WO2022103003A1 - 해킹 방지용 광섬유, 광케이블 및 광 패치코드 - Google Patents

해킹 방지용 광섬유, 광케이블 및 광 패치코드 Download PDF

Info

Publication number
WO2022103003A1
WO2022103003A1 PCT/KR2021/014556 KR2021014556W WO2022103003A1 WO 2022103003 A1 WO2022103003 A1 WO 2022103003A1 KR 2021014556 W KR2021014556 W KR 2021014556W WO 2022103003 A1 WO2022103003 A1 WO 2022103003A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
clad
coating layer
hacking
refractive index
Prior art date
Application number
PCT/KR2021/014556
Other languages
English (en)
French (fr)
Inventor
양은정
전영호
김수종
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2022103003A1 publication Critical patent/WO2022103003A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3895Dismountable connectors, i.e. comprising plugs identification of connection, e.g. right plug to the right socket or full engagement of the mating parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements

Definitions

  • the present invention relates to an anti-hacking optical fiber, an optical cable, and an optical patch cord, and more particularly, to an anti-hacking optical fiber, an optical cable, and an optical patch cord capable of preventing hacking by reducing the amount of a signal leaked from the optical fiber.
  • An optical cable consists of one or more optical fibers and a plurality of exterior members such as a jacket for protecting the optical fiber, and is used to transmit an optical signal.
  • an exterior member for protecting the optical fiber various materials such as a polymer material, a fiber material, and a metal material are used in various forms.
  • a waterproof member for blocking moisture penetrating into the optical cable from the outside may be added depending on the purpose of the optical cable.
  • optical cables have higher security than metal communication lines, they can still be hacked.
  • a hacking method of an optical cable optical fiber bending, optical splitting, evanescent coupling, V-groove cutting, scattering, and the like are used.
  • the method to minimize damage to and hack the optical fiber is optical fiber bending, and this method can be implemented through micro bending and macro bending after removing the jacket of the optical cable.
  • Micro bending is a method of hacking using light leaked by applying an external force to an optical fiber to form a fine bend. way.
  • an object of the present invention is to provide an anti-hacking optical fiber, an optical cable, and a patch cord to which the optical cable is applied, which can prevent hacking by reducing the amount of signal leaked from the optical cable.
  • An optical fiber for preventing hacking includes a core, a general region surrounding the core and having a first refractive index relatively lower than the core, and a second refractive index relatively lower than the first refractive index
  • a clad including a trench region having ) contrast to the refractive index of the trench region ( ) is defined as the specific refractive index difference (RC),
  • IPF Infrared blocking factor
  • Equation 2 k is 1/6000 as a normalization coefficient, and cd is the thickness [ ⁇ m] of the coating layer.
  • the trench region may include fluorine (F).
  • the coating layer may include at least one of acrylate and carbon.
  • the coating layer may be formed by coating the optical fiber with a material containing a pigment so that the optical fiber can be identified through color.
  • the coating layer is a first coating layer formed by coating the clad surface, a second coating layer formed by coating the first coating layer surface, and a coloring layer formed by coating the second coating layer surface Including, the coloring layer may be black.
  • An optical cable for preventing hacking includes a jacket surrounding the optical fiber for preventing hacking and the optical fiber for preventing hacking.
  • the optical patch cord for preventing hacking includes optical connectors disposed at both ends of the optical cable for preventing hacking and the optical cable for preventing hacking.
  • the optical connector may include a ferrule, a connector body, and a boot portion.
  • the optical connector further includes a light emitting circuit including a light emitting element for identification and an identification terminal for receiving an electrical signal for identification, wherein the optical cable emits light in the optical connector provided at both ends It may include an identification wire that electrically connects the circuit.
  • the light emitting circuit may be disposed in the boot unit.
  • the identification terminal may be disposed in the boot unit.
  • An optical cable for preventing hacking has a core, a clad that surrounds the core and has a relatively lower refractive index than the core, and a thickness formed by coating the surface of the clad is 120 ⁇ m to 375 It includes an optical fiber including a coating layer of ⁇ m and a jacket surrounding the optical fiber for preventing hacking.
  • the clad may include an inner clad and an outer clad having a first refractive index, and a trench region disposed between the inner clad and the outer clad and having a second refractive index smaller than the first refractive index.
  • the refractive indices of the inner clad and the outer clad ( ) contrast to the refractive index of the trench region ( ) is defined as the specific refractive index difference (RC),
  • IPF Infrared blocking factor
  • Equation 2 k is 1/6000 as a normalization coefficient, and cd is the thickness [ ⁇ m] of the coating layer.
  • the coating layer is a first coating layer formed by coating the clad surface, a second coating layer formed by coating the first coating layer surface, and a coloring layer formed by coating the second coating layer surface Including, the coloring layer may be black.
  • An optical patch cord for preventing hacking is provided with optical connectors at both ends of the optical cable for preventing hacking and the optical cable for preventing hacking, respectively, and the optical connector includes a ferrule, a connector body, A light emitting circuit including a boot unit, the boot unit including a light emitting element for identification, and an identification terminal for receiving an electrical signal for identification applied to the light emitting circuit may be disposed.
  • the clad of the optical cable for preventing hacking includes an inner clad and an outer clad, and a trench region disposed between the inner clad and the outer clad and containing fluorine.
  • the trench region may have a lower refractive index than that of the inner clad and the outer clad. Accordingly, the amount of infrared leakage can be minimized, thereby preventing hacking of the optical cable.
  • the hacking prevention optical fiber can minimize the amount of infrared leakage by controlling the specific refractive index difference of the trench region and the thickness of the coating layer compared to the inner clad and the outer clad, thereby preventing hacking of the optical cable.
  • the optical cable for preventing hacking can minimize the amount of infrared leakage by forming a coloring layer that can be included in the coating layer in black, thereby preventing hacking of the optical cable.
  • 1 is a view for explaining a general optical cable hacking method.
  • FIG. 2 is a cross-sectional view illustrating an optical fiber for preventing hacking according to an embodiment of the present invention.
  • FIG. 3 is a configuration diagram illustrating an optical patch cord including an optical cable for preventing hacking according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram illustrating an optical connector of an optical patch cord including an optical cable for preventing hacking according to an embodiment of the present invention.
  • FIG. 5 is a view showing the refractive index of a general optical fiber.
  • FIG. 6 is a view showing a refractive index of an optical fiber for preventing hacking according to an embodiment of the present invention.
  • 1 is a view for explaining a general optical cable hacking method.
  • a typical optical cable may include an optical fiber composed of a core, a clad, and a coating layer, and a jacket for protecting the optical fiber.
  • the optical signal is transmitted through the core, and the optical signal is transmitted by being reflected by the clad according to the principle of total reflection.
  • the optical cable may be bent and installed depending on the environment in which it is installed, and when the bent portion is bent more than a critical angle, some signals may be leaked without being reflected.
  • artificial hacking is attempted by using the optical signal leaked by removing the jacket of the optical cable and applying physical bending over a critical angle.
  • An optical signal may leak in a portion subjected to physical bending over a critical angle, and a leaked optical signal is detected using an optical signal detection device and hacking is performed using this.
  • the hacking method using the leaked optical signal is described in detail, by removing the jacket of the optical cable, performing optical tapping using an optical fiber bending device, and detecting a minute optical signal leaking through the optical fiber using the optical signal detection device. After that, 100% of the received data is converted to data through an optical-electric converter, and then information is received and analyzed.
  • a hacking optical signal may be incident using an optical signal generator, which may cause communication disturbance.
  • FIG. 2 is a cross-sectional view illustrating an optical fiber for preventing hacking according to an embodiment of the present invention.
  • the optical cable for preventing hacking may include a core 100 , a clad 200 , and a coating layer 300 .
  • the core 100 may be made of glass or a synthetic resin material, and may transmit light.
  • the clad 200 may be formed to surround the core.
  • the core 100 and the clad 200 may be formed of a light-transmitting material.
  • the core 100 is made of a material having a higher refractive index than that of the clad 200 , so that total reflection occurs between the core 100 and the clad 200 . Therefore, when light is inputted to the input terminal of the core 100 , the input light causes total reflection at the interface between the core 100 and the clad 200 to move along the core 100 , and finally It may be output to the output terminal of the core 100 .
  • the clad 200 may be divided into a general region and a trench region, and the general region may include an inner clad 210 and an outer clad 230 . That is, the clad 200 may include an inner clad 210 , a trench 220 , and an outer clad 230 .
  • the trench region 220 may be disposed between the inner clad 210 and the outer clad 230 .
  • the present invention is not limited thereto, and the clad may include an additional layer in addition to the inner clad and the outer clad, and the trench region 220 is formed between the inner clad 210 and the outer clad 230 . It may be disposed in other areas.
  • the clad 200 may be doped with an impurity such as boron (B) or fluorine (F) in order to control the refractive index.
  • the inner clad 210 , the outer clad 230 , and the trench region 220 may have different refractive indices by setting the type and doping amount of the material to be different from each other.
  • the clad 200 is a trench region doped with the same type and amount of impurities as the inner clad 210 and the outer clad 230 doped with the same type and amount of impurities. 220) may be formed.
  • the refractive indices of the inner clad 210 and the outer clad 230 may be greater than those of the trench region 220 .
  • the inner clad 210 and the outer clad 230 and the trench region 220 will be described later with reference to FIGS. 5 and 6 .
  • the coating layer 300 may be formed by coating the surface of the clad 200 with a material including at least one of acrylate, polyimide, and carbon.
  • the coating layer 300 may include a first coating layer 310 , a second coating layer 320 , and a coloring layer 350 . Since the first coating layer 310 directly surrounds the clad 200, a material having a relatively low modulus can be used for absorbing external shock transmitted to the clad, and the second coating layer 320 is relatively used for mitigating external shock. Therefore, materials with high modulus can be used.
  • the coating layer 300 may serve to reinforce the strength of the optical fiber composed of the core 100 and the clad 200 .
  • the first coating layer 310 and the second coating layer 320 may be formed by mixing an infrared blocking material.
  • the present invention is not limited thereto, and the coating layer 300 may include an additional coating layer in addition to the first coating layer 310 and the second coating layer 320 to protect the core and the clad.
