WO2022102884A1 - Deionization device - Google Patents

Deionization device Download PDF

Info

Publication number
WO2022102884A1
WO2022102884A1 PCT/KR2021/005197 KR2021005197W WO2022102884A1 WO 2022102884 A1 WO2022102884 A1 WO 2022102884A1 KR 2021005197 W KR2021005197 W KR 2021005197W WO 2022102884 A1 WO2022102884 A1 WO 2022102884A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
exchange membrane
flow path
disposed
ion exchange
Prior art date
Application number
PCT/KR2021/005197
Other languages
French (fr)
Korean (ko)
Inventor
김춘수
김나영
이윤호
전성범
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2022102884A1 publication Critical patent/WO2022102884A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a desalting device, and more particularly, to a desalting device having an improved desalting capacity.
  • the technology to remove ionic substances mainly uses the evaporation method, the reverse osmosis membrane method, and the ion exchange resin method.
  • the evaporation method and the reverse osmosis membrane method have operating costs and operational problems due to high energy consumption,
  • the exchange resin method has the disadvantage of creating secondary pollutants because it uses an excessive amount of acid (Acid) or salt (NaCl) during regeneration.
  • CDI Capacitive Deionization
  • CDI technology an electro-adsorption type ion removal technology, consumes less energy than other methods, and unlike the existing ion removal technology, it does not require cleaning with chemicals, so it is an environmentally friendly new ion removal technology that does not cause secondary pollution. Due to the advantage of simplicity, research is being actively conducted as a next-generation dissolved ion removal technology.
  • CDI is a technology that reversibly removes ions from raw water using electrochemical adsorption/desorption. This process removes ions in the raw water by storing the ions in a double layer on the electrode surface when an electric potential is applied.
  • the capacitive desalination process inevitably wastes some of the charge required for ion adsorption. This is because, when the electric double layer is formed, power is consumed to repel the charged ions (ions having the same potential as the electrode potential) existing on the electrode surface.
  • MCDI membrane capacitive deionization
  • Ion-selective membranes located in front of both electrodes saved the charge consumed by the same charge ions.
  • the MCDI system has been actively developed such as low-concentration operation, constant current operation, and energy recovery.
  • the material of the ion exchange membrane was developed.
  • NaSS-MAA-MMA copolymer was applied as a cation exchange membrane and 4-vinylbenzylchloride/styrene/ethylmethacrylate was applied as an anion exchange membrane.
  • cross-linked quaternised polyvinyl alcohol was suggested as AEM, and the desalting capacity was improved by about 2 times.
  • studies showing performance improvement through the application of an ion exchange material for coating to the electrode have also been reported.
  • Patent Document 1 Republic of Korea Patent No. 1237258
  • Patent Document 2 Republic of Korea Patent No. 1410642
  • Patent Document 3 Republic of Korea Patent Publication No. 2012-0058228
  • an object of the present invention is to provide a desalting apparatus capable of improving the desalting capacity in a capacitive desalting process.
  • the present invention provides a treatment water flow path that provides a path through which seawater, salt water or wastewater is introduced and the treated water is discharged; an ion adsorption unit disposed on the other side of the treated water flow path and including an ion adsorbent; a first ion exchange membrane disposed on one side of the treated water passage; a second ion exchange membrane disposed between the treated water passage and the ion adsorption unit; a third ion exchange membrane disposed on the other side of the ion adsorption unit and allowing ions having the same charge as the ions passed through the first ion exchange membrane to pass therethrough; a first flow path disposed on one side of the first ion exchange membrane; a second flow path disposed on the other side of the third ion exchange membrane; a pair of electrodes respectively disposed in the first flow path and the second flow path; and an electrolyte solution flowing in the first flow path and the second flow path, and including a re
  • the first ion exchange membrane and the third ion exchange membrane may be an anion exchange membrane, and the second exchange membrane may be a cation exchange membrane.
  • the ion adsorbent may selectively adsorb cations.
  • Anions may be introduced from the seawater, salt water or wastewater in the first flow path, and anions may be discharged to the ion adsorption unit in the second flow path.
  • Anions may be introduced from the seawater, salt water or wastewater in the first flow path, and anions may be discharged to the ion adsorption unit in the second flow path.
  • the ion adsorbent may selectively adsorb cations.
  • the desalination apparatus includes a redox reaction material in the electrolytic solution flowing to the electrode, thereby improving the desalting capacity in the capacitive desalting process.
  • FIG. 1 is an exemplary view schematically showing a desalination apparatus according to an embodiment of the present invention
  • FIG. 2 is an exemplary view schematically showing a desalination apparatus according to another embodiment of the present invention
  • FIG. 3 is a graph showing changes in conductivity and pH of treated water during a desalting process through a desalting device according to an embodiment of the present invention
  • 4 and 5 are graphs showing the change in adsorption concentration according to the adsorbent during the regeneration process through the desalting device according to an embodiment of the present invention.
  • FIG. 1 is an exemplary diagram schematically illustrating a desalting apparatus according to an embodiment of the present invention.
  • the present invention is characterized in that the redox reaction material is included in the electrolytic solution flowing to the electrode in the desalting device.
  • the desalination apparatus 100 includes a treated water flow path 11 that continuously provides a path through which seawater, salt water or wastewater is introduced and treated treated water is discharged, and the treatment
  • the ion adsorption unit 40 disposed on the other side of the water channel 11 and including the ion adsorbent 41 , the first ion exchange membrane 21 disposed on one side of the treated water channel 11 , and the treated water channel 11 .
  • the treated water flow path 11 may provide a path through which seawater, salt water, or wastewater may be introduced and the treated treated water 10 may be discharged.
  • the seawater, brine or wastewater may include desalting cations and anions.
  • the first ion exchange membrane 21 is disposed on one side of the treated water flow path 11 and the second ion exchange membrane 22 is disposed on the other side, so that cations and anions in seawater, brine or wastewater can be exchanged.
  • the third ion exchange membrane 23 is disposed on the other side of the ion adsorption unit 40 , so that cations or anions in the electrolyte 30 may permeate toward the ion adsorption unit 40 .
  • the first ion exchange membrane 21 and the third ion exchange membrane 23 may exhibit selective permeability to ions of the same charge
  • the second ion exchange membrane 22 is the first ion exchange membrane 21 and the third ion It is possible to exhibit selective permeability to ions having a different charge from that of the exchange membrane 23 .
  • the first ion exchange membrane 21 and the third ion exchange membrane 23 are composed of an anion exchange membrane to exhibit selective permeability to anions
  • a second ion exchange membrane ( 22) is composed of a cation exchange membrane and can exhibit selective permeability to cations.
  • FIG. 2 is an exemplary view schematically showing a desalination apparatus according to another embodiment of the present invention.
  • the first ion exchange membrane 221 and the third ion exchange membrane 223 are composed of a cation exchange membrane to exhibit selective permeability to cations.
  • the second ion exchange membrane 222 may be configured as an anion exchange membrane to exhibit selective permeability to anions.
  • any of the ion exchange membranes 21 and 22 and the electrodes 51 and 52 that have been used in conventional capacitive electrodes can be used, and a person of ordinary skill in the art It can be appropriately selected and used according to the purpose and conditions of its use.
  • the first ion exchange membrane 21 and the second ion exchange membrane 22 are micropore insulating membranes, and may be ion exchange (conductive) membranes.
  • the first ion exchange membrane 21 and the second ion exchange membrane 22 are installed for electrophysical separation.
  • the micropore insulating separator is capable of only ion movement, and the ion exchange (conductive) membrane is a cation or Only anions can be selectively moved.
  • the electrodes 51 and 52 may include a first electrode 51 disposed adjacent to the first ion exchange membrane 21 and a second electrode 52 disposed adjacent to the second ion exchange membrane 22 .
  • a porous carbon electrode having a large specific surface area may be used in the present invention.
  • the first electrode 51 is disposed in the first flow path 31 disposed on one side of the first ion exchange membrane 21
  • the second electrode 52 is a second electrode disposed on the other side of the third ion exchange membrane 23 . It may be disposed in the flow path 32 .
  • the first electrode 51 may be disposed to be spaced apart from the first ion exchange membrane 21
  • the second electrode 52 may be disposed to be spaced apart from the third ion exchange membrane 23 .
  • the positive electrode active material may be coated on the first electrode 51
  • the negative electrode active material may be coated on the second electrode 52 .
  • first flow path 31 and the second flow path 32 communicate with each other, and the electrolyte 30 introduced into the first flow path 31 is desalted through the first ion exchange membrane 21 after performing a desalting process. , may be discharged toward the second flow path 32 .
  • upper ends of the first passage 31 and the second passage 32 may communicate through a tube or the like.
  • the electrolyte 30 introduced into the second flow path 32 may be discharged to the first flow path 31 after performing a regeneration process through the third ion exchange membrane 23 .
  • the lower ends of the first passage 31 and the second passage 32 may communicate through a tube or the like, and the flow of the electrolyte 30 may be controlled through a storage container disposed in the middle.
  • the electrolyte 30 may include a redox reaction material.
  • the redox material of the electrolyte solution 30 may include a ferrocyanide compound.
  • the redox material of the electrolyte 30 may be selected as Na 4 Fe(CN) 6 .
  • the redox reaction material of the electrolyte 30 may be subjected to a redox reaction as shown in the following [reaction formula].
  • the first ion exchange membrane 21 may selectively permeate cations, and the second ion exchange membrane 22 may selectively permeate anions.
  • the electrode 51 and the second electrode 52 when the generated potential difference supplied from the outside, for example, a potential difference in the range of 0.5 to 2.0v is applied to the first electrode 51 and the second electrode 52 , the electrode is charged with a certain amount of charge.
  • the negative ions moving to the first electrode 51 side are adsorbed on the surface of the first electrode 51
  • the positive ions moving to the second electrode 52 side are absorbed into the ion adsorption unit 40 . It may be introduced and adsorbed by the ion adsorbent 41 .
  • the electrolyte 30 flows in the first passage 31 and the second passage 32 in which the electrodes 51 and 52 are disposed, and the redox reaction material of the electrolyte 30 is a voltage applied to the electrodes. Due to this, a redox reaction is performed, and at this time, anions are introduced into the electrolyte 30 through the first ion exchange membrane 21 to balance the charge of the electrolyte, and cations are adsorbed through the second ion exchange membrane 22 . It flows into the part 40 to increase the desalination performance of the treated water flow path 11 .
  • the redox material in the first flow path 31 may perform an oxidation reaction due to the + voltage applied to the first electrode 51 , and the redox reaction material in the ion adsorption unit 40 is the second electrode A reduction reaction can be carried out due to the -voltage applied to (52).
  • cations may be introduced into the ion adsorption unit 40 through the second ion exchange membrane 22 to balance charges.
  • the desalination apparatus can simultaneously utilize the ion treatment mechanism according to the capacitance of the electrode and the ion treatment mechanism according to the electron transfer reaction through the redox couple, so that the desalination performance can improve
  • the anions of the second flow path 31 may be introduced into the ion adsorption unit 40 through the third ion exchange membrane 23 to balance charges. .
  • the electrolyte 30 of the second flow path 31 may be regenerated in a state in which negative ions are discharged. That is, without performing a separate regeneration process, the electrolyte 30 can discharge the absorbed negative ions, so the electrolyte 30 can be recycled and the desalination process can be performed in a continuous process, and the electrodes 51 and 52 . It is possible to prevent the adsorption of more ions than necessary.
  • the ion adsorbent 40 may be composed of a plurality of ion adsorbents 41 dispersed in an aqueous ion medium.
  • the ion adsorbent 41 may adsorb cations flowing in from the treated water 10 of the treated water flow path 11 .
  • the ion adsorbent 41 is formed of a highly selective adsorbent capable of adsorbing only specific metal ions.
  • the ion adsorbent 41 is Glutaraldehyde crosslinked chitosan bead or Mesoporous silica- 48-crosslinked with tannic acid
  • the ion to be adsorbed is silver ion
  • the ion adsorbent 41 may be composed of graphitic carbon nitride
  • the ion to be adsorbed is lithium ion
  • the ion adsorbent 41 may be composed of lithium manganese oxide.
  • the ion adsorbent 41 may be implemented in various embodiments, and the present invention is not limited thereto.
  • the ions adsorbed by the ion adsorbent 41 may be separated, and a required component may be easily recovered through this. That is, noble metals, etc. present in the wastewater 10 can be easily recovered.
  • the ion adsorption unit 40 may be disposed between the treated water flow path 11 and the second flow path 32 in the form of accommodating the ion medium and the ion adsorbent 41 in a container having an internal space.
  • the medium containing the ion adsorbent 41 may constitute an ion adsorption flow path having a flow.
  • FIGS. 4 and 5 are regeneration through a desalting device according to an embodiment of the present invention It is a graph showing the change in adsorption concentration according to the adsorbent during the process.
  • the desalination device is configured, and the conductivity and pH of the treated water are measured by varying the voltage applied to the electrode, and the change is shown in a graph as shown in FIG. 3 .
  • FIG. 2 is for measuring the change in pH due to H + and OH ⁇ , and is a graph showing the measurement of the pH of the treated water.
  • pH is an indicator that can confirm the adsorption/desorption reaction of ions in the solution or the oxidation/reduction reaction by a certain chemical species in the cell when an electrical force is applied to the electrode.
  • the range of change with respect to the pH which had a fairly high efficiency, was not large.
  • the range of change in pH is about ⁇ 0.1, confirming that the force applied to the electrode is more favorable to the adsorption/desorption reaction of ions.
  • the treated water is continuously desalted as the conductivity change graph continuously points to the - index.
  • the amount of ions that can be removed increases as the voltage applied to the system increases. That is, the desalting performance can be maintained even when the desalting process is continuously performed in the desalting apparatus according to an embodiment of the present invention.
  • lithium ions and sodium ions are efficiently concentrated over time.
  • lithium it was found that it was concentrated to 37 mM, and in the case of sodium, it was possible to be concentrated up to 51 mM higher than this.
  • the concentrated ions can easily concentrate the ion component required by changing the type of the ion adsorbent used, and can be post-processed to recover the selective ion component for each adsorbent.

