WO2022105236A1 - 评价通风系统换热器性能的方法、电子设备和存储介质 - Google Patents

评价通风系统换热器性能的方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2022105236A1
WO2022105236A1 PCT/CN2021/103330 CN2021103330W WO2022105236A1 WO 2022105236 A1 WO2022105236 A1 WO 2022105236A1 CN 2021103330 W CN2021103330 W CN 2021103330W WO 2022105236 A1 WO2022105236 A1 WO 2022105236A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
water
inlet
performance
Prior art date
Application number
PCT/CN2021/103330
Other languages
English (en)
French (fr)
Inventor
强振华
张铎
尹利波
戴军
刘军
周明
李斌
刘思佳
Original Assignee
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2022105236A1 publication Critical patent/WO2022105236A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to the technical field of heat exchangers for ventilation systems of nuclear power plants, and more particularly, to a method, electronic equipment and storage medium for evaluating the performance of heat exchangers of ventilation systems.
  • the performance test of the heat exchanger of the ventilation system of the nuclear power plant is required to be performed under the "as close as possible” design conditions. If the water regulating valve is stable, not fully opened, and the temperature of each room in the plant is stable within the design range, the test is qualitatively considered to be qualified. Although this method is simple and easy to implement, it lacks quantitative theoretical data support and cannot verify whether the performance of the heat exchanger meets the design requirements. Require.
  • the technical problem to be solved by the present invention is to provide a method, an electronic device and a storage medium for evaluating the performance of a ventilation system heat exchanger in view of the above-mentioned defects of the prior art.
  • the technical scheme adopted by the present invention to solve the technical problem is: constructing a method for evaluating the performance of a ventilation system heat exchanger, including:
  • the performance of the heat exchanger is evaluated based on the evaluation data.
  • the evaluation data includes: the total heat transfer coefficient of the heat exchanger
  • the monitoring parameters include: metal thermal resistance, water-side heat transfer resistance, air-side coil wet surface heat transfer resistance, inlet water temperature, outlet water temperature, inlet air temperature, outlet air temperature, inlet air humidity, outlet air humidity, air volume Flow, water volume flow, saturation pressure, atmospheric pressure, air specific heat capacity, inlet air density, water density, water specific heat capacity.
  • the method further includes:
  • the type of the heat exchanger includes: a cooling heat exchanger and a heating heat exchanger.
  • the evaluation data is the total heat transfer coefficient of the cooling heat exchanger
  • the calculation based on the monitoring parameters to obtain the evaluation data of the heat exchanger includes:
  • the overall heat transfer coefficient of the cooling heat exchanger is obtained according to the performance parameters of the cooling heat exchanger, the air mass flow under the design conditions, and the water mass flow under the design conditions.
  • calculating the performance parameters of the cooling heat exchanger according to the monitoring parameters includes:
  • the performance parameters of the cooling heat exchanger are calculated.
  • calculating the air mass flow rate of the cooling heat exchanger under design conditions includes:
  • the inlet air temperature the inlet air humidity, the air volume flow rate, and the inlet air density
  • the air mass flow rate of the cooling heat exchanger under design conditions is calculated.
  • calculating the water mass flow rate of the cooling heat exchanger under design conditions includes:
  • the water mass flow rate of the cooling heat exchanger under design conditions is calculated.
  • obtaining the total heat transfer coefficient of the cooling heat exchanger according to the performance parameters of the cooling heat exchanger, the air mass flow under the design conditions, and the water mass flow under the design conditions includes:
  • the heat transfer amount on the air side of the cooling heat exchanger the heat transfer amount on the water side of the cooling heat exchanger, the inlet surface air enthalpy value and the outlet surface air enthalpy value, the total amount of the cooling heat exchanger is obtained. Heat transfer coefficient.
  • the cooling is obtained according to the heat transfer amount on the air side of the cooling heat exchanger, the heat transfer amount on the water side of the cooling heat exchanger, the inlet surface air enthalpy value and the outlet surface air enthalpy value
  • the overall heat transfer coefficient of the heat exchanger includes:
  • the inlet air enthalpy value, the outlet air enthalpy value, the inlet surface air enthalpy value and the outlet surface air enthalpy value calculate the logarithmic average enthalpy difference under design conditions
  • the overall heat transfer coefficient of the cooling heat exchanger is obtained from the total heat transfer amount of the cooling heat exchanger and the log mean enthalpy difference.
  • the evaluation data is the total heat transfer coefficient of the heating heat exchanger
  • the calculation based on the monitoring parameters to obtain the evaluation data of the heat exchanger includes:
  • the overall heat transfer coefficient of the heating heat exchanger is obtained according to the air mass flow rate of the heating heat exchanger, the water mass flow rate of the heating heat exchanger, and the logarithmic average temperature difference.
  • calculating the air mass flow rate of the heating heat exchanger according to the monitoring parameters includes:
  • the air mass flow rate of the heating heat exchanger is calculated from the air volume flow rate, the inlet air temperature, the inlet air humidity, and the inlet air density.
  • calculating the water mass flow of the heating heat exchanger includes:
  • the water mass flow of the heating heat exchanger is calculated.
  • the calculating the logarithmic average temperature difference of the heating heat exchanger according to the monitoring parameter includes:
  • obtaining the total heat transfer coefficient of the heating heat exchanger according to the air mass flow rate of the heating heat exchanger, the water mass flow rate of the heating heat exchanger, and the logarithmic average temperature difference includes:
  • the inlet water temperature, the outlet water temperature and the water specific heat capacity calculate the heat transfer amount on the water side of the heating heat exchanger
  • the overall heat transfer coefficient of the heating heat exchanger is obtained from the total heat transfer amount of the heating heat exchanger and the logarithmic mean temperature difference.
  • evaluating the performance of the heat exchanger according to the evaluation data includes:
  • evaluating the performance of the heat exchanger according to the evaluation data includes:
  • the evaluation data includes: average heat exchange
  • the monitoring parameters include: inlet water temperature, outlet water temperature, inlet air temperature, outlet air temperature, inlet air humidity, outlet air humidity, air specific heat capacity, water specific heat capacity, outlet air wet bulb temperature, air humidity difference passing through the heat exchanger value, air volume flow, water density, and water volume flow.
  • the calculation based on the monitoring parameters to obtain the evaluation data of the heat exchanger includes:
  • the average heat exchange is calculated according to the air-side heat exchange and the water-side heat exchange.
  • the method further includes:
  • the current working condition is judged; the current working condition includes: a wet working condition and a dry working condition.
  • the air-side heat exchange includes: air-side heat exchange during cooling;
  • the calculation of the air-side heat exchange according to the monitoring parameters includes:
  • the inlet air temperature, the inlet air humidity, and the relationship between the air and the enthalpy value calculate the inlet air enthalpy value
  • the inlet air enthalpy value, the outlet air enthalpy value, the air volume flow rate, the water specific heat capacity, the inlet air temperature, the inlet air humidity, the outlet air wet bulb temperature and the The difference in air moisture content of the heater is used to calculate the heat exchange on the air side during cooling.
  • the calculation of the air-side heat exchange during cooling includes:
  • calculating the air-side heat exchange according to the monitoring parameters includes:
  • the air mass flow rate the air specific heat capacity and the inlet and outlet air temperature difference, the air-side heat exchange during the cooling is calculated.
  • the air-side heat exchange further includes: air-side heat exchange during heating;
  • the calculating the air-side heat exchange according to the monitoring parameters further includes:
  • the heat exchange amount on the air side during the heating is calculated.
  • calculating the heat exchange on the water side includes:
  • the water side heat exchange is calculated.
  • evaluating the performance of the heat exchanger according to the evaluation data includes:
  • the performance of the heat exchanger meets the standard, otherwise it does not meet the standard.
  • the present invention also provides an electronic device, comprising: a memory and a processor; the memory is used for storing program instructions, and the processor is used for executing the steps of the above-mentioned method according to the program instructions stored in the memory.
  • the present invention also provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the above method.
  • Implementing the method, electronic device and storage medium for evaluating the performance of a ventilation system heat exchanger of the present invention has the following beneficial effects: including: obtaining monitoring parameters of the heat exchanger; calculating based on the monitoring parameters to obtain evaluation data of the heat exchanger; The evaluation data evaluates the performance of the heat exchanger.
  • the invention changes the ventilation system test from "qualitative evaluation” to "quantitative evaluation", and can accurately verify whether the performance of the heat exchanger meets the design requirements.
  • the present invention clarifies the external working conditions of the executable test, reduces the dependence on the design working condition window, and also ensures that the test data under the test working condition is still valid when extended to the design working condition, and solves the problem of nuclear power plant construction.
  • the ventilation system heat exchanger test has strict requirements on the external environment.
  • FIG. 1 is a schematic flowchart of a method for evaluating the performance of a ventilation system heat exchanger provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the change of the surface of the cooling coil of the heat exchanger and the parameters of the fluid medium of the present invention
  • Fig. 3 is the schematic diagram of the change of the fluid medium parameters of the heat exchanger heating coil of the present invention.
  • FIG. 4 is a schematic diagram of the heat exchange of the heat exchanger coil of the present invention.
  • FIG. 1 is a schematic flowchart of a method for evaluating the performance of a ventilation system heat exchanger provided by the present invention.
  • the outdoor environmental conditions need to meet the following conditions:
  • the difference between the inlet air temperature of the heat exchanger and the design temperature shall not exceed 7.5 °C
  • the relative humidity of the cooling wet coil inlet air should be within the following ranges:
  • the inlet water temperature of the heat exchanger must be adjusted to the design water temperature (within ⁇ 0.5°C deviation from the design water temperature)
  • the method for evaluating the performance of a heat exchanger in a ventilation system may include:
  • Step S101 acquiring monitoring parameters of the heat exchanger.
  • step S102 calculation is performed based on the monitoring parameters to obtain evaluation data of the heat exchanger.
  • Step S103 evaluating the performance of the heat exchanger according to the evaluation data.
  • the evaluation data includes: the total heat transfer coefficient of the heat exchanger or the average heat exchange of the heat exchanger.
