WO2022102337A1 - Information processing device, display device, information processing method, and program - Google Patents

Information processing device, display device, information processing method, and program Download PDF

Info

Publication number
WO2022102337A1
WO2022102337A1 PCT/JP2021/038114 JP2021038114W WO2022102337A1 WO 2022102337 A1 WO2022102337 A1 WO 2022102337A1 JP 2021038114 W JP2021038114 W JP 2021038114W WO 2022102337 A1 WO2022102337 A1 WO 2022102337A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
boundary
value
image information
pixel value
Prior art date
Application number
PCT/JP2021/038114
Other languages
French (fr)
Japanese (ja)
Inventor
太陽 木本
直樹 大橋
太郎 市坪
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022561353A priority Critical patent/JPWO2022102337A1/ja
Publication of WO2022102337A1 publication Critical patent/WO2022102337A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information

Definitions

  • This disclosure relates to an information processing device, a display device, an information processing method and a program.
  • Video projection devices using HTPS High Temperature Polysilicon
  • HTPS High Temperature Polysilicon
  • This HTPS panel has a TFT (Thin Film Transistor) structure, and when it receives a video signal, it applies a voltage to the liquid crystal element corresponding to each pixel to change the light transmission and project it. conduct.
  • TFT Thin Film Transistor
  • the HTPS panel applies a voltage to the pixels to control the pixel value according to the video signal, so display problems occur due to the lateral electric field generated between the electrodes of adjacent pixels. May be done. For example, in moving images, pixels that should transition from black pixels to white pixels may not become white pixels due to the influence of this lateral electric field, and afterimages and tailing phenomena may occur to the extent that they can be visually recognized.
  • the lateral electric field is reset by displaying all pixels in black in subframe units or by inserting a black belt area in a row or column that includes an area where afterimages may remain.
  • the band may be visually recognized in the brightness reduction and the display.
  • an information processing device that realizes information processing that suppresses deterioration of an image or video is provided.
  • the information processing apparatus includes a storage circuit and a signal processing circuit.
  • the signal processing circuit detects a moving object that scrolls with respect to the background in the image information, detects a boundary of the moving object in the image information, and with respect to the pixel value of the boundary pixel that is the boundary detected in the image information. To correct.
  • the signal processing circuit may correct the value to be larger than the pixel value of the boundary pixel in the image information.
  • the signal processing circuit may correct the pixel value of the boundary pixel to the pixel value indicating the background.
  • the signal processing circuit may correct the pixel value of the boundary pixel to the maximum value of the pixel value.
  • the signal processing circuit may correct the pixel value of the boundary pixel to a value obtained by multiplying the maximum value of the pixel value by a predetermined ratio.
  • the signal processing circuit may further correct the pixel value of the adjacent pixel adjacent to the boundary pixel to a value smaller than the pixel value of the adjacent pixel in the image information.
  • the adjacent pixel may be a pixel adjacent to the boundary pixel in a predetermined direction.
  • the signal processing circuit may correct the pixel value for each subframe belonging to the frame with respect to the image information acquired for each frame.
  • the signal processing circuit may correct in the frame so that the average of the correction values corrected for each of the adjacent pixels in the subframe becomes equal to the pixel value of the adjacent pixels in the image information.
  • the signal processing circuit may correct the pixel value for each component in a predetermined color space of the image information, and may synthesize the corrected pixel value to acquire the image information.
  • the storage circuit includes a frame memory, and the signal processing circuit may detect scrolling by comparing the image information of the current frame with the image information of the past frame stored in the frame memory. good.
  • the signal processing circuit is in a predetermined region based on the pixel value of the pixel in a predetermined region based on the pixel of interest in the current frame and a pixel at a first distance from the pixel of interest in the past frame. Scrolling in the pixel of interest may be detected by comparing each of the pixel values of the pixels in the above.
  • the pixel value of the pixel of interest in the image information is smaller than the first predetermined value, and the pixel value of a pixel belonging to within a second distance in a predetermined direction from the pixel of interest is larger than the second pixel value.
  • the pixel of interest may be detected as the boundary pixel.
  • the signal processing circuit determines the pixel of interest when the difference between the pixel value of the adjacent pixel adjacent to the pixel of interest in the predetermined direction and the pixel value of the pixel of interest is larger than the third pixel value. It may be detected as the boundary pixel.
  • the predetermined direction may be a chiral direction. This direction depends, for example, on the orientation direction of the liquid crystal molecules of the liquid crystal panel.
  • the adjacent pixel has the pixel value of the boundary pixel.
  • the same correction as the correction may be made.
  • the information processing circuit may be mounted on an IC (Integrated Circuitry).
  • It may be a control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit.
  • a control circuit that controls the voltage applied to the liquid crystal based on the corrected image information output by the signal processing circuit may be further provided, and the signal processing circuit may set the pixel value of the boundary pixel. , The control circuit may be corrected to a value larger than the voltage that gives the maximum value of the pixel value.
  • the display device includes a storage circuit, a signal processing circuit, a control circuit, and a liquid crystal panel.
  • the signal processing circuit detects a moving object that scrolls with respect to the background in the image information, detects a boundary pattern of the moving object in the image information, and has a pixel value of a boundary pixel that is the boundary detected in the image information.
  • the control circuit controls the voltage applied to the liquid crystal belonging to the liquid crystal panel based on the corrected image information output by the signal processing circuit, and the liquid crystal panel controls the control circuit. The intensity of the emitted light is controlled based on the voltage value output from.
  • the information processing method detects a moving object scrolling with respect to the background in the image information by a signal processing circuit, detects a boundary of the moving object in the image information, and detects the moving object in the image information.
  • the pixel value of the boundary pixel, which is the boundary, is corrected.
  • the program when executed by a signal processing circuit, the program detects a moving object that scrolls with respect to the background in the image information, detects a boundary of the moving object in the image information, and detects it in the image information.
  • the pixel value of the boundary pixel, which is the boundary, is corrected.
  • the figure which shows an example of an input signal and an output image schematically The figure which shows an example of an input signal and an output image schematically.
  • the figure which shows an example of an input signal and an output image schematically The figure which shows an example of an input signal and an output image schematically.
  • the figure which shows the example of the corresponding pixel area of scroll detection which concerns on one Embodiment The flowchart which shows the scroll detection process which concerns on one Embodiment.
  • the figure which shows typically an example of the correction process which concerns on one Embodiment The figure which shows typically an example of the correction process which concerns on one Embodiment.
  • the figure which shows typically an example of the correction process which concerns on one Embodiment The figure which shows typically an example of the correction process which concerns on one Embodiment.
  • the figure which shows typically an example of the correction process which concerns on one Embodiment The figure which shows typically an example of the correction process which concerns on one Embodiment.
