WO2022104757A1 - 一种跨尺寸微纳结构阵列的制备方法 - Google Patents
一种跨尺寸微纳结构阵列的制备方法 Download PDFInfo
- Publication number
- WO2022104757A1 WO2022104757A1 PCT/CN2020/130684 CN2020130684W WO2022104757A1 WO 2022104757 A1 WO2022104757 A1 WO 2022104757A1 CN 2020130684 W CN2020130684 W CN 2020130684W WO 2022104757 A1 WO2022104757 A1 WO 2022104757A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- electrode
- nano structure
- micro
- structure array
- Prior art date
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- 239000003792 electrolyte Substances 0.000 claims abstract description 42
- 238000004090 dissolution Methods 0.000 claims abstract description 33
- 238000004070 electrodeposition Methods 0.000 claims abstract description 33
- 230000033001 locomotion Effects 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- 238000003754 machining Methods 0.000 claims description 21
- 238000005520 cutting process Methods 0.000 claims description 15
- 238000002679 ablation Methods 0.000 claims description 4
- 238000000608 laser ablation Methods 0.000 claims description 3
- 239000007769 metal material Substances 0.000 abstract description 6
- 238000009966 trimming Methods 0.000 abstract description 6
- 238000000151 deposition Methods 0.000 abstract description 4
- 230000008021 deposition Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 9
- 238000003491 array Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H5/00—Combined machining
- B23H5/06—Electrochemical machining combined with mechanical working, e.g. grinding or honing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H5/00—Combined machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H3/00—Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
- B23H3/04—Electrodes specially adapted therefor or their manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H3/00—Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
- B23H3/02—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/08—Wire electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H9/00—Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
- B23H9/008—Surface roughening or texturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0093—Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H2300/00—Power source circuits or energization
- B23H2300/10—Pulsed electrochemical machining
Definitions
- the invention relates to a preparation method of a cross-dimension micro-nano structure array, belonging to the field of precision and micro-manufacturing.
- Metal-based microparts/components have the characteristics of high strength, low resistivity, high sensitivity, high density, and can realize some specific functions that cannot be accomplished by traditional silicon-based microdevices.
- the application demand in MEMS products has increased dramatically.
- traditional micro-nano machining techniques such as micro-milling, laser machining, abrasive gas jet, EDM and mask electrolytic machining, etc., can be used for arrays of metal surface microstructures, but they all have certain limitations, especially It is difficult to realize the preparation of microstructure arrays with feature sizes below several micrometers.
- TMECM masked electrolytic machining
- the minimum feature size of the microtexture prepared by traditional TMECM is about 30 microns.
- the dissolution of metal materials is isotropic during ECM, it is difficult to achieve aspect ratio microtexture processing using TMECM.
- the traditional TMECM prepares a large-area microtexture process, since the microstructure is formed at one time, a large amount of electrolytic products will be produced in a unit time, which requires high-pressure and high-speed flow of the electrolyte to update the electrolyte in the processing gap in time. This brings certain safety hazards to processing.
- Multi-beam laser interference processing technology is a special form of laser processing technology.
- different types and sizes of microtextures can be prepared.
- the essence of the material removed by laser interference is the same as that of traditional laser processing, so the processed surface is in the heat-affected zone, and the surface roughness is poor.
- the laser energy density needs to exceed the strong ablation threshold of the material, the laser is required to have a large output power, and the equipment cost is high.
- Ultra-short pulse micro-electrochemical machining technology through the use of pulse voltage, the electric double layer on the electrode surface is charged and discharged, so that the electrolytic machining accuracy is improved from tens of microns to sub-microns or even nanometers.
- this technology cannot be directly used for the processing of large-area microstructures.
- the purpose of the present invention is to provide a method for preparing a cross-scale micro-nano structure array, which does not require a mask, uses a chamfered wire electrode as a tool electrode, does not require high-speed flow of electrolyte, and realizes the preparation of a large-area micro-nano structure array.
- a preparation method of a cross-scale micro-nano structure array includes:
- a power supply circuit is formed between the first electrode and the second electrode, which drives the chamfered line electrode to reciprocate relative to the workpiece, and the workpiece undergoes electrochemical dissolution or electrochemical deposition at the corresponding position of the chamfered line electrode. , and form a micro-nano structure array.
- the period of the microstructure array is 100nm-10um.
- the multi-beam laser interference is any one of two-beam interference, three-beam interference and four-beam interference.
- the energy density of the light intensity region formed on the surface of the workpiece by the multi-beam laser interference is between the weak laser ablation energy density and the strong laser ablation energy density of the workpiece.
- an ultra-short pulse power supply is used for power supply.
- the electrochemical parameters of the ultra-short pulse power supply are set so that the workpiece does not undergo electrochemical dissolution or electrochemical deposition; under the multi-beam laser interference irradiation and the electrochemical parameters, the workpiece is Electrochemical dissolution or electrochemical deposition occurs at the corresponding positions of the chamfered wire electrodes.
- the preparation method of the trimmed wire electrode is as follows: a metal wire is provided as the wire electrode, and the wire electrode is cut to a certain thickness along its axial direction by a micromachining method to form the trimmed wire electrode.
- the present invention also provides a control system for realizing a cross-scale micro-nano structure array.
- the preparation method of the cross-size micro-nano structure array is used to process the workpiece set in the electrolyte.
- the control system includes using With a chamfered wire electrode disposed in the electrolyte, a power supply device electrically connected to the chamfered wire electrode and the workpiece respectively, and an interference beam conditioner for providing multi-beam laser interference, the power supply device is connected to the chamfered wire electrode.
- the workpiece constitutes a circuit.
- control system further includes a moving platform for driving the edge-cutting wire electrode to move relative to the workpiece.
- the preparation method of the cross-scale micro-nano structure array involved in the present invention utilizes multi-beam laser interference-assisted electrochemical dissolution or electrochemical deposition, and controls the physical fields such as temperature field and electric field in a specific area of the material surface by using the interference light field, thereby controlling The electrochemical dissolution or electrochemical deposition rate of the workpiece material in this area, combined with the high localization of ultra-short pulse electrolytic machining, enables the preparation of large-area metal micro-nano structure arrays without a mask.
- the use of fine chamfered wire electrodes as tool electrodes solves the problem of low output power of the existing ultra-short pulse power supply.
- the chamfered wire electrodes perform layer-by-layer removal or electrochemical deposition of workpiece materials in a reciprocating scanning motion. , thereby improving the processing accuracy of the micro-nano structure array.
- the electrolyte in the processing area can be discharged in time without the need for high-speed flow of the electrolyte. product, thereby ensuring the stability of electrochemical dissolution or electrochemical deposition, improving system safety and reducing costs.
- the laser energy acting on the surface of the micro-nano structure by multi-beam laser interference is strong, while the energy acting on the side of the micro-nano structure is relatively weak. Therefore, anisotropic electrochemical dissolution or electrochemical deposition can be obtained to obtain Micro-nano structured arrays with large aspect ratios can realize anisotropic electrochemical dissolution or electrochemical deposition of metal materials.