Abstract

The present invention provides a deionization device comprising: a treated water flow path for providing a path through which seawater, saline water or wastewater enters, and treated water which has been treated is discharged; an ion adsorption part disposed on one side of the treated water flow path, and comprising an ion adsorbent; a first ion-exchange membrane disposed on the other side of the treated water flow path; a second ion-exchange membrane disposed between the treated water flow path and the ion adsorption part; a third ion-exchange membrane disposed on one side of the ion adsorption part, and enabling the passing through of ions having the same electric charge as ions which have passed through the first ion-exchange membrane; a first flow path disposed on one side of the first ion-exchange membrane; a second flow path disposed on one side of the third ion-exchange membrane; a pair of electrodes disposed in the first flow path and the second flow path, respectively; and an electrolyte flowing in the first flow path and the second flow path, and comprising a redox reaction material.

Description

탈염 장치desalination device
본 발명은 탈염 장치에 관한 것으로 보다 상세하게는 탈염 용량이 향상된 탈염 장치에 관한 것이다.The present invention relates to a desalting device, and more particularly, to a desalting device having an improved desalting capacity.
세계는 현재 지구 온난화에 의한 가뭄 현상 심화, 지하수 고갈, 사막화 진행과, 인구 증가, 산업화에 의한 생활 및 산업 용수 사용 증가로 인하여 물의 자원으로서의 가치가 증대되고 있어, 해수의 담수화나 생활 및 산업 폐수의 재활용화 등이 새로운 이슈로 등장하고 있다. 또한 산업용 초순수의 제조에 대한 관심이 높아지고, 생활면에서는 먹고, 씻을 맑은 물의 수요가 증가함에 따라 고효율의 이온 제거 장치의 개발에 대한 연구가 활발히 진행되고 있다.In the world, the value of water as a resource is increasing due to the deepening of drought caused by global warming, the depletion of groundwater, the progress of desertification, and the increase in the use of living and industrial water due to population growth and industrialization. Recycling is emerging as a new issue. In addition, as interest in the manufacture of industrial ultrapure water increases, and the demand for clean water to eat and wash in daily life increases, research on the development of high-efficiency ion removal devices is being actively conducted.
또한, 경수(hard water)를 공업용수 및 생활용수로 사용할 경우 세제가 잘 풀리지 않을 뿐만 아니라 이가 양이온(Ca2+, Mg2+ 등)에 의한 스케일의 형성으로 공업적, 위생적 문제를 야기한다. 따라서 경수의 사용으로 인한 피해를 줄이기 위해서는 연수화 공정이 필수적이며, 이에 대한 기술력 개발이 활발히 진행되고 있다. 또한, 수중에 존재하는 방사성 Cs+ 이온의 제거 및 Li+ 이온 등의 회수는 환경 및 공업 분양에서 중요하게 인식되고 있다.In addition, when hard water is used as industrial water and household water, the detergent does not dissolve well, but also causes industrial and sanitary problems due to the formation of scale by divalent cations (Ca2+, Mg2+, etc.). Therefore, in order to reduce the damage caused by the use of hard water, the softening process is essential, and technological development for this is actively underway. In addition, removal of radioactive Cs+ ions present in water and recovery of Li+ ions are recognized as important in the environment and industrial distribution.
현재 이온 물질을 제거하는 기술은 주로 증발법, 역삼투막법 및 이온교환수지법을 이용하고 있으며, 증발법과 역삼투막법은 높은 에너지 소비에 따른 운전비용 및 운전상의 문제점 등을 가지고 있고 가장 폭 넓게 사용하는 이온교환수지법은 재생할 때 산(Acid)이나 소금(NaCl)을 과량 사용하므로 2차 오염물질을 만드는 단점을 가지고 있다.Currently, the technology to remove ionic substances mainly uses the evaporation method, the reverse osmosis membrane method, and the ion exchange resin method. The evaporation method and the reverse osmosis membrane method have operating costs and operational problems due to high energy consumption, The exchange resin method has the disadvantage of creating secondary pollutants because it uses an excessive amount of acid (Acid) or salt (NaCl) during regeneration.
기존의 용존 이온 제거기술들이 가진 단점들을 보완하고 저 에너지 소비형의 새로운 이온 제거 기술을 개발하고자 세계 여러 나라에서 연구들이 진행중이며, 이러한 이온 제거기술에는 미국 LLNL, Sabrex of Texas 등에서 개발 중에 있는 전기 축전식 탈염(CDI ; Capacitive Deionization) 기술이 있다.Research is underway in many countries around the world to compensate for the shortcomings of the existing dissolved ion removal technologies and to develop a new low energy consumption type ion removal technology. There is a Capacitive Deionization (CDI) technology.
전기 흡착식 이온 제거 기술인 CDI기술은 다른 방법들에 비해 에너지 소비량이 적으며 기존의 이온 제거 기술에서와 달리 화학약품에 의한 세정이 필요 없어 2차 오염이 없는 환경 친화적인 새로운 이온 제거 기술이며 유지보수가 간편하다는 장점이 있어 차세대 용존 이온 제거 기술로 연구가 활발히 진행되고 있다.CDI technology, an electro-adsorption type ion removal technology, consumes less energy than other methods, and unlike the existing ion removal technology, it does not require cleaning with chemicals, so it is an environmentally friendly new ion removal technology that does not cause secondary pollution. Due to the advantage of simplicity, research is being actively conducted as a next-generation dissolved ion removal technology.
최초의 CDI 공정 연구는 1960년대 미국 오클라호마대학 연구진이 다공성 활성탄 전극을 사용하여 해수의 담수화 연구를 하였고 이후 Johnson 등은 활성탄소를 이용하여 CDI 실험을 수행한 바 있다. 그러나 핵심 요소인 전극의 성능저하로 인하여 지속적인 공정의 어려움으로 개발하지 못하였으나 미국의 LLNL(Lawrence Livermore National Laboratory)에서 90년대 중반에 탄소에어로젤 전극을 이용한 CDI 공정을 개발하는 등의 연구가 진행되었고 그 밖에 활성 탄소 섬유, 탄소나노튜브 등을 전극 활물질로 사용한 CDI 공정 개발에 대한 연구도 진행된 바 있다.The first CDI process research was conducted in the 1960s by researchers at the University of Oklahoma in the US using a porous activated carbon electrode to study seawater desalination. However, the development was not possible due to the continuous process difficulties due to the deterioration of the electrode, which is a key factor, but research was conducted at LLNL (Lawrence Livermore National Laboratory) in the United States in the mid-1990s, such as developing a CDI process using carbon airgel electrodes. In addition, research on the development of a CDI process using activated carbon fibers and carbon nanotubes as electrode active materials has been conducted.
CDI는 전기화학적 흡/탈착을 이용해 원수의 이온을 가역적으로 제거하는 기술이다. 본 공정은 전위가 인가될 때, 전극 표면의 이중 층 내에 이온을 저장시킴으로써, 원수 내 이온을 제거한다. 그러나 축전식 탈염 공정은 필연적으로 이온 흡착에 필요한 전하의 일부가 낭비된다. 왜냐하면, 전기 이중층이 형성될 때 전극 표면에 존재했던 동전하 이온들 (전극의 전위와 같은 전위를 띄는 이온)을 밀어 내는데 전력을 소모하기 때문이다. 이러한 한계를 극복하기 위해, Membrane capacitive deionization (MCDI) 시스템이 등장했다. MCDI는 이온교환막을 적용함으로써 '동전하 이온반발'을 완화시켜, 탈염 성능과 전하 효율을 비약적으로 향상시켰다.CDI is a technology that reversibly removes ions from raw water using electrochemical adsorption/desorption. This process removes ions in the raw water by storing the ions in a double layer on the electrode surface when an electric potential is applied. However, the capacitive desalination process inevitably wastes some of the charge required for ion adsorption. This is because, when the electric double layer is formed, power is consumed to repel the charged ions (ions having the same potential as the electrode potential) existing on the electrode surface. To overcome these limitations, membrane capacitive deionization (MCDI) systems have emerged. MCDI relieves 'coin charge ion repulsion' by applying an ion exchange membrane, and dramatically improves the desalination performance and charge efficiency.
양쪽 전극 앞에 위치한 이온 선택성 막들은 (cation exchange membrane on cathode and anion exchange membrane on anode) 동전하 이온에 소모되는 전하를 절약시켰다. MCDI 시스템은 저농도 운전, 정전류 운전과 에너지 회수 등 활발하게 개발되어 왔다.Ion-selective membranes located in front of both electrodes (cation exchange membrane on cathode and anion exchange membrane on anode) saved the charge consumed by the same charge ions. The MCDI system has been actively developed such as low-concentration operation, constant current operation, and energy recovery.
