WO2022104826A1 - 鞋面网布的参数化制作方法、鞋面网布及鞋 - Google Patents

鞋面网布的参数化制作方法、鞋面网布及鞋 Download PDF

Info

Publication number
WO2022104826A1
WO2022104826A1 PCT/CN2020/131080 CN2020131080W WO2022104826A1 WO 2022104826 A1 WO2022104826 A1 WO 2022104826A1 CN 2020131080 W CN2020131080 W CN 2020131080W WO 2022104826 A1 WO2022104826 A1 WO 2022104826A1
Authority
WO
WIPO (PCT)
Prior art keywords
texture
different
parametric
parameter
parameterized
Prior art date
Application number
PCT/CN2020/131080
Other languages
English (en)
French (fr)
Inventor
叶福泉
王有承
黄守东
洪俊岭
刘超
袁晨
邱于献
郑志艺
杨礼
Original Assignee
安踏(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011295705.2A external-priority patent/CN112353039A/zh
Priority claimed from CN202022676739.8U external-priority patent/CN214386294U/zh
Application filed by 安踏(中国)有限公司 filed Critical 安踏(中国)有限公司
Publication of WO2022104826A1 publication Critical patent/WO2022104826A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear

Definitions

  • the invention relates to the field of computers, in particular to a parametric manufacturing method of a vamp mesh cloth, a vamp mesh cloth and shoes.
  • a pair of shoes includes at least a sole and an upper. When exercising, different parts of the foot may have different stretch requirements for different parts of the upper. How to satisfy it is the subject of current research.
  • embodiments of the present invention provide a parametric manufacturing method of a shoe upper mesh fabric, a shoe upper mesh fabric, and a shoe, so as to provide a shoe upper mesh fabric with different elastic regions.
  • a parametric manufacturing method of upper mesh cloth comprising:
  • the texture parameters of the upper mesh are set through the parameterized setting interface; the texture parameters include: shape parameters and density parameters;
  • the parameterized setting interface determines the numerical information of each texture parameter to obtain a parameterized texture map; the parameterized texture map includes at least two regions with different texture density;
  • the parametric texture map a shoe upper mesh with parametric texture is produced; the parametric texture includes at least two areas with different texture density; wherein, the areas with different texture density have different density parameters to have different elastic moduli.
  • determining the numerical information of each texture parameter it also includes: importing a human body force analysis map; the human body force analysis map includes areas with different degrees of force; the determining the numerical information of each texture parameter to Obtaining the parameterized texture map includes: determining each area of the parameterized texture map and the numerical information of each texture parameter in each area according to the contour and the degree of force of each area in the human body force analysis map, so that the obtained The parametric texture map includes regions with different density parameters.
  • any one of the at least two regions with different texture density includes multiple texture graphics; the determining the numerical information of each texture parameter includes: combining at least one texture parameter of the texture graphics in the same region. and/or, setting the numerical information of at least one texture parameter of the texture graphics between adjacent regions as the gradient mode.
  • the density parameter includes: at least one of a size parameter and an arrangement parameter;
  • the size parameter includes the number contained in the unit area, or the specific size of a single texture graphic
  • the arrangement parameters include: displacement distance and displacement direction between texture graphics.
  • the gradient mode includes: at least one of shape gradient, size gradient, and arrangement mode gradient;
  • the shape parameters include: points and lines included in the texture graphics; when the gradient mode includes shape gradients, the shape parameters further include at least one of a vector displacement step size of points and a vector displacement step size of lines;
  • the size parameter further includes: a size gradient direction, and at least one of a number or a specific size gradient step;
  • the arrangement mode parameter at least further includes: a displacement distance gradation step size.
  • the method before producing the upper mesh fabric with the parameterized texture, the method further includes:
  • interference lines or interference graphics are used to change at least one of the shape, size, displacement distance and displacement direction of the texture graphics in the target area ;
  • the target area is determined by the interference lines or interference graphics.
  • the method before producing the upper mesh fabric with the parameterized texture, the method further includes:
  • the producing the shoe upper mesh with the parameterized texture according to the parameterized texture map includes:
  • the upper mesh is produced according to the final half-panel.
  • the parametric texture is prepared by using a first material, and other parts of the upper except the parametric texture are prepared by using a second material, and the first material and the second material have the same characteristics. different elastic moduli.
  • a shoe upper mesh comprising:
  • the texture parameters of the parametric texture include shape parameters and density parameters;
  • the parameterized texture includes at least two regions with different texture density; wherein, the regions with different texture density have different density parameters to have different elastic moduli;
  • the parametric texture is prepared by using a first material, and other parts of the upper except the parametric texture are prepared by using a second material, and the first material and the second material have different elastic modes. quantity.
  • the texture layer includes the parameterized texture
  • the bottom layer and the texture layer are integrally woven and formed, or prepared by layers.
  • any one of the at least two regions with different texture density includes multiple texture graphics; the numerical information of at least one texture parameter of the texture graphics in the same region is a gradient mode; The numerical information of at least one texture parameter of the texture graphics between adjacent areas is a gradient mode.
  • the shape parameter includes: points and lines included in the texture graphic; the density parameter includes at least one of a size parameter and an arrangement parameter; the size parameter includes: a unit area The number, or the specific size of a single texture graphic; the arrangement parameters include: displacement distance and displacement direction between texture graphics.
  • the gradient mode includes: at least one of shape gradient, size gradient, and arrangement mode gradient; when the gradient mode includes shape gradient, the shape parameter further includes a vector displacement step size of a point and a line offset. At least one of the vector displacement steps; when the gradient mode includes size gradient, the size parameter further includes: the direction of size gradient, and the number or gradient steps of a specific size; when the gradient mode includes arrangement
  • the arrangement parameter at least further includes: the displacement distance changing step size.
  • the upper mesh cloth or the parameterized texture also includes a target interference area, and the target interference area is determined by the interference lines or interference graphics; At least one of displacement distance and displacement direction is different from other parts.
  • each area of the parameterized texture map and the numerical information of each texture parameter in each area are consistent with the outline and force degree of each area in the human body force analysis map; the human body force analysis map includes areas of varying strength.
  • a parametric production system for shoe upper mesh cloth comprising at least a processor and a memory; the processor performs the following operations by executing a program stored in the memory and calling other devices:
  • the texture parameters of the upper mesh are set through the parameterized setting interface; the texture parameters include: shape parameters and density parameters;
  • the parameterized setting interface determines the numerical information of each texture parameter to obtain a parameterized texture map; the parameterized texture map includes at least two regions with different texture density;
