WO2022102882A1 - Cross section repair material based on halophilic slime-forming bacteria - Google Patents

Cross section repair material based on halophilic slime-forming bacteria Download PDF

Info

Publication number
WO2022102882A1
WO2022102882A1 PCT/KR2021/004758 KR2021004758W WO2022102882A1 WO 2022102882 A1 WO2022102882 A1 WO 2022102882A1 KR 2021004758 W KR2021004758 W KR 2021004758W WO 2022102882 A1 WO2022102882 A1 WO 2022102882A1
Authority
WO
WIPO (PCT)
Prior art keywords
repair material
salt damage
concrete
salt
bacteria
Prior art date
Application number
PCT/KR2021/004758
Other languages
French (fr)
Korean (ko)
Inventor
양근혁
이상섭
Original Assignee
경기대학교 산학협력단
주식회사 허브콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기대학교 산학협력단, 주식회사 허브콘 filed Critical 경기대학교 산학협력단
Priority to CN202180022385.XA priority Critical patent/CN115427371A/en
Publication of WO2022102882A1 publication Critical patent/WO2022102882A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/24Sea water resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications

Definitions

  • the present invention relates to a concrete cross-section repair material, and more particularly, to a bacteria-based cross-section repair material.
  • the present invention is derived from the research conducted by the research fund support of the Ministry of Land, Infrastructure and Transport Construction Technology Research Project.
  • Concrete structures exposed to salt environment may have a sharp decrease in their durability due to deterioration of concrete and corrosion of reinforcing bars.
  • ship anchoring facilities, breakwaters, and offshore plants require rapid construction and fast hardening of repair/reinforcement work in response to salt damage.
  • Organic materials such as epoxy, vinyl ester, and acrylic rubber used as materials for the repair of marine structures that are deteriorated by salt damage have excellent adhesive strength with the initial concrete structure, but thermal expansion coefficient, drying, and shrinkage In the long run, the elastic film is peeled off at the interface with the concrete structure because the deformation characteristics caused by such factors are different from that of concrete. In addition, if a perfect surface treatment is not performed on the surface of the concrete matrix, which is the surface to be repaired, the adhesive strength with the concrete will decrease rapidly, and the adhesive strength will change rapidly depending on the moisture state of the underlying concrete.
  • An object of the present invention is to provide a new concept ecological salt damage resistance repair material that excludes existing organic materials as a material for repairing concrete structures exposed to chemical degradation due to salt damage (Cl - ) in a marine environment.
  • the present invention provides a salt damage-resistant repair material comprising a binder comprising a type 1 ordinary Portland cement and an EVA-based polymer, polyethylene fibers and fine aggregate; and a porous structure in which chlorine ion-decomposing bacteria and salt slime-forming bacteria are fixed. of the carrier; provides a concrete cross-section repair material in a mixed salt environment.
  • the salt damage resistance repair material contains 90 to 95 weight % of the type 1 ordinary Portland cement, 5 to 10 weight % of the EVA-based polymer, and 0.1 to 0.3 parts by volume of the polyethylene fiber based on 100 parts by volume of the repair material,
  • the fine aggregate is silica sand having an average particle diameter of 0.25 to 0.7 mm, a fine aggregate-binder ratio (S/B) of 1.8 to 2.2 by weight, and a water-binder ratio (W/B) of 28 It provides a concrete cross-section repair material in a salt environment, characterized in that to 35% by weight.
  • the carrier is expanded vermiculite, and provides a concrete cross-section repair material in a salty environment, characterized in that the chlorine ion-decomposing bacteria and salt slime-forming bacteria are fixed under negative pressure conditions.
  • the chlorine ion-decomposing bacteria are Halomonas venusta
  • the basophil slime-forming bacteria are Sulfitobacter mediterraneus .
  • the present invention is an ecological salt damage resistance repair material based on salt strains that decompose chlorine ions in slimes and chloride compounds that have the function of protecting concrete from salt damage in a marine environment, exposed to chemical deterioration environment due to salt damage (Cl - ) It is possible to provide a material having a function of controlling deterioration due to concrete salt damage for the repair of an old concrete structure.
  • the present invention is a material having a function of controlling deterioration due to concrete salt damage for repair of a concrete structure exposed to a chemical deterioration environment of salt damage, and a cross section of concrete in a salt damage environment comprising a salt damage resistant repair material and a carrier of a porous structure in which bacteria are fixed Start repair materials.
  • the salt damage-resistant repair material (called 'Herb-con C') is a mixture developed in consideration of bacterial growth and adhesive strength, and a binder containing type 1 ordinary Portland cement and an EVA (Ethylene Vinyl Acetate)-based polymer, polyethylene Includes fibers and fine aggregates.
  • EVA Ethylene Vinyl Acetate
  • the binder composition is preferably 90 to 95% by weight of the type 1 ordinary Portland cement and 5 to 10% by weight of the EVA-based polymer, and in this case, it was confirmed that the implementation of the deterioration control function due to concrete salt damage was the most excellent.
  • the polyethylene fiber is a component added to impart strength and rigidity reinforcement to the salt damage resistance repair material, and a polyethylene fiber material having an average diameter of 50 to 200 ⁇ m, preferably 100 to 150 ⁇ m may be used.
  • the content of the polyethylene fiber is preferably 0.1 to 0.3 parts by volume based on 100 parts by volume of the repair material, and in this case, it was confirmed that the strength and rigidity strengthening function of the repair material was the most excellent while the deterioration control function due to concrete salt damage was improved.
  • the fine aggregate content is such that the sand to binder ratio (S/B) is 1.8 to 2.2 by weight due to concrete salt damage. It was confirmed to be desirable when considering the implementation of the deterioration control function.
  • the water-binder ratio (W/B) is preferably 28 to 35% by weight.
  • bacteria that can effectively implement the function of protecting concrete from salt damage in a marine environment by mixing with the water-retaining material as salty strains having the ability to decompose chlorine ions in chlorine compounds were selected.
  • the mechanism of deterioration due to salt damage of concrete is that as chlorine ions penetrate and diffuse into the concrete, chlorine ions (Cl - ) combine with Ca(OH) 2 , the cement hydrate of concrete exposed to seawater, to form CaCl 2 .
  • 2 is a soluble porous compound that dissolves in seawater and increases the porosity of concrete, causing a decrease in durability (chlorination corrosion).
  • the CaCl 2 compound formed by chlorine ions in seawater reacts with monosulfate again and is combined into Friedel salt and chloroferrite hydrate. , which in turn accelerates the formation of CaCl 2 compounds, forming a vicious cycle of salt erosion mechanism.
  • reinforcing bars combine with chloride to form FeCl 2 , which reacts with water to become an active environment for corrosion. Corrosion of reinforcing bars causes volume expansion, which causes expansion and exfoliation of cracks in concrete, which greatly affects durability reduction.
  • Halomonas an anaerobic basophil having a chlorine ion decomposition ability
  • Halomonas venusta grows in a marine environment and releases yeast capable of decomposing chlorine ions, confirming that it has the best function to consume Cl compounds (CaCl 2 and FeCl 2 ), which are factors that cause salt degradation and durability degradation of concrete.
  • the separation process for the strains is as follows.
  • the collected mussel shells and mussel flesh were vortexed to remove microorganisms. After collecting the microorganisms desorbed from seawater and mussels on filter paper through filtration, vortex to desorb the microorganisms from the filter paper, and then serially diluted to 10 -4 with 3.5% NaCl solution and medium (50% marine + 50% R2A agar (3.5% NaCl) ) at pH 7.6) and incubated for 1 week under aerobic conditions at 30°C. The colonies that appeared after culturing were purified and cultured according to their characteristic types. As a result of separation and identification of each cultured microorganism by 16S rDNA sequencing, it was confirmed that each cultured microorganism was a known microorganism in Table 1.
  • bacteria that can effectively implement basophil slime formation on the concrete surface were selected.
  • the slime film formed by the bacteria forms a barrier film against the penetration and diffusion of chlorine ions on the concrete surface, thereby inhibiting the formation of CaCl 2 compounds and FeCl 2 compounds, which have an effect of increasing voids and lowering durability in the concrete.
  • the chlorine ion-decomposing bacteria and salt slime-forming bacteria are fixed to a porous carrier (referred to as 'Healing + C').
  • Chloride ion-decomposing bacteria and salt slime-forming bacteria-based carriers containing bacteria discovered for repair and durability improvement of salt-damaged concrete and culture medium for their growth are inoculated into a medium containing yeast extract, ferric citrate, etc. 5 To 50 °C, preferably 30 to 40 °C in an incubator at a concentration of 10 8 to 10 10 cells / ml chlorine-decomposable basophils and slime-forming bacteria culture solution is fixed to a material having a porous structure of countless pores. As such, in the present invention, it was confirmed that expanded vermiculite was most suitable considering the function of protecting concrete from salt damage in the marine environment.
  • the effective medium composition for the growth and proliferation of Halomonas venusta as the chlorine ion-decomposing bacteria and Sulfitobacter mediterraneus as the basophil slime forming bacteria is peptone 3 to 7 g, Yeast extract 0.5 to 1.5 g, Ferric citrate 0.05 to 0.2 g, Sodium chloride 17 to 23 g, Magnesium chloride 3 to 9 g, Magnesium sulfate 2 to 5 g, Calcium chloride 1 to 3 g, Pottasium chloride 0.3 to 1 g, Sodium biarbonate 0.1 to 0.5 g, Potassium bromide 0.05 to 0.15 g, Strontium chloride 20 to 50 mg, Boric acid 15 to 30 mg, Sodium silicate 2 to 6 mg, Sodium fluoride 1 to 5 mg, Ammonium nitrate 1 to 5 mg, Disodium phosphate may be 5 to 15 mg.
  • the bacteria and its medium used for protection against salt damage and degradation self-grow and multiply on the surface of a concrete structure exposed to a salt degradation environment (marine environment), and act as a protector against deterioration and erosion of concrete.
  • the fixation of the bacterial culture solution to the immobilization material can be accomplished through adsorption in a sterile negative pressure container at 10 to 30 torr, 10 to 60 minutes, and the expanded vermiculite, which has been immobilized in the bacterial culture, absorbs not only bacterial cells but also a large amount of moisture and medium nutrients.
  • Table 2 above shows the required amount of salt damage resistant repair material and halophilic bacteria-based carrier by thickness when constructing ecological salt damage resistant concrete cross-section repair materials regardless of the construction method to be described later, and the construction thickness (T) can be presented as 10 to 50 mm
  • the salt damage resistant repair material may be 10 to 65 kg/m2
  • the basophilic bacteria-based carrier may be 0.4 to 7.0 kg/m2.
  • the construction of the ecological salt damage resistance concrete cross-section repair material can be constructed by mechanical spray pouring, and will be described below by way of example.
  • mixing the ingredients mix for 3 to 5 minutes so that they can be mixed evenly using a mixer or hand mixer.
  • a thin spray of 5 mm is applied to remove voids on the substrate and to increase adhesion.
  • 2nd stage spray should be within 90% of the design thickness including the 1st stage thickness.
  • a binder with a composition of 1st class ordinary Portland cement of 92% by weight and EVA-based polymer 8% by weight, and prepare polyethylene fibers (average diameter of 120 ⁇ m) to 0.2 parts by volume based on 100 parts by volume of the total repair material, and silica sand ( The average particle diameter is 0.25 to 0.7 mm), the fine aggregate-binder ratio (S/B) is 2 weight ratio, and the water-binder ratio (W/B) is 28 to 35 weight% By mixing as much as possible, a salt damage resistant repair material was prepared.
  • Halomonas venusta as a chlorine ion-decomposing bacterium and Sulfitobacter mediterraneus as a basophil slime-forming bacterium were inoculated into the medium of the composition of Table 3 below with the same content and then inoculated in an incubator (30 to 40 ° C.) ) to a concentration of 10 9 cells/ml and cultured for 7 days. Thereafter, the bacterial culture solution is put into an internally stirred sterile negative pressure container, the expanded vermiculite in an amount of 10 parts by weight based on 100 parts by weight of the bacterial culture solution is immersed in the culture solution, the door is closed, and the valve is set to a negative pressure environment of 10 to 30 torr. was adjusted, and adsorption was carried out for 30 minutes, after which the expanded vermiculite on which the bacteria was immobilized was recovered.
  • the final concrete cross-section repair material was prepared by mixing expanded vermiculite in which bacteria were fixed in a mixing ratio of 20% to the aggregate volume of the prepared salt damage-resistant repair material with a mixer.
  • Test Items Adhesive strength (N/mm2) : Standard Compressive strength (N/mm2) Neutralization resistance (mm) pitch (g) water absorption coefficient (kg/(m2 ⁇ h 0.5 ) length change rate (%) 28 days 28 days standard 1.0 or higher 20.0 or higher within 2 20.0 or less 0.5 or less Within ⁇ 0.15 result 2.1 48.2 0 6.5 0.22 - 0.02 Test Methods KS F 4042 : 2012 Test Items Chloride diffusion coefficient ( ⁇ 10 -12 m2/s) Passing Charge (Coulombs) 28 days 28 days general repair material 7.2 590 Ecological salt damage resistant repair material 0.6 130 Test Methods NT BUILD 492 KS F 2711
  • the ecological salt damage-resistant concrete cross-section repair material according to the present invention is 2.1 compared to the required performance of adhesive strength (1.0 MPa or more) and compressive strength (20 MPa) presented in KS F 4042 (polymer cement mortar). appeared more than twice as high.
  • the neutralization depth was 0 mm and the length change rate was 0.04%, which satisfies the quality standards required by KS F 4042.
  • the ecological salt damage resistant concrete section repair material according to the present invention is at a level that is 90% lower than that of the general repair material, and the total through-current according to KS F 2711 is 88% compared to the general repair material It showed remarkably excellent results in all evaluation items at a low level.