MCDI에 적용되는 이온교환 물질의 개발은 두 가지 방향으로 진행되었다.The development of ion exchange materials applied to MCDI proceeded in two directions.
첫째로, 이온 교환막의 재료가 개발되었다. 이러한 이온 교환막 개발의 예로는 NaSS-MAA-MMA copolymer 를 양이온 교환막으로, 4-vinylbenzylchloride/ styrene/ ethylmethacrylate를 음이온 교환막으로 적용하였다. 또한, Cross-linked quaternised polyvinyl alcohol을 AEM으로 제안하여 약 2배의 탈염 용량 향상을 보였다. 이온교환막 외에, 전극에 코팅용 이온 교환 물질 적용을 통해 성능 향상을 보인 연구들도 보고되어 왔다.First, the material of the ion exchange membrane was developed. As an example of such an ion exchange membrane development, NaSS-MAA-MMA copolymer was applied as a cation exchange membrane and 4-vinylbenzylchloride/styrene/ethylmethacrylate was applied as an anion exchange membrane. In addition, cross-linked quaternised polyvinyl alcohol was suggested as AEM, and the desalting capacity was improved by about 2 times. In addition to the ion exchange membrane, studies showing performance improvement through the application of an ion exchange material for coating to the electrode have also been reported.
둘째로, 이온 교환 물질을 전극에 코팅하는 방향으로 개발되었다. 이러한 이온 교환 물질을 전극에 코팅하는 방법의 개발예로는 양이온 교환 수지로써, Polyvinyl alcohol/sulfosuccinic acid 을 음전극에 입혀 탈염 성능을 비약적으로 향상시켰다. 또한, 황산, 아민처리가 이루어진 bromomethylated poly(2,6-dimethyl-1,4-phenyleneoxide) (BPPO) 를 양/음 전극에 분사함으로써 이온교환 물질 코팅을 간편하게 성공시켰다. Nie 등은 electrodeposition 법으로 전극에 양이온 교환 수지로써 polyacrylic acid 를 직접 전극에 코팅하여 좋은 regenerationability(30 cycle)를 달성하였다.Second, it was developed in the direction of coating the electrode with an ion exchange material. As a development example of a method for coating such an ion exchange material on an electrode, as a cation exchange resin, polyvinyl alcohol/sulfosuccinic acid was coated on the negative electrode to dramatically improve the desalination performance. In addition, by spraying bromomethylated poly(2,6-dimethyl-1,4-phenyleneoxide) (BPPO) treated with sulfuric acid and amine on the positive/negative electrodes, the coating of the ion exchange material was simply successful. Nie et al. achieved good regenerationability (30 cycles) by directly coating the electrode with polyacrylic acid as a cation exchange resin using the electrodeposition method.
이처럼 탄소 전극을 이용할 경우 넓은 표면적을 가지고 있어, 수용액 상에서 상대적으로 안정적인 용량 특성에서 우수한 장점이 있기는 하나, 탄소자체의 저항이 적지 않으며, 표면 특성이 소수성이므로 물과 친하지 않다는 단점이 있으며, 탈염되는 속도면에서도 다소 느린 경향이 있다.As such, when using a carbon electrode, it has a large surface area and has an excellent advantage in relatively stable capacity characteristics in aqueous solution, but there is a disadvantage in that the resistance of carbon itself is not small, and the surface characteristic is hydrophobic, so it is not friendly with water. It also tends to be a bit slow in terms of speed.
따라서, 탈염이 효율적으로 이루어지면서도 우수한 속도 특성을 갖는 탈염 공정의 개발이 요구되었다.Therefore, the development of a desalting process having excellent speed characteristics while efficiently desalting has been required.
<선행기술문헌><Prior art literature>
특허문헌 1: 대한민국등록특허 제1237258호Patent Document 1: Republic of Korea Patent No. 1237258
특허문헌 2: 대한민국등록특허 제1410642호Patent Document 2: Republic of Korea Patent No. 1410642
특허문헌 3: 대한민국공개특허 제2012-0058228호Patent Document 3: Republic of Korea Patent Publication No. 2012-0058228
상기 문제점을 해결하기 위해 본 발명의 목적은 축전식 탈염 공정에서 탈염 용량을 향상시킬 수 있는 탈염 장치를 제공하는 데 있다.In order to solve the above problems, an object of the present invention is to provide a desalting apparatus capable of improving the desalting capacity in a capacitive desalting process.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly to those of ordinary skill in the art to which the present invention belongs from the description below. can be understood
상기 목적을 달성하기 위해 본 발명은 해수, 염수 또는 폐수가 유입되고, 처리된 처리수가 배출되는 경로를 제공하는 처리수 유로; 상기 처리수 유로의 타측에 배치되며, 이온 흡착제를 포함하는 이온 흡착부; 상기 처리수 유로의 일측에 배치된 제1이온 교환막; 상기 처리수 유로와 상기 이온 흡착부 사이에 배치된 제2이온 교환막; 상기 이온 흡착부의 타측에 배치되며, 상기 제1이온 교환막이 통과시킨 이온과 동일 전하를 갖는 이온을 통과시키는 제3이온 교환막; 상기 제1이온 교환막 일측에 배치된 제1유로; 상기 제3이온 교환막 타측에 배치된 제2유로; 상기 제1유로 및 상기 제2유로 내에 각각 배치된 한 쌍의 전극; 및 상기 제1유로 및 상기 제2유로 내에서 유동하며, 산화환원 반응 물질을 포함하는 전해액; 을 포함할 수 있다.In order to achieve the above object, the present invention provides a treatment water flow path that provides a path through which seawater, salt water or wastewater is introduced and the treated water is discharged; an ion adsorption unit disposed on the other side of the treated water flow path and including an ion adsorbent; a first ion exchange membrane disposed on one side of the treated water passage; a second ion exchange membrane disposed between the treated water passage and the ion adsorption unit; a third ion exchange membrane disposed on the other side of the ion adsorption unit and allowing ions having the same charge as the ions passed through the first ion exchange membrane to pass therethrough; a first flow path disposed on one side of the first ion exchange membrane; a second flow path disposed on the other side of the third ion exchange membrane; a pair of electrodes respectively disposed in the first flow path and the second flow path; and an electrolyte solution flowing in the first flow path and the second flow path, and including a redox reaction material; may include
상기 제1이온 교환막 및 상기 제3이온 교환막은 음이온 교환막이고, 상기 제2교환막은 양이온 교환막일 수 있다.The first ion exchange membrane and the third ion exchange membrane may be an anion exchange membrane, and the second exchange membrane may be a cation exchange membrane.
상기 이온 흡착제는 양이온을 선택적으로 흡착할 수 있다.The ion adsorbent may selectively adsorb cations.
상기 제1유로에서는 상기 해수, 염수 또는 폐수에서 음이온이 유입되고, 상기 제2유로에서는 상기 이온 흡착부로 음이온을 배출할 수 있다.Anions may be introduced from the seawater, salt water or wastewater in the first flow path, and anions may be discharged to the ion adsorption unit in the second flow path.
상기 제1유로에서는 상기 해수, 염수 또는 폐수에서 음이온이 유입되고, 상기 제2유로에서는 상기 이온 흡착부로 음이온을 배출할 수 있다.Anions may be introduced from the seawater, salt water or wastewater in the first flow path, and anions may be discharged to the ion adsorption unit in the second flow path.
상기 이온 흡착제는 양이온을 선택적으로 흡착할 수 있다.The ion adsorbent may selectively adsorb cations.
본 발명에 따른 탈염 장치는 전극 측에 흐르는 전해 용액에 산화 환원 반응 물질을 포함시켜, 축전식 탈염 공정에서 탈염 용량을 향상시킬 수 있다.The desalination apparatus according to the present invention includes a redox reaction material in the electrolytic solution flowing to the electrode, thereby improving the desalting capacity in the capacitive desalting process.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. will be able
도 1은 본 발명의 일 실시예에 따른 탈염 장치를 개략적으로 도시한 예시도이고,1 is an exemplary view schematically showing a desalination apparatus according to an embodiment of the present invention,
도 2는 본 발명의 다른 실시예에 따른 탈염 장치를 개략적으로 도시한 예시도이고,2 is an exemplary view schematically showing a desalination apparatus according to another embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 탈염 장치를 통한 탈염 공정 중 처리수의 전도도 및 pH의 변화를 나타낸 그래프이고,3 is a graph showing changes in conductivity and pH of treated water during a desalting process through a desalting device according to an embodiment of the present invention;