  • the figure which shows typically an example of the correction process which concerns on one Embodiment The figure which shows typically an example of the correction process which concerns on one Embodiment.
  • the figure which shows typically an example of the correction process which concerns on one Embodiment The figure which shows typically an example of the correction process which concerns on one Embodiment.
  • the figure which shows typically an example of the correction process which concerns on one Embodiment The figure which shows typically an example of the correction process which concerns on one Embodiment.
  • FIG. 1 is a diagram showing an example of the arrangement and input / output state of the liquid crystal of the light emitting panel using a general liquid crystal.
  • the liquid crystal panel 3 includes, for example, a liquid crystal molecule 32 that exercises a TFT between the display surface 30 and the facing substrate 31.
  • the liquid crystal molecules 32 are arranged with a predetermined orientation angle with respect to the display surface 30 of the liquid crystal panel.
  • black is output by applying a voltage Vb corresponding to black to the liquid crystal display to put it in a light-shielded state.
  • the voltage Vb may be, for example, 0V.
  • FIG. 2 is a diagram showing an example in which a white pixel and a black pixel are adjacent to each other. Black pixels and white pixels are arranged in this order toward the orientation direction of the liquid crystal molecules.
  • a voltage Vw is applied to the liquid crystal molecule to tilt the liquid crystal molecule and transmit light.
  • the inclination of the liquid crystal from the white pixel to the black pixel by applying a voltage coincides with the orientation direction of the liquid crystal, so even if there is a slight gray area at the end of the white pixel.
  • the effect on the human eye is not so great, and white and black pixels can be separated naturally.
  • FIG. 3 is a diagram showing another example in which a white pixel and a black pixel are adjacent to each other.
  • black pixels and white pixels are arranged in this order in the direction opposite to the orientation direction of the liquid crystal molecules. Similar to the case of FIG. 2, when the pixel corresponding to white is output, the liquid crystal molecule is tilted and light is transmitted by applying a voltage Vw to the liquid crystal molecule.
  • a moving image signal for example, when a black object moves from the right side to the left side of the figure on a white background, the liquid crystal display in the white pixels is tilted due to the lateral electric field caused by the voltage Vb of the adjacent black pixels. Due to the great influence, afterimages and tailing may occur on the right side of the moving object. In the present disclosure, correction of an input signal is realized, which enables control to reduce the influence of such an afterimage.
  • the direction opposite to the orientation of the liquid crystal display for example, the direction from the left side to the right side in FIGS. 1 to 3 is referred to as a predetermined direction.
  • any object may have a pixel value smaller than that of the background.
  • FIG. 4 is a block diagram schematically showing the display device 1 according to the embodiment.
  • the display device 1 includes an information processing device 2 and a liquid crystal panel 3 described above.
  • the display device 1 may be, for example, a projection type liquid crystal display or a liquid crystal projector.
  • the information processing device 2 includes an information processing unit 20, a storage unit 21, and a voltage control unit 22.
  • the information processing device 2 appropriately corrects the image information displayed on the liquid crystal panel 3, converts the corrected image information into a voltage for displaying on the liquid crystal panel 3, and controls the liquid crystal panel 3.
  • Each component of the information processing circuit 2 may be composed of a digital or analog circuit such as a processing circuit and a storage circuit. These may be general-purpose processing circuits such as CPU (Central Processing Unit), or may be configured as ICs (Integrated Circuitry) for specific applications such as ASIC (Application Specified Integrated Circuitry).
  • CPU Central Processing Unit
  • ICs Integrated Circuitry
  • ASIC Application Specified Integrated Circuitry
  • a program related to software may be stored in a storage that is a non-temporary medium, or in a storage circuit having a memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • the information processing unit 20 corrects the input image information and outputs it.
  • the information processing unit 20 includes a scroll detection unit 200, a boundary detection unit 201, and a correction unit 202.
  • the image information is defined in a predetermined color space, for example, an RGB color space, and is information having a signal for each of R, G, and B colors.
  • the color space is not limited to RGB, and may be any color space such as Lab, Luv, and XYZ.
  • the information processing unit 20 corrects each color and outputs the image information, and based on this image information, the voltage control unit 22 determines the color of the liquid crystal panel 3.
  • the voltage may be controlled for each element.
  • the arrangement of colors in the output pixels may be, for example, a bayer arrangement, but the arrangement is not limited to this.
  • black image and white image are used, but this may be rephrased as the pixel value in each color component.
  • the pixel value of R, the pixel value of G, and the pixel value of B may be processed respectively.
  • the input image information that is, the image information to be corrected may be the color information already gamma-corrected.
  • it may be image information immediately before projection after signal processing such as necessary filter processing has been performed.
  • the scroll detection unit 200 detects a moving object in the image information.
  • a moving object is, for example, a moving object in an image that moves relative to the background. This moving object may have a darker color than the background.
  • the contour of the moving body may be black, or the moving body itself may be black.
  • the boundary detection unit 201 detects the boundary in the moving object detected by the scroll detection unit 200 in the image information.
  • the boundary may be detected as, for example, the position of a pixel.
  • the pixel constituting the boundary is referred to as a boundary pixel.
  • the setting of the boundary will be described in detail later.
  • the correction unit 202 corrects and outputs at least one pixel value of the boundary pixel detected by the boundary detection unit 201 and its peripheral pixels.
  • the storage unit 21 stores data and the like required by the information processing device 2.
  • the storage unit 21 may include, for example, a frame memory 210.
  • the frame memory 210 stores image information for each frame.
  • the scroll detection unit 200 detects a moving object by detecting the difference between the images using the past image information stored in the frame memory 210, for example, the image information of the previous frame, with respect to the image information of the current frame. Detect.
  • the voltage control unit 22 controls the voltage applied to the liquid crystal molecules of the liquid crystal panel 3 based on the corrected image information output by the correction unit 202. By controlling the inclination of the liquid crystal molecules corresponding to each pixel of the liquid crystal panel 3 by the voltage controlled by the voltage control unit 22, the output of the image on the display device 1 is realized.
  • the liquid crystal panel 3 emits light of various brightness by changing the light shielding state of the liquid crystal from the light emitting unit by the voltage controlled by the voltage control unit 22.
  • the intensity of this light may correspond to each of the RGB signals.
  • the liquid crystal panel 3 appropriately projects the light of each color by providing the filter of the color corresponding to RGB.
  • another color space is used as an output.
  • FIG. 5 is a flowchart showing the processing of the information processing unit 20 according to the embodiment.
  • the scroll detection unit 200 detects scrolling in the image information (S10).
  • This scroll detection is a process of detecting whether or not a moving object (moving object) exists in the image. By this processing, it is determined whether or not the pixel in the image information is a moving object.
  • the boundary detection unit 201 executes the detection of the boundary in the image information (S20).