  • the monitoring parameters include: metal thermal resistance, water-side heat transfer resistance, air-side coil wet surface heat transfer resistance, inlet water temperature, outlet water temperature, inlet air temperature, outlet air temperature, inlet air humidity, outlet air temperature Humidity, air volume flow, water volume flow, saturation pressure, atmospheric pressure, air specific heat capacity, inlet air density, water density, water specific heat capacity.
  • the type of the heat exchanger is determined before the evaluation data is calculated.
  • the types of heat exchangers include: cooling heat exchangers and heating heat exchangers.
  • FIG. 2 it is a schematic diagram of the change of the surface of the cooling heat exchanger (cooling wet coil) and the parameters of the fluid medium.
  • the evaluation data is the total heat transfer coefficient of the cooling heat exchanger.
  • step S102: calculating based on the monitoring parameters, and obtaining the evaluation data of the heat exchanger includes:
  • Step A1 Calculate the performance parameters of the cooling heat exchanger according to the monitoring parameters.
  • the performance parameters of the cooling heat exchanger are calculated including:
  • the performance parameters of the cooling heat exchanger are calculated according to the metal thermal resistance, the water-side heat transfer resistance, the air-side coil wet surface heat transfer resistance, and the air specific heat capacity.
  • the performance parameters of the cooling heat exchanger are fixed and can be calculated according to three thermal resistance ratios. That is, the performance parameters of the cooling heat exchanger meet:
  • the metal thermal resistance, water-side heat transfer resistance, and air-side coil wet surface heat transfer resistance can be calculated by the following equations, respectively.
  • h 1 air side heat transfer coefficient W/(m 2 *K);
  • h 2 water side heat transfer coefficient/(m 2 *K);
  • the performance parameters of the cooling heat exchanger can be directly calculated based on the metal thermal resistance, the water-side heat transfer resistance, and the air-side coil wet surface heat transfer resistance.
  • Step A2 Calculate the air mass flow rate of the cooling heat exchanger under the design conditions according to the monitoring parameters.
  • calculating the air mass flow of the cooling heat exchanger under the design conditions includes: according to the inlet air temperature, inlet air humidity, air volume flow, and inlet air density, calculate the cooling heat exchanger under the design conditions. Air mass flow. That is, the air mass flow rate of the cooling heat exchanger under the design conditions satisfies:
  • m air air mass flow kg/s
  • Q air air volume flow m3/h
  • Step A3 Calculate the water mass flow rate of the cooling heat exchanger under the design conditions according to the monitoring parameters.
  • calculating the water mass flow of the cooling heat exchanger under the design conditions includes: calculating the water mass flow of the cooling heat exchanger under the design conditions according to the water density and the water volume flow. That is, the water mass flow rate of the cooling heat exchanger under the design conditions satisfies:
  • m water water mass flow kg/s
  • Q water water volume flow m3/h
  • ⁇ water water density kg/m3.
  • Step A4 Obtain the total heat transfer coefficient of the cooling heat exchanger according to the performance parameters of the cooling heat exchanger, the air mass flow under the design conditions, and the water mass flow under the design conditions.
  • step A4 includes:
  • Step A41 Calculate the inlet air enthalpy, the outlet air enthalpy, the inlet surface air enthalpy and the outlet surface air enthalpy according to the performance parameters of the cooling heat exchanger and using the relationship between air and enthalpy.
  • h air air enthalpy kJ/kg
  • c pG dry air specific heat capacity kJ/(kg ⁇ K);
  • T air air temperature °C; relative humidity%;
  • r o latent heat of water vaporization kJ/kg
  • c pD specific heat capacity of water vapor kJ/(kg ⁇ K).
  • the measured inlet air temperature and inlet air humidity can be substituted into formula 7, and the inlet air enthalpy value can be calculated;
  • the measured outlet air temperature and outlet air humidity are substituted into Equation 7, and the outlet air enthalpy can be calculated.
  • the air enthalpy value of the outlet surface can also be calculated.
  • Step A42 Calculate the heat transfer amount on the air side of the cooling heat exchanger according to the enthalpy value of the inlet air, the enthalpy value of the outlet air and the air mass flow under the design conditions.
  • Step A43 Calculate the heat transfer amount on the water side of the cooling heat exchanger according to the inlet water temperature, the outlet water temperature, the water mass flow rate under the design conditions, and the water specific heat capacity.
  • the heat transfer amount on the air side of the cooling heat exchanger satisfies:
  • m air air mass flow kg/s
  • m water water mass flow kg/s
  • c pa air specific heat capacity kJ/(kg ⁇ K);
  • c pw water specific heat capacity kJ/(kg ⁇ K);
  • Equation 4 and Equation 5 the heat transfer amount on the air side and the heat transfer amount on the water side of the cooling heat exchanger can be directly calculated.
  • Step A44 Obtain the total heat transfer coefficient of the cooling heat exchanger according to the heat transfer amount on the air side of the cooling heat exchanger, the heat transfer amount on the water side of the cooling heat exchanger, the air enthalpy value of the inlet surface and the air enthalpy value of the outlet surface.
  • the total heat transfer coefficient of the cooling heat exchanger is obtained including:
  • ⁇ h m logarithmic average enthalpy difference kJ/kg
  • the total heat transfer amount of the cooling heat exchanger can be calculated.
  • the total heat transfer of the cooling heat exchanger satisfies:
  • the total heat transfer coefficient of the cooling heat exchanger is obtained based on the total heat transfer of the cooling heat exchanger and the log-average enthalpy difference. Specifically, the total heat transfer coefficient of the cooling heat exchanger satisfies:
  • FKS wet total heat transfer coefficient kg/s of the cooling heat exchanger; ⁇ total : total heat transfer kW of the cooling heat exchanger; ⁇ h m : logarithmic average enthalpy difference kJ/kg of the cooling heat exchanger.
  • the performance of the heat exchanger can be evaluated according to the total heat transfer coefficient of the cooling heat exchanger.
  • step S103: evaluating the performance of the heat exchanger according to the evaluation data includes:
  • Step S103-11 compare the total heat transfer coefficient of the cooling heat exchanger with the design value of the total heat transfer coefficient of the cooling heat exchanger.
  • Step S103-12 judging whether the total heat transfer coefficient of the cooling heat exchanger is greater than or equal to the design value of the total heat transfer coefficient of the cooling heat exchanger.
  • step S103-13 the performance of the cooling heat exchanger meets the standard, otherwise it fails to meet the standard.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 it is a schematic diagram of the change of the parameters of the fluid medium of the heating heat exchanger.
  • the evaluation data is the overall heat transfer coefficient of the heating heat exchanger.
  • step S102 is calculated based on the monitoring parameters, and the evaluation data obtained for the heat exchanger includes:
  • Step B1 Calculate the air mass flow rate of the heating heat exchanger according to the monitoring parameters.
  • calculating the air mass flow of the heating heat exchanger according to the monitoring parameters includes: calculating the air mass flow of the heating heat exchanger according to the air volume flow, the inlet air temperature, the inlet air humidity, and the inlet air density.
  • the air mass flow of the heating heat exchanger satisfies:
  • m air air mass flow kg/s
  • Q air volume flow m3/h
  • formula 9 is the same as formula 1.
  • Step B2 Calculate the water mass flow rate of the heating heat exchanger according to the monitoring parameters.
  • calculating the water mass flow rate of the heating heat exchanger according to the monitoring parameters includes: calculating the water mass flow rate of the heating heat exchanger according to the water volume flow rate and the water density.
  • the water mass flow of the heating heat exchanger satisfies:
  • m water water mass flow kg/s
  • Q water volume flow m3/h
  • ⁇ water water density kg/m3.
  • formula 10 is the same as formula 3.
  • Step B3 Calculate the logarithmic average temperature difference of the heating heat exchanger according to the monitoring parameters.
  • calculating the logarithmic average temperature difference of the heating heat exchanger according to the monitoring parameters includes: calculating the logarithmic average temperature difference of the heating heat exchanger according to the inlet water temperature, the outlet water temperature, the inlet air temperature and the outlet air temperature.
  • the logarithmic average temperature difference of the heating heat exchanger satisfies:
  • Step B4 Obtain the total heat transfer coefficient of the heating heat exchanger according to the air mass flow rate of the heating heat exchanger, the water mass flow rate of the heating heat exchanger, and the logarithmic average temperature difference.
  • step B4 includes:
  • the heat transfer amount of the air side of the heating heat exchanger and the heat transfer amount of the water side of the heating heat exchanger satisfy:
  • m air air mass flow kg/s
  • m water water mass flow kg/s
  • c pa air specific heat capacity kJ/(kg ⁇ K);
  • c pw water specific heat capacity kJ/(kg ⁇ K);
  • formula 11 is the same as formula 4
  • formula 12 is the same as formula 5.
  • the total heat transfer of the heating heat exchanger satisfies:
  • formula 13 is the same as formula 6.
  • the total heat transfer coefficient of the heating heat exchanger satisfies:
  • FKS heating total heat transfer coefficient kW/°C of heating heat exchanger; ⁇ total : total heat transfer heat kW of heating heat exchanger; ⁇ T m : logarithmic average temperature difference °C of heating heat exchanger.
  • step S103 evaluating the performance of the heat exchanger according to the evaluation data includes:
  • Step S103-01 compare the total heat transfer coefficient of the heating heat exchanger with the design value of the total heat transfer coefficient of the heating heat exchanger.
  • Step S103-02 judging whether the total heat transfer coefficient of the heating heat exchanger is greater than or equal to the design value of the total heat transfer coefficient of the heating heat exchanger.
  • Step S103-03 If yes, the performance of the heating heat exchanger meets the standard, otherwise it fails to meet the standard.
  • the present invention calculates the specific overall heat transfer coefficient (that is, the overall heat transfer coefficient) of the ventilation system heat exchanger under dry conditions and wet conditions, and uses the overall heat exchange coefficient as a factor for evaluating the performance of the ventilation system heat exchanger.
  • the technical indicators make the ventilation system test change from "qualitative evaluation” to reliable “quantitative evaluation”, and the test results are more reliable, effectively solving the existing problem of inability to evaluate whether the results of the test under non-design conditions meet the design requirements; It not only clarifies the external working conditions of the executable test, greatly reduces the dependence on the design condition window, and ensures that the test data under this test condition is still valid when extended to the design condition; moreover, it also solves the problem of nuclear power construction. In the project, the technical problem of the harsh requirements of the external environment for the heat exchanger test of the ventilation system
  • FIG. 4 is a schematic diagram of heat exchange of the heat exchanger coil.