도 4 및 도 5는 본 발명의 일 실시예에 따른 탈염 장치를 통한 재생 공정 중 흡착제에 따른 흡착 농도 변화를 나타낸 그래프이다.4 and 5 are graphs showing the change in adsorption concentration according to the adsorbent during the regeneration process through the desalting device according to an embodiment of the present invention.
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts are denoted by the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted so as not to obscure the gist of the present invention.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms "about," "substantially," and the like are used in a sense at or close to the numerical value when the manufacturing and material tolerances inherent in the stated meaning are presented, and serve to enhance the understanding of the present invention. To help, precise or absolute figures are used to prevent unfair use by unconscionable infringers of the stated disclosure.
도 1은 본 발명의 일 실시예에 따른 탈염 장치를 개략적으로 도시한 예시도이다.1 is an exemplary diagram schematically illustrating a desalting apparatus according to an embodiment of the present invention.
본 발명은 탈염 장치에서 전극 측에 흐르는 전해 용액에 산화 환원 반응 물질을 포함시킨 것을 특징으로 한다.The present invention is characterized in that the redox reaction material is included in the electrolytic solution flowing to the electrode in the desalting device.
도 1을 참조하면, 본 발명의 일 실시예에 따른 탈염 장치(100)는 해수, 염수 또는 폐수가 유입되고, 처리된 처리수가 배출되는 경로를 연속적으로 제공하는 처리수 유로(11), 상기 처리수 유로(11)의 타측에 배치되며, 이온 흡착제(41)를 포함하는 이온 흡착부(40), 처리수 유로(11)의 일측에 배치된 제1이온 교환막(21), 처리수 유로(11)와 이온 흡착부(40) 사이에 배치된 제2이온 교환막(22), 이온 흡착부(40)의 타측에 배치되며, 제1이온 교환막(21)이 통과시킨 이온과 동일 전하를 갖는 이온을 통과시키는 제3이온 교환막(23), 제1이온 교환막(21) 일측에 배치된 제1유로(31), 제3이온 교환막(23) 타측에 배치된 제2유로(32), 제1유로(31) 및 제2유로(32) 내에 각각 배치된 한 쌍의 전극(51, 52) 및 제1유로(31) 및 제2유로(32) 내에서 유동하며, 산화환원 반응 물질을 포함하는 전해액(30) 을 포함한다.Referring to FIG. 1 , the desalination apparatus 100 according to an embodiment of the present invention includes a treated water flow path 11 that continuously provides a path through which seawater, salt water or wastewater is introduced and treated treated water is discharged, and the treatment The ion adsorption unit 40 disposed on the other side of the water channel 11 and including the ion adsorbent 41 , the first ion exchange membrane 21 disposed on one side of the treated water channel 11 , and the treated water channel 11 . ) and the second ion exchange membrane 22 disposed between the ion adsorption unit 40, disposed on the other side of the ion adsorption unit 40, ions having the same charge as the ions passed by the first ion exchange membrane 21 A third ion exchange membrane 23, a first flow path 31 disposed on one side of the first ion exchange membrane 21, a second flow path 32 disposed on the other side of the third ion exchange membrane 23, a first flow path ( 31) and a pair of electrodes 51 and 52 disposed in the second flow path 32, respectively, and an electrolyte solution flowing in the first flow path 31 and the second flow path 32 and including a redox reaction material ( 30) is included.
처리수 유로(11)는 해수, 염수 또는 폐수가 유입될 수 있으며 처리된 처리수(10)를 배출하는 경로를 제공할 수 있다.The treated water flow path 11 may provide a path through which seawater, salt water, or wastewater may be introduced and the treated treated water 10 may be discharged.
여기서, 상기 해수, 염수 또는 폐수는 탈염이 가능한 양이온과 음이온을 포함할 수 있다.Here, the seawater, brine or wastewater may include desalting cations and anions.
처리수 유로(11)의 일측에는 제1이온 교환막(21)이 배치되고, 타측에는 제2이온 교환막(22)이 배치되어, 해수, 염수 또는 폐수 내의 양이온과 음이온이 교환될 수 있다. 또한, 이온 흡착부(40)의 타측에는 제3이온 교환막(23)이 배치되어, 전해질(30)내의 양이온 또는 음이온이 이온 흡착부(40) 측으로 투과될 수 있다.The first ion exchange membrane 21 is disposed on one side of the treated water flow path 11 and the second ion exchange membrane 22 is disposed on the other side, so that cations and anions in seawater, brine or wastewater can be exchanged. In addition, the third ion exchange membrane 23 is disposed on the other side of the ion adsorption unit 40 , so that cations or anions in the electrolyte 30 may permeate toward the ion adsorption unit 40 .
여기서, 제1이온 교환막(21)과 제3이온 교환막(23)은 동일 전하의 이온에 대해 선택 투과성을 나타낼 수 있고, 제2이온 교환막(22)는 제1이온 교환막(21)과 제3이온 교환막(23)과 상이한 전하의 이온에 대해 선택 투과성을 나타낼 수 있다.Here, the first ion exchange membrane 21 and the third ion exchange membrane 23 may exhibit selective permeability to ions of the same charge, and the second ion exchange membrane 22 is the first ion exchange membrane 21 and the third ion It is possible to exhibit selective permeability to ions having a different charge from that of the exchange membrane 23 .
한편, 본 발명의 일 실시예에 따른 탈염 장치(100)에서는 제1이온 교환막(21) 및 제3이온 교환막(23)은 음이온 교환막으로 구성되어 음이온에 대해 선택 투과성을 나타내고, 제2이온 교환막(22)은 양이온 교환막으로 구성되어 양이온에 대해 선택 투과성을 나타낼 수 있다.On the other hand, in the desalting apparatus 100 according to an embodiment of the present invention, the first ion exchange membrane 21 and the third ion exchange membrane 23 are composed of an anion exchange membrane to exhibit selective permeability to anions, and a second ion exchange membrane ( 22) is composed of a cation exchange membrane and can exhibit selective permeability to cations.
도 2는 본 발명의 다른 실시예에 따른 탈염 장치를 개략적으로 도시한 예시도이다.2 is an exemplary view schematically showing a desalination apparatus according to another embodiment of the present invention.
한편, 도 2를 참조하면, 본 발명의 다른 실시예에 따른 탈염 장치(200)에서는 제1이온 교환막(221) 및 제3이온 교환막(223)은 양이온 교환막으로 구성되어 양이온에 대해 선택 투과성을 나타내고, 제2이온 교환막(222)은 음이온 교환막으로 구성되어 음이온에 대해 선택 투과성을 나타낼 수 있다.On the other hand, referring to FIG. 2 , in the desalting apparatus 200 according to another embodiment of the present invention, the first ion exchange membrane 221 and the third ion exchange membrane 223 are composed of a cation exchange membrane to exhibit selective permeability to cations. , the second ion exchange membrane 222 may be configured as an anion exchange membrane to exhibit selective permeability to anions.
여기서, 이온 교환막(21, 22) 및 전극(51, 52)는 종래 축전식 전극(전지, 축전지 등)에 사용되어 오고 있는 것들이라면 어느 것이나 다 사용 가능하며, 당해 기술분야에 속하는 통상의 전문가가 그 사용목적 및 조건에 따라 적절하게 선택하여 사용할 수 있다.Here, any of the ion exchange membranes 21 and 22 and the electrodes 51 and 52 that have been used in conventional capacitive electrodes (battery, storage battery, etc.) can be used, and a person of ordinary skill in the art It can be appropriately selected and used according to the purpose and conditions of its use.
제1이온 교환막(21) 및 제2이온 교환막(22)은 미세공 절연 분리막이고, 이온교환(전도)막일 수 있다. 제1이온 교환막(21) 및 제2이온 교환막(22)은 전기물리적 분리를 위해 설치되는 것으로 미세공 절연 분리막(separator)은 이온 이동만이 가능하고, 이온교환(전도)막은 양이온(cation) 또는 음이온(anion)만을 선택적으로 이동시킬 수 있다.The first ion exchange membrane 21 and the second ion exchange membrane 22 are micropore insulating membranes, and may be ion exchange (conductive) membranes. The first ion exchange membrane 21 and the second ion exchange membrane 22 are installed for electrophysical separation. The micropore insulating separator is capable of only ion movement, and the ion exchange (conductive) membrane is a cation or Only anions can be selectively moved.
전극(51, 52)는 제1이온 교환막(21)에 인접하게 배치된 제1전극(51) 및 제2이온 교환막(22)에 인접하게 배치된 제2전극(52)을 포함할 수 있다.The electrodes 51 and 52 may include a first electrode 51 disposed adjacent to the first ion exchange membrane 21 and a second electrode 52 disposed adjacent to the second ion exchange membrane 22 .