  • the coloring layer 350 may be formed by coating the surface of the second coating layer 320 for color identification between a plurality of optical fibers.
  • the color of the coloring layer 350 may be implemented with a material including a colored or colorless pigment.
  • the pigment may be formed of a black pigment.
  • the present invention is not limited thereto, and the coloring layer 350 may be formed by coating with a material including pigments of various colors.
  • the optical cable for preventing hacking according to an embodiment of the present invention may generally have an outer diameter excluding the coating layer 300 of 125 ⁇ 1 micrometers ( ⁇ m).
  • the thickness of the coating layer 300 may be determined according to the purpose. Therefore, the outer diameter of the optical cable for preventing hacking according to an embodiment of the present invention may be formed by adding the thickness of the coating layer 300 to the outer diameter of the clad 200 .
  • FIG. 3 is a configuration diagram illustrating an optical patch cord including an optical cable for preventing hacking according to an embodiment of the present invention.
  • FIG. 4 shows a configuration diagram of the optical connector 30 provided at one end of the optical patch cord of FIG.
  • the optical cable may be used in a data center, a communication room, etc. in the form of a patch cord.
  • a number of patch cords may connect between network equipment, between network equipment and a patch panel, or between patch panels, respectively.
  • the optical patch cord 500 may include optical connectors 30 connected to both ends of the hacking prevention optical cable 10 .
  • One or more optical cables 10 may be provided in the one patch cord, and one or more signal wires 12 including optical fibers therein may be provided.
  • the optical connector 30 may be provided at both ends of the patch cord in one or more individual forms or in a combined form of one or more pairs.
  • the optical connector 30 includes a connector body 31 that is directly coupled to an adapter on the side of a receiving part such as network equipment and a patch panel, a boot part 32 that provides a function of relieving stress applied to the optical cable 10, And it may include a ferrule 33 that provides an alignment function for smooth termination of the optical fiber in the optical cable 10 .
  • the connector body 31 may include a clip 311 providing a function for fixing or releasing the coupling with the receiving part.
  • the optical patchcord according to the present invention can easily identify the connection position of the optical connector provided at both ends of each optical patchcord without disconnecting it while the optical patchcord is connected to the operating communication equipment.
  • Identification between the patch cords may be implemented through blinking of a light emitting device 131 such as an LED provided in the optical connector.
  • An identification wire ( 11), an identification terminal 14 made of a conductive material that is electrically connected to a light emitting circuit to receive an identification signal to blink the light emitting device may be provided.
  • One or more light emitting devices may be provided in the optical connector on the one side, the identification wire may be included as a pair in the optical cable of the patch cord, and the identification terminal may be provided as a pair in the optical connector on the one side and may be placed in an externally accessible location.
  • an identification signal applied to the identification terminal 14a of the optical connector 30a provided on one side of the patch cord by a signal generator or a tester is electrically connected through the identification wire 11, etc. It can be implemented by turning on the light emitting element 131 of the optical connector 30a, 30b provided in the patch cord. For this reason, it can be identified that the optical connectors 30a and 30b on both sides are provided in the same patch cord.
  • the identification signal may be a power of a constant voltage (DC) or a power of a variable voltage of various types such as a sine wave, a square wave, or a random power source.
  • the optical patch cord 500 includes a light emitting circuit 13 having a light emitting device 131 in the boot portion 20 of the optical connector 300 and an identification terminal 14 .
  • the boot portion 20 of the optical patch cord 500 may be formed of a transparent material, and accordingly, when the light emitting device 131 is turned on, it is possible to easily identify the position of the optical connector.
  • FIG. 5 is a view showing the refractive index of a general optical fiber
  • FIG. 6 is a view showing the refractive index of an optical fiber for preventing hacking according to an embodiment of the present invention.
  • the difference between the refractive indices of the core and the clad of a general optical fiber and the refractive indices of the core and the clad of the hacking prevention optical fiber according to an embodiment of the present invention can be confirmed.
  • the core is made of a material having a higher refractive index than that of the clad, so that total reflection occurs between the core and the clad. Accordingly, as shown in FIG. 5 , the refractive indexes of the core and the clad may be different. In this case, although the refractive index of the core and the refractive index of the clad are different, the refractive index of the clad may have the same refractive index according to a radius.
  • the clad 200 is composed of an inner clad 210, an outer clad 230, and a trench region 220, and as shown in FIG. 6, the clad 200
  • the refractive indices of each region of may have different values.
  • the difference in refractive indices of the inner cladding 210, the outer cladding 230, and the trench region 220 may have an effect of minimizing the amount of an optical signal leaking even when a physical bending greater than or equal to a critical angle is applied to the optical cable.
  • the optical cable for preventing hacking includes a coating layer 300, and the thickness of the coating layer 300 and the trench region 220 compared to the inner cladding 210 and the outer cladding 230.
  • the amount of the leaked optical signal can be minimized by using the difference in the refractive index of .
  • a difference in specific refractive index of the trench region 220 compared to the inner cladding 210 and the outer cladding 230 may be defined by Equation 1 below.
  • RC is the difference in refractive index of the trench region compared to the inner cladding and the outer cladding, is the refractive index of the inner clad and outer clad, denotes the refractive index of the trench region.
  • the Korean Optical Technology Institute standard for the hacking prevention function (SPS-C KOPTI 0006-7340: fiber optic cable test method for hacking prevention) requires that an optical signal of less than -28dBm at 1550nm wavelength or less than -30dBm at 1310nm wavelength be leaked in order to prevent hacking.
  • SPS-C KOPTI 0006-7340 fiber optic cable test method for hacking prevention
  • an optical signal of less than -28dBm at 1550nm wavelength or less than -30dBm at 1310nm wavelength be leaked in order to prevent hacking.
  • the strength of the leaked optical signal is less than -40dBm, it is determined that it has an excellent anti-hacking function in consideration of an additional margin for ensuring stable implementation of the anti-hacking function in the actual use environment.
  • the optical fiber for preventing hacking of the present invention can control the strength of an optical signal leaked to the outside of the optical fiber during hacking by adjusting the thickness of the coating layer and the difference in refractive index of the trench region compared to the inner and outer clads.
  • the thickness of the coating layer of the hacking prevention optical fiber may be 120 ⁇ m to 375 ⁇ m.
  • the thickness of the coating layer is less than 120 ⁇ m, it is difficult to normally implement the function of protecting the core and clad of the optical fiber from external impact, and when the thickness of the coating layer exceeds 375 ⁇ m, the outer diameter of the optical fiber increases and the bending radius increases. ductility is lowered.
  • the amount of an optical signal leaking to the outside of the optical fiber can be reduced.
  • the optical signal for preventing hacking may be defined by the following Equation 2 as an infrared blocking factor (IPF) for the degree of blocking of an optical signal leaking to the outside.
  • IPF infrared blocking factor
  • IPF is the infrared blocking coefficient
  • k is the normalization coefficient
  • cd is the thickness of the coating layer [ ⁇ m]
  • RC is the difference in specific refractive index of the trench region with respect to the inner cladding and the outer cladding.
  • the IPF is proportional to the cube of the thickness of the coating layer of the optical fiber and is proportional to the value of the product of the specific refractive index difference by -1, if the coating thickness is appropriately selected according to the specific refractive index difference of the optical fiber, optimal hacking prevention It is possible to manufacture an optical cable having a function.
  • 1/6000 is applied as the normalization coefficient value, if the IPF is less than 1, the hacking prevention function is not satisfied, and if it is 1 or more, it can be determined that the optical fiber can satisfy the hacking prevention function.
  • IPF Infrared Protection Factor
  • the infrared leakage amount is less than -40dBm, it can be determined that the hacking prevention function is provided. In this case, if the IPF is less than 1, the hacking prevention function is not satisfied. It was confirmed through an experiment that it can be determined as an optical fiber that can satisfy .
  • the pigment may be of various colors such as blue, green, white, black, yellow and purple. Preferably, the pigment may be black.
  • the coloring layer 350 may be formed of a material including a pigment to minimize the amount of infrared light leaking from the optical cable.
  • coloring layer color colorless blue orange green Brown gray White black yellow purple BL OR GR BR GR WH BK YL VL leakage -57 -61 -58 -62 -61 -63 -62 -65 -59 -60 Difference -8 -4 -7 -3 -4 -2 -3 0 -6 -5
  • Table 3 above shows the experimental results performed under the conditions of 1550 nm wavelength, the difference in specific refractive index of the trench region compared to the inner cladding and the outer cladding, -0.41%, the thickness of the coating layer is 130 micrometers, and the thickness of the coloring layer in the coating layer is 10 micrometers.
  • Infrared leakage according to the color and specific refractive index is shown.
  • the leakage amount is a value obtained by performing an experiment on several optical cables under the same conditions and obtaining the average of the leakage amount, and the difference indicates the difference in the average leakage amount with the optical fiber having the black coloring layer having the lowest UV leakage amount.
  • the infrared leakage amount was measured to be the lowest value, and accordingly, it can be seen that the hacking prevention function is the best when the coloring layer is formed in black.
  • coloring layer color colorless blue orange green Brown gray White black yellow purple BL OR GR BR GR WH BK YL VL leakage -60 -62 -67 -65 -69 -65 -63 -73 -63 -62 Difference -13 -11 -6 -8 -4 -8 -10 0 -10 -11
  • Table 4 above shows the 1310 nm wavelength, the difference in specific refractive index of the trench region compared to the inner cladding and the outer cladding is -0.41%, the thickness of the coating layer is 130 micrometers, and the thickness of the coloring layer in the coating layer is 10 micrometers.
  • the leakage amount is a value obtained by performing an experiment on several optical cables under the same conditions and obtaining the average of the leakage amount, and the difference indicates the difference in the average leakage amount with the optical fiber having the black coloring layer having the lowest UV leakage amount.
  • the infrared leakage amount was measured as the lowest value, and accordingly, it can be seen that the hacking prevention function is the best when the coloring layer is formed in black.
  • an optical fiber having a fraudulent infrared blocking coefficient of 1 or more is manufactured by appropriately combining the specific refractive index difference of the trench region compared to the inner clad and the outer clad and the thickness of the coating layer. can be viewed as having a hacking prevention function.
  • optical cable for preventing hacking can be viewed as having a hacking prevention function when the color of the coloring layer is formed in black.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