  • the heat exchanger needs to meet the following test conditions:
  • the test shall be carried out under the condition of precipitation of condensed water.
  • the evaluation data is the average heat exchange amount.
  • the monitoring parameters include: inlet water temperature, outlet water temperature, inlet air temperature, outlet air temperature, inlet air humidity, outlet air humidity, air specific heat capacity, water specific heat capacity, outlet air wet bulb temperature, heat transfer The difference of air moisture content, air volume flow, water density and water volume flow of the device.
  • step S102 calculating based on the monitoring parameters, and obtaining the evaluation data of the heat exchanger includes:
  • Step C1 Calculate the heat exchange on the air side according to the monitoring parameters.
  • the current working condition includes: wet working condition and dry working condition.
  • the air-side heat exchange includes: the air-side heat exchange during cooling.
  • step C1 includes:
  • Step C1-11 Calculate the enthalpy value of the inlet air according to the temperature of the inlet air, the humidity of the inlet air, and the relationship between the air and the enthalpy value.
  • Step C1-12 Calculate the enthalpy value of the outlet air according to the temperature of the outlet air, the humidity of the outlet air, and the relationship between the air and the enthalpy value.
  • the enthalpy value of the outlet air may refer to the calculation method of Embodiment 1, and details are not repeated here.
  • Step C1-13 according to the inlet air enthalpy value, outlet air enthalpy value, air volume flow, water specific heat capacity, inlet air temperature, inlet air humidity, outlet air wet bulb temperature and the difference between the air moisture content passing through the heat exchanger, calculate Heat exchange on the air side during cooling.
  • steps C1-13 include:
  • Step C1-131 Calculate the air mass flow according to the inlet air temperature, the inlet air humidity, the air volume flow and the inlet air temperature.
  • the calculation method of air mass flow in this embodiment can refer to formula 2, that is, after measuring inlet air temperature, inlet air humidity, air volume flow, and inlet air density, formula 2 can be used to directly calculate air mass flow.
  • Step C1-132 according to the air mass flow rate, water density, inlet air enthalpy value, outlet air enthalpy value, outlet air wet bulb temperature, and the difference in air moisture content passing through the heat exchanger, calculate the air-side heat exchange during cooling .
  • the air-side heat exchange during cooling satisfies:
  • W 1 wet heat exchange on the air side during cooling in wet conditions
  • ⁇ d difference in air moisture content through the heat exchanger kg/kg dry air.
  • Equation 16 the air-side heat exchange during cooling calculated by Equation 16 is the air-side heat exchange under wet and dry conditions.
  • step C1 includes:
  • Step C1-21 Obtain the temperature difference between the inlet and outlet air according to the inlet air temperature and the outlet air temperature.
  • ⁇ T 1 T inlet air -T outlet air .
  • Step C1-22 Calculate the air mass flow according to the inlet air temperature, the inlet air humidity, the air volume flow and the inlet air density.
  • the calculation method of air mass flow under dry conditions can refer to formula 2, that is, after measuring the inlet air temperature, inlet air humidity, air volume flow, and inlet air density, formula 2 can be used to directly calculate the air mass flow.
  • Step C1-23 Calculate the air-side heat exchange during cooling according to the air mass flow rate, the air specific heat capacity, and the temperature difference between the inlet and outlet air.
  • W 1 dry heat exchange on the air side during cooling in dry conditions
  • ⁇ T 1 In dry condition, the temperature difference between the inlet and outlet air during cooling.
  • step C1 includes:
  • Step C1-31 Obtain the temperature difference between the inlet and outlet air according to the inlet air temperature and the outlet air temperature.
  • ⁇ T 2 T outlet air -T inlet air .
  • Step C1-32 Calculate the air mass flow according to the inlet air temperature, the inlet air humidity, the air volume flow and the inlet air density.
  • the calculation method of air mass flow can refer to formula 2, that is, after measuring the inlet air temperature, inlet air humidity, air volume flow, and inlet air density, formula 2 can be used to directly calculate the air mass flow.
  • Step C1-33 Calculate the air-side heat exchange during heating according to the temperature difference between the inlet and outlet air, the air specific heat capacity and the air volume flow.
  • Step C2 Calculate the heat exchange on the water side according to the monitoring parameters.
  • step C2 includes:
  • Step C21 Obtain the temperature difference between the inlet and outlet water according to the inlet water temperature and the outlet water temperature.
  • the temperature difference between the inlet and outlet water includes the temperature difference between the inlet and outlet water during cooling and the temperature difference between the inlet and outlet water during heating.
  • ⁇ T 3 T outlet water -T inlet water .
  • ⁇ T 4 T inlet water -T outlet water .
  • Step C22 Calculate the water mass flow according to the water volume flow and the water density.
  • the water mass flow rate can be calculated by referring to formula 3.
  • Step C23 Calculate the heat exchange on the water side according to the temperature difference between the inlet and outlet water, the water specific heat capacity, and the water mass flow rate.
  • the water-side heat exchange also includes: the water-side heat exchange during cooling and the water-side heat exchange during heating.
  • Step C3 Calculate the average heat exchange according to the heat exchange on the air side and the heat exchange on the water side.
  • the average heat exchange includes the average heat exchange during cooling and the average heat exchange during heating. That is, the average heat exchange during cooling is the average heat exchange of the cooling heat exchanger, and the average heat exchange during heating is the average heat exchange of the heating heat exchanger.
  • the average heat exchange during cooling includes: the average heat exchange in wet conditions and the average heat exchange in dry conditions. That is, the average heat exchange of the cooling heat exchanger is divided into the average heat exchange of the wet coil and the average heat exchange of the dry coil.
  • the type of the heat exchanger is first determined, and if the heat exchanger is a cooling heat exchanger, it is further determined whether the cooling heat exchanger is a wet coil heat exchanger or a dry coil heat exchanger If it is a wet coil heat exchanger, the corresponding data (parameters) are calculated according to the aforementioned wet working conditions; if it is a dry coil heat exchanger, the corresponding data (parameters) are calculated according to the aforementioned dry working conditions. ; If the heat exchanger is heated, the corresponding data is calculated according to the aforementioned heating.
  • the average heat exchange under wet conditions (average heat exchange in wet coils) satisfies:
  • W m wet (W 1 wet + W 2 cold )/2.
  • W m dry (W 1 dry + W 2 cold )/2.
  • the average heat exchange during heating (the average heat exchange of the heating heat exchanger) satisfies:
  • W m plus (W 1 plus + W 2 plus )/2.
  • the performance of the heat exchanger can be evaluated.
  • step S103 includes:
  • Step S103-21 making the difference between the air-side heat exchange and the water-side heat exchange to obtain the difference between the air-side heat exchange and the water-side heat exchange;
  • Step S103-22 compare the difference between the air side heat exchange and the water side heat exchange with the average heat exchange to obtain the ratio of the difference between the air side heat exchange and the water side heat exchange to the average heat exchange ;
  • Step S103-23 comparing the average heat exchange with the design value of the heat exchange to obtain a ratio of the average heat exchange to the design value of the heat exchange;
  • Step S103-24 determine whether the ratio of the difference between the air-side heat exchange and the water-side heat exchange to the average heat exchange is within the first interval, and whether the ratio of the average heat exchange to the design value of the heat exchange is within the first interval. the second area;
  • Step S103-25 if the ratio of the difference between the air-side heat exchange and the water-side heat exchange to the average heat exchange is within the first range, and the ratio of the average heat exchange to the design value of the heat exchange is within the second range within, the performance of the heat exchanger meets the standard, otherwise it fails to meet the standard.
  • the first interval is [-5%, 5%]
  • the second interval is [-10%, 10%].
  • the cooling wet coil is up to standard.
  • WT wet is the design value of the heat exchange of the cooling wet coil.
  • the present invention also provides an electronic device, including: a memory and a processor; the memory is used for storing program instructions, and the processor is used for executing steps of the methods disclosed in the embodiments of the present invention according to the program instructions stored in the memory.