Abstract

Disclosed is a novel ecological salt damage-resistant repair material for repairing concrete structures that have been exposed to an environment of chemical degradation due to salt damage (Cl-) in a marine environment, wherein the repair material excludes existing organic materials. The present invention provides a material for repairing a concrete cross section in a salt damage environment, the concrete cross section repair material comprising a mixture of a salt damage resistant repair material and a carrier, wherein the salt damage resistant repair material comprises a binder, including ordinary type 1 Portland cement and an EVA-based polymer, polyethylene fibers, and fine aggregate, and the carrier has a porous structure on which bacteria for breaking down chlorine ions and halophilic slime-forming bacteria are fixed.

Description

호염 슬라임 형성 박테리아 기반 단면 보수재Basophil slime-forming bacteria-based single-sided repair material
본 발명은 콘크리트 단면 보수재에 관한 것으로, 보다 상세하게는 박테리아 기반 단면 보수재에 관한 것이다.The present invention relates to a concrete cross-section repair material, and more particularly, to a bacteria-based cross-section repair material.
본원은 2020년 11월 11일자로 출원된 대한민국 특허출원 제10-2020-0150193호에 대한 우선권을 주장하며, 상기 특허출원의 내용들은 본원에서 참조로 인용된다.This application claims priority to Korean Patent Application No. 10-2020-0150193, filed on November 11, 2020, the contents of which are incorporated herein by reference.
본 발명은 국토교통부 건설기술연구사업의 연구비 지원에 의해 수행된 연구로부터 도출된 것이다.The present invention is derived from the research conducted by the research fund support of the Ministry of Land, Infrastructure and Transport Construction Technology Research Project.
[과제고유번호 : 2015897601, 연구과제명 : 호염 박테리아 슬라임 기반 콘크리트 내염해 생태 코팅재 개발][Project unique number: 2015897601, Research project name: Development of salt-resistant ecological coating material based on halophilic bacteria slime]
염해 환경에 노출된 콘크리트 구조물은 콘크리트의 열화 및 철근 부식 등의 이유로 그 내구연한이 급격히 감소될 수 있다. 특히 선박정박시설, 방파제 및 해상 플랜트 등은 염해에 대응한 보수·보강 공사의 급속한 시공 및 경화가 빠른 재료를 요구한다.Concrete structures exposed to salt environment may have a sharp decrease in their durability due to deterioration of concrete and corrosion of reinforcing bars. In particular, ship anchoring facilities, breakwaters, and offshore plants require rapid construction and fast hardening of repair/reinforcement work in response to salt damage.
염해에 의한 열화를 받는 해양 구조물의 보수를 위한 재료로서 활용되는 에폭시계, 비닐에스테르계, 아크릴고무계 등의 유기계 재료(도료)들은 초기 콘크리트 구조물과의 접착강도는 우수하지만, 열팽창계수나 건조, 수축 등으로 발생하는 변형 특성이 콘크리트와 상이하여 장기적으로는 콘크리트 구조물과의 계면에서 탄성 피막의 탈락이 발생하게 되고 이로 인해 내염해 효과를 기대할 수 없는 단점을 가지고 있다. 또한 보수 시공 대상면인 콘크리트 모체 표면에서의 완벽한 표면 처리가 되지 않을 경우 콘크리트와의 접착강도가 급격히 저하되며, 바탕 콘크리트의 수분 상태에 의해서도 접착강도가 급격히 변화되는 특성을 나타낸다.Organic materials (paints) such as epoxy, vinyl ester, and acrylic rubber used as materials for the repair of marine structures that are deteriorated by salt damage have excellent adhesive strength with the initial concrete structure, but thermal expansion coefficient, drying, and shrinkage In the long run, the elastic film is peeled off at the interface with the concrete structure because the deformation characteristics caused by such factors are different from that of concrete. In addition, if a perfect surface treatment is not performed on the surface of the concrete matrix, which is the surface to be repaired, the adhesive strength with the concrete will decrease rapidly, and the adhesive strength will change rapidly depending on the moisture state of the underlying concrete.
특히, 보수 시공 대상인 해양 구조물의 경우 해수 중에 존재하는 오염물질 및 해양생물 등으로 인해 필연적으로 발생하는 파울링을 말끔히 제거하는 것은 실질적으로 불가능함에 따라 유기계 코팅재 시공 시 부분적인 들뜸 및 채움 불량 등의 현상으로 쉽게 탈락·박리될 수 있다. 또한 유기계 재료의 경우 도료의 형태로서 각각 성능이 다른 도료를 사용하여 상도, 중도 및 하도의 3단계로 도막을 실시하기 때문에 시공이 어려울 뿐만 아니라 3단계 도료 중 어느 한 단계의 도막에 하자가 발생하면, 전체 성능이 큰 영향을 미치고 장기적인 내구성능 확보에 매우 불리하다. 이와 함께 유기계 코팅재는 환경오염 및 유해물질이 다량 포함되어 전 세계적으로 사용 원료 및 제조 공정을 엄격하게 규제하고 있어 중금속 및 휘발성 유기화합물(VOCs; Volatile Organic Compounds)을 포함하지 않은 친환경 코팅재가 개발되고 있지만 고도화 기술 재료 사용에 따른 재료비 상승 및 시공비용 증가의 원인이 된다.In particular, in the case of marine structures to be repaired, it is practically impossible to cleanly remove fouling that is inevitably caused by contaminants and marine organisms present in seawater. can be easily removed and peeled off. In addition, in the case of organic materials, it is difficult to construct because the coating film is applied in three stages: top coat, middle coat, and undercoat using paints with different performance as a form of paint. , it greatly affects the overall performance and is very unfavorable to securing long-term durability. At the same time, organic coating materials contain a large amount of environmental pollution and harmful substances, so raw materials and manufacturing processes are strictly regulated worldwide. It causes material cost increase and construction cost increase due to the use of advanced technology materials.
무기계 재료를 사용한 해양 구조물 보수의 경우에는 유기계 재료와 달리 보수 대상 구조물인 해양 콘크리트 구조물과 일체성의 확보 측면에서 유리하지만, 염분 제거제, 구체 강화제 등의 화학적 첨가제의 시공 공정을 포함하지 않는 경우 보수 시공면은 여전히 염해에 의한 열화 환경에 지속적으로 노출될 수 밖에 없다. 또한 기존 염해 보수를 위한 무기재료에서 열화저항성 향상의 기능성 부여를 위한 재료의 사용은 다소 한정적이기 때문에 빈번한 재시공 등으로 인한 경제적 손실이 증가한다.In the case of marine structure repair using inorganic materials, unlike organic materials, it is advantageous in terms of securing integrity with the marine concrete structure, which is the structure to be repaired. is still constantly exposed to the degradation environment caused by salt damage. In addition, since the use of materials for imparting the functionality of improving deterioration resistance in the existing inorganic materials for salt damage repair is rather limited, economic loss due to frequent re-construction increases.
[선행특허문헌][Prior Patent Literature]
- 한국 등록특허 제1779935호(2017.09.13.)- Korea Registered Patent No. 1779935 (2017.09.13.)
- 한국 등록특허 제1355392호(2014.01.20.)- Korean Patent No. 1355392 (2014.01.20.)
본 발명은 해양환경에서 염해(Cl-)에 의한 화학적 열화 환경에 노출된 콘크리트 구조물의 보수를 위한 재료로서 기존 유기계 재료를 배제한 신개념의 생태학적 염해 저항 보수재를 제공하고자 한다.An object of the present invention is to provide a new concept ecological salt damage resistance repair material that excludes existing organic materials as a material for repairing concrete structures exposed to chemical degradation due to salt damage (Cl - ) in a marine environment.
상기 과제를 해결하기 위하여 본 발명은, 1종 보통포틀랜드 시멘트와 EVA계 폴리머를 포함하는 결합재, 폴리에틸렌 섬유 및 잔골재를 포함하는 염해 저항 보수재;와 염소 이온 분해 박테리아 및 호염 슬라임 형성 박테리아가 고정된 다공질 구조의 캐리어;가 혼합된 염해 환경에서의 콘크리트 단면 보수재를 제공한다.In order to solve the above problems, the present invention provides a salt damage-resistant repair material comprising a binder comprising a type 1 ordinary Portland cement and an EVA-based polymer, polyethylene fibers and fine aggregate; and a porous structure in which chlorine ion-decomposing bacteria and salt slime-forming bacteria are fixed. of the carrier; provides a concrete cross-section repair material in a mixed salt environment.