  • the parametric texture map a shoe upper mesh with parametric texture is produced; the parametric texture includes at least two areas with different texture density; wherein, the areas with different texture density have different density parameters to have different elastic moduli.
  • a computer-readable storage medium storing a computer program on the computer-readable storage medium, when the program is executed by a processor, implements any one of the methods described above.
  • a parameterized texture map is designed through the parameterization setting interface of the software, and the texture map includes at least two regions with different texture density. Then according to the designed texture map, the upper mesh fabric with parametric texture is produced.
  • the produced parametric texture includes at least two regions, each of which has different density parameters and thus different elastic moduli.
  • the different elastic modulus determines that it has different tensile characteristics (elasticity), which can meet the different stretching requirements of different parts.
  • Fig. 1 is the exemplary structure of the upper mesh cloth provided by the embodiment of the present invention.
  • Fig. 2 is a kind of exemplary process flow of the parametric manufacturing method of upper mesh cloth provided by the embodiment of the present invention
  • 3a and 3b are schematic diagrams of different positional relationships between points provided by an embodiment of the present invention.
  • FIG. 3c and FIG. 3d are schematic diagrams of different displacement directions according to an embodiment of the present invention.
  • FIG. 3d and FIG. 3e are schematic diagrams of different displacement distances provided by an embodiment of the present invention.
  • Fig. 5 is another exemplary process of the parametric manufacturing method of the upper mesh cloth provided by the embodiment of the present invention.
  • Fig. 6a is a human body force analysis diagram provided by an embodiment of the present invention.
  • 6b is a schematic diagram of a blank half-panel provided by an embodiment of the present invention.
  • FIGS. 7-10 are schematic diagrams of parameterized texture maps with different patterns according to an embodiment of the present invention.
  • 11a and 11b are schematic diagrams of a parameterized texture map with a gradient effect provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a parameterized texture map of size gradient provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a parameterized texture map of a gradual displacement distance provided by an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a parameterized texture map that is gradually changed due to interference according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a parameterized texture map that is gradually changed due to interference according to an embodiment of the present invention.
  • the upper is the surface above the sole that wraps the front of the foot.
  • the upper is the surface above the sole that wraps the front of the foot.
  • the production process of mesh mainly includes woven, warp knitting, weft knitting, circular knitting, fly knitting, electric embroidery, water embroidery, twisted heald and so on.
  • embodiments of the present invention provide a parametric manufacturing method of a shoe upper mesh fabric, a shoe upper mesh fabric, and a shoe, so as to provide a shoe upper mesh fabric with different elastic regions.
  • the upper mesh is parametrically designed, and the upper mesh with parametric texture is woven.
  • the obtained upper has excellent appearance, the complexity of the pattern, and the reproduction that is difficult to have in traditional designs; the pattern design of the upper mesh is digitalized, and the density of the texture is used to control the shoes.
  • the above-mentioned upper mesh fabric includes a parametric texture 1, and another part 2 (which may be called a bottom layer) other than the parametric texture.
  • the texture parameters of the parameterized texture 1 may at least include shape parameters and density parameters, and further, may also include color parameters.
  • the parameterized texture 1 can be prepared by using a first material, and the bottom layer 2 can be prepared by using a second material, and the first material and the second material have different elastic moduli (ie elasticity).
  • Exemplary first and second materials may be yarns, spray materials for fabric production, and the like.
  • parameterized texture 1 can be prepared from yarn a, and bottom layer 2 can be prepared from yarn b, and yarn a and yarn b have different elastic moduli (ie elasticity).
  • the elasticity of yarn a is smaller than that of yarn b.
  • elastic modulus in a state of stress in one direction, the stress divided by the strain in that direction. In the elastic deformation stage of the material, its stress and strain become proportional (that is, in accordance with Hooke's law), and its proportionality coefficient is called the elastic modulus.
  • the bottom layer 2 and the parameterized texture 1 can be integrally woven and formed, or obtained by layered weaving.
  • elastic yarn a can be used to weave a mesh bottom layer with more elastic threads. Then use inelastic threads or relatively less elastic yarn b to weave texture graphics to obtain parametric texture 1, and finally complete the parametric mesh.
  • the parameterized texture 1 may include at least two areas with different texture density, and the areas with different texture density have different density parameters, so as to have different elastic moduli, which can meet the requirements of different foot surfaces during exercise. exercise needs of the part.
  • the subsequently produced shoe uppers have excellent appearance, complexity of patterns, and reproducibility that is difficult to have in traditional designs.
  • the above-mentioned texture parameters may include: shape parameters and density parameters.
  • color parameters can also be included.
  • shape parameters may at least include: points and lines included in the texture graphics.
  • it can also include points and points (such as positional relationships), relationships between points and lines (such as which point is connected to which line), and in some cases, uses functions to represent texture graphics;
  • the density parameter may include at least one of a size parameter and an arrangement parameter.
  • the size parameter may include: the number contained in the unit area, or the specific size of a single texture graphic;
  • Arrangement parameters may include: displacement distance and displacement direction between texture graphics.
  • Fig. 3c and Fig. 3d have the same displacement distance, but different displacement directions and different texture effects.
  • FIG. 2 shows an exemplary process of a parametric manufacturing method of the upper mesh fabric, including:
  • S1 Provides a parameterized setting interface.
  • RHINO's plug-in grasshopper parametric software can be used for parametric design (parametric programming), and the grasshopper parametric software provides a parametric setting interface.
  • the grasshopper parameterization software can be installed in the computer.
  • the texture parameters may include: shape parameters and density parameters.
  • color parameters can also be included.
  • shape parameters may at least include: points and lines included in the texture graphics.
  • it can also include points and points (such as positional relationships), relationships between points and lines (such as which point is connected to which line), and in some cases, uses functions to represent texture graphics;
  • the density parameter may include at least one of a size parameter and an arrangement parameter.
  • the size parameter may include: the number contained in the unit area, or the specific size of a single texture graphic;
  • Arrangement parameters may include: displacement distance and displacement direction between texture graphics.
  • Fig. 3c and Fig. 3d have the same displacement distance, but different displacement directions and different texture effects.
  • Parametric programming is the most important part of parametric mesh. Please refer to Figure 4.
  • parameterized programming can be performed on the basis of variables: through different batteries of RHINO's plug-in Grasshopper (a single CAD command in RHINO, the shape resembles a battery, so it is collectively referred to as a battery, and one battery corresponds to The connection and use of a variable), pulling the operating lever of the variable, or inputting different values, can make the computer generate more complex, digital and aesthetic patterns that are difficult to replicate in traditional designs.