  • the present invention also provides a storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the steps of the method disclosed in the embodiment of the present invention are implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Algebra (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及评价通风系统换热器性能的方法、电子设备和存储介质,包括:获取换热器的监测参数;基于监测参数进行计算,获得换热器的评价数据;根据评价数据评价换热器的性能。本发明通过对换热器的评价数据进行计算,使通风系统试验由"定性评价"转为"定量评价",可准确验证换热器性能是否满足设计要求。另外,本发明明确了可执行试验的外界工况,减弱对设计工况窗口的依赖,且还能保证在试验工况下的试验数据在推广至设计工况下仍然有效,解决了核电厂建设项目中,通风系统换热器试验对外界环境苛刻要求的问题。

Description

评价通风系统换热器性能的方法、电子设备和存储介质 技术领域
本发明涉及核电厂通风系统换热器的技术领域,更具体地说,涉及一种评价通风系统换热器性能的方法、电子设备和存储介质。
背景技术
目前,核电厂通风系统换热器性能试验要求在“尽可能接近”设计工况下执行,设定试验前提条件为:室外温湿度接近设计参数,且夏季工况下房间内热负荷最大,若冷冻水调节阀稳定、未全开且厂房各房间温度稳定在设计范围内,则定性地认为试验合格,此方法虽简单易执行,但是缺乏定量的理论数据支撑,无法验证换热器性能是否满足设计要求。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种评价通风系统换热器性能的方法、电子设备和存储介质。
本发明解决其技术问题所采用的技术方案是:构造一种评价通风系统换热器性能的方法,包括:
获取换热器的监测参数;
基于所述监测参数进行计算,获得所述换热器的评价数据;
根据所述评价数据评价所述换热器的性能。
优选地,所述评价数据包括:换热器的总传热系数;
所述监测参数包括:金属热阻、水侧换热阻、空气侧盘管湿表面换热阻、进口水温、出口水温、进口空气温度、出口空气温度、进口空气湿度、出口空气湿度、空气体积流量、水体积流量、饱和压力、大气压力、空气比热容、进口空气密度、水密度、水比热容。
优选地,所述方法还包括:
判定所述换热器的类型;所述换热器的类型包括:冷却换热器和加热换热器。
优选地,若所述换热器为冷却换热器,所述评价数据为所述冷却换热器的总传热系数;
所述基于所述监测参数进行计算,获得所述换热器的评价数据包括:
根据所述监测参数,计算所述冷却换热器的性能参数;
根据所述监测参数,计算所述冷却换热器在设计条件下的空气质量流量;
根据所述监测参数,计算所述冷却换热器在设计条件下的水质量流量;
根据所述冷却换热器的性能参数、所述设计条件下的空气质量流量、所述设计条件下的水质量流量,获得所述冷却换热器的总传热系数。
优选地,所述根据所述监测参数,计算所述冷却换热器的性能参数包括:
根据所述金属热阻、所述水侧换热阻、所述空气侧盘管湿表面换热阻、以及所述空气比热容,计算得到所述冷却换热器的性能参数。
优选地,所述根据所述监测参数,计算所述冷却换热器在设计条件下的空气质量流量包括:
根据所述进口空气温度、所述进口空气湿度、所述空气体积流量、以及所述进口空气密度,计算得到所述冷却换热器在设计条件下的空气质量流量。
优选地,所述根据所述监测参数,计算所述冷却换热器在设计条件下的水质量流量包括:
根据所述水密度和所述水体积流量,计算得到所述冷却换热器在设计条件下的水质量流量。
优选地,所述根据所述冷却换热器的性能参数、所述设计条件下的空气质量流量、所述设计条件下的水质量流量,获得所述冷却换热器的总传热系数包括:
根据所述冷却换热器的性能参数,并利用空气与焓值的关系式,计算进口空气焓值、出口空气焓值、进口表面空气焓值和出口表面空气焓值;
根据所述进口空气焓值、所述出口空气焓值和所述设计条件下的空气质 量流量,计算所述冷却换热器空气侧的传热量;
根据所述进口水温、所述出口水温、所述设计条件下的水质量流量、以及所述水比热容,计算所述冷却换热器水侧的传热量;
根据所述冷却换热器空气侧的传热量、所述冷却换热器水侧的传热量、所述进口表面空气焓值和所述出口表面空气焓值,获得所述冷却换热器的总传热系数。
优选地,所述根据所述冷却换热器空气侧的传热量、所述冷却换热器水侧的传热量、所述进口表面空气焓值和所述出口表面空气焓值,获得所述冷却换热器的总传热系数包括:
根据所述冷却换热器空气侧的传热量和所述冷却换热器水侧的传热量,计算所述冷却换热器的总传热量;
根据所述进口空气焓值、所述出口空气焓值、所述进口表面空气焓值和所述出口表面空气焓值,计算在设计条件下的对数平均焓差;
根据所述冷却换热器的总传热量和所述对数平均焓差,获得所述冷却换热器的总传热系数。
优选地,若所述换热器为加热换热器,所述评价数据为加热换热器的总传热系数;
所述基于所述监测参数进行计算,获得所述换热器的评价数据包括:
根据所述监测参数,计算所述加热换热器的空气质量流量;
根据所述监测参数,计算所述加热换热器的水质量流量;
根据所述监测参数、计算所述加热换热器的对数平均温差;
根据所述加热换热器的空气质量流量、所述加热换热器的水质量流量、所述对数平均温差,获得所述加热换热器的总传热系数。
优选地,所述根据所述监测参数,计算所述加热换热器的空气质量流量包括:
根据所述空气体积流量、所述进口空气温度、所述进口空气湿度、以及所述进口空气密度,计算所述加热换热器的空气质量流量。
优选地,所述根据所述监测参数,计算所述加热换热器的水质量流量包 括:
根据所述水体积流量和所述水密度,计算所述加热换热器的水质量流量。
优选地,所述根据所述监测参数、计算所述加热换热器的对数平均温差包括:
根据所述进口水温、所述出口水温、所述进口空气温度和所述出口空气温度,计算所述加热换热器的对数平均温差。
优选地,所述根据所述加热换热器的空气质量流量、所述加热换热器的水质量流量、所述对数平均温差,获得所述加热换热器的总传热系数包括:
根据所述加热换热器的空气质量流量、所述进口空气温度、所述出口空气温度和所述空气比热容,计算所述加热换热器空气侧的传热量;
根据所述加热换热器的水质量流量、所述进口水温度、所述出口水温度和所述水比热容,计算所述加热换热器水侧的传热量;
根据所述加热换热器空气侧的传热量和所述加热换热器水侧的传热量,计算所述加热换热器的总传热量;
根据所述加热换热器的总传热量和所述对数平均温差,获得所述加热换热器的总传热系数。
优选地,所述根据所述评价数据评价所述换热器的性能包括:
将所述冷却换热器的总传热系数与冷却换热器的总传热系数设计值进行比较;
判断所述冷却换热器的总传热系数是否大于或者等于所述冷却换热器的总传热系数设计值;
若是,则所述冷却换热器的性能达标,否则不达标。
优选地,所述根据所述评价数据评价所述换热器的性能包括:
将所述加热换热器的总传热系数与加热换热器的总传热系数设计值进行比较;
判断所述加热换热器的总传热系数是否大于或者等于所述加热换热器的总传热系数设计值;
若是,则所述加热换热器的性能达标,否则不达标。
优选地,所述评价数据包括:平均换热量;
所述监测参数包括:进口水温、出口水温、进口空气温度、出口空气温度、进口空气湿度、出口空气湿度、空气比热容、水比热容、出口空气湿球温度、通过换热器的空气含湿量差值、空气体积流量、水密度和水体积流量。
优选地,所述基于所述监测参数进行计算,获得所述换热器的评价数据包括:
根据所述监测参数,计算空气侧换热量;
根据所述监测参数,计算水侧换热量;
根据所述空气侧换热量、所述水侧换热量,计算所述平均换热量。
优选地,所述方法还包括:
判断当前工况;所述当前工况包括:湿工况和干工况。
优选地,所述空气侧换热量包括:冷却时空气侧换热量;
若当前工况为湿工况,所述根据所述监测参数,计算空气侧换热量包括:
根据所述进口空气温度、所述进口空气湿度、以及所述空气与焓值的关系式,计算进口空气焓值;
根据所述出口空气温度、所述出口空气湿度、以及所述空气与焓值的关系式,计算出口空气焓值;
根据所述进口空气焓值、所述出口空气焓值、所述空气体积流量、所述水比热容、所述进口空气温度、所述进口空气湿度、所述出口空气湿球温度和所述通过换热器的空气含湿量差值,计算冷却时空气侧换热量。
优选地,所述根据所述进口空气焓值、所述出口空气焓值、所述空气体积流量、所述水比热容、所述进口空气温度、所述进口空气湿度、所述出口空气湿球温度和所述通过换热器的空气含湿量差值,计算冷却时空气侧换热量包括:
根据所述进口空气温度、所述进口空气湿度、所述空气体积流量以及进口空气温度,计算空气质量流量;
根据所述空气质量流量、所述水密度、所述进口空气焓值、所述出口空气焓值、所述出口空气湿球温度、以及所述通过换热器的空气含湿量差值, 计算冷却时空气侧换热量。
优选地,若当前工况为干工况,所述根据所述监测参数,计算空气侧换热量包括:
根据所述进口空气温度和所述出口空气温度,获得进出口空气温度差;
根据所述进口空气温度、所述进口空气湿度、所述空气体积流量以及进口空气密度,计算空气质量流量;
根据所述空气质量流量、所述空气比热容和所述进出口空气温度差,计算所述冷却时空气侧换热量。
优选地,所述空气侧换热量还包括:加热时空气侧换热量;
所述根据所述监测参数,计算空气侧换热量还包括:
根据所述进口空气温度和所述出口空气温度,获得进出口空气温度差;
根据所述进口空气温度、所述进口空气湿度、所述空气体积流量以及进口空气密度,计算空气质量流量;
根据所述进出口空气温度差、所述空气比热容和所述空气体积流量,计算所述加热时空气侧换热量。
优选地,所述根据所述监测参数,计算水侧换热量包括:
根据所述进口水温和出口水温,获得进出口水温度差;
根据所述水体积流量和所述水密度,计算水质量流量;
根据所述进出口水温度差、所述水比热容、所述水质量流量,计算所述水侧换热量。
优选地,所述根据所述评价数据评价所述换热器的性能包括:
将所述空气侧换热量与所述水侧换热量作差,获得空气侧换热量与水侧换热量的差值;
将所述空气侧换热量与水侧换热量的差值与所述平均换热量作比较,获得所述空气侧换热量与水侧换热量的差值与所述平均换热量的比值;
将所述平均换热量与换热量设计值作比较,获得所述平均换热量与换热量设计值的比值;
判断所述空气侧换热量与水侧换热量的差值与所述平均换热量的比值是 否在第一区间内,且所述平均换热量与换热量设计值的比值是否在第二区内;
若所述空气侧换热量与水侧换热量的差值与所述平均换热量的比值在第一区间内、且所述平均换热量与换热量设计值的比值在第二区内,则所述换热器的性能达标,否则不达标。
本发明还提供一种电子设备,包括:存储器和处理器;所述存储器用于存储程序指令,所述处理器用于根据所述存储器所存储的程序指令执行以上所述方法的步骤。
本发明还提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述方法的步骤。
实施本发明的评价通风系统换热器性能的方法、电子设备和存储介质,具有以下有益效果:包括:获取换热器的监测参数;基于监测参数进行计算,获得换热器的评价数据;根据评价数据评价换热器的性能。本发明通过对换热器的评价数据进行计算,使通风系统试验由“定性评价”转为“定量评价”,可准确验证换热器性能是否满足设计要求。另外,本发明明确了可执行试验的外界工况,减弱对设计工况窗口的依赖,且还能保证在试验工况下的试验数据在推广至设计工况下仍然有效,解决了核电厂建设项目中,通风系统换热器试验对外界环境苛刻要求的问题。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例提供的评价通风系统换热器性能的方法的流程示意图;
图2是本发明换热器冷却盘管表面及流体介质参数变化示意图;
图3是本发明换热器加热盘管流体介质参数变化示意图;