또한 상기 염해 저항 보수재는 상기 1종 보통포틀랜드 시멘트를 90 내지 95 중량%, 상기 EVA계 폴리머를 5 내지 10 중량%, 상기 폴리에틸렌 섬유를 상기 보수재 100 부피부에 대하여 0.1 내지 0.3 부피부 포함하고, 상기 잔골재는 평균 입경이 0.25 내지 0.7 mm인 규사로서, 잔골재-결합재비(sand to binder ratio, S/B)가 1.8 내지 2.2 중량비이고, 물-결합재비(water to binder ratio, W/B)가 28 내지 35 중량%인 것을 특징으로 하는 염해 환경에서의 콘크리트 단면 보수재를 제공한다.In addition, the salt damage resistance repair material contains 90 to 95 weight % of the type 1 ordinary Portland cement, 5 to 10 weight % of the EVA-based polymer, and 0.1 to 0.3 parts by volume of the polyethylene fiber based on 100 parts by volume of the repair material, The fine aggregate is silica sand having an average particle diameter of 0.25 to 0.7 mm, a fine aggregate-binder ratio (S/B) of 1.8 to 2.2 by weight, and a water-binder ratio (W/B) of 28 It provides a concrete cross-section repair material in a salt environment, characterized in that to 35% by weight.
또한 상기 캐리어는 팽창질석이고, 상기 염소 이온 분해 박테리아 및 호염 슬라임 형성 박테리아가 음압 조건에서 고정된 것을 특징으로 하는 염해 환경에서의 콘크리트 단면 보수재를 제공한다.In addition, the carrier is expanded vermiculite, and provides a concrete cross-section repair material in a salty environment, characterized in that the chlorine ion-decomposing bacteria and salt slime-forming bacteria are fixed under negative pressure conditions.
또한 상기 염소 이온 분해 박테리아는 할로모나스 베누스타(Halomonas venusta)이고, 상기 호염 슬라임 형성 박테리아는 설피토박터 메디테라네우스(Sulfitobacter mediterraneus)인 것을 특징으로 하는 염해 환경에서의 콘크리트 단면 보수재를 제공한다.In addition, the chlorine ion-decomposing bacteria are Halomonas venusta , and the basophil slime-forming bacteria are Sulfitobacter mediterraneus .
본 발명에 따르면, 해양환경에서 콘크리트 염해 보호의 기능을 갖는 슬라임 및 염화화합물에서 염소 이온을 분해하는 호염 균주들을 기반으로 하는 생태학적 염해 저항 보수재로서, 염해(Cl-)에 의한 화학적 열화 환경에 노출된 콘크리트 구조물의 보수를 위한 콘크리트 염해에 의한 열화 제어 기능을 가진 재료를 제공할 수 있다.According to the present invention, it is an ecological salt damage resistance repair material based on salt strains that decompose chlorine ions in slimes and chloride compounds that have the function of protecting concrete from salt damage in a marine environment, exposed to chemical deterioration environment due to salt damage (Cl - ) It is possible to provide a material having a function of controlling deterioration due to concrete salt damage for the repair of an old concrete structure.
이로부터 해양 콘크리트 구조물 및 철근 콘크리트 구조물의 보수 및 내구성이 향상되고, 호염 슬라임 형성 박테리아의 생태학적 염해 열화 보호 효과에 의해 구조물의 유지관리 효율성이 향상되고, 흡수성 방지제, 프라이머 도포 등의 보수 공정 생략에 의한 공사원가 절감 및 공기 단축의 효과가 있다.From this, the repair and durability of marine concrete structures and reinforced concrete structures are improved, the maintenance efficiency of structures is improved by the ecological salt damage deterioration protection effect of salt slime-forming bacteria, and the maintenance process such as water absorption inhibitor and primer application is omitted. It has the effect of reducing the construction cost and shortening the construction period.
이하에서는 본 발명의 바람직한 실시예를 첨부한 도면을 참고하여 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 도면에서 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였고, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였으며, 본 발명의 세부구성 방향은 도면을 기준으로 하여 설명한다. 또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, similar reference numerals are given to similar parts throughout the specification, and the detailed configuration direction of the present invention will be described with reference to the drawings. Also, throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
본 발명은 염해의 화학적 열화 환경에 노출된 콘크리트 구조물의 보수를 위한 콘크리트 염해에 의한 열화 제어 기능을 가진 재료로서, 염해 저항 보수재 및 박테리아가 고정된 다공질 구조의 캐리어를 포함하는 염해 환경에서의 콘크리트 단면 보수재를 개시한다.The present invention is a material having a function of controlling deterioration due to concrete salt damage for repair of a concrete structure exposed to a chemical deterioration environment of salt damage, and a cross section of concrete in a salt damage environment comprising a salt damage resistant repair material and a carrier of a porous structure in which bacteria are fixed Start repair materials.
상기 염해 저항 보수재('Herb-con C'라 명명함)는 박테리아 생장 및 접착강도 등을 고려하여 개발된 혼합물로서, 1종 보통포틀랜드 시멘트와 EVA(Ethylene Vinyl Acetate)계 폴리머를 포함하는 결합재, 폴리에틸렌 섬유 및 잔골재를 포함한다.The salt damage-resistant repair material (called 'Herb-con C') is a mixture developed in consideration of bacterial growth and adhesive strength, and a binder containing type 1 ordinary Portland cement and an EVA (Ethylene Vinyl Acetate)-based polymer, polyethylene Includes fibers and fine aggregates.
상기 결합재 조성은 상기 1종 보통포틀랜드 시멘트가 90 내지 95 중량%이고, EVA계 폴리머 5 내지 10 중량%인 것이 바람직하고, 이 경우 콘크리트 염해에 의한 열화 제어 기능 구현이 가장 우수한 것으로 확인되었다.The binder composition is preferably 90 to 95% by weight of the type 1 ordinary Portland cement and 5 to 10% by weight of the EVA-based polymer, and in this case, it was confirmed that the implementation of the deterioration control function due to concrete salt damage was the most excellent.
또한 상기 폴리에틸렌 섬유는 상기 염해 저항 보수재에 강도 및 강성 강화를 부여하기 위해 첨가되는 성분으로, 평균 직경이 50 내지 200 ㎛, 바람직하게는 100 내지 150 ㎛인 폴리에틸렌 섬유 재료가 사용될 수 있다.In addition, the polyethylene fiber is a component added to impart strength and rigidity reinforcement to the salt damage resistance repair material, and a polyethylene fiber material having an average diameter of 50 to 200 μm, preferably 100 to 150 μm may be used.
상기 폴리에틸렌 섬유의 함량은 상기 보수재 100 부피부에 대하여 0.1 내지 0.3 부피부 인 것이 바람직하고, 이 경우 콘크리트 염해에 의한 열화 제어 기능이 향상된 상태에서 보수재의 강도 및 강성 강화 기능이 가장 우수한 것으로 확인되었다.The content of the polyethylene fiber is preferably 0.1 to 0.3 parts by volume based on 100 parts by volume of the repair material, and in this case, it was confirmed that the strength and rigidity strengthening function of the repair material was the most excellent while the deterioration control function due to concrete salt damage was improved.
상기 잔골재로는 평균 입경이 0.25 내지 0.7 mm인 규사를 사용하는 것이 바람직하고, 잔골재 함량은 잔골재-결합재비(sand to binder ratio, S/B)가 1.8 내지 2.2 중량비가 되도록 하는 것이 콘크리트 염해에 의한 열화 제어 기능 구현을 고려할 때 바람직한 것으로 확인되었다. 이때 물-결합재비(water to binder ratio, W/B)는 28 내지 35 중량%로 하는 것이 바람직하다.It is preferable to use silica sand having an average particle diameter of 0.25 to 0.7 mm as the fine aggregate, and the fine aggregate content is such that the sand to binder ratio (S/B) is 1.8 to 2.2 by weight due to concrete salt damage. It was confirmed to be desirable when considering the implementation of the deterioration control function. At this time, the water-binder ratio (W/B) is preferably 28 to 35% by weight.