- FIG. 1 is a schematic structural diagram of the metal wire shown in the present invention being installed on a cathode clamp;
- FIG. 2 is a schematic structural diagram of the device for online preparation of chamfered wire electrodes according to the present invention
- FIG. 3 is a schematic diagram of the structure between the metal wire and the electrode wire shown in the present invention.
- FIG. 4 is a schematic diagram of the structure between the chamfered wire electrode and the electrode wire shown in the present invention.
- FIG. 5 is a schematic diagram of the structure between the chamfered wire electrode and the workpiece shown in the present invention.
- FIG. 6 is a schematic structural diagram of a control system for realizing a cross-scale micro-nano structure array according to the present invention.
- FIG. 7 is a schematic diagram of the light intensity distribution formed on the workpiece surface by the multi-beam laser interference shown in the present invention.
- FIG. 8 is a schematic structural diagram of forming a micro-nano structure array on the surface of a workpiece according to the present invention.
- FIG. 9 is a schematic diagram of the electric field strength between the early workpiece and the chamfered wire electrode according to the present invention.
- the present invention provides a control system for realizing a cross-scale micro-nano structure array, and the control system is used to process the workpiece 11 disposed in the electrolyte 8 .
- the control system includes a chamfered line electrode 10 set in the electrolyte 8, a power supply device 7 electrically connected to the chamfered line electrode 10 and the workpiece 11 respectively, an interference beam adjuster 14 for providing multi-beam laser interference, and driving the chamfered line electrode 10 includes a motion platform 3 that moves relative to the workpiece 11 , and a computer (not shown) that controls the motion platform 3 .
- the power supply device 7 forms a loop with the trimming wire electrode 10 and the workpiece 11.
- the power supply device 7 is an ultra-short pulse power supply 7, and the ultra-short pulse power supply 7 can adjust parameters such as voltage amplitude, pulse period, pulse width, etc.
- the above parameters The setting range of the electric double layer can be set according to actual needs.
- the surface of the cathode connected to the negative electrode of the ultra-short pulse power supply 7 has an electric double layer charging and discharging transient effect, which makes the electrolytic machining precision reach sub-micron or even nanometer.
- the use of the edge-cutting wire electrode 10 solves the problem of low output power of the existing ultra-short pulse power supply 7.
- the material of the edge-cutting wire electrode 10 is metal, and the metal can be tungsten, copper, etc., which will not be listed here.
- the electrode 10 is prepared by cutting the cylindrical wire on-line. It is true that the existing chamfered wire electrode 10 can also be directly selected without online preparation, which can be selected according to actual needs.
- the chamfering wire electrode 10 is fixed on the motion platform 3, and the computer can control the motion platform 3 to move in three directions of XYZ, thereby moving the chamfering wire electrode 10 to the desired position, and driving the chamfering wire electrode 10 to move in the XYZ three directions. Reciprocating movement in each direction, the amplitude and frequency of the reciprocating movement can be set to obtain the required movement mode.
- the electrolyte 8 is placed in the electrolyte tank 6, and the electrolyte tank 6 can be placed on a vertical lifting platform (not shown), so that the position of the electrolyte tank 6 can be adjusted in the height direction , so that the electrolyte tank 6 can be located at the required position, the electrolyte tank 6 is provided with an inlet 81 and an outlet 82, and the inlet 81 and the outlet 82 are relatively arranged on both sides of the electrolyte tank 6, so as to facilitate the electrolyte 8 in the submersible
- the electrolytic solution tank 6 can circulate and flow under the driving of a pump (not shown).
- the interferometric beam modifier 14 can output two-beam interference, three-beam interference, and four-beam interference, but is not limited to, the interferometric beam modifier 14 may also provide other numbers of beam interferences.
- the control system also includes a laser 15 for emitting laser light and a first total reflection mirror 16, a second total reflection mirror 17 and a third total reflection mirror 18 for reflecting laser light.
- the total reflection mirror 16 and the second total reflection mirror 17 are lifted in the vertical direction, and are incident into the third total reflection mirror 18 , and then into the interference beam adjuster 14 .
- the laser is divided into multi-beam laser interference.
- the multi-beam output from the interference beam conditioner 14 interferes and is focused into a light spot on the surface of the workpiece 11.
- the diameter of the light spot is about 12-17 mm, and the energy density is 1.0-1.5 J/cm 2 .
- the specific light spot diameter and energy density can be based on actual conditions. Adjustment is required.
- the output mode of the interference beam adjuster 14 is changed by closing the aperture of the interference beam adjuster 14 , and the output mode of the interference beam adjuster 14 is set to double beam interference, and the two apertures arranged opposite to each other are closed.
- the interference beam adjuster 14 is provided with a reflecting mirror inside, and the incident angle can be adjusted by adjusting the reflecting mirror.
- the interference beam adjuster 14 is an existing structure, and details are not described here.
- the workpiece 11 is a metal material, and the metal material can be stainless steel, titanium alloy, copper and other materials, which will not be listed here. By definition, the workpiece 11 can be of any shape and size, which can be selected according to actual needs.
- the workpiece 11 is mounted in the electrolyte bath 6 by the workpiece holder 12 .
- the workpiece 11 and the corresponding fixture Before using the trimming wire electrode 10, the workpiece 11 and the corresponding fixture, they can be cleaned. Specifically, ultrasonically clean them in alcohol and deionized water for 5 minutes in turn to remove oil stains and other impurities on the surface, and then use natural The deionized water remaining on the surface of the edge trimming wire electrode 10 and the workpiece 11 can be dried by air blowing.
- the specific cleaning steps are not specifically limited here, as long as the cleaning purpose can be achieved.
- the above-mentioned control system is used to realize a preparation method for forming a cross-scale micro-nano structure array on the surface of the workpiece 11, and the preparation method includes:
- the power supply between the first electrode and the second electrode forms a loop, which drives the chamfering wire electrode 10 to reciprocate relative to the workpiece 11, and the workpiece 11 undergoes electrochemical dissolution or electrochemical deposition at the corresponding position of the chamfering wire electrode 10, and forms a microscopic nanostructure array.
- the period of the obtained micro-nano structure array is 100nm-10um, which realizes the rapid preparation of large-area and cross-dimension micro-nano structure array.
- the multi-beam laser interference is any one of two-beam interference, three-beam interference, and four-beam interference, or other number of beam interferences.
- the parameters of the interference beam conditioner 14 such as the number of interference lasers, the incident angle of the laser, the laser energy and the spot size, so that the energy density of the light intensity region formed by the multi-beam laser interference on the surface of the workpiece 11 is between that of the workpiece 11 between that of the workpiece 11 Between the ablation energy density and the strong ablation energy density, the light intensity region is the light spot formed by the multi-beam laser interference irradiated on the surface of the workpiece 11 .