图4是本发明换热器盘管换热示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图 详细说明本发明的具体实施方式。
参考图1,图1为本发明提供的评价通风系统换热器性能的方法的流程示意图。
其中,本发明实施例提供的评价通风系统换热器性能的方法在试验前,室外环境条件需要满足以下条件:
在试验时,换热器进口空气温度与设计温度差不得超过7.5℃
Figure PCTCN2021103330-appb-000001
(空气冷却器);
Figure PCTCN2021103330-appb-000002
(空气加热器);
冷却湿盘管进口空气相对湿度应在如下范围内:
Figure PCTCN2021103330-appb-000003
换热器进口水温须调整至设计水温(与设计水温偏差±0.5℃内)
Figure PCTCN2021103330-appb-000004
具体的,如图1所示,该评价通风系统换热器性能的方法可包括:
步骤S101、获取换热器的监测参数。
步骤S102、基于监测参数进行计算,获得换热器的评价数据。
步骤S103、根据评价数据评价换热器的性能。
本发明实施例中,评价数据包括:换热器的总传热系数或者换热器的平均换热量。
其中,对于采用换热器的总传热系数对换热器的性能进行评价时,需要根据换热器的类型分开计算换热器的总传热系数。
本发明实施例中,监测参数包括:金属热阻、水侧换热阻、空气侧盘管湿表面换热阻、进口水温、出口水温、进口空气温度、出口空气温度、进口空气湿度、出口空气湿度、空气体积流量、水体积流量、饱和压力、大气压 力、空气比热容、进口空气密度、水密度、水比热容。
进一步地,对于采用总传热系数对换热器性能进行评价的方法,在进行评价数据计算之前,先判定换热器的类型。其中,换热器的类型包括:冷却换热器和加热换热器。
实施例一:
如图2所示,为冷却换热器(冷却湿盘管)表面及流体介质参数变化示意图。
具体的,若换热器为冷却换热器,评价数据为冷却换热器的总传热系数。
在该实施例中,步骤S102:基于监测参数进行计算,获得换热器的评价数据包括:
步骤A1、根据监测参数,计算冷却换热器的性能参数。
其中,根据监测参数,计算冷却换热器的性能参数包括:
根据金属热阻、水侧换热阻、空气侧盘管湿表面换热阻、以及空气比热容,计算得到冷却换热器的性能参数。
具体的,对于换热器尺寸、设计及排列布置方式一定时,冷却换热器的性能参数固定不变,且可根据三个热阻比计算得到。即冷却换热器的性能参数满足:
Figure PCTCN2021103330-appb-000005
C:换热器特性值kg·K/kJ;R mw:金属热阻m 2·K/W;R w:水侧换热阻m 2·K/W;R aw:空气侧盘管湿表面换热阻m 2·K/W;c pa:空气比热容1.01kJ/(kg·K);
Figure PCTCN2021103330-appb-000006
进口表面温度℃(水膜表面的温度);
Figure PCTCN2021103330-appb-000007
入口水温℃;
Figure PCTCN2021103330-appb-000008
出口表面温度℃;
Figure PCTCN2021103330-appb-000009
出口水温℃;
Figure PCTCN2021103330-appb-000010
盘管入口表面空气焓 值kJ/kg;
Figure PCTCN2021103330-appb-000011
盘管入口空气焓值kJ/kg;
Figure PCTCN2021103330-appb-000012
盘管出口表面空气焓值kJ/kg;
Figure PCTCN2021103330-appb-000013
盘管出口空气焓值kJ/kg。
而金属热阻、水侧换热阻、以及空气侧盘管湿表面换热阻分别可通过以下式子算得。
Figure PCTCN2021103330-appb-000014
上式中,h 1:空气侧换热系数W/(m 2*K);h 2:水侧换热系数/(m 2*K);
h 3:铜管换热系数W/(m 2*K);h 4:水膜层换热系数W/(m 2*K);β:翅片系数;η:翅片效率。
因此,基于金属热阻、水侧换热阻、以及空气侧盘管湿表面换热阻可直接算出冷却换热器的性能参数。
步骤A2、根据监测参数,计算冷却换热器在设计条件下的空气质量流量。
其中,根据监测参数,计算冷却换热器在设计条件下的空气质量流量包括:根据进口空气温度、进口空气湿度、空气体积流量、以及进口空气密度,计算得到冷却换热器在设计条件下的空气质量流量。即冷却换热器在设计条件下的空气质量流量满足:
Figure PCTCN2021103330-appb-000015
式中:m air:空气质量流量kg/s;Q air:空气体积流量m3/h;
Figure PCTCN2021103330-appb-000016
进口空气密度kg/m3。
步骤A3、根据监测参数,计算冷却换热器在设计条件下的水质量流量。
具体的,根据监测参数,计算冷却换热器在设计条件下的水质量流量包括:根据水密度和水体积流量,计算得到冷却换热器在设计条件下的水质量流量。即冷却换热器在设计条件下的水质量流量满足:
Figure PCTCN2021103330-appb-000017
式中:m water:水质量流量kg/s;Q water:水体积流量m3/h;ρ water:水密度kg/m3。
步骤A4、根据冷却换热器的性能参数、设计条件下的空气质量流量、设计条件下的水质量流量,获得冷却换热器的总传热系数。
具体的,步骤A4包括:
步骤A41、根据冷却换热器的性能参数,并利用空气与焓值的关系式,计算进口空气焓值、出口空气焓值、进口表面空气焓值和出口表面空气焓值。
其中,空气与焓值的关系式满足:
Figure PCTCN2021103330-appb-000018
式中:
h air:空气焓值kJ/kg;        c pG:干空气比热容kJ/(kg·K);
T air:空气温度℃;           
Figure PCTCN2021103330-appb-000019
空气相对湿度%;
p s:饱和压力hPa;            p:大气压hPa;
r o:水汽化潜热kJ/kg;        c pD:水蒸汽比热容kJ/(kg·K)。
因此,在测得进口空气温度、进口空气湿度后,将测量的进口空气温度和进口空气湿度代入公式7中,即可计算得到进口空气焓值;同理,在测得出口空气温度、出口空气湿度后,将测量的出口空气温度和出口空气湿度代入公式7中,即可计算得到出口空气焓值。进一步地,将进口表面空气焓值和进口表面空气温度代入公式7后,再代入公式1,并根据所计算得到的进口空气焓值计算得到进口表面空气焓值。同理,按照该方法也可计算得到出口表面空气焓值。
步骤A42、根据进口空气焓值、出口空气焓值和设计条件下的空气质量 流量,计算冷却换热器空气侧的传热量。
步骤A43、根据进口水温、出口水温、设计条件下的水质量流量、以及水比热容,计算冷却换热器水侧的传热量。
具体的,冷却换热器空气侧的传热量满足:
空气侧:
Figure PCTCN2021103330-appb-000020
冷却换热器水侧的传热量满足:
Figure PCTCN2021103330-appb-000021
式中:
φ air:空气侧传热量kW;           φ water:水侧传热量kW;
m air:空气质量流量kg/s;          m water:水质量流量kg/s;
c pa:空气比热容kJ/(kg·K);       c pw:水比热容kJ/(kg·K);
Figure PCTCN2021103330-appb-000022
出口空气焓值kJ/kg;           
Figure PCTCN2021103330-appb-000023
出口水温℃;
Figure PCTCN2021103330-appb-000024
进口空气焓值kJ/kg;           
Figure PCTCN2021103330-appb-000025
进口水温℃;
因此,根据公式4和公式5可直接计算出冷却换热器空气侧的传热量和水侧的传热量。
步骤A44、根据冷却换热器空气侧的传热量、冷却换热器水侧的传热量、进口表面空气焓值和出口表面空气焓值,获得冷却换热器的总传热系数。
其中,根据冷却换热器空气侧的传热量、冷却换热器水侧的传热量、进口表面空气焓值和出口表面空气焓值,获得冷却换热器的总传热系数包括:
根据进口空气焓值、出口空气焓值、进口表面空气焓值和出口表面空气焓值,计算在设计条件下的对数平均焓差。
其中,在设计条件下的对数平均焓差满足:
Figure PCTCN2021103330-appb-000026
式中:
Δh m:对数平均焓差kJ/kg;
Figure PCTCN2021103330-appb-000027
入口空气焓值kJ/kg;      
Figure PCTCN2021103330-appb-000028
出口空气焓值kJ/kg;
Figure PCTCN2021103330-appb-000029
入口表面空气焓值;      
Figure PCTCN2021103330-appb-000030
出口表面空气焓值kJ/kg。
进一步地,在计算得到根据冷却换热器空气侧的传热量和冷却换热器水侧的传热量后,即可计算冷却换热器的总传热量。其中,冷却换热器的总传热量满足:
Figure PCTCN2021103330-appb-000031
根据冷却换热器的总传热量和对数平均焓差,获得冷却换热器的总传热系数。具体的,冷却换热器的总传热系数满足:
Figure PCTCN2021103330-appb-000032
式中:
FKS wet:冷却换热器的总传热系数kg/s;φ total:冷却换热器的总传热量kW;Δh m:冷却换热器的对数平均焓差kJ/kg。
在该实施例中,在计算得到冷却换热器的总传热系数后,即可根据冷却换热器的总传热系数进换热器的性能进行评价。
具体的,在该实施例中,步骤S103:根据评价数据评价换热器的性能包括:
步骤S103-11、将冷却换热器的总传热系数与冷却换热器的总传热系数设计值进行比较。
步骤S103-12、判断冷却换热器的总传热系数是否大于或者等于冷却换热器的总传热系数设计值。
步骤S103-13若是,则冷却换热器的性能达标,否则不达标。
实施例二:
如图3所示,为加热换热器流体介质参数变化示意图。
如图3所示,在该实施例中,评价数据为加热换热器的总传热系数。
具体的,在该实施例中,步骤S102基于监测参数进行计算,获得换热器的评价数据包括:
步骤B1、根据监测参数,计算加热换热器的空气质量流量。
其中,根据监测参数,计算加热换热器的空气质量流量包括:根据空气体积流量、进口空气温度、进口空气湿度、以及进口空气密度,计算加热换热器的空气质量流量。加热换热器的空气质量流量满足:
Figure PCTCN2021103330-appb-000033
式中:
m air:空气质量流量kg/s;Q air:体积流量m3/h;
Figure PCTCN2021103330-appb-000034
进口空气密度kg/m3。
需要说明的是,该实施例中,公式9与公式1相同。
步骤B2、根据监测参数,计算加热换热器的水质量流量。
其中,根据监测参数,计算加热换热器的水质量流量包括:根据水体积流量和水密度,计算加热换热器的水质量流量。加热换热器的水质量流量满足:
Figure PCTCN2021103330-appb-000035
式中:
m water:水质量流量kg/s;Q water:体积流量m3/h;ρ water:水密度kg/m3。
需要说明的是,在该实施例中,公式10与公式3相同。
步骤B3、根据监测参数、计算加热换热器的对数平均温差。
其中,根据监测参数、计算加热换热器的对数平均温差包括:根据进口水温、出口水温、进口空气温度和出口空气温度,计算加热换热器的对数平均温差。加热换热器的对数平均温差满足:
Figure PCTCN2021103330-appb-000036
式中:
ΔT m:对数平均温差℃;
Figure PCTCN2021103330-appb-000037
出口空气温度℃;      