  • This boundary detection is a process of detecting and extracting boundary pixels indicating boundaries in an image. By this processing, it is determined whether or not the pixel in the image information is a boundary pixel.
  • the correction unit 202 corrects the pixel value of each pixel of interest when the pixel belongs to a moving object and constitutes a boundary (S30). It should be noted that not only the boundary pixel but also the pixel close to at least one boundary may be corrected. By correcting this pixel value, the influence of the above-mentioned lateral electric field on the image and the moving image is suppressed.
  • the voltage control unit 22 generates a voltage to be applied to the liquid crystal molecules of the liquid crystal panel 3 based on the corrected image information, and applies the voltage to the liquid crystal panel 3 (S40). By applying the voltage controlled in this way to the liquid crystal molecules, deterioration of the image is suppressed.
  • Scroll detection includes pixels in a predetermined area based on the pixel of interest in the image information of the current frame, and pixels in a predetermined area based on pixels separated by a predetermined distance (first distance) from the pixel of interest in the past frame. Is compared and executed.
  • the desired pixel can be the target of scroll detection.
  • all the pixels of the image information may be the pixels of interest, or the pixels excluding the edges may be the pixels of interest.
  • an arbitrary area may be set as a scroll detection target area, and pixels belonging to the target area may be set as a pixel of interest.
  • FIG. 6 is a diagram showing a part of image information for explaining an example of scroll detection according to an embodiment.
  • the image information includes a plurality of pixels.
  • the pixel of interest is a pixel indicated by a diagonal line (a pixel described as 10). Further, it is assumed that scroll detection is performed in a region of 4 ⁇ 4 as shown in the figure with respect to the predetermined area and a distance of 4 dots on the left side (predetermined direction described above).
  • the scroll detection unit 200 detects scrolling by comparing the pixel value of the previous frame stored in the frame memory 210 with the pixel value of the current frame.
  • the pixels with reference to the pixel of interest in the current frame are set to 1 to 16, and the pixels with reference to the pixels separated by 4 dots in the predetermined direction in the previous frame from the pixels of interest are used as the reference.
  • Is 1' ⁇ 16' are set as I01, I02, ..., I16, I'1, I'2, ..., I'16, respectively.
  • the scroll detection unit 200 detects scrolling based on the values of I01 to I16 and I'1 to I'16. As an example, the scroll detection unit 200 detects scrolling based on the degree of matching indicating how well these corresponding pixels match. For example, the scroll detection unit 200 may detect scrolling by obtaining the sum of squares for each corresponding pixel as the evaluation value E as in Eq. (1). When E is smaller than the predetermined threshold value Eth, the scroll detection unit 200 may detect that the pixel of interest is a pixel in which the moving object is scrolled.
  • the evaluation is not limited to Eq. (1), but uses other statistics such as the sum of absolute values for each corresponding pixel, root mean square, root mean square, median difference, mode, and standard deviation. May be good.
  • this evaluation value is calculated for each distance with respect to the pixel of interest. If scrolling can be detected in a certain direction and at a certain distance with respect to the pixel of interest, it may be determined that the pixel of interest is a pixel that is a scrolled moving object, and the subsequent calculation may be omitted.
  • the scroll detection unit 200 may calculate the evaluation value by parallel calculation.
  • FIGS. 7A and 7B show an example of corresponding pixels when the predetermined area is set to the above 4 ⁇ 4 and the movement of a moving object with a first distance of 4 dots or less is detected.
  • the area represented by the dotted line indicates the area of the current frame
  • the area represented by the solid line indicates the area of the previous frame.
  • it is a figure which shows the corresponding area when moving the distance within 4 dots in the left, the lower, the lower left direction from the previous frame to the present frame.
  • the scroll detection unit 200 may evaluate scrolling in a predetermined area deviated by a first distance with respect to a predetermined direction in this way.
  • the scroll detection unit 200 calculates the evaluation value with the predetermined area based on the target pixel separated by the first distance in this way.
  • the pixel of interest is a pixel belonging to the moving object.
  • FIGS. 7A and 7B a total of 24 evaluation values may be calculated and detected.
  • it is determined that the pixel is a moving object with one target pixel it may be detected as a pixel belonging to the moving object.
  • the scroll detection unit 200 may determine whether or not it is a moving object together with the result around the pixel of interest, instead of evaluating each pixel. For example, when it is determined that a pixel having a threshold value or more among a predetermined number of peripheral pixels is a moving body, the pixel of interest may be determined to be a pixel belonging to the moving body.
  • the predetermined direction may be, for example, a direction from the left side in the horizontal direction to the right side in FIG. 6 or the like.
  • the upper and lower parts may be omitted, and scroll detection may be executed only in the lower left, left, and upper left directions.
  • the predetermined area and the first distance are shown as an example, and are not limited to the area and the distance as shown in the figure.
  • FIG. 8 is a flowchart showing the processing of the scroll detection unit 200 for a certain pixel of interest.
  • the scroll detection unit 200 extracts the pixel of interest from the input image information and calculates the evaluation value for the pixel of interest (S100).
  • the detailed processing is as described above, and the evaluation value is acquired by comparing the pixel value in the predetermined region with respect to the pixel of interest and the pixel value in the predetermined region with respect to the target pixel first distance away from the pixel of interest. ..
  • the scroll detection unit 200 compares the evaluation value with the threshold value (S102). Then, if the evaluation value is smaller than the threshold value, it is detected that the pixel of interest is a pixel belonging to the moving object (S104).
  • a plurality of target pixels may be set for the pixel of interest, an evaluation value may be calculated for each target pixel, and detection may be executed from these values.
  • the scroll detection unit 200 executes this detection on all the pixels of interest to be evaluated in the image information.
  • This process may be executed by repeating the processes of S100 to S104, or may be executed by processing all or at least a part of the processes of S100 to S104 by parallel arithmetic.
  • the scroll detection unit 200 has performed scroll detection using past frames, but the present invention is not limited to this.
  • scroll detection may be performed using only the pixel value of the current frame.
  • the area judged to be a moving object is extracted, and the analysis is performed on the moving object area to determine the area in which the scrolling object is shown. good.
  • a sufficient amount of teacher data may be collected and a scrolling moving object may be detected using a model optimized by machine learning. In this way, scrolling may be detected only from the image information of the current frame. Further, instead of directly using the past frame, an algorithm such as comparing the feature amount of the past frame with the feature amount of the current frame may be used.
  • scroll detection unit 200 has described the case where scrolling is detected from the current frame and the previous frame, scrolling may be detected by referring to more past frames.
  • scroll detection may use a general technique already known, which is acquired from image information of a plurality of frames.
  • the scroll detection unit 200 When the scroll detection unit 200 detects scrolling as described above, it outputs that the pixel of interest is a pixel related to the scrolling moving object. This output may be output by setting a flag in the image information.