본 발명에서는 염소화합물에서 염소 이온 분해 능력을 갖는 호염 균주로서 상기 보수재와 혼합되어 해양환경에서 콘크리트 염해 보호의 기능을 효과적으로 구현할 수 있는 박테리아를 선별하였다.In the present invention, bacteria that can effectively implement the function of protecting concrete from salt damage in a marine environment by mixing with the water-retaining material as salty strains having the ability to decompose chlorine ions in chlorine compounds were selected.
콘크리트의 염해에 의한 열화 메커니즘은 염소 이온이 콘크리트 내부로 침투 및 확산되면서 염소 이온(Cl-)이 해수 환경에 노출된 콘크리트의 시멘트 수화물인 Ca(OH)2와 결합하여 CaCl2가 형성되는데, CaCl2는 가용성의 다공성 화합물로 해수에 용해되어 콘크리트의 공극을 증가시켜 내구성 감소(염화 부식)의 원인이 된다. 해수 중 염소 이온에 의해 형성된 CaCl2 화합물은 다시 모노설페이트와 반응하여 프리델염 및 클로로페라이트 수화물로 결합되는데, 콘크리트의 탄산화와 함께 pH가 낮아지면 프리델염이 분해되어 콘크리트 내부 공극 중의 염화물 이온이 증가하게 되고, 이는 다시 CaCl2 화합물 형성을 가속화 시켜 악순환적인 염해침식 기구가 형성된다. 더불어 콘크리트 내부 공극 중의 염화물 이온이 증가하게 되면 철근은 염화물과 결합하여 FeCl2가 생성되고, 이는 물과 반응함으로써 부식의 활성화 환경이 된다. 철근의 부식은 부피 팽창을 유발하여 콘크리트의 균열의 확장과 박리를 유발함에 따라 내구성 감소에 큰 영향을 미치게 된다.The mechanism of deterioration due to salt damage of concrete is that as chlorine ions penetrate and diffuse into the concrete, chlorine ions (Cl - ) combine with Ca(OH) 2 , the cement hydrate of concrete exposed to seawater, to form CaCl 2 . 2 is a soluble porous compound that dissolves in seawater and increases the porosity of concrete, causing a decrease in durability (chlorination corrosion). The CaCl 2 compound formed by chlorine ions in seawater reacts with monosulfate again and is combined into Friedel salt and chloroferrite hydrate. , which in turn accelerates the formation of CaCl 2 compounds, forming a vicious cycle of salt erosion mechanism. In addition, when chloride ions in the pores of concrete increase, reinforcing bars combine with chloride to form FeCl 2 , which reacts with water to become an active environment for corrosion. Corrosion of reinforcing bars causes volume expansion, which causes expansion and exfoliation of cracks in concrete, which greatly affects durability reduction.
본 발명에서는 하기 표 1에 나타낸 다양한 호염 균주(해양 미생물)에 대해 염해에 의한 열화 제어 기능을 효과적으로 구현할 수 있는지 여부를 확인한 결과, 염소 이온 분해 능력을 갖는 혐기성의 호염균인 할로모나스 베누스타(Halomonas venusta)가 해양환경에서 생장하며 염소 이온을 분해할 수 있는 효모를 배출하여 콘크리트의 염해 열화 및 내구성 저하의 유발 인자인 Cl 화합물(CaCl2 및 FeCl2)을 소모시키는 기능이 가장 우수한 것을 확인하였다.In the present invention, as a result of confirming whether it is possible to effectively implement the function of controlling deterioration due to salt damage to the various basophils (marine microorganisms) shown in Table 1 below, Halomonas, an anaerobic basophil having a chlorine ion decomposition ability, Halomonas venusta ) grows in a marine environment and releases yeast capable of decomposing chlorine ions, confirming that it has the best function to consume Cl compounds (CaCl 2 and FeCl 2 ), which are factors that cause salt degradation and durability degradation of concrete.
Strainstrain SpeciesSpecies
MH60115MH60115 Sulfitobacter mediterraneusSulfitobacter mediterraneus
HY72501HY72501 Bacillus licheniformisBacillus licheniformis
1GJ1_91GJ1_9 Tenacibaculum litoreumTenacibaculum litoreum
G2M2_14G2M2_14 Phaeobacter italicusPhaeobacter italicus
1GJ1_21GJ1_2 Erythrobacter flavusErythrobacter flavus
1GJ1_11GJ1_1 Kordiimonas gwangyangensisKordiimonas gwangyangensis
3-5613-561 Halomonas venustaHalomonas venusta
상기 균주들에 대한 분리 과정은 다음과 같다.The separation process for the strains is as follows.
(1) 시료 채취(1) Sample collection
전남 완도군 완도읍 군내리 소재 완도항에서 해수와 홍합을 채취하고, 채취한 시료는 아이스박스에 보관하여 운반하였다.Seawater and mussels were collected from Wando Port in Gunnae-ri, Wando-eup, Wando-gun, Jeollanam-do, and the collected samples were stored in an icebox and transported.
(2) 미생물 분리 및 배양조건(2) Microbial isolation and culture conditions
채취한 홍합의 껍질 및 홍합살은 vortex 하여 미생물을 탈리시켰다. 해수 및 홍합으로부터 탈리된 미생물을 여과를 통해 여과지에 모은 후 vortex 하여 여과지로부터 미생물을 탈리시킨 후 3.5% NaCl 용액으로 10-4까지 연속 희석하고 배지(50% marine + 50% R2A agar (3.5% NaCl) pH 7.6)에 도말하여 30℃ 호기 조건으로 1주일간 배양하였다. 배양 후 나타난 colony는 특징적인 형태별로 순수 분리하여 배양하였다. 각 배양된 미생물을 16S rDNA 염기서열 분석법으로 분리하고 동정한 결과 각각 표 1의 공지된 미생물인 것으로 확인되었다.The collected mussel shells and mussel flesh were vortexed to remove microorganisms. After collecting the microorganisms desorbed from seawater and mussels on filter paper through filtration, vortex to desorb the microorganisms from the filter paper, and then serially diluted to 10 -4 with 3.5% NaCl solution and medium (50% marine + 50% R2A agar (3.5% NaCl) ) at pH 7.6) and incubated for 1 week under aerobic conditions at 30°C. The colonies that appeared after culturing were purified and cultured according to their characteristic types. As a result of separation and identification of each cultured microorganism by 16S rDNA sequencing, it was confirmed that each cultured microorganism was a known microorganism in Table 1.
또한 본 발명에서는 콘크리트 표면에서 호염 슬라임 형성을 효과적으로 구현할 수 있는 박테리아를 선별하였다.In addition, in the present invention, bacteria that can effectively implement basophil slime formation on the concrete surface were selected.
본 발명에서는 상기 표 1에 나타낸 다양한 호염 균주에 대해 해양환경과 유사한 조건에서 호염 슬라임 형성을 효과적으로 구현할 수 있는지 여부를 확인한 결과, 염분 농도가 3 내지 5 중량% 수준인 해수에서 생장 가능한 호염균으로서 설피토박터 메디테라네우스(Sulfitobacter mediterraneus)가 해당 환경에서 생장 및 증식을 통해 콘크리트 표면 점질의 슬라임 막을 형성하여 콘크리트 구조체에서 염소 이온 침투 및 확산에 저항하기 위한 보호막(Barrier)으로서 작용하는 기능이 가장 우수한 것을 확인하였다.In the present invention, as a result of confirming whether it is possible to effectively implement basophilic slime formation under conditions similar to the marine environment for the various basophilic strains shown in Table 1 above, it was established as a basophil capable of growing in seawater having a salinity concentration of 3 to 5 wt%. Sulfitobacter mediterraneus forms a slime film on the concrete surface through growth and proliferation in the corresponding environment and has the best function as a barrier to resist the penetration and diffusion of chlorine ions in the concrete structure. Confirmed.
상기 박테리아가 형성하는 슬라임 막은 콘크리트 표면에서 염소 이온 침투 및 확산에 대한 차단막을 형성하여 콘크리트 내부에서 공극 증가 및 내구성 저하의 영향을 미치는 CaCl2 화합물 및 FeCl2 화합물의 생성을 억제하게 된다.The slime film formed by the bacteria forms a barrier film against the penetration and diffusion of chlorine ions on the concrete surface, thereby inhibiting the formation of CaCl 2 compounds and FeCl 2 compounds, which have an effect of increasing voids and lowering durability in the concrete.
본 발명에서 상기 염소 이온 분해 박테리아 및 호염 슬라임 형성 박테리아는 다공질 구조의 캐리어('Healing+ C'라 명명함) 에 고정된다.In the present invention, the chlorine ion-decomposing bacteria and salt slime-forming bacteria are fixed to a porous carrier (referred to as 'Healing + C').