- the electrochemical parameters of the ultra-short pulse power supply 7, such as voltage amplitude, pulse period, and pulse width, are set so that the workpiece 11 does not undergo electrochemical dissolution or electrochemical deposition.
- the workpiece 11 is located at the corresponding position of the chamfered line electrode 10. Electrochemical dissolution or electrochemical deposition occurs. It should be noted that, in the loop formed by the chamfering wire electrode 10 and the workpiece 11, when the chamfering wire electrode 10 acts as a cathode and the workpiece 11 acts as an anode, an electrochemical dissolution reaction occurs; when the chamfering wire electrode 10 acts as an anode, and the workpiece 11 acts as a cathode , the electrochemical deposition reaction occurs.
- the direction of electrochemical dissolution or electrochemical deposition is kept along the normal direction of the workpiece 11, and the lateral corrosion or deposition of the material is suppressed, thereby realizing the anisotropic electrochemical dissolution of the workpiece 11 material. or electrochemical deposition.
- the principle of the electrochemical dissolution reaction is that the multi-beam laser interference on the workpiece 11 forms a light intensity distribution in which the strong light 100 and the weak light 200 are alternately arranged, and the workpiece 11 in the area of the strong light 100
- the material of the workpiece 11 is electrochemically dissolved, while the material of the workpiece 11 in the area where the weak light 200 is located is basically not dissolved.
- the preparation method of the chamfered wire electrode 10 is as follows: providing a metal wire 1 as the wire electrode 1 , and cutting the wire electrode 1 to a certain thickness along its axial direction by a micromachining method to form the chamfered wire electrode 10 .
- the cross section of the metal wire 1 is a circular structure, and the diameter is in the range of 50-100um.
- the gap between the lower end face of the chamfering wire electrode 10 and the upper surface of the workpiece 11 is set to 1unm as the initial machining gap.
- the distance between the chamfering wire electrode 10 and the workpiece 11 remains unchanged.
- the distance between the chamfering wire electrode 10 and the workpiece 11 remains unchanged, and the distance between the chamfering wire electrode 10 and the workpiece 11 is the machining gap. It is continuously dissolved, and the processing gap corresponding to the light intensity area gradually increases.
- the machining gap increases to a certain extent, due to the increase of the resistance of the solution in the machining gap, the charging time constant of the electric double layer on the surface of the edge-cutting wire electrode 10 increases accordingly, so that its potential cannot reach the material within the set pulse width time.
- the electrochemical dissolution stops, that is, when the micro-nano structure is processed to a certain depth, the electrochemical dissolution will automatically stop, and the high-precision preparation of the micro-nano structure array is realized.
- the instantaneous electrochemical products are less, and the reciprocating motion of the edge-cutting wire electrode 10 has a certain disturbance to the electrolyte in the processing gap, so no high-speed flow of the electrolyte or only a small flow pump is required.
- the electrolysis products in the processing area are discharged in time, thereby improving system safety and reducing costs.
- Step 1 On-line preparation of the trimmed wire electrode 10
- the electrode fixture 5 is installed in the electrolyte tank 6; the positive electrode of the ultra-short pulse power supply 7 is connected to the metal tungsten wire 1, and the negative electrode is connected to the thin tungsten wire 4; KOH electrolyte 8 and make the electrolyte 8 completely submerge the metal tungsten wire 1; set the output voltage amplitude (Z) of the ultra-short pulse power supply 7 to 5V, the pulse period (P) to be 1us, and the pulse width (t on ) to be 100ns,
- the initial machining gap 9 between the metal tungsten wire 1 and the thin tungsten wire 4 is set to 5um;
- the X-axis in the motion platform 3 is set to be unidirectional movement, the movement speed is 0.1um/s, and the movement distance is
- Step 2 The surface of the workpiece is subjected to laser interference-electrochemical dissolution to obtain a micro-nano structure array
- a 304 stainless steel sheet with a size of 10mm*10mm*2mm is used as the workpiece 11, and it is installed in the electrolyte tank 6 through the workpiece fixture 12; the prepared chamfered wire electrode 10 is passed through the moving platform 3. Move to the top of the workpiece 11, and set the gap 13 between the edge-cutting wire electrode 10 and the workpiece 11 to be 1um; fill the electrolyte tank 6 with HCl electrolyte 8 with a concentration of 0.1 mol/L, and place it in the submersible pump.
- the electrolyte 8 circulates in the electrolytic cell (not shown) and the electrolyte tank 6; the output mode of the interference beam adjuster 14 is set to be double-beam interference (close the two diaphragms set oppositely), The incident angle is 10° to adjust the mirror of the corresponding aperture), the size of the laser spot is 15mm, and the energy density is 1.3J/cm 2 ; Connected; set the output voltage of the ultra-short pulse power supply 77 to be 4V, the pulse period to be 1us, and the pulse width (t on ) to be 70ns; set the movement mode of the X-axis in the motion platform 33 to be reciprocating, the amplitude is 11mm, the frequency Turn on the ultra-short pulse power supply 77, the laser 15 and the interference beam conditioner 1414 to process the micro-nano structure, the processing time is 1.0h, and the surface of the workpiece 1111 forms a periodic fringe micro-nano structure similar to the interference pattern.
- the nanostructure is shown in Figure 8
- Step 1 On-line preparation of the trimmed wire electrode 10
- This step is the same as the preparation method in Example 1, and will not be repeated here.
- Step 2 Perform laser interference-electrochemical deposition on the surface of the workpiece 11 to obtain a micro-nano structure array
- a copper sheet with a size of 10mm*10mm*2mm is used as the workpiece 11, and it is installed in the electrolyte tank 6 through the workpiece fixture 12; the prepared edge-cutting wire electrode 10 is moved to the top of the workpiece 12 by the motion platform 3, and set.
- the gap 13 between the fixed edge electrode 10 and the workpiece 11 is 1um; the electrolyte tank 6 is filled with CuSO4 electrolyte 8 with a concentration of 1.5mol/L; the output mode of the interference beam conditioner 14 is set as four-beam interference , the incident angle is 15°, the size of the laser spot is 15mm, and the energy density is 1.1J/cm 2 ; the negative electrode of the ultra-short pulse power supply 7 is connected to the workpiece 11, and the positive electrode is connected to the edge-cut line electrode 10, and the output voltage is set to 3V, The pulse period is 1us, and the pulse width (t on ) is 100ns; set the movement mode of the X-axis in the motion platform 3 to reciprocating motion, the amplitude is 11mm, and the frequency is 1Hz; turn on the ultra-short pulse power supply 7, and the laser 15 (not shown in the figure) (shown) and the interference beam adjuster 14, carry out the electrodeposition preparation of the micro-nano structure, during the processing, the X axi
- the preparation method of the cross-scale micro-nano structure array involved in the present invention utilizes multi-beam laser interference-assisted electrochemical dissolution or electrochemical deposition, and uses the interference optical field to control physical fields such as temperature field and electric field in a specific area of the material surface. , so as to control the electrochemical dissolution or electrochemical deposition rate of workpiece materials in this area, and at the same time, combined with the high localization characteristics of ultra-short pulse electrolytic machining, the preparation of large-area metal micro-nano structure arrays can be realized without a mask.