  • the first distance is set to 4 dots in the above, but it can be set appropriately based on the device condition, environment, and the like. This first distance may be changed even if the device is the same, depending on the usage conditions and the like.
  • the boundary detection unit detects pixels that are boundaries in the image information.
  • a boundary pixel is defined as a pixel having a small pixel value among pixels having a luminance value difference of a predetermined value or more from adjacent pixels or pixels separated by a predetermined number.
  • the pixel separated by a predetermined number means, for example, a pixel separated by 2 pixels, 3 pixels, etc., but may indicate a pixel further separated depending on the resolution of the image information.
  • the boundary detection unit 201 detects the boundary based on the pixel values of the pixels separated by a predetermined distance (second distance) from the pixel of interest and the pixels between the pixel of interest and the pixel separated by the second distance. do.
  • the boundary detection unit 201 may execute the above processing for all the pixels included in the image information.
  • the correction processing shown below is executed on the pixels in which the scroll is detected by the scroll detection unit 200 and the boundary is detected by the boundary detection unit 201.
  • the processes of S10 and S20 in FIG. 5 may be executed in parallel, or the pixel to be corrected may be detected by taking the logical product of each result pixel.
  • the boundary detection unit 201 may execute the above boundary detection on a pixel detected by the scroll detection unit 200 as a moving object. Then, the correction processing shown below is executed for the pixel detected by the boundary detection unit 201 as the boundary.
  • the order of boundary detection and scroll detection may be reversed, and scroll detection may be performed using the pixel detected as the boundary as the pixel of interest. That is, the order of S10 and S20 in FIG. 5 may be exchanged. In this case, the following correction processing may be executed for the pixel of interest that has detected scrolling.
  • FIG. 9 is a diagram schematically explaining a boundary detection method when the second distance is 1 dot.
  • the boundary detection unit 201 confirms whether or not the pixel value of the pixel of interest is smaller than the first pixel value. When this pixel value is equal to or greater than the first pixel value, it is determined that the pixel of interest is not a boundary pixel, and the process proceeds to the evaluation of the next pixel of interest.
  • the boundary detection unit 201 detects the pixel of interest as the boundary pixel.
  • the first pixel value is a pixel value in which a pixel having a pixel value smaller than this value is a black pixel
  • the second pixel value is a pixel having a pixel value larger than this value as a white pixel. It is a pixel value.
  • the boundary detection unit 201 detects that the pixel of interest is a boundary pixel.
  • the boundary detection unit 201 may detect the boundary by defining a gray pixel other than a black pixel and a white pixel and setting the second distance to 2 dots or more.
  • FIG. 10 is a schematic diagram for explaining other situations of boundary detection.
  • the second distance is 2 dots.
  • the boundary detection unit 201 detects whether or not the pixel of interest is a boundary pixel.
  • the boundary detection unit 201 detects the pixel of interest as the boundary pixel. You may.
  • the boundary detection unit 201 may further acquire the pixel value of the pixel existing between the pixel of interest and the target pixel. For example, as shown in FIG. 10, when the pixel adjacent to the pixel of interest is a gray pixel between the pixel of interest and the target pixel, the boundary detection unit 201 may detect the pixel of interest as the boundary pixel. .. The detection of gray pixels may be executed, for example, based on the difference between the pixel values of the pixel of interest and the adjacent pixels being larger than the third pixel value. As shown in FIG. 10, when the pixel of interest is black, the adjacent pixel is gray, and the target pixel is white, the boundary detection unit 201 may detect the pixel of interest as the boundary pixel.
  • the boundary detection unit 201 may use as a determination criterion that the difference between the pixel values of the adjacent pixel and the target pixel is larger than the third pixel value, as shown by the dotted arrow in the figure.
  • the third pixel value may be a pixel value having a value larger than the first pixel value, and may be a pixel value having a value smaller than the second pixel value.
  • the first pixel value, the second pixel value, and the third pixel value may be set as values unique to the device, and are automatically measured at the time of starting the device, etc., based on the installation environment of the device, etc. It may be a determined value.
  • FIG. 11 is a diagram showing still another example of boundary detection. As shown in FIG. 11, the second distance is not limited to 1 dot, 2 dot, and may be, for example, 3 dot, 4 dot, 5 dot, or the like.
  • the pixel of interest is black
  • the target pixel separated by the second distance is white
  • the pixel between the pixel of interest and the target pixel and the pixel adjacent to the pixel of interest and the pixel of interest.
  • the difference in pixel value is larger than the third pixel value
  • the difference in pixel value between the pixel between the pixel of interest and the target pixel and adjacent to the pixel of interest and the pixel adjacent to the target pixel is the third pixel. It may be detected as a boundary based on a value greater than the value.
  • the boundary detection unit 201 can detect the boundary.
  • the boundary detection unit 201 first determines whether or not the pixel of interest is a boundary pixel in the relationship between the pixel of interest and the target pixel at a distance of 1 dot. May be determined. Then, if it is not determined to be a boundary pixel, then it may be determined whether or not it is a boundary pixel in the relationship between the pixel of interest and the target pixel at a distance of 2 dots.
  • the boundary detection unit 201 sets pixels within the second distance in a predetermined direction from the pixel of interest as target pixels one after another, and the pixel of interest is a boundary pixel in relation to the target pixel. It may be determined whether or not it is, and the boundary pixel may be detected.
  • the boundary detection unit 201 detects that the pixel of interest is a boundary pixel.
  • the determination based on the black, gray, and white thresholds does not have to be limited to the above processing, and may be any processing that is determined using a determination criterion and an algorithm that can be appropriately regarded as black, gray, and white.
  • the boundary detection unit 201 may set the pixel as the target pixel.
  • the boundary detection unit 201 determines that the pixel of interest is not a boundary pixel, and determines that the adjacent pixel is not a boundary pixel. The process may be repeated as a new pixel of interest.
  • FIG. 12 is a flowchart showing the process of detecting the boundary pixel by the boundary detection unit 201.
  • the boundary detection unit 201 first selects the pixel of interest and determines whether or not the pixel value of the pixel of interest is smaller than the first pixel value (S200). As for the selection of the pixel of interest, as described above, if scroll detection has already been performed, the pixels belonging to the scrolling moving object may be selected in order. Further, as another example, all or a part of the pixels of the image information may be selected in order.
  • the pixel value of the pixel of interest is smaller than the first pixel value, that is, when it is determined that the pixel of interest is a black pixel (S200: YES)
  • the pixel value of the target pixel that is a second distance away from the pixel of interest in a predetermined direction. Is larger than the second pixel value (S202).