염해 열화된 콘크리트의 보수 및 내구성 향상을 위하여 발굴된 박테리아와 이의 생장증식을 위한 배양액을 포함하는 염소 이온 분해 박테리아 및 호염 슬라임 형성 박테리아 기반 캐리어는 Yeast extract, Ferric citrate 등을 포함하는 배지에 접종되어 5 내지 50℃, 바람직하게는 30 내지 40℃ 환경의 인큐베이터에서 108 내지 1010 cell/㎖의 농도로 배양된 염소 분해능 호염 박테리아 및 슬라임 형성 박테리아 배양액을 무수한 기공의 다공질의 구조를 갖는 재료에 고정한 캐리어이며, 이러한 재료로서 본 발명에서는 해양환경에서의 콘크리트 염해 보호의 기능을 고려할 때 팽창질석이 가장 적합한 것을 확인하였다.Chloride ion-decomposing bacteria and salt slime-forming bacteria-based carriers containing bacteria discovered for repair and durability improvement of salt-damaged concrete and culture medium for their growth are inoculated into a medium containing yeast extract, ferric citrate, etc. 5 To 50 ℃, preferably 30 to 40 ℃ in an incubator at a concentration of 10 8 to 10 10 cells / ㎖ chlorine-decomposable basophils and slime-forming bacteria culture solution is fixed to a material having a porous structure of countless pores. As such, in the present invention, it was confirmed that expanded vermiculite was most suitable considering the function of protecting concrete from salt damage in the marine environment.
여기서, 상기 염소이온 분해 박테리아로서 할로모나스 베누스타(Halomonas venusta) 및 호염 슬라임 형성 박테리아로서 설피토박터 메디테라네우스(Sulfitobacter mediterraneus)의 생장증식에 효과적인 배지 조성(Distilled water up to 1 ℓ 기준)은 펩톤 3 내지 7 g, Yeast extract 0.5 내지 1.5 g, Ferric citrate 0.05 내지 0.2 g, Sodium chloride 17 내지 23 g, Magnesium chloride 3 내지 9 g, Magnesium sulfate 2 내지 5 g, Calcium chloride 1 내지 3 g, Pottasium chloride 0.3 내지 1 g, Sodium biarbonate 0.1 내지 0.5 g, Potassium bromide 0.05 내지 0.15 g, Strontium chloride 20 내지 50 mg, Boric acid 15 내지 30 mg, Sodium silicate 2 내지 6 mg, Sodium fluoride 1 내지 5 mg, Ammonium nitrate 1 내지 5 mg, Disodium phosphate 5 내지 15 mg일 수 있다.Here, the effective medium composition (Distilled water up to 1 ℓ standard) for the growth and proliferation of Halomonas venusta as the chlorine ion-decomposing bacteria and Sulfitobacter mediterraneus as the basophil slime forming bacteria is peptone 3 to 7 g, Yeast extract 0.5 to 1.5 g, Ferric citrate 0.05 to 0.2 g, Sodium chloride 17 to 23 g, Magnesium chloride 3 to 9 g, Magnesium sulfate 2 to 5 g, Calcium chloride 1 to 3 g, Pottasium chloride 0.3 to 1 g, Sodium biarbonate 0.1 to 0.5 g, Potassium bromide 0.05 to 0.15 g, Strontium chloride 20 to 50 mg, Boric acid 15 to 30 mg, Sodium silicate 2 to 6 mg, Sodium fluoride 1 to 5 mg, Ammonium nitrate 1 to 5 mg, Disodium phosphate may be 5 to 15 mg.
상기 팽창질석에서 염해 열화 보호 효과를 위해 사용되는 박테리아 및 이의 배지는 염해 열화 환경(해양 환경)에 노출된 콘크리트 구조체 표면에서 자가 생장·증식하며, 콘크리트 열화 침식에 의한 보호체로서 작용한다. 고정화 재료로의 박테리아 배양액 고정은 멸균 음압 컨테이너에서 10 내지 30 torr, 10 내지 60분 조건으로 흡착을 통해 이루어질 수 있으며, 박테리아 배양액의 고정화가 완료된 팽창질석은 박테리아 세포뿐만 아니라 다량의 수분과 배지 영양분을 포함하게 된다.In the expanded vermiculite, the bacteria and its medium used for protection against salt damage and degradation self-grow and multiply on the surface of a concrete structure exposed to a salt degradation environment (marine environment), and act as a protector against deterioration and erosion of concrete. The fixation of the bacterial culture solution to the immobilization material can be accomplished through adsorption in a sterile negative pressure container at 10 to 30 torr, 10 to 60 minutes, and the expanded vermiculite, which has been immobilized in the bacterial culture, absorbs not only bacterial cells but also a large amount of moisture and medium nutrients. will include
이상의 염해 저항 보수재 및 박테리아가 고정된 다공질 구조의 캐리어를 이용한 콘크리트 단면 보수재의 혼합은 박테리아 기반 캐리어의 첨가량에 따라 다양하게 제시될 수 있으며, 이때, 박테리아 기반 캐리어의 첨가량은 보수재 중 골재 부피의 10 내지 35%인 것이 바람직하다. 하기 표 2에는 생태학적 염해 저항 콘크리트 단면 보수재 1 ㎡ 시공 시 두께별 염해 저항 보수재 및 박테리아 기반 캐리어 소요량을 예시적으로 나타내었다.Mixing of the above salt damage-resistant repair material and the concrete cross-section repair material using the carrier of the porous structure in which the bacteria is fixed can be presented in various ways depending on the amount of the bacteria-based carrier added. It is preferably 35%. Table 2 below exemplarily shows the required amount of salt damage resistant repair material and bacteria-based carrier by thickness when constructing 1 m2 of ecological salt damage resistant concrete cross-section repair material.
구 분
(보수 두께)
division
(repair thickness)
염해 저항 보수재
재료 소요량
Salt damage resistant repair material
material requirements
박테리아 기반 캐리어 재료 소요량Bacterial-based carrier material requirements 박테리아 기반 캐리어 혼합비율Bacterial-based carrier mixing ratio
T=10mmT=10mm 13 kg/㎡13 kg/m2 0.4 kg/㎡0.4 kg/m2 염해 저항 보수재의 골재 부피 대비 10% 혼합Mix 10% of the total volume of salt damage resistant repair material
T=20mmT=20mm 26 kg/㎡26 kg/m2 0.8 kg/㎡0.8 kg/m2
T=30mmT=30mm 39 kg/㎡39 kg/m2 1.2 kg/㎡1.2 kg/m2
T=40mmT=40mm 52 kg/㎡52 kg/m2 1.6 kg/㎡1.6 kg/m2
T=50mmT=50mm 65 kg/㎡65 kg/m2 2.0 kg/㎡2.0 kg/㎡
구 분
(보수 두께)
division
(repair thickness)
염해 저항 보수재
재료 소요량
Salt damage resistant repair material
material requirements
박테리아 기반 캐리어 재료 소요량Bacterial-based carrier material requirements 박테리아 기반 캐리어 혼합비율Bacterial-based carrier mixing ratio
T=10mmT=10mm 12 kg/㎡12 kg/m2 0.8 kg/㎡0.8 kg/m2 염해 저항 보수재의 골재 부피 대비 20% 혼합Mix 20% of the total volume of salt damage resistant repair material
T=20mmT=20mm 24 kg/㎡24 kg/m2 1.6 kg/㎡1.6 kg/m2
T=30mmT=30mm 36 kg/㎡36 kg/m2 2.4 kg/㎡2.4 kg/㎡
T=40mmT=40mm 48 kg/㎡48 kg/m2 3.2 kg/㎡3.2 kg/㎡
T=50mmT=50mm 60 kg/㎡60 kg/㎡ 4.0 kg/㎡4.0 kg/m2
구 분
(보수 두께)
division
(repair thickness)
염해 저항 보수재
재료 소요량
Salt damage resistant repair material
material requirements
박테리아 기반 캐리어 재료 소요량Bacterial-based carrier material requirements 박테리아 기반 캐리어 혼합비율Bacterial-based carrier mixing ratio
T=10mmT=10mm 10 kg/㎡10 kg/m2 1.4 kg/㎡1.4 kg/㎡ 염해 저항 보수재의 골재 부피 대비 35% 혼합35% of the total volume of the salt damage resistant repair material is mixed
T=20mmT=20mm 21 kg/㎡21 kg/m2 2.8 kg/㎡2.8 kg/㎡
T=30mmT=30mm 32 kg/㎡32 kg/m2 4.2 kg/㎡4.2 kg/㎡
T=40mmT=40mm 42 kg/㎡42 kg/m2 5.6 kg/㎡5.6 kg/m2
T=50mmT=50mm 53 kg/㎡53 kg/m2 7.0 kg/㎡7.0 kg/㎡
상기 표 2에서는 후술하는 시공 방법에 관계 없이 생태학적 염해 저항 콘크리트 단면 보수재 시공 시 두께별 염해 저항 보수재 및 호염 박테리아 기반 캐리어의 소요량을 나타낸 것이며, 시공 두께(T)는 10 내지 50 mm로 제시될 수 있고, 박테리아 기반 캐리어 혼합비율에 따라 염해 저항 보수재가 10 내지 65 kg/㎡, 호염 박테리아 기반 캐리어가 0.4 내지 7.0 kg/㎡ 일 수 있다.Table 2 above shows the required amount of salt damage resistant repair material and halophilic bacteria-based carrier by thickness when constructing ecological salt damage resistant concrete cross-section repair materials regardless of the construction method to be described later, and the construction thickness (T) can be presented as 10 to 50 mm In addition, depending on the mixing ratio of the bacteria-based carrier, the salt damage resistant repair material may be 10 to 65 kg/m2, and the basophilic bacteria-based carrier may be 0.4 to 7.0 kg/m2.
생태학적 염해 저항 콘크리트 단면 보수재의 시공은 기계 스프레이 타설에 의해 시공될 수 있고, 이하, 예시적으로 설명한다. 재료 혼합 시 믹서, 핸드믹서 등을 이용하여 골고루 섞일 수 있도록 3 내지 5분 동안 혼합한다. 1단계 스프레이 작업은 하지면의 공극 제거와 접착력을 높이기 위하여 5 mm로 얇게 스프레이 시공한다. 2단계 스프레이는 1단계 두께를 포함하여 설계 두께의 90% 이내로 한다. 스프레이 시공 후 표면의 평탄 작업 시에는 연결 시공부위나 하지면과의 연결 부위 등에서 주의하도록 한다.The construction of the ecological salt damage resistance concrete cross-section repair material can be constructed by mechanical spray pouring, and will be described below by way of example. When mixing the ingredients, mix for 3 to 5 minutes so that they can be mixed evenly using a mixer or hand mixer. In the first step of spraying, a thin spray of 5 mm is applied to remove voids on the substrate and to increase adhesion. 2nd stage spray should be within 90% of the design thickness including the 1st stage thickness. When flattening the surface after spraying, pay attention to the connection construction part or the connection part with the underlying surface.