한편, 전극(51, 52)에 흡착되는 이온의 양은 사용된 전극의 정전용량(capacitance)에 따라 결정되기 때문에 본 발명에서는 비표면적이 큰 다공성 탄소전극(carbon electrode)이 사용될 수 있다.On the other hand, since the amount of ions adsorbed to the electrodes 51 and 52 is determined according to the capacitance of the used electrode, a porous carbon electrode having a large specific surface area may be used in the present invention.
제1전극(51)은 제1이온 교환막(21)의 일측에 배치된 제1유로(31) 내에 배치되고, 제2전극(52)은 제3이온 교환막(23)의 타측에 배치된 제2유로(32) 내에 배치될 수 있다.The first electrode 51 is disposed in the first flow path 31 disposed on one side of the first ion exchange membrane 21 , and the second electrode 52 is a second electrode disposed on the other side of the third ion exchange membrane 23 . It may be disposed in the flow path 32 .
여기서, 제1전극(51)은 제1이온 교환막(21)과 이격되어 배치될 수 있고, 제2전극(52)은 제3이온 교환막(23)과 이격되어 배치될 수 있다.Here, the first electrode 51 may be disposed to be spaced apart from the first ion exchange membrane 21 , and the second electrode 52 may be disposed to be spaced apart from the third ion exchange membrane 23 .
여기서, 도시하지 않았지만, 제1전극(51)에는 양전극 활물질이 코팅되어 있고, 제2전극(52)에는 음전극 활물질이 코팅되어 있을 수 있다.Here, although not shown, the positive electrode active material may be coated on the first electrode 51 , and the negative electrode active material may be coated on the second electrode 52 .
제1유로(31) 및 제2유로(32)는 상호 연통되는 것이 바람직하며, 제1유로(31) 측으로 유입된 전해액(30)은 제1이온 교환막(21)을 통해 탈염 공정을 수행한 후, 제2유로(32)측으로 배출될 수 있다. 여기서, 제1유로(31) 및 제2유로(32)의 상단은 튜브 등을 통해 연통될 수 있다.It is preferable that the first flow path 31 and the second flow path 32 communicate with each other, and the electrolyte 30 introduced into the first flow path 31 is desalted through the first ion exchange membrane 21 after performing a desalting process. , may be discharged toward the second flow path 32 . Here, upper ends of the first passage 31 and the second passage 32 may communicate through a tube or the like.
또한, 제2유로(32) 측으로 유입된 전해액(30)은 제3이온 교환막(23)을 통해 재생 공정을 수행한 후, 제1유로(31)측으로 배출될 수 있다.In addition, the electrolyte 30 introduced into the second flow path 32 may be discharged to the first flow path 31 after performing a regeneration process through the third ion exchange membrane 23 .
여기서, 제1유로(31) 및 제2유로(32)의 하단은 튜브 등을 통해 연통될 수 있고, 중간에 배치된 저장 용기를 통해 전해액(30)의 유동을 제어할 수 있다.Here, the lower ends of the first passage 31 and the second passage 32 may communicate through a tube or the like, and the flow of the electrolyte 30 may be controlled through a storage container disposed in the middle.
전해액(30)은 산화환원 반응 물질을 포함할 수 있다.The electrolyte 30 may include a redox reaction material.
여기서, 전해액(30)의 산화환원 반응 물질은 페로시안 화합물(Ferrocyanide)을 포함할 수 있다.Here, the redox material of the electrolyte solution 30 may include a ferrocyanide compound.
일 예에서, 전해액(30)의 산화환원 반응 물질은 Na 4Fe(CN) 6 으로 선택될 수 있다.In one example, the redox material of the electrolyte 30 may be selected as Na 4 Fe(CN) 6 .
한편, 전해액(30)의 산화환원 반응 물질은 다음의 [반응식]과 같이 산화 환원 반응할 수 있다.On the other hand, the redox reaction material of the electrolyte 30 may be subjected to a redox reaction as shown in the following [reaction formula].
[반응식][reaction formula]
Figure PCTKR2021005197-appb-img-000001
Figure PCTKR2021005197-appb-img-000001
제1이온 교환막(21)은 양이온을 선택적으로 투과하고, 제2이온 교환막(22)은 음이온을 선택적으로 투과할 수 있다.The first ion exchange membrane 21 may selectively permeate cations, and the second ion exchange membrane 22 may selectively permeate anions.
또한, 외부로부터 공급되는 발생한 전위차, 예를 들어 0.5~2.0v 범위의 전위차가 제1전극(51)과 제2전극(52)에 인가되면, 전극에는 일정한 전하량이 하전된다.In addition, when the generated potential difference supplied from the outside, for example, a potential difference in the range of 0.5 to 2.0v is applied to the first electrode 51 and the second electrode 52 , the electrode is charged with a certain amount of charge.
하전된 전극(51, 52)에 이온을 포함한 염수(brine water)를 통과시키면, 우선, 하전된 전극과 반대 전하를 가진 이온들이 정전기력에 의해 각각의 전극(51, 52)으로 이동하여 탈염 처리된 물은 이온이 제거된 순수(pure water)(처리수)(40)가 된다.When brine water containing ions is passed through the charged electrodes 51 and 52, first, ions having an opposite charge to the charged electrode move to the respective electrodes 51 and 52 by electrostatic force and are desalted. The water becomes pure water (treated water) 40 from which ions are removed.
여기서, 제1전극(51) 측(일측)으로 이동한 음이온은 제1전극(51) 표면에 흡착되고, 제2전극(52) 측(타측)으로 이동한 양이온은 이온 흡착부(40)내로 유입되어 이온 흡착제(41)에 흡착될 수 있다.Here, the negative ions moving to the first electrode 51 side (one side) are adsorbed on the surface of the first electrode 51 , and the positive ions moving to the second electrode 52 side (the other side) are absorbed into the ion adsorption unit 40 . It may be introduced and adsorbed by the ion adsorbent 41 .
또한, 전극(51, 52)이 배치된 제1유로(31) 및 제2유로(32) 내에는 전해액(30)이 흐르게 되며, 전해액(30)의 산화환원 반응 물질은 전극에 인가된 전압으로 인해 산화환원 반응을 수행하게 되고, 이 때 전해액의 전하 균형을 맞추기 위해 음이온이 제1이온 교환막(21)을 통해 전해액(30)으로 유입되고, 양이온이 제2이온 교환막(22)을 통해 이온 흡착부(40)로 유입되어 처리수 유로(11)의 탈염 성능을 높일 수 있다.In addition, the electrolyte 30 flows in the first passage 31 and the second passage 32 in which the electrodes 51 and 52 are disposed, and the redox reaction material of the electrolyte 30 is a voltage applied to the electrodes. Due to this, a redox reaction is performed, and at this time, anions are introduced into the electrolyte 30 through the first ion exchange membrane 21 to balance the charge of the electrolyte, and cations are adsorbed through the second ion exchange membrane 22 . It flows into the part 40 to increase the desalination performance of the treated water flow path 11 .
예컨대, 제1유로(31) 내의 산화환원 반응 물질은 제1전극(51)에 인가된 + 전압으로 인해 산화반응을 수행할 수 있고, 이온 흡착부(40) 내의 산화환원 반응 물질은 제2전극(52)에 인가된 - 전압으로 인해 환원반응을 수행할 수 있다.For example, the redox material in the first flow path 31 may perform an oxidation reaction due to the + voltage applied to the first electrode 51 , and the redox reaction material in the ion adsorption unit 40 is the second electrode A reduction reaction can be carried out due to the -voltage applied to (52).
또한, 처리수 유로(11)에서는 전하의 평형을 위해 양이온을 제2이온 교환막(22)을 통해 이온 흡착부(40)로 유입시킬 수 있다.In addition, in the treated water flow path 11 , cations may be introduced into the ion adsorption unit 40 through the second ion exchange membrane 22 to balance charges.
즉, 본 발명의 일 실시예에 따른 탈염 장치는 전극의 용량(Capacitive)에 따른 이온 처리 기작과 산화환원 반응(Redox Couple)을 통한 전자 전달반응에 따른 이온 처리 기작을 동시에 활용할 수 있어, 탈염 성능을 향상시킬 수 있다.That is, the desalination apparatus according to an embodiment of the present invention can simultaneously utilize the ion treatment mechanism according to the capacitance of the electrode and the ion treatment mechanism according to the electron transfer reaction through the redox couple, so that the desalination performance can improve
한편, 제1유로(31) 및 제2유로(31)의 유입단에는 상대적으로 음이온이 과다하게 존재하며, 이온 흡착부(40)에는 처리수 유로(11)에서 유입된 양이온이 과다하게 존재하여, 제2유로(31)와 이온 흡착부(40) 사이에서는 전하의 평형을 위해 제2유로(31)의 음이온이 제3이온 교환막(23)을 통해 이온 흡착부(40)로 유입될 수 있다.On the other hand, relatively excessive anions are present at the inlet ends of the first flow path 31 and the second flow path 31 , and positive ions introduced from the treated water flow path 11 are excessively present in the ion adsorption unit 40 . , between the second flow path 31 and the ion adsorption unit 40 , the anions of the second flow path 31 may be introduced into the ion adsorption unit 40 through the third ion exchange membrane 23 to balance charges. .