  • the gray color described above describes the pixel between the target pixel and the target pixel. It is determined whether or not the condition of being a pixel is satisfied (S204). If the pixel of interest and the target pixel are adjacent pixels, the processing of S204 is skipped and the processing of S206 is executed.
  • the boundary detection unit 201 detects the pixel of interest as a boundary pixel and outputs it (S206). In other cases (S200: NO, S202: NO, S204: NO), the boundary detection unit 201 does not detect the pixel of interest as the boundary pixel, selects the next pixel of interest, and repeats the process. After processing all the pixels to be selected as the pixel of interest, the boundary detection unit 201 ends the processing.
  • the boundary pixel is detected by the target pixel which is a white pixel in a predetermined direction and the pixel value of the pixel existing between those pixels. Pixels on the opposite side of a predetermined direction of pixels may be considered. That is, the boundary detection unit 201 may further detect that the pixel of interest is a boundary pixel when the predetermined number of pixels on the opposite side of the pixel of interest in the predetermined direction are black pixels.
  • the boundary detection unit 201 may execute boundary detection using a total of 7 pixels, that is, a pixel adjacent to the predetermined direction of the pixel of interest, a pixel of interest, and 5 pixels continuous in the predetermined direction of the pixel of interest. ..
  • the pixels adjacent to the opposite side of the predetermined direction and the pixel of interest are black pixels, and of the five pixels existing in the predetermined direction, two consecutive pixels are white pixels (background color pixels), and black.
  • the transition is gray or white
  • the pixel of interest may be detected as a boundary pixel. In this way, it is also possible to detect the boundary pixel by using a specific pattern.
  • the above-mentioned motion detection and boundary detection may be performed by using other methods. Any form may be used as long as the correction unit 202 can appropriately correct using the boundary pixels detected by the above method or another appropriate method.
  • FIG. 13 is a diagram schematically showing an example of the correction according to the embodiment.
  • the correction unit 202 corrects the pixel value of the boundary pixel and the adjacent pixel adjacent to the boundary pixel in a predetermined direction.
  • the pixel having a value smaller than the first predetermined value is shown as a black pixel
  • the pixel having a value larger than the second predetermined value is shown as a white pixel.
  • an adjacent pixel a pixel adjacent to a boundary pixel in a predetermined direction is referred to as an adjacent pixel.
  • the correction unit 202 corrects the pixel value of the boundary pixel to be larger than the original pixel value, and corrects the pixel value of the adjacent pixel to be smaller than the original pixel value.
  • the correction unit 202 may correct the pixel value of the boundary pixel to a white pixel, that is, the maximum value of the pixel value.
  • the correction unit 202 may correct the pixel value of the adjacent pixel to a black pixel or a gray pixel, that is, the minimum value of the pixel value or the value of the third pixel value described above.
  • FIG. 14 is a diagram showing an example of the display of a moving object that scrolls in the direction opposite to the predetermined direction.
  • the image information includes, for example, a state in which an equilateral triangle moves in the scroll direction.
  • an afterimage is generated due to the influence of the lateral electric field of the adjacent pixels in the direction opposite to the orientation direction of the liquid crystal molecules.
  • the influence of the afterimage on the display can be reduced by setting the boundary pixel as a white pixel and the adjacent pixel as a gray pixel.
  • FIG. 15 is a flowchart showing the processing of the correction unit 202 according to the embodiment.
  • the correction unit 202 increases the pixel value of the boundary pixel (S300). For example, the correction unit 202 may correct the pixel value of the boundary pixel to a maximum value or a value larger than the second pixel value.
  • the correction unit 202 reduces the pixel values of the adjacent pixels adjacent to the boundary pixels in a predetermined direction (S302). For example, the correction unit 202 may correct the pixel value of the adjacent pixel so that the pixel value of the predetermined gray pixel is smaller than the measure.
  • the correction unit 202 outputs image information including the pixel value corrected in this way. Then, the voltage control unit 22 outputs a signal for controlling the voltage to be applied to the liquid crystal display based on the image information output by the correction unit 202.
  • the effect of the lateral electric field on the pixels connected in a predetermined direction is reset by correcting the white pixels, and the afterimage and the tailing phenomenon are caused. It becomes possible to suppress it. Further, by increasing the pixel value of the boundary pixel and decreasing the pixel value of the adjacent pixel, it is possible to suppress the decrease in luminance and contrast. According to this embodiment, since the pixel values are corrected for the boundary pixels and the adjacent pixels, it is possible to suppress the influence of afterimages and the like due to the lateral electric field without deteriorating the visibility of the other pixels.
  • the scroll direction is described as being completely opposite to the predetermined direction, but the scroll direction is not limited to this.
  • the information processing apparatus 2 can similarly correct the boundary.
  • the scroll direction may be the upper left direction or the lower left direction. Even in such a direction, afterimages and the like in the display unit can be suppressed by the correction by the information processing apparatus 2 as well.
  • the scroll direction includes a positive component in a predetermined direction
  • the predetermined direction is not limited to the horizontal direction.
  • the predetermined direction may be divided into the horizontal direction and the vertical direction in which the pixels are arranged.
  • scroll detection it is possible to detect scrolling in the horizontal direction and the vertical direction by the same processing as the above-mentioned processing.
  • the above processing in the horizontal direction may be executed in parallel in the vertical direction as well.
  • the correction unit 202 performs appropriate correction in the horizontal direction and the vertical direction with respect to the boundary pixel, so that appropriate processing can be performed regardless of the orientation of the liquid crystal. It will be possible.
  • correction unit 202 The other correction methods in the correction unit 202 will be described below with some non-limiting examples.
  • FIG. 16 is a diagram showing another example of correction.
  • the pixel value of the boundary pixel may be determined by multiplying the white pixel value by a gain.
  • This gain value may be a predetermined predetermined value, or may be a gain value acquired based on the difference between the boundary pixel and the adjacent pixel, or the boundary pixel and the background pixel value.
  • not only the boundary pixel value but also the pixel value of the adjacent pixel may be obtained by the gain.
  • the gain in this way, it is possible to weaken the degree of emphasis of the contour of the scrolling object as compared with the above-described embodiment. Since there is a trade-off relationship between the degree of enhancement of the contour and the effect of suppressing the afterimage, it may be appropriately adjusted by the color of the background pixel, the gradation of the adjacent pixel at the boundary pixel transition, and the like.
  • the gain is applied in this way, the correction is made so that the pixel value of the corrected boundary pixel becomes larger than the pixel value of the corrected adjacent pixel, that is, the magnitude relationship similar to that of the above embodiment is maintained. Is executed.
  • 17 and 18 are diagrams showing another example of correction.
  • the correction amount may be changed not by the white pixel value but by the pixel value of the background pixel.
  • the scroll detection by the scroll detection unit 200 and the boundary detection by the boundary detection unit 201 also execute the background pixel as a reference instead of the white pixel.