- the use of fine chamfered wire electrodes as tool electrodes solves the problem of low output power of the existing ultra-short pulse power supply.
- the chamfered wire electrodes perform layer-by-layer removal or electrochemical deposition of workpiece materials in a reciprocating scanning motion. , thereby improving the processing accuracy of the micro-nano structure array.
- the electrolyte in the processing area can be discharged in time without the need for high-speed flow of the electrolyte. product, thereby ensuring the stability of electrochemical dissolution or electrochemical deposition, improving system safety and reducing costs.
- the laser energy acting on the surface of the micro-nano structure by multi-beam laser interference is strong, while the energy acting on the side of the micro-nano structure is relatively weak. Therefore, anisotropic electrochemical dissolution or electrochemical deposition can be obtained to obtain Micro-nano structured arrays with large aspect ratios can realize anisotropic electrochemical dissolution or electrochemical deposition of metal materials.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
本发明涉及一种跨尺寸微纳结构阵列的制备方法,包括:S1、提供浸入至电解液中的工件作为第一电极,提供削边线电极作为第二电极并设置在工件上方,提供干涉光束调节器并输出多光束激光干涉照射在工件表面;S2、第一电极和第二电极之间供电构成回路,驱动削边线电极相对工件往复运动,工件在削边线电极相应位置处发生电化学溶解或电化学沉积,并形成微纳结构阵列,无需掩模,且解决了现有超短脉冲电源输出功率小的问题,提高了微纳结构阵列的加工精度,无需电解液进行高速流动,提高系统安全性及降低成本,实现金属材料各向异性电化学溶解或电化学沉积,可有效提高沉积层的致密性及结合强度,从而提高具有大深宽比的微纳结构的刚性。
Description
本申请要求了申请日为2020年11月17日,申请号为202011284967.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及一种跨尺寸微纳结构阵列的制备方法,属于精密、微细制造领域。
精密化、微型化是现代工业、民用以及军用产品的主流发展方向。然而,随着器件特征尺寸的减小,在宏观尺度下通常被忽略的表面力,如范德华力、黏着力、静电力、毛细力,在微观尺度下却成为制约微构件或系统正常运转的主要因素。近年来,表面微织构技术,即利用微纳加工技术在材料表面构建一定形态、大小和排列方式的微结构阵列,已被充分证实可用于调控材料的表面性能,从而有效改善由表面或尺度效应引起的微器件失效问题。
金属基微零件/构件具有高强度、低电阻率、高灵敏度、高密度以及可实现传统硅基微器件无法完成的某些特定功能等特点,在微机电产品中的应用需求急剧增加。然而,传统的微纳加工技术,如微细铣削、激光加工、磨料气射流,电火花加工及掩模电解加工等,虽然可用于金属表面微结构的阵列,但其均存在一定的局限性,特别是很难实现特征尺寸在数微米以下微结构阵列的制备。
相比于上述其他微纳加工方法,掩模电解加工(TMECM)在加工表面质量(无毛刺、热影响区、再铸层等)方面展现出极大的优势,同时由于加工过程中,无机械接触应力和热应力,可用于实现薄壁金属零件表面微织构的加工。但是,在TMECM工艺流程中,掩模的制作是必不可少的关键步骤之一。当微结构特征参数需要改变时,掩模板则必须重新制作,这不仅造成了材料的浪费,而且将延长工艺周期。另外,现阶段,在TMECM中,通常采用的图案化光刻胶或PDMS等材料,由于呈现疏水特性,当图案结构特征尺度减小至10微米左右时,加工产生的氢气泡很难及时排出,从而抑制电解加工的进行。文献显示,目前传统 的TMECM制备的微织构最小特征尺寸为30微米左右。另外,由于电解加工过程中,金属材料的溶解为各向同性,因此采用TMECM很难实现深宽比微织构的加工。同时,传统的TMECM在制备大面积微织构过程时,由于微结构是一次成型,单位时间内会产生大量的电解产物,需要电解液高压、高速流动,以及时更新加工间隙内的电解液,这给加工带来一定的安全隐患。
多光束激光干涉加工技术是激光加工技术的一种特殊形式,通过改变干涉激光的数量、激光入射角便可实现不同类型、尺寸微织构的制备。但激光干涉去除材料的本质与传统的激光加工相同,因而加工表面在热影响区,表面粗糙度较差等缺点。同时,当进行大面积微织构制备时,由于需要激光能量密度超过材料的强烧蚀阈值,因此要求激光器具有很大的输出功率,设备成本较高。
超短脉冲微细电解加工技术,通过利用脉冲电压作用下,电极表面双电层充放电材料,使得电解加工精度由数十微米提高到亚微米甚至纳米。但是,受超短脉冲电源输出功率限时,目前该项技术仍无法被直接用于大面积微结构的加工。
发明内容
本发明的目的在于提供一种跨尺寸微纳结构阵列的制备方法,该方法无需掩模,使用削边线电极作为工具电极,无需电解液进行高速流动,实现大面积微纳结构阵列的制备。
为达到上述目的,本发明提供如下技术方案:一种跨尺寸微纳结构阵列的制备方法,所述制备方法包括:
S1、提供浸入至电解液中的工件作为第一电极,提供削边线电极作为第二电极并设置在所述工件上方,提供干涉光束调节器并输出多光束激光干涉照射在所述工件表面;
S2、所述第一电极和第二电极之间供电构成回路,驱动所述削边线电极相对所述工件往复运动,所述工件在所述削边线电极相应位置处发生电化学溶解或电化学沉积,并形成微纳结构阵列。
进一步地,所述微结构阵列的周期为100nm-10um。
进一步地,所述多光束激光干涉为双光束干涉、三光束干涉和四光束干涉中的任一个。
进一步地,所述多光束激光干涉在所述工件表面形成的光强区域的能量密度介于所述工件的激光弱烧蚀能量密度和强烧蚀能量密度之间。
进一步地,在所述S2中,采用超短脉冲电源供电。
进一步地,设定所述超短脉冲电源的电化学参数,使得所述工件不发生电化学溶解或电化学沉积;在所述多光束激光干涉照射和所述电化学参数下,使得所述工件在所述削边线电极相应位置处发生电化学溶解或电化学沉积。
进一步地,所述削边线电极的制备方法为:提供金属丝作为线电极,通过微细加工方法将所述线电极沿其轴向切除一定厚度,形成所述削边线电极。
进一步地,所述削边线电极的下端面与所述工件的上表面之间的间隙设置为1unm作为初始加工间隙,在发生所述电化学溶解中,所述削边线电极和所述工件之间距离保持不变,在发生所述电化学沉积中,所述削边线电极以恒定的速度v=0.01um远离所述工件。