  • the parametric texture map obtained by parametric programming includes at least two regions with different texture density.
  • a parameterized texture map is designed through the parameterization setting interface of the software, and the texture map includes at least two regions with different texture density. Then according to the designed texture map, the upper mesh fabric with parametric texture is produced.
  • the above parameterized texture includes at least two regions, and each region has different density parameters and thus different elastic moduli.
  • the different elastic modulus determines that it has different tensile characteristics (elasticity), which can meet the different stretching requirements of different parts.
  • Figure 5 shows a more detailed parametric manufacturing method of the upper mesh, which may include:
  • the parameterization software provides a parameterization setting interface.
  • the imported human force analysis diagram includes areas with different degrees of force (pressure).
  • the degree of force is represented by the shade of color.
  • S54 Determine each area of the parameterized texture map and the numerical information of each texture parameter in each area according to the contour and the degree of force of each area in the human body force analysis map.
  • each area of the parameterized texture map and the numerical information of each texture parameter in each area can be determined according to the area contour of the shaded color of the human body force analysis.
  • Texture parameters are program variables, each variable can have an operating lever, and different numerical information can be input by pulling the operating lever.
  • FIGs 7, 8, and 9 show texture maps with different patterns, and the variation in texture density is similar to the area and depth of the human force analysis map shown in Figure 6a.
  • the area with looser texture of the upper mesh is the area with greater elasticity
  • the area with denser texture is the area with less elasticity.
  • Half-face refers to the 2D shape of the upper after it is flattened. See Figure 6b, in this step the half-panel is blank.
  • a half-panel imported into a parametric texture map is adjusted to fit the final half-panel of the upper design.
  • a logo or other elements that need to be added may also be added.
  • the half-panel with parametric texture can be transferred to the mesh manufacturer, and the arrangement of the half-panel texture can be converted into a code that can be recognized by the machine. Weaving, circular knitting, flying weaving, electric embroidery, water embroidery, etc.) for production.
  • the density of textures in different regions is designed in combination with the characteristics of the force on the foot surface when the human body is exercising, so that the upper mesh cloth is more functional and can better meet the user's exercise needs.
  • parametric software is currently mainly used in the construction industry and industry.
  • 3D parametric design of soles is mainly carried out, and most of the parametric designs of soles use 3D printing technology.
  • 3D printing technology has bottlenecks of insufficient production capacity and high cost, and it has not been applied to shoe upper design.
  • the back-end weaving method is mainly used (the back-end refers to the weaving after the shoe upper is designed) to realize the density change of the texture in different areas, and the process is cumbersome. Moreover, the current vamp mesh does not have the rhythm of parameterized specific laws.
  • the parametric software is innovatively used for the upper mesh design, which fills the industry gap in the parametric design of the upper mesh, and the parametric technology can be applied to the products on a large scale, so that the The texture of the upper mesh has a parametric rhythm.
  • the same vamp does not need to use different weaving methods and different segments at the back end, but only through the density change of the parameterized texture in the early stage to achieve its functionality, thus effectively combining design and functionality. .
  • the numerical information of the texture parameters may be set in a gradient manner.
  • the numerical information of at least one texture parameter of the texture graphics in the same area may be set as a gradient mode.
  • the numerical information of at least one texture parameter of the texture graphics between adjacent regions is set as a gradient mode.
  • the Grasshopper parameterization software can be used to connect the battery packs of different commands through a certain logical relationship. Each battery pack corresponds to different numerical information, and the numerical information corresponding to some or all battery packs can be designed to change gradually. In this way, The Grasshopper parametric software can be made to automatically calculate and generate a parametric graph (as shown in Figure 10, gradually changing from a regular hexagon to a star), and the graph has a certain gradient and a sense of rhythm.
  • the gradient mode includes: at least one of shape gradient, size gradient, arrangement mode gradient, and color gradient.
  • the aforementioned shape parameters include: the points and lines contained in the texture graphics.
  • the shape parameter may further include at least one of a vector displacement step size of a point and a vector displacement step size of a line.
  • the vector displacement of the midpoint can be manipulated, or the vector displacement step of the midpoint can be set to a value to move the midpoint regularly and recombine the lines to produce a gradient from hexagon A graphic effect to a six-pointed star.
  • the size parameter further includes: the direction of size gradient, and at least one of the number or gradient steps of a specific size.
  • the size of the hexagon is gradient with a certain step.
  • the above-mentioned parameters of the alignment mode may at least further include: the displacement distance gradient step size.
  • the color parameter can also include the color value gradient step size to gradually change the color, so as to have better control over the color change of the graphics.
  • interference lines or interference graphics may also be added to the parameterized texture map; wherein the interference lines or interference graphics are used to change the shape, size, displacement distance between texture graphics and displacement direction of the texture graphics. At least one, make at least one of the shape, size (such as the diameter of a circle), position (number of arranged XY), displacement distance and displacement direction between the texture graphics in the target area, different from other parts .
  • the target area is determined by interference lines or interference graphics. Specifically, if it is an interference line, the target area may be the smallest area including the interference line (for example, the smallest rectangular area), and if it is an interference pattern, the target area may be the area enclosed by the interference pattern, such as the area inscribed in the interference pattern. and many more.
  • a circular graphic is added as an interference graphic, and the target interference area is a circular area.
  • the displacement distance and displacement direction in the circular area have changed compared with Fig. 10, which can achieve local interference to the overall graph, resulting in a change in the density of the local graph.
  • local parameters can be used to change the style of the overall pattern, and the changes between the gradient patterns are more relaxed.
  • interference can be achieved in the following ways:
  • the present invention has the following beneficial effects:
  • the parametric software is combined with the upper mesh design to fill the gap in the parametric design of the upper mesh.
  • the parametric technology of the prior art is mainly used in the construction industry and industry; for the footwear industry, the parametric application is mainly used for the modeling part of the sole.
  • the designer can control and design a relatively complex mesh texture through parametric software, and generate gradient graphics with a specific rhythm. In this way, designers can more effectively integrate and participate in the design of the mesh, making the products more competitive.
  • the parameter option of color can also be given in the variable, and the control of the change of the color of the graph is better.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk hard disk
  • removable disk WD-ROM