이를 통해, 제2유로(31)의 전해액(30)은 음이온이 배출된 상태로 재생될 수 있다. 즉, 별도의 재생 공정을 수행하지 않아도 전해액(30)은 흡수한 음이온을 배출할 수 있어, 전해액(30)을 재활용 할 수 있고 연속 공정으로 탈염 공정을 수행할 수 있으며, 전극(51, 52)에서 필요 이상의 이온의 흡착을 방지할 수 있다.Through this, the electrolyte 30 of the second flow path 31 may be regenerated in a state in which negative ions are discharged. That is, without performing a separate regeneration process, the electrolyte 30 can discharge the absorbed negative ions, so the electrolyte 30 can be recycled and the desalination process can be performed in a continuous process, and the electrodes 51 and 52 . It is possible to prevent the adsorption of more ions than necessary.
편, 이온 흡착부(40)는 수용성 이온 매질 내에 분산된 복수의 이온 흡착제(41)로 구성될 수 있다. 이온 흡착제(41)는 처리수 유로(11)의 처리수(10)에서 유입되는 양이온을 흡착할 수 있다.On the other hand, the ion adsorbent 40 may be composed of a plurality of ion adsorbents 41 dispersed in an aqueous ion medium. The ion adsorbent 41 may adsorb cations flowing in from the treated water 10 of the treated water flow path 11 .
여기서, 이온 흡착제(41)는 특정 금속 이온만을 흡착할 수 있는 고선택성 흡착제로 형성되는데, 예를 들어, 흡착하려는 이온이 금 이온인 경우, 이온 흡착제(41)는 Glutaraldehyde crosslinked chitosan bead 또한 Mesoporous silica-48-crosslinked with tannic acid로 구성될 수 있고, 흡착하려는 이온이 은 이온인 경우, 이온 흡착제(41)는 graphitic carbon nitride로 구성될 수 있고, 흡착하려는 이온이 리튬 이온인 경우, 이온 흡착제(41)는 Lithium manganese oxide로 구성될 수 있다.Here, the ion adsorbent 41 is formed of a highly selective adsorbent capable of adsorbing only specific metal ions. For example, when the ion to be adsorbed is gold ion, the ion adsorbent 41 is Glutaraldehyde crosslinked chitosan bead or Mesoporous silica- 48-crosslinked with tannic acid, when the ion to be adsorbed is silver ion, the ion adsorbent 41 may be composed of graphitic carbon nitride, and when the ion to be adsorbed is lithium ion, the ion adsorbent 41 may be composed of lithium manganese oxide.
다만, 이온 흡착제(41)는 다양한 실시 형태로 구현될 수 있으며, 본 발명에서 이를 한정하는 것은 아니다.However, the ion adsorbent 41 may be implemented in various embodiments, and the present invention is not limited thereto.
여기서, 후속 공정을 통해, 이온 흡착제(41)에서 흡착한 이온은 분리될 수 있고, 이를 통해 요구하는 성분을 용이하게 회수할 수 있다. 즉, 폐수(10)에 존재하는 귀금속 등을 용이하게 회수할 수 있다.Here, through a subsequent process, the ions adsorbed by the ion adsorbent 41 may be separated, and a required component may be easily recovered through this. That is, noble metals, etc. present in the wastewater 10 can be easily recovered.
한편, 본 발명에서 이온 흡착부(40)는 내부 공간을 갖는 용기에 이온 매질과 이온 흡착제(41)를 수용한 형태로 처리수 유로(11)과 제2유로(32) 사이에 배치될 수 도 있고, 이온 흡착제(41)를 포함하는 매질이 흐름을 갖는 이온 흡착유로를 구성할 수 도 있다.Meanwhile, in the present invention, the ion adsorption unit 40 may be disposed between the treated water flow path 11 and the second flow path 32 in the form of accommodating the ion medium and the ion adsorbent 41 in a container having an internal space. In addition, the medium containing the ion adsorbent 41 may constitute an ion adsorption flow path having a flow.
<측정 결과><Measurement result>
이하에서는 도 3 내지 도 5를 참조하여, 본 발명의 일 실시예에 따른 탈염 장치에 따른 탈염 성능을 설명한다.Hereinafter, with reference to FIGS. 3 to 5, the desalination performance according to the desalination apparatus according to an embodiment of the present invention will be described.
도 3은 본 발명의 일 실시예에 따른 탈염 장치를 통한 탈염 공정 중 처리수의 전도도 및 pH의 변화를 나타낸 그래프이고, 도 4 및 도 5는 본 발명의 일 실시예에 따른 탈염 장치를 통한 재생 공정 중 흡착제에 따른 흡착 농도 변화를 나타낸 그래프이다.3 is a graph showing changes in conductivity and pH of treated water during a desalting process through a desalting device according to an embodiment of the present invention, and FIGS. 4 and 5 are regeneration through a desalting device according to an embodiment of the present invention It is a graph showing the change in adsorption concentration according to the adsorbent during the process.
실시예Example
실시예에서는 상술한 바와 같이 탈염 장치를 구성하고, 전극 측에 인가되는 전압을 달리하여 처리수의 전도도 및 pH의 변화를 측정하여, 도 3과 같이 그래프로 나타내었다.In the embodiment, as described above, the desalination device is configured, and the conductivity and pH of the treated water are measured by varying the voltage applied to the electrode, and the change is shown in a graph as shown in FIG. 3 .
도 3을 참조하면, 각 전압 및 공정 시간의 변화에서도, 전기 전도도 및 pH가 변화 없이 일정한 것을 확인할 수 있다.Referring to FIG. 3 , it can be confirmed that the electrical conductivity and pH are constant without change even when each voltage and process time are changed.
여기서, 도 2는 H +와 OH -에 의한 pH 변화를 측정하기 위한 것으로, 처리수의 pH를 측정하여 나타낸 그래프이다. 일반적으로 pH는 전극에 전기적인 힘을 인가하였을 때 셀 내에서 용액 내 이온들의 흡/탈착 반응 또는 어느 화학종에 의한 산화/환원 반응을 확인할 수 있는 지표로서, 이상적인 탈염용 전극은 전자에 선호적이어야 한다.Here, FIG. 2 is for measuring the change in pH due to H + and OH , and is a graph showing the measurement of the pH of the treated water. In general, pH is an indicator that can confirm the adsorption/desorption reaction of ions in the solution or the oxidation/reduction reaction by a certain chemical species in the cell when an electrical force is applied to the electrode. should be
본 발명의 일 실시예에 따른 탈염 장치에서는 효율이 상당히 높은 pH에 대한 변화의 폭이 크지 않은 것을 확인할 수 있었다. pH의 변화 폭은 약 ±0.1로 전극에 인가된 힘이 이온들의 흡/탈착 반응에 더 우호적임을 확인할 수 있다. 또한 전도도 변화 그래프가 지속적으로 - 지표를 가르키는것으로 보아 처리수가 지속적으로 탈염이 되는 것을 확인할 수 있다. 또한 시스템에 인가하는 전압이 높아짐에 따라 제거할 수 있는 이온의 양이 늘어나는 것을 알 수 있었다. 즉, 본 발명의 일 실시예에 따른 탈염 장치에서 탈염 공정을 연속적으로 수행하여도 탈염 성능을 유지할 수 있다.In the desalination apparatus according to an embodiment of the present invention, it was confirmed that the range of change with respect to the pH, which had a fairly high efficiency, was not large. The range of change in pH is about ±0.1, confirming that the force applied to the electrode is more favorable to the adsorption/desorption reaction of ions. In addition, it can be confirmed that the treated water is continuously desalted as the conductivity change graph continuously points to the - index. In addition, it was found that the amount of ions that can be removed increases as the voltage applied to the system increases. That is, the desalting performance can be maintained even when the desalting process is continuously performed in the desalting apparatus according to an embodiment of the present invention.
또한, 도 4 및 도 5를 참조하면, 리튬이온과 소듐이온이 시간에 따라 효율적으로 농축되는 것을 알 수 있다. 리튬의 경우 37 mM까지 농축되는 것을 알 수 있었으며, 소듐의 경우 이보다 더 높은 51 mM까지 농축 되는 할 수 있었다. 이 농축된 이온들은 사용되는 이온 흡착제의 종류를 달리하여, 필요로 하는 이온 성분을 용이하게 농축할 수 있으며, 이를 후처리하여 흡착제 별로 선택적인 이온 성분을 회수할 수 있다.In addition, referring to FIGS. 4 and 5 , it can be seen that lithium ions and sodium ions are efficiently concentrated over time. In the case of lithium, it was found that it was concentrated to 37 mM, and in the case of sodium, it was possible to be concentrated up to 51 mM higher than this. The concentrated ions can easily concentrate the ion component required by changing the type of the ion adsorbent used, and can be post-processed to recover the selective ion component for each adsorbent.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 있어서 명백할 것이다.The present invention described above is not limited by the above-described embodiments and the accompanying drawings, and it is common in the technical field to which the present invention pertains that various substitutions, modifications, and changes are possible without departing from the technical spirit of the present invention. It will be clear to those who have knowledge.