이하, 본 발명에 따른 구체적인 실시예를 들어 설명한다.Hereinafter, specific examples according to the present invention will be described.
실시예Example
1종 보통포틀랜드 시멘트가 92 중량% 및 EVA계 폴리머 8 중량% 조성으로 결합재를 준비하고, 폴리에틸렌 섬유(평균 직경 120 ㎛)를 전체 보수재 100 부피부에 대하여 0.2 부피부가 되도록 준비하고, 잔골재로서 규사(평균 입경 0.25 내지 0.7 mm)를 잔골재-결합재비(sand to binder ratio, S/B)가 2 중량비가 되도록 하고, 물-결합재비(water to binder ratio, W/B)가 28 내지 35 중량%가 되도록 배합하여 염해 저항 보수재를 제조하였다.Prepare a binder with a composition of 1st class ordinary Portland cement of 92% by weight and EVA-based polymer 8% by weight, and prepare polyethylene fibers (average diameter of 120 μm) to 0.2 parts by volume based on 100 parts by volume of the total repair material, and silica sand ( The average particle diameter is 0.25 to 0.7 mm), the fine aggregate-binder ratio (S/B) is 2 weight ratio, and the water-binder ratio (W/B) is 28 to 35 weight% By mixing as much as possible, a salt damage resistant repair material was prepared.
또한 염소이온 분해 박테리아로서 할로모나스 베누스타(Halomonas venusta) 및 호염 슬라임 형성 박테리아로서 설피토박터 메디테라네우스(Sulfitobacter mediterraneus)를 동일 함량으로 하기 표 3의 조성의 배지에 접종 후 인큐베이터(30 내지 40℃)에서 109 cell/㎖의 농도가 되도록 7일간 배양하였다. 이후, 내부 교반형 멸균 음압 컨테이너에 박테리아 배양액을 투입하고, 박테리아 배양액 100 중량부에 대하여 10 중량부 함량의 팽창질석을 상기 배양액에 침지시킨 후 도어를 닫고, 10 내지 30 torr의 음압 환경이 되도록 밸브를 조절하고, 30분 동안 흡착을 실시하였으며, 이후 박테리아가 고정된 팽창질석을 회수하였다.In addition, Halomonas venusta as a chlorine ion-decomposing bacterium and Sulfitobacter mediterraneus as a basophil slime-forming bacterium were inoculated into the medium of the composition of Table 3 below with the same content and then inoculated in an incubator (30 to 40 ° C.) ) to a concentration of 10 9 cells/ml and cultured for 7 days. Thereafter, the bacterial culture solution is put into an internally stirred sterile negative pressure container, the expanded vermiculite in an amount of 10 parts by weight based on 100 parts by weight of the bacterial culture solution is immersed in the culture solution, the door is closed, and the valve is set to a negative pressure environment of 10 to 30 torr. was adjusted, and adsorption was carried out for 30 minutes, after which the expanded vermiculite on which the bacteria was immobilized was recovered.
이후, 제조된 염해 저항 보수재의 골재 부피 대비 20% 혼합비율로 박테리아가 고정된 팽창질석을 믹서기로 혼합하여 최종 콘크리트 단면 보수재를 제조하였다.Thereafter, the final concrete cross-section repair material was prepared by mixing expanded vermiculite in which bacteria were fixed in a mixing ratio of 20% to the aggregate volume of the prepared salt damage-resistant repair material with a mixer.
SourceSource AmountAmount
PeptonePeptone 5.0 g5.0 g
Yeast extractyeast extract 1.0 g1.0 g
Ferric citrateFerric citrate 0.1 g0.1 g
Sodium chloridesodium chloride 19.45 g19.45 g
Magnesium chlorideMagnesium chloride 5.9 g5.9 g
Magnesium sulfateMagnesium sulfate 3.24 g3.24 g
Calcium chlorideCalcium chloride 1.8 g1.8 g
Pottasium chloridePottasium chloride 0.55 g0.55 g
Sodium biarbonateSodium biarbonate 0.16 g0.16 g
Potassium bromidePotassium bromide 0.08 g0.08 g
Strontium chlorideStrontium chloride 34.0 mg34.0 mg
Boric acidBoric acid 22.0 mg22.0 mg
Sodium silicatesodium silicate 4.0 mg4.0 mg
Sodium fluorideSodium fluoride 2.4 mg2.4 mg
Ammonium nitrateAmmonium nitrate 1.6 mg1.6 mg
Disodium phosphateDisodium phosphate 8.0 mg8.0 mg
Distilled water up to 1 ℓDistilled water up to 1 liter
시험예test example
상기 제조된 콘크리트 단면 보수재에 대하여 각종 시험규격에 따른 성능평가를 실시하였으며, 그 결과를 하기 표 4에 나타내었다.Performance evaluation was performed according to various test standards for the prepared concrete cross-section repair material, and the results are shown in Table 4 below.
시험항목Test Items 부착강도(N/㎟) : 표준Adhesive strength (N/㎟) : Standard 압축강도(N/㎟)Compressive strength (N/㎟) 중성화 저항성(mm)Neutralization resistance (mm) 투수량
(g)
pitch
(g)
물흡수계수
(kg/(㎡·h0.5)
water absorption coefficient
(kg/(㎡·h 0.5 )
길이변화율
(%)
length change rate
(%)
28일28 days 28일28 days
기준standard 1.0 이상1.0 or higher 20.0이상20.0 or higher 2 이내within 2 20.0이하20.0 or less 0.5이하0.5 or less ±0.15이내Within ±0.15
결과result 2.12.1 48.248.2 00 6.56.5 0.220.22 - 0.02- 0.02
시험방법Test Methods KS F 4042 : 2012KS F 4042 : 2012
시험항목Test Items 염화물 확산계수 (×10-12 ㎡/s)Chloride diffusion coefficient (×10 -12 m2/s) 통과 전하량 (Coulombs)Passing Charge (Coulombs)
28일28 days 28일28 days
일반 보수재general repair material 7.27.2 590590
생태학적 염해 저항 보수재Ecological salt damage resistant repair material 0.60.6 130130
시험방법Test Methods NT BUILD 492NT BUILD 492 KS F 2711KS F 2711
표 4를 참조하면, 본 발명에 따른 생태학적 염해 저항 콘크리트 단면 보수재는 KS F 4042(폴리머 시멘트 모르타르)에서 제시하고 있는 부착강도(1.0 MPa 이상) 및 압축강도(20 MPa)의 요구 성능에 비해 2.1배 이상 높게 나타났다. 더불어, 중성화 깊이는 0 mm, 길이변화율은 0.04%로 KS F 4042에서 요구하는 품질 기준의 성능을 만족하였다. 이와 함께 NT BUILD 492에 따른 염화물 확산계수의 평과 결과에서는 본 발명에 따른 생태학적 염해 저항 콘크리트 단면 보수재의 경우 일반 보수재 대비 90% 낮은 수준이며, KS F 2711에 따른 총통과전류량은 일반 보수재 대비 88% 낮은 수준으로 모든 평가항목에 있어 현저히 우수한 결과를 나타내었다.Referring to Table 4, the ecological salt damage-resistant concrete cross-section repair material according to the present invention is 2.1 compared to the required performance of adhesive strength (1.0 MPa or more) and compressive strength (20 MPa) presented in KS F 4042 (polymer cement mortar). appeared more than twice as high. In addition, the neutralization depth was 0 mm and the length change rate was 0.04%, which satisfies the quality standards required by KS F 4042. In addition, in the evaluation result of the chloride diffusion coefficient according to NT BUILD 492, the ecological salt damage resistant concrete section repair material according to the present invention is at a level that is 90% lower than that of the general repair material, and the total through-current according to KS F 2711 is 88% compared to the general repair material It showed remarkably excellent results in all evaluation items at a low level.
이상에서 설명한 본 발명의 바람직한 실시예들은 기술적 과제를 해결하기 위해 개시된 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 사상 및 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.Preferred embodiments of the present invention described above are disclosed to solve the technical problem, and various modifications, changes, additions, etc. will be possible within the spirit and scope of the present invention by those of ordinary skill in the art to which the present invention pertains. , such modifications and changes should be regarded as belonging to the following claims.