Figure PCTCN2021103330-appb-000038
出口水温℃;
Figure PCTCN2021103330-appb-000039
进口空气温度℃;       
Figure PCTCN2021103330-appb-000040
进口水温℃。
步骤B4、根据加热换热器的空气质量流量、加热换热器的水质量流量、对数平均温差,获得加热换热器的总传热系数。
其中,步骤B4包括:
B41、根据加热换热器的空气质量流量、进口空气温度、出口空气温度和空气比热容,计算加热换热器空气侧的传热量。
B42、根据加热换热器的水质量流量、进口水温度、出口水温度和水比热容,计算加热换热器水侧的传热量。
其中,加热换热器空气侧的传热量和加热换热器水侧的传热量满足:
空气侧:
Figure PCTCN2021103330-appb-000041
水侧:
Figure PCTCN2021103330-appb-000042
式中:
φ air:空气侧传热量kW;          φ water:水侧传热量kW;
m air:空气质量流量kg/s;          m water:水质量流量kg/s;
c pa:空气比热容kJ/(kg·K);      c pw:水比热容kJ/(kg·K);
Figure PCTCN2021103330-appb-000043
出口空气温度℃;             
Figure PCTCN2021103330-appb-000044
出口水温℃;
Figure PCTCN2021103330-appb-000045
进口空气温度℃;             
Figure PCTCN2021103330-appb-000046
进口水温℃。
需要说明的是,该实施例中,公式11和公式4相同,公式12和公式5相同。
B43、根据加热换热器空气侧的传热量和加热换热器水侧的传热量,计算加热换热器的总传热量。
其中,加热换热器的总传热量满足:
Figure PCTCN2021103330-appb-000047
需要说明的是,在该实施例中,公式13与公式6相同。
B44、根据加热换热器的总传热量和对数平均温差,获得加热换热器的总传热系数。
其中,加热换热器的总传热系数满足:
Figure PCTCN2021103330-appb-000048
式中:
FKS heating:加热换热器的总传热系数kW/℃;φ total:加热换热器的总传热量kW;ΔT m:加热换热器的对数平均温差℃。
具体的,在该实施例中,步骤S103、根据评价数据评价换热器的性能包括:
步骤S103-01、将加热换热器的总传热系数与加热换热器的总传热系数设计值进行比较。
步骤S103-02、判断加热换热器的总传热系数是否大于或者等于加热换热器的总传热系数设计值。
步骤S103-03、若是,则加热换热器的性能达标,否则不达标。
本发明通过对通风系统换热器在干工况和湿工况下具体的整体换热系数(即总传热系数)进行计算,并将该整体换热系数作为评价通风系统换热器性能的技术指标,使得通风系统试验由“定性评价”转为可靠的“定量评价”,试验结果更加可靠,有效解决了现有无法评价在非设计工况下执行试验的结果是否满足设计要求的问题;不仅明确了可执行试验的外界工况,大大减弱了对设计工况窗口的依赖,并保证在此试验工况下的试验数据在推广至设计工况下仍然有效;而且,还解决了核电建设项目中,通风系统换热器试验对外界环境苛刻要求的技术难题
进一步地,如图4所示,图4为换热器盘管换热示意图。
在该实施例中,换热器需要满足以下试验条件:
(1)空气流量与设计值偏差不超过10%;
(2)水流量与设计值偏差不超过10%;
(3)对于湿盘管需在有凝结水析出的工况下进行试验。
如图4所示,在该实施例中,评价数据为平均换热量。
具体的,在该实施例中,监测参数包括:进口水温、出口水温、进口空气温度、出口空气温度、进口空气湿度、出口空气湿度、空气比热容、水比热容、出口空气湿球温度、通过换热器的空气含湿量差值、空气体积流量、水密度和水体积流量。
该实施例中,步骤S102、基于监测参数进行计算,获得换热器的评价数据包括:
步骤C1、根据监测参数,计算空气侧换热量。
进一步地,在进行空气侧换热量计算之前,先判断当前工况。其中,当 前工况包括:湿工况和干工况。
进一步地,该实施例中,空气侧换热量包括:冷却时空气侧换热量。
若当前工况为湿工况,则步骤C1包括:
步骤C1-11、根据进口空气温度、进口空气湿度、以及空气与焓值的关系式,计算进口空气焓值。
该实施例中,进口空气焓值可参考实施例一的计算方法,在此不再赘述。
步骤C1-12、根据出口空气温度、出口空气湿度、以及空气与焓值的关系式,计算出口空气焓值。
该实施例中,出口空气焓值可参考实施例一的计算方法,在此不再赘述。
步骤C1-13、根据进口空气焓值、出口空气焓值、空气体积流量、水比热容、进口空气温度、进口空气湿度、出口空气湿球温度和通过换热器的空气含湿量差值,计算冷却时空气侧换热量。
其中,步骤C1-13包括:
步骤C1-131、根据进口空气温度、进口空气湿度、空气体积流量以及进口空气温度,计算空气质量流量。
其中,该实施例中的空气质量流量的计算方法可参考公式2,即在测量进口空气温度、进口空气湿度、空气体积流量、以及进口空气密度后,利用公式2可直接算出空气质量流量。
步骤C1-132、根据空气质量流量、水密度、进口空气焓值、出口空气焓值、出口空气湿球温度、以及通过换热器的空气含湿量差值,计算冷却时空气侧换热量。
该实施例中,冷却时空气侧换热量满足:
W 1湿=m air*[(h 1-h 2)-C pwΔd t’ 2    (公式16)。
式中:
W 1湿:湿工况冷却时空气侧换热量;
t’ 2:出口空气湿球温度℃;
Δd:通过换热器的空气含湿量差值kg/kg干空气。
需要说明的是,公式16计算得到的冷却时空气侧换热量为湿干况条件下的空气侧换热量。
若当前工况为干工况,则步骤C1包括::
步骤C1-21、根据进口空气温度和出口空气温度,获得进出口空气温度差。
其中,在干工况下,冷却时进出口空气温度差满足:
ΔT 1=T inlet air-T outlet air
步骤C1-22、根据进口空气温度、进口空气湿度、空气体积流量以及进口空气密度,计算空气质量流量。
干工况下的空气质量流量的计算方法可参考公式2,即在测量进口空气温度、进口空气湿度、空气体积流量、以及进口空气密度后,利用公式2可直接算出空气质量流量。
步骤C1-23、根据空气质量流量、空气比热容和进出口空气温度差,计算冷却时空气侧换热量。
在干工况下,冷却时空气侧换热量满足:
W 1干=m air*C pa*ΔT 1    (公式17)。
式中:
W 1干:干工况冷却时空气侧换热量;
C pa:空气比热容;
ΔT 1:干工况下,冷却时进出口空气温度差。
进一步地,空气侧换热量还包括:加热时空气侧换热量。此时,步骤C1包括:
步骤C1-31、根据进口空气温度和出口空气温度,获得进出口空气温度差。
其中,加热时,进出口空气温度差满足:
ΔT 2=T outlet air-T inlet air
步骤C1-32、根据进口空气温度、进口空气湿度、空气体积流量以及进口空气密度,计算空气质量流量。
加热时,空气质量流量的计算方法可参考公式2,即在测量进口空气温度、进口空气湿度、空气体积流量、以及进口空气密度后,利用公式2可直接算出空气质量流量。
步骤C1-33、根据进出口空气温度差、空气比热容和空气体积流量,计算加热时空气侧换热量。
加热时空气侧换热量满足:
W 1加=m air*C pa*ΔT 2    (公式18)。
步骤C2、根据监测参数,计算水侧换热量。
其中,步骤C2包括:
步骤C21、根据进口水温和出口水温,获得进出口水温度差。
其中,进出口水温度差包括冷却时进出口水温度差和加热时进出口水温度差。
具体的,冷却时:
冷却时的进出口水温度差满足:
ΔT 3=T outlet water-T inlet water
加热时:
加热时的进出口水温度差满足:
ΔT 4=T inlet water-T outlet water
步骤C22、根据水体积流量和水密度,计算水质量流量。
该实施例中,水质量流量可参考公式3计算得到。
步骤C23、根据进出口水温度差、水比热容、水质量流量,计算水侧换热量。
同样地,水侧换热量也包括:冷却时水侧换热量和加热时水侧换热量。
其中,冷却时:
冷却时水侧换热量满足:
W 2冷=m water*C pa*ΔT 3    (公式20)。
加热时:
加热时水侧换热量满足:
W 2加=m water*C pa*ΔT 4    (公式20)。
步骤C3、根据空气侧换热量、水侧换热量,计算平均换热量。
需要说明的是,平均换热量的计算也分冷却时和加热时分别对应计算,即平均换热量包括冷却时平均换热量和加热时平均换热量。即冷却时平均换热量为冷却换热器的平均换热量,加热时平均换热量为加热换热器的平均换热量。其中,冷却时平均换热量包括:湿工况平均换热量和干工况平均换热量。即冷却换热器的平均换热量分为湿盘管平均换热量和干盘管平均换热量。
本发明实施例中,在执行步骤C1至步骤C3之前,先确定换热器的类型,若换热器为冷却换热器,则进一步确定冷却换热器为湿盘管换热器还是干盘管换热器,若是湿盘管换热器,则按照前述的湿工况计算对应的数据(参数);若是干盘管换热器,则按照前述的干工况计算对应的数据(参数);若是加热 换热器,则按照前述的加热时计算对应的数据。
具体的,湿工况平均换热量(湿盘管平均换热量)满足:
W m湿=(W 1湿+W 2冷)/2。
干工况平均换热量(干盘管平均换热量)满足:
W m干=(W 1干+W 2冷)/2。
加热时平均换热量(加热换热器平均换热量)满足:
W m加=(W 1加+W 2加)/2。
进一步地,该实施例中,在算出各个平均换热量后,即可对换热器的性能进行评价。
具体的,该实施例中,步骤S103包括:
步骤S103-21、将空气侧换热量与水侧换热量作差,获得空气侧换热量与水侧换热量的差值;
步骤S103-22、将空气侧换热量与水侧换热量的差值与平均换热量作比较,获得空气侧换热量与水侧换热量的差值与平均换热量的比值;
步骤S103-23、将平均换热量与换热量设计值作比较,获得平均换热量与换热量设计值的比值;
步骤S103-24、判断空气侧换热量与水侧换热量的差值与平均换热量的比值是否在第一区间内,且平均换热量与换热量设计值的比值是否在第二区内;
步骤S103-25、若空气侧换热量与水侧换热量的差值与平均换热量的比值在第一区间内、且平均换热量与换热量设计值的比值在第二区内,则换热器的性能达标,否则不达标。
其中,该实施例中,第一区间为[-5%,5%],第二区间为[-10%,10%]。
需要说明的是,对于不同的类型的换热器,取对应的数据进行比对。
以冷却湿盘管换热器为例:
判断是否满足-5%<(W 1湿-W 2冷)/W m湿<5%,且-10%<(W m湿-W T湿)/W T 湿<10%,若是,则判定冷却湿盘管达标。其中,W T湿为冷却湿盘管的换热量设计值。
进一步地,本发明还提供一种电子设备,包括:存储器和处理器;存储器用于存储程序指令,处理器用于根据存储器所存储的程序指令执行本发明实施例公开的方法的步骤。
进一步地,本发明还提供一种存储介质,其上存储有计算机程序,其特征在于,计算机程序被处理器执行时实现如本发明实施例公开的方法的步骤。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (27)

  1. 一种评价通风系统换热器性能的方法,其特征在于,包括:
    获取换热器的监测参数;
    基于所述监测参数进行计算,获得所述换热器的评价数据;
    根据所述评价数据评价所述换热器的性能。
  2. 根据权利要求1所述的评价通风系统换热器性能的方法,其特征在于,
    所述评价数据包括:换热器的总传热系数;
    所述监测参数包括:金属热阻、水侧换热阻、空气侧盘管湿表面换热阻、进口水温、出口水温、进口空气温度、出口空气温度、进口空气湿度、出口空气湿度、空气体积流量、水体积流量、饱和压力、大气压力、空气比热容、进口空气密度、水密度、水比热容。
  3. 根据权利要求2所述的评价通风系统换热器性能的方法,其特征在于,所述方法还包括:
    判定所述换热器的类型;所述换热器的类型包括:冷却换热器和加热换热器。
  4. 根据权利要求3所述的评价通风系统换热器性能的方法,其特征在于,若所述换热器为冷却换热器,所述评价数据为所述冷却换热器的总传热系数;
    所述基于所述监测参数进行计算,获得所述换热器的评价数据包括:
    根据所述监测参数,计算所述冷却换热器的性能参数;
    根据所述监测参数,计算所述冷却换热器在设计条件下的空气质量流量;
    根据所述监测参数,计算所述冷却换热器在设计条件下的水质量流量;
    根据所述冷却换热器的性能参数、所述设计条件下的空气质量流量、所述设计条件下的水质量流量,获得所述冷却换热器的总传热系数。
  5. 根据权利要求4所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述监测参数,计算所述冷却换热器的性能参数包括:
    根据所述金属热阻、所述水侧换热阻、所述空气侧盘管湿表面换热阻、以及所述空气比热容,计算得到所述冷却换热器的性能参数。
  6. 根据权利要求5所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述监测参数,计算所述冷却换热器在设计条件下的空气质量流量包括:
    根据所述进口空气温度、所述进口空气湿度、所述空气体积流量、以及所述进口空气密度,计算得到所述冷却换热器在设计条件下的空气质量流量。
  7. 根据权利要求6所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述监测参数,计算所述冷却换热器在设计条件下的水质量流量包括:
    根据所述水密度和所述水体积流量,计算得到所述冷却换热器在设计条件下的水质量流量。
  8. 根据权利要求7所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述冷却换热器的性能参数、所述设计条件下的空气质量流量、所述设计条件下的水质量流量,获得所述冷却换热器的总传热系数包括:
    根据所述冷却换热器的性能参数,并利用空气与焓值的关系式,计算进口空气焓值、出口空气焓值、进口表面空气焓值和出口表面空气焓值;
    根据所述进口空气焓值、所述出口空气焓值和所述设计条件下的空气质量流量,计算所述冷却换热器空气侧的传热量;
    根据所述进口水温、所述出口水温、所述设计条件下的水质量流量、以及所述水比热容,计算所述冷却换热器水侧的传热量;
    根据所述冷却换热器空气侧的传热量、所述冷却换热器水侧的传热量、所述进口表面空气焓值和所述出口表面空气焓值,获得所述冷却换热器的总传热系数。
  9. 根据权利要求8所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述冷却换热器空气侧的传热量、所述冷却换热器水侧的传热量、所述进口表面空气焓值和所述出口表面空气焓值,获得所述冷却换热器的总传热系数包括:
    根据所述冷却换热器空气侧的传热量和所述冷却换热器水侧的传热量,计算所述冷却换热器的总传热量;
    根据所述进口空气焓值、所述出口空气焓值、所述进口表面空气焓值和所述出口表面空气焓值,计算在设计条件下的对数平均焓差;
    根据所述冷却换热器的总传热量和所述对数平均焓差,获得所述冷却换热器的总传热系数。
  10. 根据权利要求3所述的评价通风系统换热器性能的方法,其特征在于,若所述换热器为加热换热器,所述评价数据为加热换热器的总传热系数;
    所述基于所述监测参数进行计算,获得所述换热器的评价数据包括:
    根据所述监测参数,计算所述加热换热器的空气质量流量;
    根据所述监测参数,计算所述加热换热器的水质量流量;
    根据所述监测参数、计算所述加热换热器的对数平均温差;
    根据所述加热换热器的空气质量流量、所述加热换热器的水质量流量、所述对数平均温差,获得所述加热换热器的总传热系数。
  11. 根据权利要求10所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述监测参数,计算所述加热换热器的空气质量流量包括:
    根据所述空气体积流量、所述进口空气温度、所述进口空气湿度、以及所述进口空气密度,计算所述加热换热器的空气质量流量。
  12. 根据权利要求11所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述监测参数,计算所述加热换热器的水质量流量包括:
    根据所述水体积流量和所述水密度,计算所述加热换热器的水质量流量。
  13. 根据权利要求12所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述监测参数、计算所述加热换热器的对数平均温差包括:
    根据所述进口水温、所述出口水温、所述进口空气温度和所述出口空气温度,计算所述加热换热器的对数平均温差。
  14. 根据权利要求13所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述加热换热器的空气质量流量、所述加热换热器的水质量流量、所述对数平均温差,获得所述加热换热器的总传热系数包括:
    根据所述加热换热器的空气质量流量、所述进口空气温度、所述出口空气温度和所述空气比热容,计算所述加热换热器空气侧的传热量;
    根据所述加热换热器的水质量流量、所述进口水温度、所述出口水温度和所述水比热容,计算所述加热换热器水侧的传热量;
    根据所述加热换热器空气侧的传热量和所述加热换热器水侧的传热量,计算所述加热换热器的总传热量;
    根据所述加热换热器的总传热量和所述对数平均温差,获得所述加热换热器的总传热系数。
  15. 根据权利要求4-9任一项所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述评价数据评价所述换热器的性能包括:
    将所述冷却换热器的总传热系数与冷却换热器的总传热系数设计值进行比较;
    判断所述冷却换热器的总传热系数是否大于或者等于所述冷却换热器的总传热系数设计值;
    若是,则所述冷却换热器的性能达标,否则不达标。
  16. 根据权利要求10-14任一项所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述评价数据评价所述换热器的性能包括:
    将所述加热换热器的总传热系数与加热换热器的总传热系数设计值进行比较;
    判断所述加热换热器的总传热系数是否大于或者等于所述加热换热器的总传热系数设计值;
    若是,则所述加热换热器的性能达标,否则不达标。
  17. 根据权利要求1所述的评价通风系统换热器性能的方法,其特征在于,所述评价数据包括:平均换热量;
    所述监测参数包括:进口水温、出口水温、进口空气温度、出口空气温度、进口空气湿度、出口空气湿度、空气比热容、水比热容、出口空气湿球温度、通过换热器的空气含湿量差值、空气体积流量、水密度和水体积流量。
  18. 根据权利要求17所述的评价通风系统换热器性能的方法,其特征在于,所述基于所述监测参数进行计算,获得所述换热器的评价数据包括:
    根据所述监测参数,计算空气侧换热量;
    根据所述监测参数,计算水侧换热量;
    根据所述空气侧换热量、所述水侧换热量,计算所述平均换热量。
  19. 根据权利要求18所述的评价通风系统换热器性能的方法,其特征在于,所述方法还包括:
    判断当前工况;所述当前工况包括:湿工况和干工况。
  20. 根据权利要求19所述的评价通风系统换热器性能的方法,其特征在于,所述空气侧换热量包括:冷却时空气侧换热量;
    若当前工况为湿工况,所述根据所述监测参数,计算空气侧换热量包括:
    根据所述进口空气温度、所述进口空气湿度、以及所述空气与焓值的关系式,计算进口空气焓值;
    根据所述出口空气温度、所述出口空气湿度、以及所述空气与焓值的关系式,计算出口空气焓值;
    根据所述进口空气焓值、所述出口空气焓值、所述空气体积流量、所述水比热容、所述进口空气温度、所述进口空气湿度、所述出口空气湿球温度和所述通过换热器的空气含湿量差值,计算冷却时空气侧换热量。
  21. 根据权利要求20所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述进口空气焓值、所述出口空气焓值、所述空气体积流量、所述水比热容、所述进口空气温度、所述进口空气湿度、所述出口空气湿球温度和所述通过换热器的空气含湿量差值,计算冷却时空气侧换热量包括:
    根据所述进口空气温度、所述进口空气湿度、所述空气体积流量以及进口空气温度,计算空气质量流量;
    根据所述空气质量流量、所述水密度、所述进口空气焓值、所述出口空气焓值、所述出口空气湿球温度、以及所述通过换热器的空气含湿量差值,计算冷却时空气侧换热量。
  22. 根据权利要求20所述的评价通风系统换热器性能的方法,其特征在于,若当前工况为干工况,所述根据所述监测参数,计算空气侧换热量包括:
    根据所述进口空气温度和所述出口空气温度,获得进出口空气温度差;
    根据所述进口空气温度、所述进口空气湿度、所述空气体积流量以及进 口空气密度,计算空气质量流量;
    根据所述空气质量流量、所述空气比热容和所述进出口空气温度差,计算所述冷却时空气侧换热量。
  23. 根据权利要求18所述的评价通风系统换热器性能的方法,其特征在于,所述空气侧换热量还包括:加热时空气侧换热量;
    所述根据所述监测参数,计算空气侧换热量还包括:
    根据所述进口空气温度和所述出口空气温度,获得进出口空气温度差;
    根据所述进口空气温度、所述进口空气湿度、所述空气体积流量以及进口空气密度,计算空气质量流量;
    根据所述进出口空气温度差、所述空气比热容和所述空气体积流量,计算所述加热时空气侧换热量。
  24. 根据权利要求18所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述监测参数,计算水侧换热量包括:
    根据所述进口水温和出口水温,获得进出口水温度差;
    根据所述水体积流量和所述水密度,计算水质量流量;
    根据所述进出口水温度差、所述水比热容、所述水质量流量,计算所述水侧换热量。
  25. 根据权利要求18所述的评价通风系统换热器性能的方法,其特征在于,所述根据所述评价数据评价所述换热器的性能包括:
    将所述空气侧换热量与所述水侧换热量作差,获得空气侧换热量与水侧换热量的差值;
    将所述空气侧换热量与水侧换热量的差值与所述平均换热量作比较,获得所述空气侧换热量与水侧换热量的差值与所述平均换热量的比值;
    将所述平均换热量与换热量设计值作比较,获得所述平均换热量与换热量设计值的比值;
    判断所述空气侧换热量与水侧换热量的差值与所述平均换热量的比值是否在第一区间内,且所述平均换热量与换热量设计值的比值是否在第二区内;
    若所述空气侧换热量与水侧换热量的差值与所述平均换热量的比值在第 一区间内、且所述平均换热量与换热量设计值的比值在第二区内,则所述换热器的性能达标,否则不达标。
  26. 一种电子设备,其特征在于,包括:存储器和处理器;所述存储器用于存储程序指令,所述处理器用于根据所述存储器所存储的程序指令执行权利要求1-25中任意一项所述方法的步骤。
  27. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-25中任意一项所述方法的步骤。
PCT/CN2021/103330 2020-11-17 2021-06-29 评价通风系统换热器性能的方法、电子设备和存储介质 WO2022105236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011287413.4 2020-11-17