해킹 방지용 광케이블은 코어, 상기 코어를 감싸고 제1 굴절률을 갖는 내부 클래드, 외부 클래드 및 상기 내부/외부 클래드 사이에 배치되며 상기 제1 굴절률보다 작은 제2 굴절률을 갖는 트렌치 영역을 포함하는 클래드, 상기 클래드의 표면에 아크릴레이트(acrylate)를 포함하는 물질로 코팅하여 형성된 코팅층 및 상기 코팅층의 표면에 안료를 포함하는 물질로 코팅하여 형성된 컬러링층을 포함한다.

Description

해킹 방지용 광섬유, 광케이블 및 광 패치코드
본 발명은 해킹 방지용 광섬유, 광케이블 및 광 패치코드에 관한 것으로, 보다 상세하게는 광섬유에서 누설되는 신호의 양을 감소시켜 해킹을 방지할 수 있는 해킹 방지용 광섬유, 광케이블 및 광 패치코드에 관한 것이다.
광케이블은 하나 이상의 광섬유와 이를 보호하기 위한 자켓 등 다수의 외장 부재로 이루어져 있으며, 광신호를 전송하기 위하여 사용된다. 광섬유를 보호하기 위한 외장 부재로서는 폴리머 소재, 섬유 소재, 금속 소재 등 다양한 재질이 다양한 형태로 이용되고 있다. 또한, 광케이블의 용도에 따라, 외부로부터 광케이블 내로 침투하는 습기를 차단하기 위한 방수부재 등이 추가되기도 한다.
이러한 광케이블은 금속 재질의 통신선에 비하여 보안성이 높지만 여전히 해킹(tapping)이 가능하다. 예를 들어, 광케이블의 해킹 방법은 광섬유 굽힘, 광학적 스플릿팅, 에바네센트 결합, V-홈 절단, 산란 등이 이용되고 있다. 이 중 광섬유의 손상을 최소화하고 해킹할 수 있는 방법은 광섬유 굽힘이며, 이 방법은 광케이블의 자켓 제거 후 마이크로 벤딩과 매크로 벤딩을 통해 구현될 수 있다. 마이크로 벤딩은 광섬유에 외력을 가하여 미세한 굴곡을 형성시키고 이에 의하여 누설되는 빛을 이용하여 해킹하는 방법이며, 매크로 벤딩은 광섬유를 최소 허용 굴곡 반경보다 작은 굴곡 반경으로 굴곡시킴으로써 방사되는 빛을 이용하여 해킹하는 방법이다.
이러한 광케이블의 해킹을 방지하기 위해 다양한 방법이 이용되고 있다. 예를 들어, 광섬유에 대한 접근성을 어렵게 하여 해킹을 방지하는 스파이럴 튜브를 적용한 광케이블, 광섬유 외부에 적외선 차단제 혼합 안료를 도포하여 굴곡 시 신호 유출을 최소화하는 방법 및 다공의 광섬유를 적용하여 굴곡 시 신호 유출을 최소화하는 방법 등이 이용되고 있다. 그러나, 이러한 방법들은 기존의 광케이블 구조에 변형을 가한 것으로서 광케이블의 구조를 변형시켜 제조해야 하므로, 일반적인 광케이블 구조에 대해서는 적용하기 어려운 문제점이 있다.
이에 본 발명의 기술적 과제는 이러한 점에서 착안된 것으로, 본 발명의 목적은 광케이블에서 누설되는 신호의 양을 감소시켜 해킹을 방지할 수 있는 해킹 방지용 광섬유, 광케이블 및 해당 광케이블이 적용된 패치코드를 제공하는 것이다.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 해킹 방지용 광섬유는 코어, 상기 코어를 감싸고 상기 코어보다 상대적으로 낮은 제1 굴절률을 갖는 일반 영역과 상대적으로 상기 제1 굴절률보다 낮은 제2 굴절률을 갖는 트렌치 영역을 포함하는 클래드 및 상기 클래드의 표면에 코팅되어 형성된 코팅층을 포함하고, 아래 수학식 1과 같이 상기 일반 영역의 굴절률(
Figure PCTKR2021014556-appb-img-000001
) 대비 상기 트렌치 영역의 굴절률(
Figure PCTKR2021014556-appb-img-000002
)의 상대적 차이를 비굴절률차(RC)라 정의할 경우,
[수학식 1]
Figure PCTKR2021014556-appb-img-000003
아래 수학식 2에서 정의된 적외선 차단지수(IPF)가 1 이상이다.
[수학식 2]
Figure PCTKR2021014556-appb-img-000004
상기 수학식 2에서, k는 정규화 계수로서 1/6000 이고, cd는 상기 코팅층의 두께[μm]이다.
본 발명의 일 실시예에 있어서, 상기 트렌치 영역은 플루오르(fluorine: F)를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 코팅층은 아크릴레이트(acrylate) 및 카본(carbon) 중 적어도 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 코팅층은 색을 통해 상기 광섬유를 식별할 수 있도록 안료를 포함하는 물질로 코팅하여 형성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 코팅층은 상기 클래드 표면에 코팅하여 형성되는 제1 코팅층, 상기 제1 코팅층 표면에 코팅하여 형성되는 제2 코팅층 및 상기 제2 코팅층 표면에 코팅하여 형성되는 컬러링층을 포함하고, 상기 컬러링층은 흑색일 수 있다.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 해킹 방지용 광 케이블은 상기 해킹 방지용 광섬유 및 상기 해킹 방지용 광섬유를 감싸는 자켓을 포함한다.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 해킹 방지용 광 패치코드는 상기 해킹 방지용 광 케이블 및 상기 해킹 방지용 광케이블의 양단에 배치되는 광커넥터를 포함한다.
본 발명의 일 실시예에 있어서, 상기 광커넥터는 페룰, 커넥터 바디, 부트부를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 광커넥터는 식별을 위한 발광소자를 포함하는 발광회로 및 식별을 위한 전기 신호 수신을 위한 식별 단자를 더 포함하고, 상기 광케이블은 양단에 구비된 광커넥터 내 발광회로를 전기적으로 연결하는 식별 와이어를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 발광회로는 상기 부트부에 배치될 수 있다.
본 발명의 일 실시예에 있어서, 상기 식별 단자는 상기 부트부에 배치될 수 있다.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 해킹 방지용 광케이블은 코어, 상기 코어를 감싸고 상기 코어보다 상대적으로 낮은 굴절률을 갖는 클래드, 상기 클래드의 표면에 코팅되어 형성된 두께가 120 μm 내지 375 μm 인 코팅층을 포함하는 광섬유 및 상기 해킹 방지용 광섬유를 감싸는 자켓을 포함한다.
본 발명의 일 실시예에 있어서, 상기 클래드는 제1 굴절률을 갖는 내부 클래드와 외부 클래드 및 상기 내부 클래드와 외부 클래드 사이에 배치되며 상기 제1 굴절률보다 작은 제2 굴절률을 갖는 트렌치 영역을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 아래 수학식 1과 같이 상기 내부 클래드 및 외부 클래드의 굴절률(
Figure PCTKR2021014556-appb-img-000005
) 대비 상기 트렌치 영역의 굴절률(
Figure PCTKR2021014556-appb-img-000006
)의 상대적 차이를 비굴절률차(RC)라 정의할 경우,
[수학식 1]
Figure PCTKR2021014556-appb-img-000007
아래 수학식 2에서 정의된 적외선 차단지수(IPF)가 1 이상일 수 있다.
[수학식 2]
Figure PCTKR2021014556-appb-img-000008
상기 수학식 2에서, k는 정규화 계수로서 1/6000 이고, cd는 상기 코팅층의 두께[μm]이다.