本发明还提供一种实现跨尺寸微纳结构阵列的控制系统,采用所述的跨尺寸微纳结构阵列的制备方法,用以对设置在电解液中的工件进行加工,所述控制系统包括用以设置在电解液中的削边线电极、分别与所述削边线电极和所述工件电连接的供电装置、以及提供多光束激光干涉的干涉光束调节器,所述供电装置与所述削边线电极、所述工件构成回路。
进一步地,所述控制系统还包括驱动所述削边线电极相对所述工件移动的运动平台。
本发明的有益效果在于:
1、本发明涉及的跨尺寸微纳结构阵列的制备方法利用多光束激光干涉辅助电化学溶解或电化学沉积,通过利用干涉光场调控材料表面特定区域内温度场和电场等物理场,从而控制该区域内的工件材料电化学溶解或电化学沉积速度,同时结合超短脉冲电解加工高定域性的特点,在无需掩模的条件下,实现大面积金属微纳结构阵列的制备。
2、采用微细的削边线电极作为工具电极,解决了现有超短脉冲电源输出功率小的问题,加工过程中,削边线电极以往复扫描运动的方式对工件材料进行逐层去除或电化学沉积,从而提高微纳结构阵列的加工精度。
3、加工过程中,由于瞬时电化学产物较少,且削边线电极往复运动过程中对加工间隙内的电解液具有一定的扰动作用,无需电解液进行高速流动,便可及时排出加工区域的电解产物,从而保证或电化学溶解或电化学沉积的稳定性,提高系统安全性及降低成本。
4、在加工过程中,多光束激光干涉作用在微纳结构表面的激光能量较强,而作用在其侧面的能量相对较弱,因此,可各向异性电化学溶解或电化学沉积,从而得到具有大深宽比的微纳结构阵列,实现金属材料各向异性电化学溶解或电化学沉积。
5、电化学沉积时,由于激光作用,可有效提高沉积层的致密性及结合强度,从而提高具有大深宽比的微纳结构的刚性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
图1为本发明所示的金属丝安装在阴极夹具的结构示意图;
图2为本发明所示的在线制备削边线电极的装置的结构示意图;
图3为本发明所示的金属丝和电极丝之间的结构示意图;
图4为本发明所示的削边线电极和电极丝之间的结构示意图;
图5为本发明所示的削边线电极和工件之间的结构示意图;
图6为本发明所示的实现跨尺寸微纳结构阵列的控制系统的结构示意图;
图7为本发明所示的多光束激光干涉在工件表面形成的光强分布示意图;
图8为本发明所示的在工件表面形成微纳结构阵列的结构示意图;
图9为本发明所示的早工件和削边线电极之间的电场强度示意图。
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参见图5和图6,本发明提供一种实现跨尺寸微纳结构阵列的控制系统,该控制系统用以对设置在电解液8中的工件11进行加工。该控制系统包括用以设置在电解液8中的削边线电极10、分别与削边线电极10和工件11电连接的供电装置7、提供多光束激光干涉的干涉光束调节器14、驱动削边线电极10相对工件11移动的运动平台3、以及控制运动平台3的计算机(未图示)。
供电装置7与削边线电极10和工件11构成回路,在回路中,供电装置7为超短脉冲电源7,该超短脉冲电源7可调节电压幅值、脉冲周期、脉冲宽度等参数,上述参数的设定范围可根据实际需要进行设置,在脉冲电压作用下,与超短脉冲电源7负极连接的阴极表面出现双电层充放电暂态效应,使得电解加工精度达到亚微米甚至纳米。其中,削边线电极10的使用,解决现有超短脉冲电源7输出功率小的问题,削边线电极10的材料为金属,该金属可以为钨、铜等,在此不一一列举,削边线电极10通过在线削圆柱形金属丝制备得到,诚然,也可以直接选取现有的削边线电极10而无需在线制备,可根据实际需要进行选择。削边线电极10固定在运动平台3上,计算机可控制运动平台3运动在XYZ三个方向上移动,以此将削边线电极10移动到所需的位置处,并且驱动削边线电极10在XYZ三个方向上往复运动,可设置往复运动的幅值和频率,以得到所需运动方式。
在该控制系统中,电解液8放置在电解液槽6内,电解液槽6可以放置在一个竖直升降平台(未图示)上,以此可以在高度方向上调节电解液槽6的位置,使得电解液槽6能够位于所需的位置,电解液槽6设置有进口81和出口82,并且进口81和出口82相对设置在电解液槽6的两侧,以此方便电解液8在潜 水泵(未图示)的驱动下能够在电解液槽6中循环流动。
干涉光束调节器14能够输出双光束干涉、三光束干涉、四光束干涉,但不仅限于,干涉光束调节器14还可以提供其他数量的光束干涉。此外,控制系统还包括用以发射激光的激光器15以及用以反射激光的第一全反镜16、第二全反镜17和第三全反镜18,激光器15发出的紫外激光并被第一全反镜16和第二全反镜17沿竖直方向抬升,并入射到第三全反镜18内,然后入射到干涉光束调节器14中,通过干涉光束调节器14内部装置的作用后,激光被分为多光束激光干涉。干涉光束调节器14输出的多光束干涉且在工件11表面聚焦成光斑,该光斑的直径约为12-17mm,能量密度为1.0-1.5J/cm
2,具体的光斑直径和能量密度可根据实际需要进行调节。
通过关闭干涉光束调节器14的光阑以此改变干涉光束调节器14的输出模式,设定干涉光束调节器14的输出模式为双光束干涉,关闭相对设置的两个光阑即可。干涉光束调节器14的内部设置有反射镜,调节反射镜即可调节入射角度,干涉光束调节器14为现有结构,在此不再赘述。
工件11为金属材料,金属材料可以为不锈钢、钛合金、铜等材料,在此不一一列举,工件11的结构可以为长方片状等,在此不对工件11的结构形状和尺寸做具体限定,工件11可以为任一形状和尺寸,根据实际需要进行选择。工件11通过工件夹具12安装在电解液槽6内。
在削边线电极10、工件11和相应的夹具使用前,可对其进行清洗,具体的,将其依次在酒精和去离子水中各超声清洗5分钟,除去表面的油污及其他杂质,然后用自然风吹干削边线电极10和工件11表面残留的去离子水即可。具体的清洗步骤在此不做具体限定,能到达清洗目的即可。
上述控制系统用以实现在工件11表面形成跨尺寸微纳结构阵列的制备方法,该制备方法包括:
S1、提供浸入至电解液8中的工件11作为第一电极,提供削边线电极10作为第二电极并设置在工件11上方,提供干涉光束调节器14并输出多光束激光干涉照射在工件11表面;
S2、所述第一电极和第二电极之间供电构成回路,驱动削边线电极10相对工件11往复运动,工件11在削边线电极10相应位置处发生电化学溶解或电化学沉积,并形成微纳结构阵列。
其中,得到的微纳结构阵列的周期为100nm-10um,实现了大面积跨尺寸微纳结构阵列的快速制备。多光束激光干涉为双光束干涉、三光束干涉和四光束干涉中的任一个,或者其他数量光束干涉。
设定干涉光束调节器14的参数,比如干涉激光数量、激光入射角、激光能量及光斑尺寸,使得多光束激光干涉在工件11表面形成的光强区域的能量密度介于工件11的激光弱烧蚀能量密度和强烧蚀能量密度之间,光强区域即为多光束激光干涉照射在工件11表面形成的光斑。设定超短脉冲电源7的电化学参数,比如电压幅值、脉冲周期、及脉冲宽度,使得工件11不发生电化学溶解或电化学沉积。但是,在多光束激光干涉照射和电化学参数共同作用下,由于激光能量、电化学能量及电极表面双电层充/放电暂态效应的耦合作用,使得工件11在削边线电极10相应位置处发生电化学溶解或电化学沉积。需要说明的是,在削边线电极10和工件11构成的回路中,当削边线电极10作为阴极,工件11作为阳极时,发生电化学溶解反应;当削边线电极10作为阳极,工件11作为阴极时,发生电化学沉积反应。
由于激光的强化作用仅发生在照射区域,因此电化学溶解或电化学沉积的方向保持沿工件11法线方向,材料的侧向腐蚀或沉积被抑制,从而实现工件11材料各向异性电化学溶解或电化学沉积。
请参见图7至图9,发生电化学溶解反应的原理为,多光束激光干涉在工件11表示形成强光100和弱光200交替排布的光强分布,在强光100的区域的工件11的材料被电化学溶解,而弱光200所在区域的工件11的材料基本不溶解,在削边线电极1的往复运动下,在工件11表面形成微纳结构阵列。