Claims (7)

  1. 해수, 염수 또는 폐수가 유입되고, 처리된 처리수가 배출되는 경로를 제공하는 처리수 유로;a treated water flow path providing a path through which seawater, salt water, or wastewater is introduced and the treated treated water is discharged;
    상기 처리수 유로의 타측에 배치되며, 이온 흡착제를 포함하는 이온 흡착부;an ion adsorption unit disposed on the other side of the treated water flow path and including an ion adsorbent;
    상기 처리수 유로의 일측에 배치된 제1이온 교환막;a first ion exchange membrane disposed on one side of the treated water passage;
    상기 처리수 유로와 상기 이온 흡착부 사이에 배치된 제2이온 교환막;a second ion exchange membrane disposed between the treated water passage and the ion adsorption unit;
    상기 이온 흡착부의 타측에 배치되며, 상기 제1이온 교환막이 통과시킨 이온과 동일 전하를 갖는 이온을 통과시키는 제3이온 교환막;a third ion exchange membrane disposed on the other side of the ion adsorption unit and allowing ions having the same charge as the ions passed through the first ion exchange membrane to pass therethrough;
    상기 제1이온 교환막 일측에 배치된 제1유로;a first flow path disposed on one side of the first ion exchange membrane;
    상기 제3이온 교환막 타측에 배치된 제2유로;a second flow path disposed on the other side of the third ion exchange membrane;
    상기 제1유로 및 상기 제2유로 내에 각각 배치된 한 쌍의 전극; 및a pair of electrodes respectively disposed in the first flow path and the second flow path; and
    상기 제1유로 및 상기 제2유로 내에서 유동하며, 산화환원 반응 물질을 포함It flows in the first flow path and the second flow path, and contains a redox reaction material.
    하는 전해액; 을 포함하는 탈염 장치.electrolyte; A desalination device comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 제1이온 교환막 및 상기 제3이온 교환막은 음이온 교환막이고,The first ion exchange membrane and the third ion exchange membrane are anion exchange membranes,
    상기 제2교환막은 양이온 교환막인 탈염 장치.The second exchange membrane is a cation exchange membrane desalination device.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 이온 흡착제는 양이온을 선택적으로 흡착하는 탈염 장치.The ion adsorbent is a desalting device for selectively adsorbing cations.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 제1유로에서는 상기 해수, 염수 또는 폐수에서 음이온이 유입되고,In the first flow path, anions are introduced from the seawater, salt water or wastewater,
    상기 제2유로에서는 상기 이온 흡착부로 음이온을 배출하는 탈염 장치.A desalting device for discharging anions to the ion adsorption unit in the second flow path.
  5. 제1항에 있어서,According to claim 1,
    상기 제1유로에서는 상기 해수, 염수 또는 폐수에서 음이온이 유입되고,In the first flow path, anions are introduced from the seawater, salt water or wastewater,
    상기 제2유로에서는 상기 이온 흡착부로 음이온을 배출하는 탈염 장치.A desalting device for discharging anions to the ion adsorption unit in the second flow path.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 이온 흡착제는 양이온을 선택적으로 흡착하는 탈염 장치.The ion adsorbent is a desalting device for selectively adsorbing cations.
  7. 제1항에 있어서,According to claim 1,
    상기 제1이온 교환막 및 상기 제3이온 교환막은 양이온 교환막이고,The first ion exchange membrane and the third ion exchange membrane are cation exchange membranes,
    상기 제2교환막은 음이온 교환막인 탈염 장치.The second exchange membrane is an anion exchange membrane.
PCT/KR2021/005197 2020-11-13 2021-04-23 Deionization device WO2022102884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0151435 2020-11-13
KR1020200151435A KR102517536B1 (en) 2020-11-13 2020-11-13 Deionization device