본 발명의 일 실시예에 있어서, 상기 코팅층은 상기 클래드 표면에 코팅하여 형성되는 제1 코팅층, 상기 제1 코팅층 표면에 코팅하여 형성되는 제2 코팅층 및 상기 제2 코팅층 표면에 코팅하여 형성되는 컬러링층을 포함하고, 상기 컬러링층은 흑색일 수 있다.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 해킹 방지용 광 패치코드는 상기 해킹 방지용 광 케이블 및 상기 해킹 방지용 광케이블의 양단에 광커넥터를 각각 구비하고, 상기 광커넥터는 페룰, 커넥터 바디, 부트부를 포함하고, 상기 부트부에는 식별을 위한 발광소자를 포함하는 발광회로 및 상기 발광 회로에 인가되는 식별을 위한 전기 신호 수신을 위한 식별 단자가 배치될 수 있다.
본 발명에 따르면, 해킹 방지용 광케이블의 클래드는 내부 클래드와 외부 클래드 및 상기 내부 클래드와 외부 클래드 사이에 배치되며 플루오르를 포함하는 트렌치 영역을 포함한다. 상기 트렌치 영역은 상기 내부 클래드 및 외부 클래드 보다 낮은 굴절률을 가질 수 있다. 이에 따라, 적외선 누설량이 최소화될 수 있어 광케이블의 해킹을 방지할 수 있다.
또한, 해킹 방지용 광섬유는 상기 내부 클래드 및 외부 클래드 대비 상기 트렌치 영역의 비굴절률차 및 코팅층의 두께를 제어하여 적외선 누설량이 최소화될 수 있어 광케이블의 해킹을 방지할 수 있다.
또한, 해킹 방지용 광케이블은 코팅층 내 포함될 수 있는 컬러링층을 흑색으로 형성하여 적외선 누설량이 최소화할 수 있어 광케이블의 해킹을 방지할 수 있다.
도 1은 일반적인 광케이블의 해킹 방법을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 해킹 방지용 광섬유를 나타내는 단면도이다.
도 3은 본 발명의 일 실시예에 따른 해킹 방지용 광 케이블을 포함하는 광 패치코드를 나타내는 구성도이다.
도 4는 본 발명의 일 실시예에 따른 해킹 방지용 광케이블을 포함하는 광 패치코드의 광커넥터를 나타내는 구성도이다.
도 5는 일반적인 광섬유의 굴절률을 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 해킹 방지용 광섬유의 굴절률을 나타내는 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "이루어진다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.
도 1은 일반적인 광케이블의 해킹 방법을 설명하기 위한 도면이다.
도 1을 참조하면, 일반적인 광케이블은 코어, 클래드 및 코팅층으로 구성된 광섬유와 상기 광섬유를 보호하기 위한 자켓을 포함할 수 있다.
광케이블은 광신호가 코어를 통해 전달되며, 클래드에서 전반사의 원리에 따라 반사되어 광신호가 전송된다. 광케이블은 설치되는 환경에 따라 구부려져 설치될 수 있으며, 구부려진 부분이 임계각 이상으로 구부려지는 경우 일부 신호가 반사되지 않고 누설될 수 있다. 또한, 광케이블의 자켓을 제거하고 임계각 이상의 물리적 구부림을 가해 누설되는 광신호를 이용하여 인위적인 해킹을 시도하기도 한다. 임계각 이상의 물리적 구부림이 가해지는 부분에서는 광신호가 누설될 수 있으며, 광신호 검출 장치를 이용하여 누설된 광신호를 검출하고 이를 이용하여 해킹을 하게 된다.
누설되는 광신호를 이용한 해킹 방법을 자세히 설명하면, 광케이블의 자켓을 제거하고 광섬유 구부림 장치를 이용하여 광 태핑을 실시하고, 광섬유를 통해 유출되는 미세한 광신호를 광신호 검출 장치를 이용하여 검출한다. 이후, 광-전 변환 장치 (Optical-Electrical Converter)를 통해 100% 수신된 데이터로 변환한 후 정보의 수신 및 분석을 진행하게 된다. 또한, 광신호 발생기를 이용하여 해킹 광신호를 입사할 수도 있으며, 이로 인해 통신 교란을 야기할 수도 있다.
도 2는 본 발명의 일 실시예에 따른 해킹 방지용 광섬유를 나타내는 단면도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 해킹 방지용 광케이블은 코어(100), 클래드(200) 및 코팅층(300)을 포함할 수 있다.
상기 코어(100)는 유리 또는 합성 수지재로 구성될 수 있으며, 빛을 전달할 수 있다. 상기 클래드(200)는 코어를 감싸도록 형성될 수 있다. 상기 코어(100) 및 상기 클래드(200)는 투광성 재질로 형성될 수 있다.
상기 코어(100)는 상기 클래드(200)에 비해 굴절률이 높은 재질로 구성되어, 상기 코어(100)와 상기 클래드(200)의 사이에 전반사가 일어나도록 구성된다. 따라서, 상기 코어(100)의 입력단으로 빛을 입력하면, 입력된 빛은 상기 코어(100)와 상기 클래드(200) 사이의 경계면에서 전반사를 일으켜 상기 코어(100)를 따라 이동하며, 최종적으로는 상기 코어(100)의 출력단으로 출력될 수 있다.
상기 클래드(200)는 일반 영역과 트렌치 영역으로 구분될 수 있으며, 상기 일반 영역은 내부 클래드 (inner clad, 210) 및 외부 클래드 (outer clad, 230)를 포함할 수 있다. 즉, 상기 클래드(200)는 내부 클래드 (inner clad, 210), 트렌치 영역(trench, 220) 및 외부 클래드 (outer clad, 230)를 포함할 수 있다. 상기 트렌치 영역(220)은 상기 내부 클래드(210)와 상기 외부 클래드(230) 사이에 배치될 수 있다. 그러나, 본 발명은 이에 한정되는 것은 아니며, 상기 클래드는 상기 내부 클래드, 외부 클래드 외에 추가적인 층을 구비할 수 있고, 상기 트렌치 영역(220)은 상기 내부 클래드(210)와 상기 외부 클래드(230) 사이 이외의 영역에 배치될 수도 있다. 상기 클래드(200)는 굴절률을 제어하기 위해, 붕소(B) 또는 플르오르(F) 등의 불순물이 도핑될 수 있다. 상기 내부 클래드(210) 및 외부 클래드(230)와 상기 트렌치 영역(220)은 분술물의 종류 및 도핑량을 다르게 설정하여 굴절률을 다르게 형성할 수 있다.
예를 들어, 도 2에 도시된 것처럼, 클래드(200)는 불순물의 종류 및 양이 동일하게 도핑된 내부 클래드(210), 외부 클래드(230)와 불순물의 종류 및 양이 다르게 도핑된 트렌치 영역(220)으로 형성될 수 있다. 상기 내부 클래드(210)와 외부 클래드(230)의 굴절률은 상기 트렌치 영역(220)의 굴절률보다 크게 형성될 수 있다. 상기 내부 클래드(210) 및 외부 클래드(230)와 상기 트렌치 영역(220)에 대해서는 도 5 및 도 6을 참조하여 후술하도록 한다.
상기 코팅층(300)은 상기 클래드(200)의 표면에 아크릴레이트(acrylate), 폴리이미드(polyimide) 및 카본(Carbon) 중 적어도 하나 이상을 포함하는 물질로 코팅하여 형성될 수 있다.
상기 코팅층(300)은 제1 코팅층(310), 제2 코팅층(320) 및 컬러링층(350)을 포함할 수 있다. 상기 제1 코팅층(310)은 상기 클래드(200)를 직접 감싸므로 클래드에 전달되는 외부 충격 흡수 위해 상대적으로 모듈러스가 낮은 재료를 사용할 수 있고, 상기 제2 코팅층(320)은 외부 충격 완화를 위해 상대적으로 모듈러스가 높은 재료를 사용할 수 있다. 상기 코팅층(300)은 상기 코어(100) 및 상기 클래드(200)로 구성되는 광섬유의 강도를 보강하는 역할을 할 수 있다. 또한, 상기 제1 코팅층(310) 및 상기 제2 코팅층(320)에는 적외선 차단 물질이 혼합되어 형성될 수도 있다. 그러나, 본 발명은 이에 한정되는 것은 아니며, 상기 코팅층(300)은 상기 제1 코팅층(310) 및 상기 제2 코팅층(320) 외에 상기 코어와 클래드를 보호하기 위해 추가적인 코팅층을 구비할 수 있다.