Claims (4)

1종 보통포틀랜드 시멘트와 EVA계 폴리머를 포함하는 결합재, 폴리에틸렌 섬유 및 잔골재를 포함하는 염해 저항 보수재;와 염소 이온 분해 박테리아 및 호염 슬라임 형성 박테리아가 고정된 다공질 구조의 캐리어;가 혼합된 염해 환경에서의 콘크리트 단면 보수재.A salt damage resistant repair material containing a binder containing type 1 ordinary Portland cement and EVA polymer, polyethylene fibers and fine aggregate; and a porous structure carrier in which chlorine ion decomposing bacteria and salt slime forming bacteria are fixed; in a mixed salt environment Concrete section repair material.
제1항에 있어서, The method of claim 1,
상기 염해 저항 보수재는 상기 1종 보통포틀랜드 시멘트를 90 내지 95 중량%, 상기 EVA계 폴리머를 5 내지 10 중량%, 상기 폴리에틸렌 섬유를 상기 보수재 100 부피부에 대하여 0.1 내지 0.3 부피부 포함하고,The salt damage resistance repair material contains 90 to 95 weight % of the first-class ordinary Portland cement, 5 to 10 weight % of the EVA-based polymer, and 0.1 to 0.3 parts by volume of the polyethylene fiber based on 100 parts by volume of the repair material,
상기 잔골재는 평균 입경이 0.25 내지 0.7 mm인 규사로서, 잔골재-결합재비(sand to binder ratio, S/B)가 1.8 내지 2.2 중량비이고,The fine aggregate is silica sand having an average particle diameter of 0.25 to 0.7 mm, and a fine aggregate-binder ratio (S/B) is 1.8 to 2.2 by weight,
물-결합재비(water to binder ratio, W/B)가 28 내지 35 중량%인 것을 특징으로 하는 염해 환경에서의 콘크리트 단면 보수재.Concrete cross-section repair material in a salt damage environment, characterized in that the water-binder ratio (W/B) is 28 to 35% by weight.
제1항에 있어서,According to claim 1,
상기 캐리어는 팽창질석이고, 상기 염소 이온 분해 박테리아 및 호염 슬라임 형성 박테리아가 음압 조건에서 고정된 것을 특징으로 하는 염해 환경에서의 콘크리트 단면 보수재.The carrier is expanded vermiculite, and the chlorine ion decomposing bacteria and salt slime forming bacteria are fixed under negative pressure conditions.
제1항에 있어서,According to claim 1,
상기 염소 이온 분해 박테리아는 할로모나스 베누스타(Halomonas venusta)이고, 상기 호염 슬라임 형성 박테리아는 설피토박터 메디테라네우스(Sulfitobacter mediterraneus)인 것을 특징으로 하는 염해 환경에서의 콘크리트 단면 보수재.The chlorine ion-decomposing bacteria is Halomonas venusta ( Halomonas venusta ), and the basophil slime-forming bacteria are Sulfitobacter mediterraneus ) Concrete cross-section repair material in a salty environment, characterized in that it is.
PCT/KR2021/004758 2020-11-11 2021-04-15 Cross section repair material based on halophilic slime-forming bacteria WO2022102882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180022385.XA CN115427371A (en) 2020-11-11 2021-04-15 Cross-section repair material based on halophilic slime forming bacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0150193 2020-11-11
KR1020200150193A KR102324112B1 (en) 2020-11-11 2020-11-11 Halophilic slime forming bacterium base section repair material