请参见图1至图4,削边线电极10的制备方法为:提供金属丝1作为线电极1,通过微细加工方法将线电极1沿其轴向切除一定厚度,形成削边线电极10。具体的,金属丝1的截面为圆形结构,直径范围为50-100um。将金属丝1 以一定的张紧力安装在阴极夹具2上并浸入电解液8中,在金属丝1下方安装直径相对较细的电极丝4,驱动金属丝1相对电极丝4往复运动,并持续向电极丝4给进,从而将金属丝1沿其轴向切除一定厚度,形成削边线电极10。
削边线电极10的下端面与工件11的上表面之间的间隙设置为1unm作为初始加工间隙,在发生电化学溶解中,削边线电极10和工件11之间距离保持不变,在发生电化学沉积中,削边线电极10以恒定的速度v=0.01um远离工件11,但是,在加工过程中,削边线电极10沿水平方向相对工件11往复运动,使得工件11材料被逐层去除或沉积,提高了微纳结构阵列的加工精度。
在工件11表面发生电化学溶解时,削边线电极10与工件11之间的距离保持不变,削边线电极10与工件11之间的距离为加工间隙,随着工件11在光强区域的材料不断被溶解,光强区域所对应的加工间隙逐渐增大。当加工间隙增大到一定程度后,由于加工间隙内溶液电阻增大,削边线电极10表面双电层充电时间常数随之增大,使得其电位在所设定的脉冲宽度时间内无法达到材料的分解电位,电化学溶解停止,即微纳结构加工到一定深度时,电化学溶解会自动停止,实现微纳结构阵列的高精度制备。
在工件11表面发生电化学沉积时,削边线电极10每往复运动一次后,沿工件11法线方向向上移动一定的距离且该距离的大小与一次往复运动电化学沉积金属层的厚度相等,最终可形成具有大深宽比的金属微纳结构阵列。此外,在削边线电极10往复运动过程中,在非削边线电极10对应区域,由于激光可使沉积金属表面发生融化,从而可使得沉积层更加致密,提高微纳结构的强度。
采用上述加工模式,瞬时电化学产物较少,且削边线电极10往复运动过程中对加工间隙内的电解液具有一定的扰动作用,因此无需电解液进行高速流动或只需要小流量泵,便可及时排出加工区域的电解产物,从而提高系统安全性及降低成本。
关于在工件11表面形成跨尺寸微纳结构阵列的制备方法,下面以具体实施例进行说明:
实施例一
步骤一、削边线电极10在线制备
请参见图1至图4,将直径50μm的金属钨丝1以2N的张紧力安装在阴极夹具2中,并将阴极夹具2安装在运动平台3上;将装有直径10μm细钨丝4的电极夹具5安装在电解液槽6中;将超短脉冲电源7的正极与金属钨丝1相连,负极与细钨丝4相连;在电解液槽6中装入浓度为0.1mol/L的KOH电解液8并使得电解液8完全淹没金属钨丝1;设置超短脉冲电源7的输出电压幅值(Z)为5V,脉冲周期(P)为1us,脉冲宽度(t
on)为100ns,金属钨丝1与细钨丝4之间的初始加工间隙9设定为5um;设定运动平台3中的X轴为单向运动,运动速度为0.1um/s,运动距离为30um;设定运动平台3中的Y轴为往复运动,运动幅值为30mm,频率为2Hz;开启超短脉冲电源7,进行微细削边线电极的加工,加工完毕后,形成侧壁陡直的削边线电极10。
步骤二、工件表面进行激光干涉-电化学溶解得到微纳结构阵列
请参见图5和图6,将尺寸为10mm*10mm*2mm的304不锈钢片作为工件11,并将其通过工件夹具12安装在电解液槽6中;将制备得到的削边线电极10通过运动平台3移动至工件11上方,且设定削边线电极10和工件11之间的间隙13为1um;将电解液槽6中充入浓度为0.1mol/L的HCl电解液8,并在潜水泵的驱动下,电解液8在电解池(未图示)和电解液槽6中循环流动;设定干涉光束调节器14的输出模式为双光束干涉(关闭相对设置的两个光阑即可),入射角度为10°调节相应光阑的反射镜即可),激光光斑尺寸为15mm,能量密度为1.3J/cm
2;将超短脉冲电源77的正极与工件1111相连,负极与削边线电极1010相连;设定超短脉冲电源77的输出电压为4V,脉冲周期为1us,脉冲宽度(t
on)为70ns;设定运动平台33中X轴的运动方式为往复运动,幅值为11mm,频率为1Hz;开启超短脉冲电源77,激光器15和干涉光束调节器1414,进行微纳结构的加工,加工时间为1.0h,工件1111表面形成与干涉图案相似的周期性条纹微纳结构,该微纳结构如图8所示;将工件1111从工件夹具1212中取出,并用酒精超声清洗5min,得到具有微纳结构阵列的工件。
实施例二
步骤一、削边线电极10在线制备
该步骤与实施例一中的制备方法相同,在此不做赘述。
步骤二、工件11表面进行激光干涉-电化学沉积得到微纳结构阵列
将尺寸为10mm*10mm*2mm的铜片作为工件11,并将其通过工件夹具12安装在电解液槽6中;将制备得到的削边线电极10通过运动平台3移动至工件12上方,且设定削边线电极10和工件11之间的间隙13为1um;将电解液槽6中充入浓度为1.5mol/L的CuSO4电解液8;设定干涉光束调节器14的输出模式为四光束干涉,入射角度为15°,激光光斑尺寸为15mm,能量密度为1.1J/cm
2;将超短脉冲电源7的负极与工件11相连,正极与削边线电极10相连,设定输出电压为3V,脉冲周期为1us,脉冲宽度(t
on)为100ns;设定运动平台3中X轴的运动方式为往复运动,幅值为11mm,频率为1Hz;开启超短脉冲电源7,激光器15(未图示)和干涉光束调节器14,进行微纳结构的电沉积制备,加工过程中,运动平台3中的X轴每往复运动50个周期,削边线电极10在运动平台3中Z轴的驱动下向上移动0.5um,设定在运动平台3中Z轴向上移动的总距离为50um,即沉积厚度50um,工件11表面形成微凸起阵列结构;将工件11从工件夹具12中取出,并用酒精超声清洗5min,得到具有微纳结构阵列的工件。需要说明的是,本实施例与实施例一所用装置完全相同,故标号相同,参见图示也相同。
综上,1、本发明涉及的跨尺寸微纳结构阵列的制备方法利用多光束激光干涉辅助电化学溶解或电化学沉积,通过利用干涉光场调控材料表面特定区域内温度场和电场等物理场,从而控制该区域内的工件材料电化学溶解或电化学沉积速度,同时结合超短脉冲电解加工高定域性的特点,在无需掩模的条件下,实现大面积金属微纳结构阵列的制备。
2、采用微细的削边线电极作为工具电极,解决了现有超短脉冲电源输出功率小的问题,加工过程中,削边线电极以往复扫描运动的方式对工件材料进行逐层去除或电化学沉积,从而提高微纳结构阵列的加工精度。
3、加工过程中,由于瞬时电化学产物较少,且削边线电极往复运动过程中 对加工间隙内的电解液具有一定的扰动作用,无需电解液进行高速流动,便可及时排出加工区域的电解产物,从而保证或电化学溶解或电化学沉积的稳定性,提高系统安全性及降低成本。
4、在加工过程中,多光束激光干涉作用在微纳结构表面的激光能量较强,而作用在其侧面的能量相对较弱,因此,可各向异性电化学溶解或电化学沉积,从而得到具有大深宽比的微纳结构阵列,实现金属材料各向异性电化学溶解或电化学沉积。
5、电化学沉积时,由于激光作用,可有效提高沉积层的致密性及结合强度,从而提高具有大深宽比的微纳结构的刚性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种跨尺寸微纳结构阵列的制备方法,其特征在于,所述制备方法包括:S1、提供浸入至电解液中的工件作为第一电极,提供削边线电极作为第二电极并设置在所述工件上方,提供干涉光束调节器并输出多光束激光干涉照射在所述工件表面;S2、所述第一电极和第二电极之间供电构成回路,驱动所述削边线电极相对所述工件往复运动,所述工件在所述削边线电极相应位置处发生电化学溶解或电化学沉积,并形成微纳结构阵列。
- 如权利要求1所述的跨尺寸微纳结构阵列的制备方法,其特征在于,所述微纳结构阵列的周期为100nm-10um。