상기 컬러링층(350)은 복수의 광섬유 간 색(color)을 통한 식별을 위해 상기 제2 코팅층(320)의 표면에 코팅하여 형성될 수 있다. 상기 컬러링층(350)의 색은 유색 또는 무색의 안료를 포함하는 물질로 구현될 수 있다. 예를 들어, 상기 안료는 흑색의 안료로 형성될 수 있다. 그러나, 본 발명은 이에 한정되는 것은 아니며, 상기 컬러링층(350)은 다양한 색상의 안료를 포함하는 물질로 코팅하여 형성될 수 있다.
본 발명의 일 실시예에 따른 해킹 방지용 광케이블은 상기 코팅층(300)을 제외한 외경이 일반적으로 125±1 마이크로미터(μm) 일 수 있다. 상기 코팅층(300)의 두께는 목적에 따라 정해질 수 있다. 따라서, 본 발명의 일 실시예에 따른 해킹 방지용 광케이블의 외경은 상기 클래드(200)의 외경에 상기 코팅층(300)의 두께를 더한 값으로 형성될 수 있다.
도 3은 본 발명의 일 실시예에 따른 해킹 방지용 광케이블을 포함하는 광 패치코드를 나타내는 구성도이다.
도 4는 도 3의 광 패치코드의 일단에 구비된 광커넥터(30)의 구성도를 도시한다.
상기 광케이블은 패치코드 형태로 데이터센터, 통신실 등에서 사용될 수 있고, 이 경우 수많은 패치코드들이 네트워크 장비들 간, 네트워크 장비와 패치패널 간, 또는 패치패널들 간을 각각 연결할 수 있다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 광 패치코드(500)는 해킹 방지용 광케이블(10)의 양단에 연결되는 광커넥터(30)를 포함할 수 있다. 상기 광케이블(10)은 상기 하나의 패치코드 내에서 하나 이상 구비될 수 있고, 내부에 광섬유를 포함하는 하나 이상의 신호 와이어(12)를 구비할 수 있다. 상기 광커넥터(30)는 상기 패치코드의 양단에 각각 하나 이상의 개별 형태 또는 한 쌍 이상의 결합된 형태로 구비될 수 있다.
상기 광커넥터(30)는 네트워크 장비 및 패치패널 등의 수용부 측 어댑터와 직접 체결되는 커넥터 바디(31), 상기 광케이블(10)에 인가되는 스트레스를 완화시키는 기능을 제공하는 부트부(32), 그리고 상기 광케이블(10) 내 광섬유의 원활한 종단 접속을 위한 정렬 기능을 제공하는 페룰(33)을 포함할 수 있다. 상기 커넥터 바디(31)는 상기 수용부와의 체결을 고정하거나 해제하기 위한 기능을 제공하는 클립(311)을 포함될 수 있다.
일반적으로 상기 패치코드는 데이터센터, 통신실 등 설치 환경 특성상 근거리에 위치한 장비들 사이를 매우 많은 개수가 연결될 수 있다. 따라서, 작업자가 통신실 내부에서 각각의 패치코드들의 연결 위치를 특정하는 것은 쉽지 않다. 본 발명에 따른 광 패치코드는 운영중인 통신 장비에 광 패치코드가 연결된 상태에서 분리하지 않고도 각각의 광 패치코드의 양단에 구비된 광커넥터의 연결 위치를 쉽게 식별할 수 있다.
상기 패치코드 간 식별은 상기 광커넥터에 구비된 LED 등 발광소자(131)의 점멸을 통해 구현될 수 있다. 상기 패치코드 간 식별 기능 구현을 위해 상기 광커넥터 내에 발광소자(131)를 포함하는 PCB 형태의 발광회로(13), 상기 패치코드 양단에 구비된 광커넥터 내 발광회로를 전기적으로 연결하는 식별 와이어(11), 상기 발광소자를 점멸시키기 위해 발광회로에 전기적으로 연결되어 식별 신호를 수신하는 도전성 재질의 식별 단자(14)를 구비할 수 있다. 상기 발광소자는 상기 일측의 광커넥터 내에 하나 이상 구비될 수 있고, 상기 식별 와이어는 상기 패치코드의 광케이블 내에 한 쌍으로 포함될 수 있으며, 상기 식별 단자는 상기 일측의 광커넥터 내에 한 쌍으로 구비될 수 있고 외부에서 접근 가능한 위치에 배치될 수 있다.
상기 패치코드 간 식별 방법은 상기 패치코드 일측에 구비된 광커넥터(30a)의 상기 식별 단자(14a)에 신호 발생기 또는 테스터 등으로 인가된 식별 신호가 상기 식별 와이어(11) 등 전기적 연결을 통해 상기 패치코드에 구비된 광커넥터(30a, 30b)의 발광소자(131)를 점등시켜 구현될 수 있다. 이로 인해 양측의 광커넥터(30a, 30b)가 동일한 패치코드에 구비된 것임을 식별할 수 있다. 상기 식별 신호는 일정한 전압(DC)의 전원이거나 사인파, 사각파, 랜덤 등 다양한 형태의 가변 전압의 전원일 수 있다.
종래의 패치코드들은 커넥터 바디(31) 측에 식별 단자(14)가 배치되는 구조로 형성되어 상기 광커넥터가 네트워크 장비 등에 체결되는 경우 협소한 공간으로 인해 식별 단자(14)로의 접근이 용이하지 않아 발광소자(131)의 점멸 제어가 어렵고 외부로 노출되는 부분이 상대적으로 적어 발광소자(131)의 발광에 의한 식별력이 떨어지는 문제가 있었다. 그러나, 본 발명의 일 실시예에 따른 광 패치코드(500)는 광커넥터(300)의 상기 부트부(20)에 발광소자(131)를 구비한 발광 회로(13) 및 식별 단자(14)가 배치되어 식별 단자(14)로의 접근이 용이하여 발광소자(131)의 점멸 제어가 수월해지고 발광소자(131)가 점멸되는 경우 외부로 노출되는 광량의 효율이 높아져 광커넥터의 위치 식별이 용이하여 광커넥터의 위치를 직관적으로 인식할 수 있다.
본 실시예에 따른 광 패치코드(500)의 부트부(20)는 투명 재질로 형성될 수 있으며, 이에 따라 발광소자(131)가 점등되는 경우 광커넥터의 위치 식별이 용이하게 될 수 있다.
도 5는 일반적인 광섬유의 굴절률을 나타내는 도면이고, 도 6은 본 발명의 일 실시예에 따른 해킹 방지용 광섬유의 굴절률을 나타내는 도면이다.
도 5 및 도 6을 참조하면, 일반적인 광섬유의 코어와 클래드의 굴절률 및 본 발명의 일 실시예에 따른 해킹 방지용 광섬유의 코어와 클래드의 굴절율의 차이를 확인할 수 있다.
일반적으로 코어는 클래드에 비해 굴절률이 높은 재질로 구성되어, 코어와 클래드의 사이에 전반사가 일어나도록 구성된다. 따라서, 도 5와 같이 코어와 클래드의 굴절률은 차이가 날 수 있다. 이때, 코어의 굴절률과 클래드의 굴절률은 차이가 있지만 클래드의 굴절률은 반경에 따라 굴절률이 동일한 값을 가질 수 있다.
그러나, 본 발명의 일 실시예에 따른 해킹 방지용 광섬유는 클래드(200)가 내부 클래드(210), 외부 클래드(230) 및 트렌치 영역(220)으로 구성되어 있으며, 도 6과 같이 상기 클래드(200)의 각 영역의 굴절률이 서로 다른 값을 가질 수 있다. 이러한 상기 내부 클래드(210), 외부 클래드(230) 및 트렌치 영역(220)의 굴절률의 차이는 광케이블에 임계각 이상의 물리적 구부림이 가해지는 경우에도 누설되는 광신호의 양을 최소화하는 효과를 가질 수 있다.
또한, 본 발명의 일 실시예에 따른 해킹 방지용 광케이블은 코팅층(300)을 포함하고 있으며, 상기 코팅층(300)의 두께와 상기 내부 클래드(210) 및 외부 클래드(230) 대비 상기 트렌치 영역(220)의 굴절률 차이를 이용하여 누설되는 광신호를 양을 최소화할 수 있다.
먼저, 상기 내부 클래드(210) 및 외부 클래드(230) 대비 상기 트렌치 영역(220)의 비굴절률차는 아래의 수학식 1로 정의될 수 있다.
수학식 1
Figure PCTKR2021014556-appb-img-000009
여기서, RC는 내부 클래드 및 외부 클래드 대비 트렌치 영역의 비굴절률차,
Figure PCTKR2021014556-appb-img-000010
는 내부 클래드 및 외부 클래드의 굴절률,
Figure PCTKR2021014556-appb-img-000011
는 트렌치 영역의 굴절률을 의미한다.