Publications (1)

Publication Number Publication Date
WO2022102882A1 true WO2022102882A1 (en) 2022-05-19

Family

ID=78516320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004758 WO2022102882A1 (en) 2020-11-11 2021-04-15 Cross section repair material based on halophilic slime-forming bacteria

Country Status (3)

Country Link
KR (1) KR102324112B1 (en)
CN (1) CN115427371A (en)
WO (1) WO2022102882A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233961A (en) * 1998-12-15 2000-08-29 Obanaya Sangyo:Kk Mortar composition
KR101743042B1 (en) * 2016-01-20 2017-06-15 (주)대우건설 Mortar composition for restoring cross section of light weight and eco-friendly polymer cement
KR102173957B1 (en) * 2020-02-11 2020-11-05 콘스타주식회사 Mortar composition for reparing and reinforcing concrete structure using acid resistant microorganism and high-sulfate cement and method for reparing and reinforcing concrete structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817708B1 (en) * 2007-12-31 2008-03-27 정래국 A novel halophilic halomonas sp. having an excellent digestive effect of organic material, a soil conditioner for the reclaimed land using said strain and a method for plant growth-promoting thereof
KR101096513B1 (en) * 2011-08-08 2011-12-20 이동우 Mortar composition for reparing and reinforcing concreate structure compring of rapid curing binder using industrial by-products and using this concrete structure reparing and reinforcing methods
CN106045400B (en) * 2016-06-03 2018-03-09 太原理工大学 Crack autogenous healing concrete using aerobic halophile and preparation method thereof
CN108947380B (en) * 2017-05-18 2021-02-12 京畿大学校产学协力团 Method for producing bacterial-mucus-based coating material using porous-material immobilized bacteria agent and near-neutral binder
CN109133704A (en) * 2018-08-09 2019-01-04 姜香 A kind of preparation method of microorganism remediation cement-based material
CN110078462A (en) * 2019-05-20 2019-08-02 山西晟科微生物建材科技有限公司 Microorganism selfreparing thermal insulation mortar for building and preparation method thereof
CN111138107B (en) * 2020-01-15 2021-11-23 浙江海洋大学 Microorganism immobilization method for self-repairing of concrete cracks
CN111606596A (en) * 2020-06-11 2020-09-01 东北大学 Concrete anti-cracking and self-repairing composition and preparation and use methods thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233961A (en) * 1998-12-15 2000-08-29 Obanaya Sangyo:Kk Mortar composition
KR101743042B1 (en) * 2016-01-20 2017-06-15 (주)대우건설 Mortar composition for restoring cross section of light weight and eco-friendly polymer cement
KR102173957B1 (en) * 2020-02-11 2020-11-05 콘스타주식회사 Mortar composition for reparing and reinforcing concrete structure using acid resistant microorganism and high-sulfate cement and method for reparing and reinforcing concrete structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG SEUNG-BAE, YANG KEUN-HYEOK: "Chloride Ion Penetration Resistance of Mortars including Expanded Vermiculite Immobilizing Bacteria", JOURNAL OF THE KOREA INSTITUTE OF BUILDING CONSTRUCTION 2017 FALL CONFERENCE, vol. 17, no. 2, 16 November 2017 (2017-11-16), pages 151 - 152, XP055930739 *
KWON SEUNG-JUN, HYUN-SUB YOON, KEUN-HYEOK YANG: "Chloride Penetration Resistance and UV Properties in Coating Materials Containing Various Slime-Forming Bacteria", JOURNAL OF THE KOREAN RECYCLED CONSTRUCTION RESOURCES INSTITUTE, vol. 5, no. 4, 31 December 2017 (2017-12-31), pages 395 - 402, XP055930737, ISSN: 2288-3320, DOI: 10.14190/JRCR.2017.5.4.395 *

Also Published As

Publication number Publication date
CN115427371A (en) 2022-12-02
KR102324112B1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
De Muynck et al. Microbial carbonate precipitation in construction materials: a review
Gu et al. Biodeterioration of concrete by the fungus Fusarium
Gutiérrez-Padilla et al. Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes
George et al. Current understanding and future approaches for controlling microbially influenced concrete corrosion: a review
KR102345339B1 (en) Bacteria-based ecological cement concrete repair method
KR102173957B1 (en) Mortar composition for reparing and reinforcing concrete structure using acid resistant microorganism and high-sulfate cement and method for reparing and reinforcing concrete structure
JPH06114397A (en) Bottom material/water quality improving method and improving agent set used thwerefor
CN104630126A (en) Microorganism nutrient agent for sewage treatment
KR101438380B1 (en) Concrete block for purifying water
CN111773604B (en) Microbial fermentation method for oil and gas field drilling rock debris
CN106635947B (en) Asynchronous domestication culture method for salt-tolerant denitrification microbial inoculum
CN112680015B (en) Putty material
Durban et al. Nitrate and nitrite reduction activity of activated sludge microcosm in a highly alkaline environment with solid cementitious material
US20230050281A1 (en) Method for treating waters, sediments and/or sludges
WO2022102882A1 (en) Cross section repair material based on halophilic slime-forming bacteria
CN207193178U (en) A kind of Marine reinforced concrete structure block with sterilization and anticorrosion function
KR102482786B1 (en) Halophilic slime forming bacteria-based repair materials
KR20100133148A (en) Method for production of high-performance self-purification concrete using effective micro-organisms
CN114921117B (en) Inorganic anticorrosive material and preparation method and application thereof
CN116083314A (en) Efficient microbial inoculum for reducing Jie Lantan industrial composite organic pollutants as well as preparation method and application thereof
CN112760266B (en) Bacillus preparation for hydraulic concrete and preparation method and application thereof
WO2014073739A1 (en) Water purifying soil ball with improved hardness and number of microorganisms
CN114231471A (en) Chemical solvent degrading bacterium pseudomonas flexuosa PH-2 and application thereof in chemical wastewater treatment
Vieira et al. The effect of clay particles on the activity of suspended autotrophic nitrifying bacteria and on the performance of an air-lift reactor
EP1351895A2 (en) Method and conditioning agent for treating waste water and air pollutants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892052

Country of ref document: EP

Kind code of ref document: A1