Abstract

一种鞋面网布的参数化制作方法、鞋面网布及鞋,以提供具有不同弹性区域的鞋面网布;方法包括:提供参数化设置界面;通过参数化设置界面设置鞋面网布的纹理参数;纹理参数包括:形状参数和疏密参数;使用参数化设置界面,确定各纹理参数的数值信息,以得到参数化纹理图;参数化纹理图至少包括两个纹理疏密性不同的区域;根据参数化纹理图,生产具有参数化纹理的鞋面网布;参数化纹理包括至少两个纹理疏密性不同的区域;其中,纹理疏密性不同的区域具有不同的疏密参数,以具有不同的弹性模量,而弹性模量不同,决定了其具有不同的拉伸特点,可满足不同部分不同的拉伸需求。

Description

鞋面网布的参数化制作方法、鞋面网布及鞋
本申请要求于2020年11月18日提交中国专利局、申请号为202011295705.2、发明名称为“鞋面网布的参数化制作方法、鞋面网布及鞋”,以及,2020年11月18日提交中国专利局、申请号为202022676739.8、实用新型名称为“鞋面网布及鞋”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及计算机领域,特别涉及鞋面网布的参数化制作方法、鞋面网布及鞋。
背景技术
一双鞋至少包括鞋底和鞋面。在运动时,脚面不同的部位可能对鞋面的不同部分有不同的拉伸需求。如何对其进行满足,是目前研究的课题。
发明内容
有鉴于此,本发明实施例提供鞋面网布的参数化制作方法、鞋面网布及鞋,以提供具有不同弹性区域的鞋面网布。
为实现上述目的,本发明实施例提供如下技术方案:
一种鞋面网布的参数化制作方法,包括:
提供参数化设置界面;
通过所述参数化设置界面设置鞋面网布的纹理参数;所述纹理参数包括:形状参数和疏密参数;
使用所述参数化设置界面,确定各纹理参数的数值信息,以得到参数化纹理图;所述参数化纹理图至少包括两个纹理疏密性不同的区域;
根据所述参数化纹理图,生产具有参数化纹理的鞋面网布;所述参数化纹理包括至少两个纹理疏密性不同的区域;其中,纹理疏密性不同的区域具有不同的疏密参数,以具有不同的弹性模量。
可选的,在确定各纹理参数的数值信息之前,还包括:导入人体受力分析图;所述人体受力分析图包括受力程度不同的区域;所述确定各纹理参数 的数值信息,以得到参数化纹理图包括:根据所述人体受力分析图中各区域的轮廓及受力程度,确定参数化纹理图的各区域,以及各区域中各纹理参数的数值信息,以令得到的所述参数化纹理图包括具有不同疏密参数的区域。
可选的,所述至少两个纹理疏密性不同的区域中的任一区域包括多个纹理图形;所述确定各纹理参数的数值信息包括:将同一区域内纹理图形的至少一种纹理参数的数值信息设置为渐变方式;和/或,将相邻区域间纹理图形的至少一种纹理参数的数值信息设置为渐变方式。
可选的,所述疏密参数包括:尺寸参数和排列方式参数中的至少一种;
所述尺寸参数包括单位面积内所包含的个数,或者,单个纹理图形的具体尺寸;
所述排列方式参数包括:纹理图形间的位移距离和位移方向。
可选的,所述渐变方式包括:形状渐变、尺寸渐变以及排列方式渐变中的至少一种;
所述形状参数包括:纹理图形所包含的点和线;在所述渐变方式包括形状渐变时,所述形状参数还包括点的矢量位移步长和线的矢量位移步长中的至少一种;
在所述渐变方式包括尺寸渐变时,所述尺寸参数还包括:尺寸渐变方向,以及,个数或具体尺寸的渐变步长中的至少一种;
在所述渐变方式包括排列方式渐变时,所述排列方式参数至少还包括:位移距离渐变步长。
可选的,在生产具有所述参数化纹理的鞋面网布之前,还包括:
对所述参数化纹理图添加干扰线条或干扰图形;其中,所述干扰线条或干扰图形用于改变目标区域内纹理图形的形状、尺寸、纹理图形间的位移距离和位移方向中的至少一种;所述目标区域由所述干扰线条或干扰图形决定。
可选的,在生产具有所述参数化纹理的鞋面网布之前,还包括:
将最终确定的参数化纹理图导入空白的鞋面的半面版中;
将导入参数化纹理图的半面板处理成符合鞋面设计的最终的半面版;
所述根据所述参数化纹理图生产具有所述参数化纹理的鞋面网布包括:
根据最终的半面版生产鞋面网布。
可选的,所述参数化纹理采用第一材料制备得到,所述鞋面除所述参数化纹理之外的其他部分采用第二材料制备得到,所述第一材料与所述第二材料具有不同的弹性模量。
一种鞋面网布,包括:
具有参数化纹理;所述参数化纹理的纹理参数包括形状参数和疏密参数;
所述参数化纹理包括至少两个纹理疏密性不同的区域;其中,纹理疏密性不同的区域具有不同的疏密参数,以具有不同的弹性模量;
所述参数化纹理采用第一材料制备得到,所述鞋面除所述参数化纹理之外的其他部分采用第二材料制备得到,所述第一材料与所述第二材料具有不同的弹性模量。
可选的,包括底层和纹理层;所述纹理层包括所述参数化纹理;所述底层与所述纹理层一体编织成型,或者分层制备得到。
可选的,所述至少两个纹理疏密性不同的区域中的任一区域包括多个纹理图形;同一区域内纹理图形的至少一种纹理参数的数值信息为渐变方式;和/或,相邻区域间纹理图形的至少一种纹理参数的数值信息为渐变方式。
可选的,所述形状参数包括:纹理图形所包含的点和线;所述疏密参数包括:尺寸参数和排列方式参数中的至少一种;所述尺寸参数包括:单位面积内所包含的个数,或者,单个纹理图形的具体尺寸;所述排列方式参数包括:纹理图形间的位移距离和位移方向。
可选的,所述渐变方式包括:形状渐变、尺寸渐变以及排列方式渐变中的至少一种;在所述渐变方式包括形状渐变时,所述形状参数还包括点的矢量位移步长和线的矢量位移步长中的至少一种;在所述渐变方式包括尺寸渐变时,所述尺寸参数还包括:尺寸渐变方向,以及,个数或具体尺寸的渐变步长;在所述渐变方式包括排列方式渐变时,所述排列方式参数至少还包括:位移距离渐变步长。
可选的,所述鞋面网布或参数化纹理还包括目标干扰区域,所述目标干扰区域由干扰线条或干扰图形决定;所述目标干扰区域内纹理图形的形状、尺寸、纹理图形间的位移距离和位移方向中的至少一种,不同于其他部分。
可选的,参数化纹理图的各区域,以及各区域中各纹理参数的数值信息, 与人体受力分析图中各区域的轮廓及受力程度相一致;所述人体受力分析图包括受力程度不同的区域。
一种使用上述鞋面网布制备而成的鞋。
一种鞋面网布的参数化制作系统,至少包括处理器和存储器;处理器通过执行存储器中存放的程序以及调用其他设备,执行如下操作:
提供参数化设置界面;
通过所述参数化设置界面设置鞋面网布的纹理参数;所述纹理参数包括:形状参数和疏密参数;
使用所述参数化设置界面,确定各纹理参数的数值信息,以得到参数化纹理图;所述参数化纹理图至少包括两个纹理疏密性不同的区域;
根据所述参数化纹理图,生产具有参数化纹理的鞋面网布;所述参数化纹理包括至少两个纹理疏密性不同的区域;其中,纹理疏密性不同的区域具有不同的疏密参数,以具有不同的弹性模量。