해킹 방지 기능에 대한 국내 한국광기술원 표준 (SPS-C KOPTI 0006-7340: 해킹방지용 광섬유케이블 시험방법)은 1550nm 파장에서 -28dBm 미만 또는 1310nm 파장에서 -30dBm 미만의 광 신호가 누설되어야 해킹방지 기능을 갖는 것으로 정하고 있으나, 본 발명에서는 실제 사용 환경에서 안정적인 해킹방지 기능 구현을 보장하기 위한 추가적인 마진을 고려하면 누설된 광신호의 강도가 -40dBm 미만인 경우 우수한 해킹 방지 기능을 갖는 것으로 판단하였다.
본 발명의 해킹 방지용 광섬유는 상기 코팅층의 두께와 상기 내부 클래드 및 외부 클래드 대비 상기 트렌치 영역의 비굴절률차를 조절하여 해킹 시 광섬유 외부로 누설되는 광신호의 강도를 제어할 수 있다.
해킹 방지용 광섬유의 상기 코팅층의 두께는 120 μm 내지 375 μm 일 수 있다. 상기 코팅층의 두께가 120 μm 미만인 경우에는 상기 광섬유의 코어와 클래드를 외부 충격으로부터 보호하는 기능을 정상적으로 구현하기 어렵고, 상기 코팅층의 두께가 375 μm를 초과하는 경우 광섬유의 외경이 증가하여 굴곡 반경이 커져 포설성이 낮아진다.
상기 비굴절률차는 값이 작을수록 광섬유 외부로 누설되는 광신호의 양을 감소시킬 수 있으나 광섬유 자체의 제조 난이도가 높고 수율이 낮아 고가의 제조비용이 상승하는 단점이 있다.
본 발명에서는 해킹 방지용 광섬유는 외부로 누설되는 광신호의 차단 정도를 적외선 차단지수(IPF) 로서 아래의 수학식 2로 정의될 수 있다.
수학식 2
Figure PCTKR2021014556-appb-img-000012
여기서, IPF는 적외선차단지수, k는 정규화 계수, cd는 코팅층의 두께[μm], RC는 내부 클래드 및 외부 클래드에 대한 트렌치 영역의 비굴절률차를 의미한다.
상기 IPF는 상기 광섬유의 상기 코팅층 두께의 세제곱에 비례하고, 상기 비굴절률차에 -1을 곱합값에 비례하는 관계에 있으므로, 상기 광섬유의 비굴절률차에 따라 코팅 두께를 적절히 선정하면 최적의 해킹 방지 기능을 갖는 광케이블을 제조할 수 있다. 상기 정규화 계수 값으로 1/6000 적용시 IPF가 1 미만이면 해킹 방지 기능을 만족하지 못하고, 1 이상이면 해킹 방지 기능을 만족할 수 있는 광섬유라 판단할 수 있다.
본 발명의 일 실시예에 따른 해킹 방지용 광케이블에 대해 상기 코팅층(300) 의 두께와 상기 내부 클래드 및 외부 클래드에 대한 상기 트렌치 영역의 비굴절률차가 각기 상이한 시료 12종을 제작하였고, 각 시료의 IPF 값은 아래 표 1과 같다.
광섬유 외경
[μm]
코팅층 두께
[μm]
IPF (적외선 차단지수)
비굴절률차
-0.07%
비굴절률차
-0.25%
비굴절률차
-0.41%
245 120 0.20
(시료 1-1)
0.72
(시료 2-1)
1.18
(시료 3-1)
255 130 0.26(시료 1-2) 0.92
(시료 2-2)
1.50
(시료 3-2)
300 175 0.63(시료 1-3) 2.23
(시료 2-3)
3.66
(시료 3-3)
350 225 1.33(시료 1-4) 4.75
(시료 2-4)
7.78
(시료 3-4)
표 1과 같은 본 발명의 일 실시예에 따라 제조된 광섬유에 대한 적외선 누설량 평가 실험은 아래 표 2과 같은 결과를 나타내고 있다.
광섬유 외경
[μm]
코팅층 두께
[μm]
적외선 누설량[dBm]
비굴절률차
-0.07%
비굴절률차
-0.25%
비굴절률차
-0.41%
245 120 -29
(시료 1-1)
-29
(시료 2-1)
-50
(시료 3-1)
255 130 -33(시료 1-2) -34
(시료 2-2)
-57
(시료 3-2)
300 175 -40(시료 1-3) -50
(시료 2-3)
-65
(시료 3-3)
350 225 -56(시료 1-4) -63
(시료 2-4)
-76
(시료 3-4)
본 발명의 해킹방지 기능 평가 기준에 따라 적외선 누설량이 -40dBm 미만인 경우 해킹방지 기능을 구비한 것으로 판단할 수 있고, 이 경우 IPF가 1 미만이면 해킹 방지 기능을 만족하지 못하고, 1 이상이면 해킹 방지 기능을 만족할 수 있는 광섬유라 판단할 수 있음을 실험을 통해 확인하였다.본 발명의 해킹 방지 광섬유의 코팅층(300)에 포함될 수 있는 컬러링층(350)은 안료를 포함하는 물질로 코팅하여 형성될 수 있다. 상기 안료는 청색, 녹색, 백색, 흑색, 황색 및 자색 등의 다양한 색상일 수 있다. 바람직하게는 상기 안료는 흑색일 수 있다. 상기 컬러링층(350)은 안료를 포함하는 물질로 형성되어, 광케이블에서 누설되는 적외선 양을 최소화할 수 있다.
본 발명의 일 실시예에 따른 해킹 방지용 광케이블에 대해 상기 컬러링층의 색상에 따른 적외선 누설량에 대한 실험은 아래 표 3 및 표 4와 같은 결과를 나타내고 있다.
컬러링층 색상
무색 청색 등색 녹색 갈색 회색 백색 흑색 황색 자색
BL OR GR BR GR WH BK YL VL
누설량 -57 -61 -58 -62 -61 -63 -62 -65 -59 -60
차이 -8 -4 -7 -3 -4 -2 -3 0 -6 -5
위 표 3은 1550nm 파장, 내부 클래드 및 외부 클래드 대비 트렌치 영역의 비굴절률차는 -0.41%, 코팅층 두께 130 마이크로 미터이고, 상기 코팅층 내 컬러링층 두께는 10 마이크로 미터의 조건에서 실시한 실험 결과로서, 컬러링층의 색상과 비굴절률차에 따른 적외선 누설량 나타내고 있다. 누설량은 동일한 조건의 여러 개의 광케이블에 대해 실험을 하여 누설량의 평균을 구한 값이며, 차이는 가장 낮은 자외선 누설량을 갖는 흑색의 컬러링층을 갖는 광섬유와의 누설량 평균값의 차이를 나타낸다. 표 3에서 알 수 있듯이 컬러링층을 흑색으로 형성한 경우 적외선 누설량이 가장 낮은 값으로 측정되었으며, 이에 따라 컬러링층을 흑색으로 형성하는 경우 해킹 방지 기능이 가장 우수한 것을 알 수 있다.
컬러링층 색상
무색 청색 등색 녹색 갈색 회색 백색 흑색 황색 자색
BL OR GR BR GR WH BK YL VL
누설량 -60 -62 -67 -65 -69 -65 -63 -73 -63 -62
차이 -13 -11 -6 -8 -4 -8 -10 0 -10 -11
위 표 4는 1310nm 파장, 내부 클래드 및 외부클래드 대비 트렌치 영역의 비굴절률차는 -0.41%, 코팅층 두께 130 마이크로 미터이고, 상기 코팅층 내 컬러링층 두께는 10 마이크로 미터의 조건에서 실시한 실험 결과로서, 컬러링층의 색상과 비굴절률차에 따른 적외선 누설량 나타내고 있다. 누설량은 동일한 조건의 여러 개의 광케이블에 대해 실험을 하여 누설량의 평균을 구한 값이며, 차이는 가장 낮은 자외선 누설량을 갖는 흑색의 컬러링층을 갖는 광섬유와의 누설량 평균값의 차이를 나타낸다. 표 4에서 알 수 있듯이 컬러링층을 흑색으로 형성한 경우 적외선 누설량이 가장 낮은 값으로 측정되었으며, 이에 따라 컬러링층을 흑색으로 형성하는 경우 해킹 방지 기능이 가장 우수한 것을 알 수 있다.
이와 같이 본 발명의 일 실시예에 따른 해킹 방지용 광케이블은 상기 내부 클래드및 외부 클래드 대비 트렌치 영역의 비굴절률차와 상기 코팅층의 두께를 적절히 조합하여 사기 적외선차단지수가 1 이상인 광섬유를 제조하는 경우 상기 광섬유는 해킹 방지 기능을 갖는 것으로 볼 수 있다.
이와 함께 해킹 방지용 광케이블은 컬러링층의 색상을 흑색으로 형성하는 경우 해킹 방지 기능을 갖는 것으로 볼 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 통상의 기술자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (16)