- 如权利要求1所述的跨尺寸微纳结构阵列的制备方法,其特征在于,所述多光束激光干涉为双光束干涉、三光束干涉和四光束干涉中的任一个。
- 如权利要求1所述的跨尺寸微纳结构阵列的制备方法,其特征在于,所述多光束激光干涉在所述工件表面形成的光强区域的能量密度介于所述工件的激光弱烧蚀能量密度和强烧蚀能量密度之间。
- 如权利要求1所述的跨尺寸微纳结构阵列的制备方法,其特征在于,在所述S2中,采用超短脉冲电源供电。
- 如权利要求5所述的跨尺寸微纳结构阵列的制备方法,其特征在于,设定所述超短脉冲电源的电化学参数,使得所述工件不发生电化学溶解或电化学沉积;在所述多光束激光干涉照射和所述电化学参数下,使得所述工件在所述削边线电极相应位置处发生电化学溶解或电化学沉积。
- 如权利要求1所述的跨尺寸微纳结构阵列的制备方法,其特征在于,所述削边线电极的制备方法为:提供金属丝作为线电极,通过微细加工方法将所述线电极沿其轴向切除一定厚度,形成所述削边线电极。
- 如权利要求1所述的跨尺寸微纳结构阵列的制备方法,其特征在于,所述削边线电极的下端面与所述工件的上表面之间的间隙设置为1unm作为初始加工间隙,在发生所述电化学溶解中,所述削边线电极和所述工件之间距离保持不变,在发生所述电化学沉积中,所述削边线电极以恒定的速度v=0.01um远 离所述工件。
- 一种实现跨尺寸微纳结构阵列的控制系统,其特征在于,采用如权利要求1至8项中任一项所述的跨尺寸微纳结构阵列的制备方法,用以对设置在电解液中的工件进行加工,所述控制系统包括用以设置在电解液中的削边线电极、分别与所述削边线电极和所述工件电连接的供电装置、以及提供多光束激光干涉的干涉光束调节器,所述供电装置与所述削边线电极、所述工件构成回路。
- 如权利要求9所述的实现跨尺寸微纳结构阵列的控制系统,其特征在于,所述控制系统还包括驱动所述削边线电极相对所述工件移动的运动平台。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/605,552 US11992889B2 (en) | 2020-11-17 | 2020-11-21 | Method for preparing a cross-size micro-nano structure array |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011284967.9 | 2020-11-17 | ||
CN202011284967.9A CN112475495B (zh) | 2020-11-17 | 2020-11-17 | 一种跨尺寸微纳结构阵列的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022104757A1 true WO2022104757A1 (zh) | 2022-05-27 |
Family
ID=74931607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/130684 WO2022104757A1 (zh) | 2020-11-17 | 2020-11-21 | 一种跨尺寸微纳结构阵列的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11992889B2 (zh) |
CN (1) | CN112475495B (zh) |
WO (1) | WO2022104757A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115488454A (zh) * | 2022-09-02 | 2022-12-20 | 合肥工业大学 | 一种微流道电解激光复合加工装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114131125B (zh) * | 2021-11-30 | 2023-01-31 | 清华大学 | 具有表面疏水结构的工具电极及其制备方法 |
CN114737230B (zh) * | 2022-05-09 | 2024-03-19 | 江苏大学 | 一种激光增强电化学沉积制备带有跨尺度微纳结构功能性薄膜的方法及装置 |
CN117431495B (zh) * | 2023-12-19 | 2024-02-13 | 中国科学院长春光学精密机械与物理研究所 | 金属表面超疏水防腐双层结构及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0491874A (ja) * | 1990-08-03 | 1992-03-25 | Osaka Prefecture | 金属表面の虹色発色加工方法 |
CN101887203A (zh) * | 2010-06-23 | 2010-11-17 | 中国科学院上海光学精密机械研究所 | 激光干涉诱导铁电晶体周期畴反转的装置 |
CN106350847A (zh) * | 2016-09-19 | 2017-01-25 | 长春理工大学 | 一种采用激光干涉诱导电化学沉积制备周期性图案化Fe3O4纳米粒子的方法 |
CN111299731A (zh) * | 2020-03-25 | 2020-06-19 | 苏州大学 | 一种在工件表面形成微结构的加工方法及控制系统 |
CN111702337A (zh) * | 2020-05-22 | 2020-09-25 | 江苏大学 | 一种固状电解液辅助提高激光刻蚀质量的方法及装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU944856A1 (ru) * | 1980-06-13 | 1982-07-23 | Опытный Завод Института Прикладной Физики Ан Мсср | Способ бесконтактного электроискрового легировани |
TW200934600A (en) * | 2008-02-01 | 2009-08-16 | Contrel Technology Co Ltd | Composite processing machine |
CN105081488A (zh) * | 2015-08-20 | 2015-11-25 | 南京航空航天大学 | 金属材料表面大面积微/纳米织构的快速可控制造方法 |
CN107971592B (zh) * | 2017-11-16 | 2019-07-09 | 中国科学院宁波材料技术与工程研究所 | 激光介入微细电解加工方法及其装置 |
CN108857050A (zh) * | 2018-06-21 | 2018-11-23 | 西安理工大学 | 一种金属表面规则微凹织构阵列的制备方法 |
CN109913919B (zh) * | 2019-02-18 | 2020-11-20 | 江苏大学 | 一种在工件表面制备微纳二维结构的加工方法及装置 |
CN110394516B (zh) * | 2019-07-23 | 2021-01-26 | 南京航空航天大学 | 高定域性脉动态电解线切割加工方法 |
CN111360345B (zh) * | 2020-03-25 | 2021-08-27 | 苏州大学 | 一种在工件表面形成微结构的加工方法及控制系统 |
-
2020
- 2020-11-17 CN CN202011284967.9A patent/CN112475495B/zh active Active
- 2020-11-21 WO PCT/CN2020/130684 patent/WO2022104757A1/zh active Application Filing