一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述任一项所述的方法。
可见,在本发明实施例中,通过软件的参数化设置界面设计参数化纹理图,该纹理图至少包含两个纹理疏密性不同的区域。再根据设计出的纹理图生产出具有参数化纹理的鞋面网布。生产出的参数化纹理包括至少两个区域,这各区域的疏密参数不同,因而具有不同的弹性模量。而弹性模量不同,决定了其具有不同的拉伸特点(弹性),可满足不同部分不同的拉伸需求。
附图说明
图1为本发明实施例提供的鞋面网布的示例性结构;
图2为本发明实施例提供的鞋面网布的参数化制作方法的一种示例性流程;
图3a和图3b为本发明实施例提供的点和点之间的位置关系不同的示意图;
图3c与图3d为本发明实施例提供的位移方向不同的示意图;
图3d和图3e为本发明实施例提供的位移距离不同不同的示意图;
图4为本发明实施例提供的参数化编程示意图;
图5为本发明实施例提供的鞋面网布的参数化制作方法的另一种示例性流程;
图6a为本发明实施例提供的人体受力分析图;
图6b为本发明实施例提供的空白半面版示意图;
图7-10为本发明实施例提供的具有不同的图案的参数化纹理图示意图;
图11a和图11b为本发明实施例提供的具有渐变效果的参数化纹理图示意图;
图12为本发明实施例提供的尺寸渐变的参数化纹理图示意图;
图13为本发明实施例提供的位移距离渐变的参数化纹理图示意图;
图14为本发明实施例提供的因干扰而渐变的参数化纹理图示意图;
图15为本发明实施例提供的因干扰而渐变的参数化纹理图示意图。
具体实施方式
鞋面是指鞋底之上的表面,包裹脚前的部份。通常由皮料、鞋料、网布等制成。其中网布的制作工艺主要有梭织、经编、纬编、圆编、飞织、电绣、水绣、绞综等。
在运动时,脚面不同的部位可能对鞋面有不同的拉伸需求。
有鉴于此,本发明实施例提供鞋面网布的参数化制作方法、鞋面网布及鞋,以提供具有不同弹性区域的鞋面网布。
本发明实施例的核心思想是:
对鞋面网布进行参数化设计,织出具有参数化纹理的鞋面网布。令所制得的鞋面具有优秀的外观性、图案的复杂性,以及,传统设计所难具有的复制性;使鞋面网布的图案设计具有数字化,且通过纹理的疏密性来控制鞋面网布不同区域的弹性。
请参见图1,上述鞋面网布包含参数化纹理1,以及,除参数化纹理之外的其他部分2(可称为底层)。
参数化纹理1的纹理参数至少可包括形状参数和疏密参数,进一步的,也可包括颜色参数。
参数化纹理1可采用第一材料制备得到,底层2可采用第二材料制备得到,并且,第一材料与第二材料具有不同的弹性模量(也即弹性)。
第一材料和第二材料示例性得可为纱线、用于生产面料的喷涂材料等。
以纱线为例,参数化纹理1可由纱线a制备得到,底层2可由纱线b制备得到,纱线a与纱线b具有不同的弹性模量(也即弹性)。示例性的,纱线a的弹性要小于纱线b。
弹性模量的一般定义是:单向应力状态下,应力除以该方向的应变。材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
底层2与参数化纹理1可一体编织成型,或者分层编织得到。
以分层编织为例,首先,可采用有弹性的纱线a织出较有弹线的网布底层。然后再利用非弹线或弹性相对较小的纱线b来编织纹理图形,得到参数化纹理1,最终制作完成参数化网布。
具体的,参数化纹理1可包括至少两个纹理疏密性不同的区域,纹理疏密性不同的区域具有不同的疏密参数,以具有不同的弹性模量,进而可以满足运动过程中脚面不同部位的运动需求。除此之外,后续所制得的鞋面具有优秀的外观性、图案的复杂性,以及,传统设计所难具有的复制性。
具体的,上述纹理参数可包括:形状参数和疏密参数。此外,还可包括颜色参数。
进一步的,形状参数至少可包括:纹理图形所包含的点和线。此外,还可包括点和点(例如位置关系)、点和线之间的关系(例如哪个点与哪条线连接),在一些情况下,会使用函数表示纹理图形;
以点和点间的关系为例,请参见图3a和图3b,即使纹理图形包含的点和线的数量相同,若点和点之间的位置关系不同,所得到的纹理图像的形状也不同。
疏密参数可包括:尺寸参数和排列方式参数中的至少一种。
尺寸参数可包括:单位面积内所包含的个数,或者,单个纹理图形的具体尺寸;
排列方式参数可包括:纹理图形间的位移距离和位移方向。
例如,请参见图3c与图3d,假定纹理图形为六边形,图3c与图3d位移距离相同,但位移方向不同,其纹理效果也不同。
同理,请参见图3d和图3e,假定纹理图形为六边形,图3d和图3e,位 移方向相同,但位移距离不同,其纹理效果也不同。
为制备上述鞋面网布,图2示出了鞋面网布的参数化制作方法的一种示例性流程,包括:
S1:提供参数化设置界面。
具体的,可采用RHINO的插件grasshopper参数化软件来进行参数化设计(参数化编程),由grasshopper参数化软件提供参数化设置界面。
grasshopper参数化软件可安装于计算机中。
S2:通过参数化设置界面设置鞋面网布的纹理参数。
具体的,纹理参数可包括:形状参数和疏密参数。此外,还可包括颜色参数。
进一步的,形状参数至少可包括:纹理图形所包含的点和线。此外,还可包括点和点(例如位置关系)、点和线之间的关系(例如哪个点与哪条线连接),在一些情况下,会使用函数表示纹理图形;
以点和点间的关系为例,请参见图3a和图3b,即使纹理图形包含的点和线的数量相同,若点和点之间的位置关系不同,所得到的纹理图像的形状也不同。
疏密参数可包括:尺寸参数和排列方式参数中的至少一种。
尺寸参数可包括:单位面积内所包含的个数,或者,单个纹理图形的具体尺寸;
排列方式参数可包括:纹理图形间的位移距离和位移方向。
例如,请参见图3c与图3d,假定纹理图形为六边形,图3c与图3d位移距离相同,但位移方向不同,其纹理效果也不同。
同理,请参见图3d和图3e,假定纹理图形为六边形,图3d和图3e,位移方向相同,但位移距离不同,其纹理效果也不同。
上述纹理参数可视为可变量或程序变量。
S3:使用参数化设置界面,确定各纹理参数的数值信息,以得到参数化纹理图。
参数化编程,是参数化网布中最重要的一环。请参见图4,在设计计程序变量,可以变量为基础,进行参数化编程:通过RHINO的插件Grasshopper的不同电池(为RHINO中的单个CAD指令,外形酷似电池,故统称为电池, 一个电池对应一个可变量)的连接和运用,拉动可变量的操作杠杆,或输入不同的数值,可使计算机产生较为复杂,传统设计难以复制的,数字化且具有美感的图案。
请参见图1,通过参数化编程得到的参数化纹理图至少包括两个纹理疏密性不同的区域。
S4:根据参数化纹理图生产具有参数化纹理的鞋面网布。