  1. 코어;
    상기 코어를 감싸고 상기 코어보다 상대적으로 낮은 제1 굴절률을 갖는 일반 영역과 상대적으로 상기 제1 굴절률보다 낮은 제2 굴절률을 갖는 트렌치 영역을 포함하는 클래드; 및
    상기 클래드의 표면에 코팅되어 형성된 코팅층;을 포함하고
    아래 수학식 1과 같이 상기 일반 영역의 굴절률(
    Figure PCTKR2021014556-appb-img-000013
    ) 대비 상기 트렌치 영역의 굴절률(
    Figure PCTKR2021014556-appb-img-000014
    )의 상대적 차이를 비굴절률차(RC)라 정의할 경우,
    [수학식 1]
    Figure PCTKR2021014556-appb-img-000015
    아래 수학식 2에서 정의된 적외선 차단지수(IPF)가 1 이상인 것을 특징으로 하는 해킹 방지용 광섬유.
    [수학식 2]
    Figure PCTKR2021014556-appb-img-000016
    상기 수학식 2에서,
    k는 정규화 계수로서 1/6000 이고, cd는 상기 코팅층의 두께[μm]이다.
  2. 제1항에 있어서,
    상기 트렌치 영역은 플루오르(fluorine: F)를 포함하는 것을 특징으로 하는 해킹 방지용 광섬유.
  3. 제1항에 있어서,
    상기 코팅층은 아크릴레이트(acrylate), 폴리이미드(polyimide) 및 카본(carbon) 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 해킹 방지용 광섬유.
  4. 제1항에 있어서,
    상기 코팅층은 색을 통해 상기 광섬유를 식별할 수 있도록 안료를 포함하는 물질로 코팅하여 형성되는 것을 특징으로 하는 해킹 방지용 광섬유.
  5. 제1항에 있어서, 상기 코팅층은,
    상기 클래드 표면에 코팅하여 형성되는 제1 코팅층;
    상기 제1 코팅층 표면에 코팅하여 형성되는 제2 코팅층; 및
    상기 제2 코팅층 표면에 코팅하여 형성되는 컬러링층을 포함하고,
    상기 컬러링층은 흑색인 것을 특징으로 하는 해킹 방지용 광섬유.
  6. 제1항의 해킹 방지용 광섬유; 및
    상기 해킹 방지용 광섬유를 감싸는 자켓;을 포함하는 것을 특징으로 하는 해킹 방지용 광케이블.
  7. 제6항의 해킹 방지용 광케이블; 및
    상기 해킹 방지용 광케이블의 양단에 배치되는 광커넥터를 포함하는 것을 특징으로 하는 해킹 방지용 광 패치코드.
  8. 제7항에 있어서,
    상기 광커넥터는 페룰, 커넥터 바디, 부트부를 포함하는 것을 특징으로 하는 해킹 방지용 광 패치코드.
  9. 제8항에 있어서,
    상기 광커넥터는,
    식별을 위한 발광소자를 포함하는 발광회로; 및
    식별을 위한 전기 신호 수신을 위한 식별 단자를 더 포함하고,
    상기 광케이블은 양단에 구비된 광커넥터 내 발광회로를 전기적으로 연결하는 식별 와이어를 포함하는 것을 특징으로 하는 해킹 방지용 광 패치코드.
  10. 제9항에 있어서,
    상기 발광회로는 상기 부트부에 배치되는 것을 특징으로 하는 해킹 방지용 광 패치코드.
  11. 제10항에 있어서,
    상기 식별 단자는 상기 부트부에 배치되는 것을 특징으로 하는 해킹 방지용 광 패치코드.
  12. 해킹 방지용 광케이블로서
    코어;
    상기 코어를 감싸고 상기 코어보다 상대적으로 낮은 굴절률을 갖는 클래드;
    상기 클래드의 표면에 코팅되어 형성된 두께가 120 μm 내지 375 μm 인 코팅층을 포함하는 광섬유; 및
    상기 해킹 방지용 광섬유를 감싸는 자켓;을 포함하는 것을 특징으로 하는 해킹 방지용 광케이블.
  13. 제12항에 있어서, 상기 클래드는 제1 굴절률을 갖는 내부 클래드와 외부 클래드 및 상기 내부 클래드와 외부 클래드 사이에 배치되며 상기 제1 굴절률보다 작은 제2 굴절률을 갖는 트렌치 영역을 포함하는 것을 특징으로 하는 해킹 방지용 광케이블.
  14. 제13항에 있어서,
    아래 수학식 1과 같이 상기 내부 클래드 및 외부 클래드의 굴절률(
    Figure PCTKR2021014556-appb-img-000017
    ) 대비 상기 트렌치 영역의 굴절률(
    Figure PCTKR2021014556-appb-img-000018
    )의 상대적 차이를 비굴절률차(RC)라 정의할 경우,
    [수학식 1]
    Figure PCTKR2021014556-appb-img-000019
    아래 수학식 2에서 정의된 적외선 차단지수(IPF)가 1 이상인 것을 특징으로 하는 해킹 방지용 광케이블.
    [수학식 2]
    Figure PCTKR2021014556-appb-img-000020
    상기 수학식 2에서,
    k는 정규화 계수로서 1/6000 이고, cd는 상기 코팅층의 두께[μm]이다.
  15. 제13항에 있어서, 상기 코팅층은,
    상기 클래드 표면에 코팅하여 형성되는 제1 코팅층;
    상기 제1 코팅층 표면에 코팅하여 형성되는 제2 코팅층; 및
    상기 제2 코팅층 표면에 코팅하여 형성되는 컬러링층을 포함하고 상기 컬러링층은 흑색인 것을 특징으로 하는 해킹 방지용 광섬유.
  16. 제13항의 해킹 방지용 광케이블; 및
    상기 해킹 방지용 광케이블의 양단에 광커넥터를 각각 구비하고,
    상기 광커넥터는 페룰, 커넥터 바디, 부트부를 포함하고,
    상기 부트부에는 식별을 위한 발광소자를 포함하는 발광회로 및 상기 발광 회로에 인가되는 식별을 위한 전기 신호 수신을 위한 식별 단자가 배치되는 것을 특징으로 하는 해킹 방지용 광 패치코드.
PCT/KR2021/014556 2020-11-10 2021-10-19 해킹 방지용 광섬유, 광케이블 및 광 패치코드 WO2022103003A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200149014A KR20220063332A (ko) 2020-11-10 2020-11-10 해킹 방지용 광섬유, 광케이블 및 광 패치코드
KR10-2020-0149014 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022103003A1 true WO2022103003A1 (ko) 2022-05-19

