助装置
CN202423926U (zh) 基于电子地图的变电站巡检机器人手势驱动系统
CN209717722U (zh) 一种具有避障功能的巡检机器人
JP2023059359A (ja) 異常検出システム、異常検出方法、及び異常検出プログラム
WO2021115185A1 (zh) 仓储系统与相关方法
CN210162104U (zh) 轨道交通机车车辆巡检装置及系统
CN115256398A (zh) 一种变电站室内多功能操作机器人
CN212287617U (zh) 一种轨道智能养护机器人
CN107263485B (zh) 基于机器视觉工厂载货机器人
CN215922055U (zh) 一种车、箱定位系统
CN110000816B (zh) 一种巡线机器人新型充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893522

Country of ref document: EP

Kind code of ref document: A1