CN202011287413.4A CN112504707B (zh) 2020-11-17 2020-11-17 评价通风系统换热器性能的方法、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022105236A1 true WO2022105236A1 (zh) 2022-05-27

Family

ID=74956559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103330 WO2022105236A1 (zh) 2020-11-17 2021-06-29 评价通风系统换热器性能的方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN112504707B (zh)
WO (1) WO2022105236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117313403A (zh) * 2023-10-16 2023-12-29 东莞市鹏锦机械科技有限公司 涂布机烘箱热量回收装置的监控方法、设备及存储介质
CN117554109A (zh) * 2024-01-11 2024-02-13 张家港长寿工业设备制造有限公司 一种换热器故障数据信息智能监测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504707B (zh) * 2020-11-17 2023-06-13 中广核工程有限公司 评价通风系统换热器性能的方法、电子设备和存储介质
CN113984422B (zh) * 2021-10-29 2024-04-19 上海板换机械设备有限公司 换热器运行性能评价方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918300A (en) * 1974-01-03 1975-11-11 Aaron Weisstuch Heat transfer measuring device
CN106596164A (zh) * 2017-02-07 2017-04-26 重庆市计量质量检测研究院 换热器能效在线检测设备
CN107402228A (zh) * 2016-05-20 2017-11-28 福建宁德核电有限公司 一种核电站换热器换热性能的监测系统及方法
CN109827792A (zh) * 2019-02-14 2019-05-31 江苏科技大学 开式的干湿制冷和制热工况下表面冷却器性能试验装置
CN110261148A (zh) * 2019-05-31 2019-09-20 西安交通大学 一种换热器系统中测试换热器性能的方法
CN112504707A (zh) * 2020-11-17 2021-03-16 中广核工程有限公司 评价通风系统换热器性能的方法、电子设备和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2035085U (zh) * 1988-03-25 1989-03-29 国家机械委兰州石油机械研究所 便携式换热器传热系数在线测量仪
CN1664524A (zh) * 2005-03-28 2005-09-07 杭州家和智能控制有限公司 风机盘管换热量风侧焓差法计量方法
CN101446524B (zh) * 2008-11-21 2010-06-09 合肥通用机械研究院 空气调节用换热器性能试验装置
CN102831302B (zh) * 2012-08-06 2015-02-11 大连三洋压缩机有限公司 一种结霜工况下翅片管蒸发器的性能计算方法
US10796085B2 (en) * 2013-07-10 2020-10-06 Crowdcomfort, Inc. Systems and methods for providing cross-device native functionality in a mobile-based crowdsourcing platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918300A (en) * 1974-01-03 1975-11-11 Aaron Weisstuch Heat transfer measuring device
CN107402228A (zh) * 2016-05-20 2017-11-28 福建宁德核电有限公司 一种核电站换热器换热性能的监测系统及方法
CN106596164A (zh) * 2017-02-07 2017-04-26 重庆市计量质量检测研究院 换热器能效在线检测设备
CN109827792A (zh) * 2019-02-14 2019-05-31 江苏科技大学 开式的干湿制冷和制热工况下表面冷却器性能试验装置
CN110261148A (zh) * 2019-05-31 2019-09-20 西安交通大学 一种换热器系统中测试换热器性能的方法
CN112504707A (zh) * 2020-11-17 2021-03-16 中广核工程有限公司 评价通风系统换热器性能的方法、电子设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, JING: "Application Research of Evaporative Cooling Temperature And Humidity Independent Control Air Conditioning System in Dry Area", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 19 March 2016 (2016-03-19), pages 1 - 75, XP055932118 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117313403A (zh) * 2023-10-16 2023-12-29 东莞市鹏锦机械科技有限公司 涂布机烘箱热量回收装置的监控方法、设备及存储介质
CN117313403B (zh) * 2023-10-16 2024-04-26 东莞市鹏锦机械科技有限公司 涂布机烘箱热量回收装置的监控方法、设备及存储介质
CN117554109A (zh) * 2024-01-11 2024-02-13 张家港长寿工业设备制造有限公司 一种换热器故障数据信息智能监测方法及系统
CN117554109B (zh) * 2024-01-11 2024-03-26 张家港长寿工业设备制造有限公司 一种换热器故障数据信息智能监测方法及系统

Also Published As

Publication number Publication date
CN112504707A (zh) 2021-03-16
CN112504707B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2022105236A1 (zh) 评价通风系统换热器性能的方法、电子设备和存储介质
Hwang et al. Experimental study on titanium heat exchanger used in a gas fired water heater for latent heat recovery
WO2022062576A1 (zh) 空调器室外机的除霜控制方法及空调器
CN113343495B (zh) 一种管壳式燃滑油散热器热性能模型修正方法
CN104483349B (zh) 一种用于测量管束换热特性的系统和方法
CN109766589A (zh) 一种管翅式换热器非均匀迎面风速下性能评价方法
Zhang et al. A favorable face velocity distribution and a V-frame cell for power plant air-cooled condensers
CN109373778A (zh) 一种逆流式自然通风冷却塔冷却能力评价及验算方法
Wu et al. Modeling and experimental investigation on comprehensive performance of perforated wavy fins for heat pump type air conditioners at frosting and non-frosting conditions
Yao et al. Thermal analysis of cooling coils based on a dynamic model
Liang et al. Experimental study on the operating performance of the air source heat pump (ASHP) with variable outdoor airflow rate under the standard frosting condition
CN107729600B (zh) 蒸发器仿真计算方法
CN110186291B (zh) 一种混流型闭式冷却塔校核计算方法
JP2003222487A (ja) プレートフィンチューブ型熱交換器用内面溝付管及びプレートフィンチューブ型熱交換器
He et al. Influence mechanism on flow and heat transfer characteristics for air-cooled steam condenser cells
Morisot et al. Simplified model for the operation of chilled water cooling coils under nonnominal conditions
Fang et al. Experimental study on performance optimization of air source heat pump using DOE method
Barros et al. Effect of relative humidity in the efficiency of condensing gas water heater appliance
CN106126864B (zh) 基于组元热力阻力特性的间接空冷系统设计计算方法
Gao et al. Structural parameters study on stainless-steel flat-tube heat exchangers with corrugated fins
Li et al. Experimental Investigation of the Thermal Performance of Wraparound Loop Heat Pipe Heat Exchanger for Heat Recovery in Air Handling Units
Yin et al. Performance prediction of hydronic cooling coil with non-uniform air velocity (ASHRAE RP-1741)
CN114321875A (zh) 锅炉受热面氧化皮的监测方法、系统、存储介质及服务端
Klein et al. Experimental Study of a Novel Shape-Optimized Air-to-Refrigerant Heat Exchanger under Evaporator Conditions
CN114021354B (zh) 一种风机盘管换热量计算模型的构建方法及构建装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893388

Country of ref document: EP

Kind code of ref document: A1