可见,在本发明实施例中,通过软件的参数化设置界面设计参数化纹理图,该纹理图至少包含两个纹理疏密性不同的区域。再根据设计出的纹理图生产出具有参数化纹理的鞋面网布。上述参数化纹理包括至少两个区域,各区域的疏密参数不同,因而具有不同的弹性模量。而弹性模量不同,决定了其具有不同的拉伸特点(弹性),可满足不同部分不同的拉伸需求。
为与脚部受力相贴合,图5示出了鞋面网布更为详细的参数化制作方法,其可包括:
S51:参数化软件提供参数化设置界面。
S52:导入人体受力分析图。
请参见图6a,导入人体受力分析图包括受力程度(压强)不同的区域。在图6a中,以颜色的深浅来表征受力程度。
S53:通过参数化设置界面设置鞋面网布的纹理参数。
纹理参数相关介绍请参见前述的记载,在此不作赘述。
S54:根据人体受力分析图中各区域的轮廓及受力程度,确定参数化纹理图的各区域,以及各区域中各纹理参数的数值信息。
具体的,可根据人体受力分析的深浅颜色的区域轮廓,来确定参数化纹理图的各区域,以及各区域中各纹理参数的数值信息。
纹理参数即程序变量,每一可变量可具有操作杠杆,通过拉动操作杠杆,可输入不同的数值信息。
当设计人员通过点击和拉动变量的按钮,图形会根据程序的设定自动生成各种不同图案,变化多样。从而可以满足设计人员多方面的不同层次的设计需求。
图7,8,9即示出了具有不同的图案的纹理图,且其纹理疏密变化与图6a所示的人体受力分析图的区域和深浅度都较为相近。
以图7为例,鞋面网布纹理较为疏松的地方为弹性较大的区域,纹理较为密集的地方为弹性较小的区域。
S55:将最终确定的参数化纹理图导入鞋面的半面版中。
半面版是指鞋面展平后的2D形状。请参见图6b,在本步骤中,半面版是空白的。
S56:将导入参数化纹理图的半面板处理成符合鞋面设计的最终半面版。
在一个示例中,将导入参数化纹理图的半面板调整成符合鞋面设计的最终的半面版。
在另一个示例中,还可添加LOGO或其他需要增加的其他元素。
S57:根据最终的半面版生产鞋面网布。
具体的,可将具有参数化纹理的半面版转交给网布厂商,将半面版纹理的排布转化成机台可识别的代码,根据不同机台的特征和工艺(梭织、经编、纬编、圆编、飞织、电绣、水绣等)进行生产。
在本实施例中,结合人体运动时的脚面受力的特性,设计不同区域的纹理的疏密,使得鞋面网布更具有功能性,更能满足用户运动需求。
此外,需要说明的是,目前参数化软件主要用于建筑行业和工业。在鞋业领域,主要对鞋底进行3D参数化设计,而鞋底的参数化设计大部份采用的是3D打印技术。但3D打印技术具有产能不足和成本较大的瓶颈,并且也未应用于鞋面设计中。
在鞋面制备方面,目前主要是通过后端织法(后端是指在鞋面设计后的编织)来实现不同区域的纹理的疏密变化,过程繁琐。并且,目前鞋面网布没有参数化特定规律的韵律感。
在本发明实施例中,创新性地将参数化软件用于鞋面网布设计,填补了鞋面网布参数化设计的行业空白,可以使参数化技术大规模的被应用到产品中,使鞋面网布的纹理具有参数化韵律感。
并且,同一个鞋面不需要通过运用后端的不同的织法和不同的分片,只通过前期的参数化纹理的疏密变化即可实现其功能性,从而把设计与功能性有效的结合起来。
下面,具体介绍如何确定各纹理参数的数值信息。
在一个实施例中,可采用渐变方式设置纹理参数的数值信息。
具体的,可将同一区域内纹理图形的至少一种纹理参数的数值信息设置为渐变方式。或者,将相邻区域间纹理图形的至少一种纹理参数的数值信息设置为渐变方式。
当然,也可二者兼施。
可利用Grasshopper参数化软件通过一定的逻辑关系,将不同指令的电池组的连接,每一电池组对应不同的数值信息,可设计部分或全部电池组所对应的数值信息呈渐变变化方式,这样,可使得Grasshopper参数化软件自动计算并且生成参数化图形(如图10所示,从正六边形渐变到星形),图形具有一定的渐变性和韵律感。
渐变方式包括:形状渐变、尺寸渐变、排列方式渐变、颜色渐变中的至少一种。
前述介绍了形状参数包括:纹理图形所包含的点和线。
而在渐变方式包括形状渐变时,形状参数还可包括点的矢量位移步长和线的矢量位移步长中的至少一种。
请参见图11a,例如一组阵列的六边形,形状参数包括六边形边的中点。通过一定逻辑程序编写后,可通过操控中点的矢量位移,或者将中点的矢量位移步长设定为一个数值,来实现有规律地移动中点并重新组合线条,产生从六边形渐变到六角星的一种图形效果。
或者,请参见图11b,同样通过中点的矢量位移,或者将中点的矢量位移步长设定为一个数值,来实现有规律地移动中点,将图形由六角形转化为其他图形。
而在渐变方式包括尺寸渐变时,尺寸参数还包括:尺寸渐变方向,以及,个数或具体尺寸的渐变步长中的至少一种。
例如,请参见图12,在某尺寸渐变方向上,六边形的尺寸以某一步长渐变。
而在渐变方式包括排列方式渐变时,前述提及的排列方式参数至少还可包括:位移距离渐变步长。
例如,请参见图13,在某位移方向上,圆形的位移距离以某一步长渐变。
在渐变方式包含颜色渐变时,颜色参数还可包括色值渐变步长,以逐渐 改变颜色,从而对于图形的颜色的变化控制更为出色。
在本发明其他实施例中,还可对参数化纹理图添加干扰线条或干扰图形;其中,干扰线条或干扰图形用于改变纹理图形的形状、尺寸、纹理图形间的位移距离和位移方向中的至少一种,令目标区域内纹理图形的形状、尺寸(例如圆的直径大小)、位置(排列的XY的数值)、纹理图形间的位移距离和位移方向中的至少一种,不同于其他部分。
目标区域由干扰线条或干扰图形决定。具体的,若为干扰线条,目标区域可为包含干扰线条的最小区域(例如最小矩形区域),而若为干扰图形,目标区域可直接为干扰图形所圈定的区域,例如内接干扰图形的区域等等。
以图10所示参数化纹理图为例,示例性地,为其添加圆形图形作为干扰图形,目标干扰区域为圆形区域。请参见图14,圆形区域内的位移距离和位移方向,与图10相比发生了变化,这样可实现对整体图形进行局部范围内的干扰,产生局部的图形的疏密变化。进而实现对线条疏密变化控制网布弹性的同时,又能使用局部参数的改变整体图案的风格,且渐变性的图形之间的变化更为舒缓。
当然,实际得到的参数化纹理图中并无圆形区域的边界,如图15所示。
具体的,可通过如下方式实现干扰:
1,选中目标区域内的纹理图形;
2,将目标区域内的所有纹理图形的中心点全部找出;
3,基于中心点,使用从大到小(可按从目标区域的边缘到目标区域中心的方向由大到小)的比例缩放值,将每一纹理图形进行比例缩放。
综上,相对于现有技术,本发明具有的如下有益效果:
1,针对鞋面不同区域对于伸缩性的不同需求,使用应用参数化软件,为纹理图中局部区域赋予稀疏或密集的特性,以此来控制在人体运动时,为脚面不同的区域提供不同的伸缩性能。解决了鞋面网布对于鞋子的运动中的鞋面部份的不同区域、有效地伸缩性的问题,且在不同伸缩区域通过有效的渐变,使得弹性区域和非弹性区域有效的连接更为自然。