- 2020-11-21 US US17/605,552 patent/US11992889B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0491874A (ja) * | 1990-08-03 | 1992-03-25 | Osaka Prefecture | 金属表面の虹色発色加工方法 |
CN101887203A (zh) * | 2010-06-23 | 2010-11-17 | 中国科学院上海光学精密机械研究所 | 激光干涉诱导铁电晶体周期畴反转的装置 |
CN106350847A (zh) * | 2016-09-19 | 2017-01-25 | 长春理工大学 | 一种采用激光干涉诱导电化学沉积制备周期性图案化Fe3O4纳米粒子的方法 |
CN111299731A (zh) * | 2020-03-25 | 2020-06-19 | 苏州大学 | 一种在工件表面形成微结构的加工方法及控制系统 |
CN111702337A (zh) * | 2020-05-22 | 2020-09-25 | 江苏大学 | 一种固状电解液辅助提高激光刻蚀质量的方法及装置 |
Non-Patent Citations (1)
Title |
---|
XIANGYANG WANG, XIAOLONG FANG, YONGBIN ZENG, NINGSONG QU: "Fabrication of Micro Annular Grooves on a Cylindrical Surface in Aluminum Alloys by Wire Electrochemical Micromachining", INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 110862, 1 January 2016 (2016-01-01), pages 7216 - 7229, XP055932128, DOI: 10.20964/2016.08.62 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115488454A (zh) * | 2022-09-02 | 2022-12-20 | 合肥工业大学 | 一种微流道电解激光复合加工装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112475495A (zh) | 2021-03-12 |
US20220339725A1 (en) | 2022-10-27 |
US11992889B2 (en) | 2024-05-28 |
CN112475495B (zh) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022104757A1 (zh) | 一种跨尺寸微纳结构阵列的制备方法 | |
Saxena et al. | A review on process capabilities of electrochemical micromachining and its hybrid variants | |
Li et al. | Review of additive electrochemical micro-manufacturing technology | |
CN108526627B (zh) | 一种半导体材料激光电化学复合微加工方法及装置 | |
CN111360345B (zh) | 一种在工件表面形成微结构的加工方法及控制系统 | |
Liu et al. | Development of microelectrodes for electrochemical micromachining | |
JP3070499B2 (ja) | 微細切削方法および微細切削装置 | |
CN106583930A (zh) | 基于飞秒激光直写钛片实现湿润性可逆转化的方法 | |
Fan et al. | The analysis and investigation on the microelectrode fabrication by electrochemical machining | |
CN103590080A (zh) | 一种激光强化喷射电沉积快速成形加工装置及方法 | |
CN107723752A (zh) | 一种激光刻蚀玻璃模具分层微细电铸的装置及方法 | |
CN216126659U (zh) | 一种微线齿轮微细电解加工平台 | |
Davydov et al. | Electrochemical local maskless micro/nanoscale deposition, dissolution, and oxidation of metals and semiconductors (a review) | |
Debnath et al. | Wire electrochemical machining process: overview and recent advances | |
Rathod et al. | Fabrication of microgrooves with varied cross-sections by electrochemical micromachining | |
CN110340472A (zh) | 一种金属件微细结构磨料射流电化学加工系统与方法 | |
Skoczypiec | Application of laser and electrochemical interaction in sequential and hybrid micromachining processes | |
Liu et al. | Tooling aspects of micro electrochemical machining (ECM) technology: design, functionality, and fabrication routes | |
CN105108250B (zh) | 柔性化在线制备微细群线电极的方法 | |
Wang et al. | Electrochemical micromachining of small tapered microstructures with sub-micro spherical tool | |
Wang et al. | Improving the machining efficiency of electrochemical micromachining with oscillating workpiece | |
Paul et al. | Non-conventional micro-machining processes | |
GB2616490A (en) | Method and device for laser electrochemical composite deposition using rifling hollow rotating electrode | |
CN112458507A (zh) | 一种电沉积书写系统及直写式制备金属微纳结构的方法 | |
Gao et al. | Wire electrochemical micromachining of high-aspect ratio microstructures on stainless steel 304 with 270-μm thickness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20962048 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20962048 Country of ref document: EP Kind code of ref document: A1 |