  • the pixel values of the boundary pixels and the adjacent pixels may be determined so as to match the pixel values of the background pixels.
  • FIG. 18 in which the pixel value of the background pixel is smaller than that in FIG.
  • FIG. 19 is a diagram illustrating a case where an adjacent pixel has a lower luminance value than a background pixel, for example, a gray pixel when the background pixel is a white pixel.
  • the upper figure shows the state before correction, and the lower figure shows the state after correction.
  • the correction unit 202 corrects so that the boundary pixel is larger than the original pixel value and the adjacent pixel is smaller than the original pixel value. It should be noted that even in this case, the pixel value of the corrected boundary pixel is larger than the pixel value of the corrected adjacent pixel.
  • FIG. 20 is a diagram illustrating a case where adjacent pixels also have a lower luminance value than background pixels. As shown in FIG. 20, there may be a plurality of gray pixels between the boundary pixel and the target pixel. Similarly, in this case as well, by making the pixel value of the boundary pixel larger than the original and the pixel value of the adjacent pixel smaller than the original, it is possible to reduce the influence of the lateral electric field due to the black pixel.
  • FIG. 21 is a diagram showing another correction example in the case of FIG. 20.
  • the correction unit 202 may correct the pixels on both sides of the boundary pixel. Boundary pixels and adjacent pixels are corrected in the same manner as in FIG.
  • the pixel adjacent to the boundary pixel on the opposite side in the predetermined direction raises the pixel value to the same pixel value as the boundary pixel. By doing so, it is possible to reduce the possibility that the influence of the lateral electric field affects the boundary pixels.
  • FIG. 22 is a diagram showing still another correction example in the case of FIG. 20.
  • the correction unit 202 largely corrects the pixel value up to the background color of the boundary pixel, and sets the adjacent pixel as the pixel value of the black pixel. Further, the pixel value between the adjacent pixel and the target pixel may also be the pixel value of the background color. By making such corrections, afterimages and the like can be suppressed more effectively and contours can be emphasized.
  • the correction process in the current frame by the correction unit 202 has been described.
  • the correction unit 202 may execute the correction process in the subframe in the current frame.
  • FIG. 23 is a diagram showing subframes in the frame.
  • the image information in the Mth frame has the same pixel value as in FIG. 20 with reference to the boundary pixel.
  • the third M frame includes a 0th subframe, a 1st subframe, a 2nd subframe, and a 3rd subframe.
  • the correction unit 202 may correct the image information in each subframe as follows.
  • FIG. 24 is a diagram showing an example of correction in the subframe.
  • the horizontal axis is the position of the pixel, and the vertical axis is the pixel value.
  • the dotted line indicates the pixel value before correction.
  • the correction unit 202 corrects the boundary pixel to be lower than the white pixel (background pixel) (for example, a value multiplied by a predetermined gain), and the pixel value of the adjacent pixel is the original pixel. Correct below the value.
  • the correction unit 202 corrects the pixel value of the boundary pixel to the same level as the white pixel (background pixel) and the adjacent pixel to the same level as the 0th subframe.
  • the correction unit 202 corrects in the same manner as in the 0th subframe.
  • FIG. 25 is a diagram showing another example of correction in the subframe.
  • the correction unit 202 makes corrections. For the first subframe, the boundary pixel and the adjacent pixel are corrected, and the correction unit 202 corrects the boundary pixel to be larger than the original pixel value, while the pixel value of the adjacent pixel is also large. to correct.
  • the correction unit 202 corrects the pixel value to be small so that the average value of the pixel values for each subframe of the adjacent pixel matches the pixel value of the adjacent pixel of the frame.
  • the correction unit 202 may perform correction for each subframe.
  • the correction unit 202 may make a large correction for adjacent pixels in consideration of visibility instead of reducing the pixel value.
  • the correction unit 202 corrected the boundary pixels so as not to exceed the pixel value of the white pixels, but this is not limited to this.
  • FIG. 26 is a diagram showing an example in which the correction unit 202 further increases the effect of correction.
  • the correction unit 202 may specify a value larger than the white pixel value as the correction value of the boundary pixel. Then, this image information is output to the voltage control unit 22. Based on this pixel value, the voltage control unit 22 may control the voltage so as to apply a voltage larger than the voltage applied to the liquid crystal as white pixels to the boundary pixels. By applying a voltage larger than the white pixel value in this way, the influence of the lateral electric field can be further suppressed as compared with the white pixel value.
  • the signal processing circuit is Detects a moving object that scrolls with respect to the background in the image information, Detecting the boundary of the moving object in the image information, The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
  • Information processing equipment Detects a moving object that scrolls with respect to the background in the image information, Detecting the boundary of the moving object in the image information, The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
  • the signal processing circuit is When the pixel value of the boundary pixel is smaller than the first pixel value, it is corrected to a value larger than the pixel value of the boundary pixel in the image information.
  • the information processing device according to (1).
  • the signal processing circuit is The pixel value of the boundary pixel is corrected to the pixel value indicating the background.
  • the signal processing circuit is The pixel value of the boundary pixel is corrected to the maximum value of the pixel value.
  • the signal processing circuit is The pixel value of the boundary pixel is corrected to a value obtained by multiplying the maximum value of the pixel value by a predetermined ratio.
  • the signal processing circuit further The pixel value of the adjacent pixel adjacent to the boundary pixel is corrected to a value smaller than the pixel value of the adjacent pixel in the image information.
  • the information processing device according to (3).
  • the adjacent pixel is a pixel adjacent to the boundary pixel in a predetermined direction.
  • the signal processing circuit is With respect to the image information acquired for each frame, the pixel value is corrected for each subframe belonging to the frame.
  • the information processing device according to any one of (1) to (7).
  • the signal processing circuit is In the frame, the average of the correction values corrected for each of the adjacent pixels in the subframe is corrected so as to be equal to the pixel value of the adjacent pixels in the image information.
  • the signal processing circuit is The image information is corrected for the pixel value for each component in a predetermined color space, and the pixel value is corrected.
  • the image information is acquired by synthesizing the corrected pixel values.
  • the information processing apparatus according to any one of (1) to (9).
  • the storage circuit includes a frame memory.
  • the signal processing circuit is Scrolling is detected by comparing the image information of the current frame with the image information of the past frame stored in the frame memory.
  • the information processing apparatus according to any one of (1) to (10).
  • the signal processing circuit is The pixel value of the pixel in a predetermined region based on the pixel of interest in the current frame and the pixel of the pixel in the predetermined region of the pixel at the first distance from the pixel of interest in the past frame. Scrolling in the pixel of interest is detected by comparing the pixel value with each other.
  • the information processing device according to (11).