2,突破和创新很明显将参数化软件与鞋面网布设计相结合,填补鞋面网 布参数化设计领域的空白。需强调的是,现有技术的参数化技术主要应用于建筑行业和工业;对于鞋业,参数化的应用主要用于鞋底的建模部份。而在本发明中,设计师可通过参数化软件,控制和设计较为复杂的网布纹理,并且产生渐变性的具有特定韵律感的图形。这样,使得设计师能更有效的融合和参与到网布的设计中,令产品更具竞争力。
3,通过应用参数化软件对图形赋予一定的参数和函数(例如三角函数SIN、COS)的干扰,产生一定的渐变性。且当使用者改变参数化程序的变量时,可生成出各式的图形,使设计元素带有手工难以绘制的、强烈的程序编制感,使设计符合当下设计师的多变需求。
并且可将前期设计与后期网布生产相结合,让品牌的设计元素更有效的融合到网布设计中。此外,还可在变量中给予颜色的参数选项,对于图形的颜色的变化控制更为出色。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及模型步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或模型的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、WD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种鞋面网布的参数化制作方法,其特征在于,包括:
    提供参数化设置界面;
    通过所述参数化设置界面设置鞋面网布的纹理参数;所述纹理参数包括:形状参数和疏密参数;
    使用所述参数化设置界面,确定各纹理参数的数值信息,以得到参数化纹理图;所述参数化纹理图至少包括两个纹理疏密性不同的区域;
    根据所述参数化纹理图,生产具有参数化纹理的鞋面网布;所述参数化纹理包括至少两个纹理疏密性不同的区域;其中,纹理疏密性不同的区域具有不同的疏密参数,以具有不同的弹性模量。
  2. 如权利要求1所述的方法,其特征在于,在确定各纹理参数的数值信息之前,还包括:
    导入人体受力分析图;所述人体受力分析图包括受力程度不同的区域;
    所述确定各纹理参数的数值信息,以得到参数化纹理图包括:
    根据所述人体受力分析图中各区域的轮廓及受力程度,确定参数化纹理图的各区域,以及各区域中各纹理参数的数值信息,以令得到的所述参数化纹理图包括具有不同疏密参数的区域。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述至少两个纹理疏密性不同的区域中的任一区域包括多个纹理图形;
    所述确定各纹理参数的数值信息包括:
    将同一区域内纹理图形的至少一种纹理参数的数值信息设置为渐变方式;
    和/或,将相邻区域间纹理图形的至少一种纹理参数的数值信息设置为渐变方式。
  4. 如权利要求1或2所述的方法,其特征在于,在生产具有所述参数化纹理的鞋面网布之前,还包括:
    对所述参数化纹理图添加干扰线条或干扰图形;其中,所述干扰线条或 干扰图形用于改变目标区域内纹理图形的形状、尺寸、纹理图形间的位移距离和位移方向中的至少一种;所述目标区域由所述干扰线条或干扰图形决定。
  5. 如权利要求1或2所述的方法,其特征在于,在生产具有所述参数化纹理的鞋面网布之前,还包括:
    将最终确定的参数化纹理图导入空白的鞋面的半面版中;
    将导入参数化纹理图的半面板处理成符合鞋面设计的最终的半面版;
    所述根据所述参数化纹理图生产具有所述参数化纹理的鞋面网布包括:
    根据最终的半面版生产鞋面网布。
  6. 一种鞋面网布,其特征在于,包括:
    具有参数化纹理;所述参数化纹理的纹理参数包括形状参数和疏密参数;
    所述参数化纹理包括至少两个纹理疏密性不同的区域;其中,纹理疏密性不同的区域具有不同的疏密参数,以具有不同的弹性模量;
    所述参数化纹理采用第一材料制备得到,所述鞋面除所述参数化纹理之外的其他部分采用第二材料制备得到,所述第一材料与所述第二材料具有不同的弹性模量。
  7. 如权利要求6所述的鞋面网布,其特征在于,
    所述至少两个纹理疏密性不同的区域中的任一区域包括多个纹理图形;
    同一区域内纹理图形的至少一种纹理参数的数值信息为渐变方式;
    和/或,相邻区域间纹理图形的至少一种纹理参数的数值信息为渐变方式。
  8. 如权利要求7所述的鞋面网布,其特征在于,
    所述形状参数包括:纹理图形所包含的点和线;
    所述疏密参数包括:尺寸参数和排列方式参数中的至少一种;
    所述尺寸参数包括:单位面积内所包含的个数,或者,单个纹理图形的具体尺寸;
    所述排列方式参数包括:纹理图形间的位移距离和位移方向。
  9. 如权利要求8所述的鞋面网布,其特征在于,
    所述渐变方式包括:形状渐变、尺寸渐变以及排列方式渐变中的至少一种;
    在所述渐变方式包括形状渐变时,所述形状参数还包括点的矢量位移步长和线的矢量位移步长中的至少一种;
    在所述渐变方式包括尺寸渐变时,所述尺寸参数还包括:尺寸渐变方向,以及,个数或具体尺寸的渐变步长;
    在所述渐变方式包括排列方式渐变时,所述排列方式参数至少还包括:位移距离渐变步长。
  10. 如权利要求6所述的鞋面网布,其特征在于,
    所述鞋面网布或参数化纹理还包括目标干扰区域,所述目标干扰区域由干扰线条或干扰图形决定;
    所述目标干扰区域内纹理图形的形状、尺寸、纹理图形间的位移距离和位移方向中的至少一种,不同于其他部分。
  11. 如权利要求6所述的鞋面网布,其特征在于,参数化纹理图的各区域,以及各区域中各纹理参数的数值信息,与人体受力分析图中各区域的轮廓及受力程度相一致;所述人体受力分析图包括受力程度不同的区域。
  12. 一种使用如权利要求6-11任一项所述的鞋面网布制备而成的鞋。
PCT/CN2020/131080 2020-11-18 2020-11-24 鞋面网布的参数化制作方法、鞋面网布及鞋 WO2022104826A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011295705.2A CN112353039A (zh) 2020-11-18 2020-11-18 鞋面网布的参数化制作方法、鞋面网布及鞋
CN202022676739.8 2020-11-18
CN202022676739.8U CN214386294U (zh) 2020-11-18 2020-11-18 鞋面网布及鞋
CN202011295705.2 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022104826A1 true WO2022104826A1 (zh) 2022-05-27