Family

ID=81601401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014556 WO2022103003A1 (ko) 2020-11-10 2021-10-19 해킹 방지용 광섬유, 광케이블 및 광 패치코드

Country Status (2)

Country Link
KR (1) KR20220063332A (ko)
WO (1) WO2022103003A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317948A (ja) * 2005-05-11 2006-11-24 Furukawa Electric North America Inc 増幅された自然放射光の抑制用光ファイバフィルタ
KR20100101486A (ko) * 2009-03-09 2010-09-17 에쓰이에이치에프코리아 (주) 형광 자외선 경화 잉크 착색 광섬유와 그를 이용한 광섬유 케이블
KR20120093605A (ko) * 2011-02-15 2012-08-23 엘에스전선 주식회사 얇은 코팅경을 갖는 굴곡 강화 광섬유 및 이를 구비한 광케이블
KR20160048088A (ko) * 2013-08-29 2016-05-03 에스이아이 옵티프론티어 가부시키가이샤 커넥터 구비 광섬유 코드, 커넥터 및 급전 장치
US20160341916A1 (en) * 2014-01-17 2016-11-24 Empire Technology Development Llc Optical fibers without cladding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857415B1 (ko) 2017-03-23 2018-05-14 오승현 해킹을 방지하는 적외선 차단코팅 광케이블

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317948A (ja) * 2005-05-11 2006-11-24 Furukawa Electric North America Inc 増幅された自然放射光の抑制用光ファイバフィルタ
KR20100101486A (ko) * 2009-03-09 2010-09-17 에쓰이에이치에프코리아 (주) 형광 자외선 경화 잉크 착색 광섬유와 그를 이용한 광섬유 케이블
KR20120093605A (ko) * 2011-02-15 2012-08-23 엘에스전선 주식회사 얇은 코팅경을 갖는 굴곡 강화 광섬유 및 이를 구비한 광케이블
KR20160048088A (ko) * 2013-08-29 2016-05-03 에스이아이 옵티프론티어 가부시키가이샤 커넥터 구비 광섬유 코드, 커넥터 및 급전 장치
US20160341916A1 (en) * 2014-01-17 2016-11-24 Empire Technology Development Llc Optical fibers without cladding

Also Published As

Publication number Publication date
KR20220063332A (ko) 2022-05-17

Similar Documents

Publication Publication Date Title
US10114176B2 (en) Fiber optic drop cables and preconnectorized assemblies
US7918609B2 (en) Fiber optic drop cables and preconnectorized assemblies
EP1546780B1 (en) Optical polarity modules and systems
US7467896B2 (en) Fiber optic drop cables and preconnectorized assemblies
US6185352B1 (en) Optical fiber ribbon fan-out cables
US7090406B2 (en) Preconnectorized fiber optic drop cables and assemblies
AU2006232206B2 (en) Fiber optic drop cables suitable for outdoor fiber to the subscriber applications
US7090407B2 (en) Preconnectorized fiber optic drop cables and assemblies for efficient deployment
WO2006108031A1 (en) Protective casings for optical fibers
EP0879804B1 (en) Improved black appearing color coating for optical fiber
WO2003007043A1 (en) Optical fiber cable for use in a dispersion managed cable system
WO2022103003A1 (ko) 해킹 방지용 광섬유, 광케이블 및 광 패치코드
US5898811A (en) Multi-fiber optical cable
Oda et al. Loss performance of field-deployed high-density 1152-channel link constructed with 4-core multicore fiber cable
KR20230147818A (ko) 해킹 방지용 광섬유, 광케이블 및 광 패치코드
KR102638027B1 (ko) 해킹방지용 광케이블
CN208060793U (zh) 一种便于携带的1×100g mpo转2×40g mpo万兆光纤跳线
CN215678869U (zh) 一种新型光纤跳纤
WO2024049102A1 (ko) 광통신 렌즈 성능 평가용 치구 및 이를 이용한 렌즈의 성능 평가 방법
Ostlund Survey of fiber optic connectors and cables
WO2019013455A1 (ko) Sfp형 광섬유 고장점 탐지장치
Tricker Optical Fibres in

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892173

Country of ref document: EP

Kind code of ref document: A1