  • the signal processing circuit is When the pixel value of the pixel of interest in the image information is smaller than the first predetermined value and the pixel value of a pixel belonging to within a second distance in a predetermined direction from the pixel of interest is larger than the second pixel value, the attention is given. Detecting a pixel as the boundary pixel, The information processing apparatus according to any one of (1) to (12).
  • the signal processing circuit is When the difference between the pixel value of the adjacent pixel adjacent to the pixel of interest in the predetermined direction and the pixel value of the pixel of interest is larger than the third pixel value, the pixel of interest is defined as the boundary pixel. Detect, The information processing apparatus according to (13).
  • the predetermined direction is the chiral direction.
  • the signal processing circuit is When the pixel value of the pixel adjacent to the predetermined direction is smaller than the first predetermined value, the adjacent pixel is corrected in the same manner as the correction for the pixel value of the boundary pixel. do, The information processing apparatus according to (7) or (13).
  • the information processing device is mounted on an IC (Integrated Circuitry).
  • IC Integrated Circuitry
  • a control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit.
  • a control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit. Further prepare The signal processing circuit is The pixel value of the boundary pixel is corrected to a value larger than the voltage that gives the maximum value of the pixel value in the control circuit.
  • the information processing device according to (2).
  • the signal processing circuit is Detects a moving object that scrolls with respect to the background in the image information, Detecting the boundary pattern in the image information of the moving object, The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected and corrected.
  • the control circuit is Based on the corrected image information output by the signal processing circuit, the voltage applied to the liquid crystal belonging to the liquid crystal panel is controlled.
  • the liquid crystal panel is The intensity of the emitted light is controlled based on the voltage value output from the control circuit. Display device.
  • the aspect of the present disclosure is not limited to the above-mentioned embodiment, but also includes various possible modifications, and the effect of the present disclosure is not limited to the above-mentioned contents.
  • the components in each embodiment may be applied in appropriate combinations. That is, various additions, changes and partial deletions are possible without departing from the conceptual idea and purpose of the present disclosure derived from the contents specified in the claims and their equivalents.

Abstract

[Problem] To realize information processing that inhibits the degradation of an image or a video. [Solution] This information processing device comprises a storage circuit and a signal processing circuit. The signal processing circuit: detects a mobile body that scrolls with respect to a background, in image information; detects a boundary of the mobile body in the image information; and corrects pixel values of boundary pixels which constitute the boundary detected in the image information.

Description

情報処理装置、表示装置、情報処理方法及びプログラムInformation processing equipment, display equipment, information processing methods and programs
 本開示は、情報処理装置、表示装置、情報処理方法及びプログラムに関する。 This disclosure relates to an information processing device, a display device, an information processing method and a program.
 HTPS(High Temperature Polysilicon)パネルを用いた映像投影装置は、画像、映像情報の高解像度化に伴い、例えば、液晶プロジェクタやバックプロジェクションテレビの分野において広く普及してきている。このHTPSパネルは、TFT(Thin Film Transistor)の構造を備えており、映像信号を受信すると、それぞれの画素に対応する液晶素子に電圧を印加することにより、光の透過度を変化させて投影を行う。 Video projection devices using HTPS (High Temperature Polysilicon) panels have become widespread in the fields of, for example, liquid crystal projectors and back-projection televisions, as the resolution of images and video information has increased. This HTPS panel has a TFT (Thin Film Transistor) structure, and when it receives a video signal, it applies a voltage to the liquid crystal element corresponding to each pixel to change the light transmission and project it. conduct.
 HTPSパネルは、上記のように映像信号に応じて、画素に電圧を印加して画素値を制御するため、隣接する画素の電極同士間で生じる横電界に起因して、表示上の不具合が発生する場合がある。例えば、動画においては、黒画素から白画素に遷移すべき画素が、この横電界の影響によって白画素にはならず、残像、尾引き現象が視認される程度に発生する可能性がある。 As described above, the HTPS panel applies a voltage to the pixels to control the pixel value according to the video signal, so display problems occur due to the lateral electric field generated between the electrodes of adjacent pixels. May be done. For example, in moving images, pixels that should transition from black pixels to white pixels may not become white pixels due to the influence of this lateral electric field, and afterimages and tailing phenomena may occur to the extent that they can be visually recognized.
 これに対応するため、サブフレーム単位で全画素を黒にして表示したり、残像等が残る可能性がある領域を含む行又は列に黒帯領域を挿入したりすることで、横電界をリセットする処理が行われていた。しかしながら、このような処理では、輝度低下や表示において帯が視認される可能性があるという問題が残る。 To deal with this, the lateral electric field is reset by displaying all pixels in black in subframe units or by inserting a black belt area in a row or column that includes an area where afterimages may remain. Was being processed. However, in such a process, there remains a problem that the band may be visually recognized in the brightness reduction and the display.
国際公開第2020/171130号International Publication No. 2020/171130
 そこで、本開示では、画像又は映像の劣化を抑制する情報処理を実現する情報処理装置を提供する。 Therefore, in the present disclosure, an information processing device that realizes information processing that suppresses deterioration of an image or video is provided.
 一実施形態によれば、情報処理装置は、記憶回路と、信号処理回路と、を備える。前記信号処理回路は、画像情報において背景に対してスクロールする動体を検知し、前記動体の前記画像情報における境界を検知し、前記画像情報において検知された前記境界である境界画素の画素値に対して補正する。 According to one embodiment, the information processing apparatus includes a storage circuit and a signal processing circuit. The signal processing circuit detects a moving object that scrolls with respect to the background in the image information, detects a boundary of the moving object in the image information, and with respect to the pixel value of the boundary pixel that is the boundary detected in the image information. To correct.
 前記信号処理回路は、前記境界画素の前記画素値が第1画素値よりも小さい場合に、前記画像情報における前記境界画素の前記画素値よりも大きい値に補正してもよい。 When the pixel value of the boundary pixel is smaller than the first pixel value, the signal processing circuit may correct the value to be larger than the pixel value of the boundary pixel in the image information.
 前記信号処理回路は、前記境界画素の前記画素値を、前記背景を示す前記画素値に補正してもよい。 The signal processing circuit may correct the pixel value of the boundary pixel to the pixel value indicating the background.
 前記信号処理回路は、前記境界画素の前記画素値を、前記画素値の最大値に補正してもよい。 The signal processing circuit may correct the pixel value of the boundary pixel to the maximum value of the pixel value.
 前記信号処理回路は、前記境界画素の前記画素値を、前記画素値の最大値に所定割合を乗算した値に補正してもよい。 The signal processing circuit may correct the pixel value of the boundary pixel to a value obtained by multiplying the maximum value of the pixel value by a predetermined ratio.