Family

ID=81708268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131080 WO2022104826A1 (zh) 2020-11-18 2020-11-24 鞋面网布的参数化制作方法、鞋面网布及鞋

Country Status (1)

Country Link
WO (1) WO2022104826A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275701A (ja) * 2000-03-23 2001-10-09 K & I Technology:Kk インターネットを用いた注文形靴製作システム及びその方法
CN104754972A (zh) * 2012-10-22 2015-07-01 奥斯塔尔公司 定制的鞋纹理和鞋部分
CN108135327A (zh) * 2015-09-11 2018-06-08 耐克创新有限合伙公司 制造具有分级突出部的鞋类物品的方法
CN109922681A (zh) * 2016-11-11 2019-06-21 耐克创新有限合伙公司 编织的鞋类鞋面

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275701A (ja) * 2000-03-23 2001-10-09 K & I Technology:Kk インターネットを用いた注文形靴製作システム及びその方法
CN104754972A (zh) * 2012-10-22 2015-07-01 奥斯塔尔公司 定制的鞋纹理和鞋部分
CN108135327A (zh) * 2015-09-11 2018-06-08 耐克创新有限合伙公司 制造具有分级突出部的鞋类物品的方法
CN109922681A (zh) * 2016-11-11 2019-06-21 耐克创新有限合伙公司 编织的鞋类鞋面

Similar Documents

Publication Publication Date Title
Narayanan et al. Visual knitting machine programming
KR101990271B1 (ko) 신발 디자인 도구
US8005558B2 (en) Three-dimensional design lasts for footwear
US6409615B1 (en) Golf ball with non-circular shaped dimples
CN103035030B (zh) 头发模型建模方法
CN1734503B (zh) 使用光谱分析的伸展驱动的网格参数化
US20190029369A1 (en) Article of footwear having a 3-d printed fabric
US10037020B2 (en) System and methods for creating a seamless mesh exhibiting localized customization to fill a multidimensional input surface
US20210089691A1 (en) Method, system and computer-readable storage medium for simulating clothing comfort and method for manufacturing clothing
CN103065357B (zh) 基于普通三维模型的皮影模型制作方法
WO2007013296A1 (ja) ループシミュレーション装置とその方法並びにそのプログラム
CN107204033A (zh) 图片的生成方法和装置
WO2022104826A1 (zh) 鞋面网布的参数化制作方法、鞋面网布及鞋
CN101284189A (zh) 一种计算机自动开版的玩具设计制作方法
CN214386294U (zh) 鞋面网布及鞋
Igarashi et al. Knitty: 3D Modeling of Knitted Animals with a Production Assistant Interface.
CN112353039A (zh) 鞋面网布的参数化制作方法、鞋面网布及鞋
JP5161213B2 (ja) ニットウェアのシミュレーション方法とその装置及び記憶媒体
CN109685844A (zh) 一种编织网格标记和方向校准优化方法及装置
CN112329227B (zh) 一种运动服装版型生成方法及系统
CN108978010A (zh) 具舌片的一体成形立体鞋胚及其制造方法
CN113584665B (zh) 基于准规则斑图纺织图案设计方法及其织物
CN104032440A (zh) 复合数码绉的制备工艺
US20230357968A1 (en) Methods for fabrication of articles from three-dimensional models
JP7333231B2 (ja) 伸縮前モデルを生成するためのプログラム、方法、およびコンピュータシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962117

Country of ref document: EP

Kind code of ref document: A1