Publications (1)

Publication Number Publication Date
WO2022102884A1 true WO2022102884A1 (en) 2022-05-19

Family

ID=81601481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005197 WO2022102884A1 (en) 2020-11-13 2021-04-23 Deionization device

Country Status (2)

Country Link
KR (1) KR102517536B1 (en)
WO (1) WO2022102884A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150002364A (en) * 2013-06-28 2015-01-07 한국에너지기술연구원 Capacitive deionization apparatus having conductive foam
EP3045431A1 (en) * 2015-01-16 2016-07-20 DWI - Leibniz-Institut für Interaktive Materialien e.V. Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization
KR20160130597A (en) * 2015-05-04 2016-11-14 두산중공업 주식회사 Capacitive Deionization Device and Operation Method of it
KR20190103670A (en) * 2018-02-28 2019-09-05 (주) 테크윈 Apacitive deionization apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284557B1 (en) 2010-11-29 2013-07-11 광주과학기술원 Carbon Composite for Capacitive Deionization Electrode and Its Manufacturing Method Thereof
KR101237258B1 (en) 2012-06-08 2013-02-27 (주) 시온텍 Manufacturing method of capacitive deionization electrode having ion selectivity and cdi eletrode module
KR101410642B1 (en) 2014-02-20 2014-06-24 (주) 시온텍 Manufacturing method of capacitive deionization electrode and capacitive deionization electrode made therefrom and CDI module using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150002364A (en) * 2013-06-28 2015-01-07 한국에너지기술연구원 Capacitive deionization apparatus having conductive foam
EP3045431A1 (en) * 2015-01-16 2016-07-20 DWI - Leibniz-Institut für Interaktive Materialien e.V. Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization
KR20160130597A (en) * 2015-05-04 2016-11-14 두산중공업 주식회사 Capacitive Deionization Device and Operation Method of it
KR20190103670A (en) * 2018-02-28 2019-09-05 (주) 테크윈 Apacitive deionization apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI QIANG; HU YUDI; WANG JIAN; RU QIANG; HOU XIANHUA; ZHAO LINGZHI; YU DENIS.Y.W.; SAN HUI KWAN; YAN DONGLIANG; HUI KWUN NAM; CHEN: "Low energy consumption flow capacitive deionization with a combination of redox couples and carbon slurry", CARBON, vol. 170, 19 August 2020 (2020-08-19), GB , pages 487 - 492, XP086293703, ISSN: 0008-6223, DOI: 10.1016/j.carbon.2020.07.044 *

Also Published As

Publication number Publication date
KR20220065181A (en) 2022-05-20
KR102517536B1 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2011016662A2 (en) Capacitive electrode for deionization, and electrolytic cell using same
US6462935B1 (en) Replaceable flow-through capacitors for removing charged species from liquids
WO2013147380A1 (en) Specific ion-selective composite carbon electrode for capacitive deionization, and preparation method thereof
KR101593255B1 (en) Supercapacitor and method for making the same
CN104617322A (en) Microbial capacitive desalination fuel cell technology
CN106673142B (en) Membrane capacitance deionization array with movable electrode and deionization method thereof
KR102268476B1 (en) Multi-channel membrane capacitive deionization with enhanced deionization performance
WO2012161421A1 (en) Active regeneration method for deionization module and water treatment apparatus using the same
CN104495991A (en) Efficient membrane capacitive deionizing array based on flowing electrodes
US6798639B2 (en) Fluid deionization flow through capacitor systems
JP2004537411A (en) Movable electrode flow-through capacitor
KR20150008348A (en) Hybrid seawater desalination systems
KR101732188B1 (en) Apparatus for treating water using capacitive deionization and carbon electrode
WO2022102884A1 (en) Deionization device
TW201934496A (en) A flowing capacitive method and its divice for desalination and disinfection of sea/waste waters
KR20190073332A (en) Water treating apparatus for saving energy and water treating method using the same
KR101992312B1 (en) Water treating apparatus for saving energy and water treating method using the same
KR101929855B1 (en) Capacitive Deionization Device and Capacitive Deionization Module
KR20150003094A (en) Flow-electrode capacitive deionizaion apparatus using ion exchange membranes
KR102180564B1 (en) Capacitive deionization device using ferric/ferro cyanide redox couple
JP2004024990A (en) Method of removing ionic substance in liquid and liquid treatment apparatus
KR20190103670A (en) Apacitive deionization apparatus
KR101394112B1 (en) Water treatment cell by electrosorption, Electrosorptive water treatment apparatus and method using the same
JP2003200164A (en) Winding and liquid passing type condenser for removing charged matter from liquid and liquid treatment apparatus
JP2008161846A (en) Capacitive deionization (cdi) using bipolar electrode system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.07.2023)