 前記信号処理回路は、さらに、前記境界画素に隣接する隣接画素の前記画素値を前記画像情報における前記隣接画素の前記画素値よりも小さい値に補正してもよい。 The signal processing circuit may further correct the pixel value of the adjacent pixel adjacent to the boundary pixel to a value smaller than the pixel value of the adjacent pixel in the image information.
 前記隣接画素は、前記境界画素に対して所定方向において隣接する画素であってもよい。 The adjacent pixel may be a pixel adjacent to the boundary pixel in a predetermined direction.
 前記信号処理回路は、フレームごとに取得した前記画像情報について、前記フレームに属するサブフレームごとに前記画素値を補正してもよい。 The signal processing circuit may correct the pixel value for each subframe belonging to the frame with respect to the image information acquired for each frame.
 前記信号処理回路は、前記フレームにおいて、前記サブフレームにおいて前記隣接画素のそれぞれに補正した補正値の平均が、前記画像情報における前記隣接画素の前記画素値と等しくなるように補正してもよい。 The signal processing circuit may correct in the frame so that the average of the correction values corrected for each of the adjacent pixels in the subframe becomes equal to the pixel value of the adjacent pixels in the image information.
 前記信号処理回路は、前記画像情報を所定色空間における各成分に対して前記画素値を補正し、補正した前記画素値を合成して前記画像情報を取得してもよい。 The signal processing circuit may correct the pixel value for each component in a predetermined color space of the image information, and may synthesize the corrected pixel value to acquire the image information.
 前記記憶回路は、フレームメモリを備え、前記信号処理回路は、現フレームの前記画像情報と、前記フレームメモリに格納された過去フレームの前記画像情報と、を比較して、スクロールを検知してもよい。 The storage circuit includes a frame memory, and the signal processing circuit may detect scrolling by comparing the image information of the current frame with the image information of the past frame stored in the frame memory. good.
 前記信号処理回路は、前記現フレームにおける着目画素を基準とする所定領域内にある前記画素の前記画素値と、前記過去フレームにおける前記着目画素から第1距離にある画素を基準とする所定領域内にある前記画素の前記画素値と、をそれぞれ比較して、前記着目画素におけるスクロールを検知してもよい。 The signal processing circuit is in a predetermined region based on the pixel value of the pixel in a predetermined region based on the pixel of interest in the current frame and a pixel at a first distance from the pixel of interest in the past frame. Scrolling in the pixel of interest may be detected by comparing each of the pixel values of the pixels in the above.
 前記信号処理回路は、前記画像情報の着目画素の前記画素値が第1所定値よりも小さく、前記着目画素から所定方向において第2距離以内に属する画素の前記画素値が第2画素値よりも大きい場合に、前記着目画素を前記境界画素であると検知してもよい。 In the signal processing circuit, the pixel value of the pixel of interest in the image information is smaller than the first predetermined value, and the pixel value of a pixel belonging to within a second distance in a predetermined direction from the pixel of interest is larger than the second pixel value. When it is large, the pixel of interest may be detected as the boundary pixel.
 前記信号処理回路は、前記着目画素の前記所定方向において隣接する隣接画素の前記画素値と、前記着目画素の前記画素値との差が、第3画素値よりも大きい場合に、前記着目画素を前記境界画素であると検知してもよい。 The signal processing circuit determines the pixel of interest when the difference between the pixel value of the adjacent pixel adjacent to the pixel of interest in the predetermined direction and the pixel value of the pixel of interest is larger than the third pixel value. It may be detected as the boundary pixel.
 前記所定方向は、カイラル方向であってもよい。この方向は、例えば、液晶パネルの液晶分子の配向方向に依存するほうこうである。 The predetermined direction may be a chiral direction. This direction depends, for example, on the orientation direction of the liquid crystal molecules of the liquid crystal panel.
 前記信号処理回路は、前記所定方向とは逆の方向に隣接する前記画素の前記画素値が、前記第1所定値よりも小さい場合に、当該隣接する画素について、前記境界画素の前記画素値に対する補正と同様の補正をしてもよい。 In the signal processing circuit, when the pixel value of the pixel adjacent to the predetermined direction is smaller than the first predetermined value, the adjacent pixel has the pixel value of the boundary pixel. The same correction as the correction may be made.
 前記情報処理回路は、IC(Integrated Circuitry)に実装されてもよい。 The information processing circuit may be mounted on an IC (Integrated Circuitry).
 前記信号処理回路が出力する補正後の前記画像情報に基づいて、液晶に印加する電圧を制御する、制御回路であってもよい。 It may be a control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit.
 前記信号処理回路が出力する補正後の前記画像情報に基づいて、液晶に印加する電圧を制御する、制御回路、をさらに備えてもよく、前記信号処理回路は、前記境界画素の前記画素値を、前記制御回路において前記画素値の最大値を与える電圧よりも大きい値に補正してもよい。 A control circuit that controls the voltage applied to the liquid crystal based on the corrected image information output by the signal processing circuit may be further provided, and the signal processing circuit may set the pixel value of the boundary pixel. , The control circuit may be corrected to a value larger than the voltage that gives the maximum value of the pixel value.
 一実施形態によれば、表示装置は、記憶回路と、信号処理回路と、制御回路と、液晶パネルと、を備える。前記信号処理回路は、画像情報において背景に対してスクロールする動体を検知し、前記動体の前記画像情報における境界のパターンを検知し、前記画像情報において検知された前記境界である境界画素の画素値に対して補正し、前記制御回路は、前記信号処理回路が出力する補正後の前記画像情報に基づいて、前記液晶パネルに属する液晶に印加する電圧を制御し、前記液晶パネルは、前記制御回路から出力された電圧値に基づいて、射出する光の強度が制御される。 According to one embodiment, the display device includes a storage circuit, a signal processing circuit, a control circuit, and a liquid crystal panel. The signal processing circuit detects a moving object that scrolls with respect to the background in the image information, detects a boundary pattern of the moving object in the image information, and has a pixel value of a boundary pixel that is the boundary detected in the image information. The control circuit controls the voltage applied to the liquid crystal belonging to the liquid crystal panel based on the corrected image information output by the signal processing circuit, and the liquid crystal panel controls the control circuit. The intensity of the emitted light is controlled based on the voltage value output from.
 一実施形態よれば、情報処理方法は、信号処理回路により、画像情報において背景に対してスクロールする動体を検知し、前記動体の前記画像情報における境界を検知し、前記画像情報において検知された前記境界である境界画素の画素値に対して補正する。 According to one embodiment, the information processing method detects a moving object scrolling with respect to the background in the image information by a signal processing circuit, detects a boundary of the moving object in the image information, and detects the moving object in the image information. The pixel value of the boundary pixel, which is the boundary, is corrected.
 一実施形態によれば、プログラムは、信号処理回路により実行されると、画像情報において背景に対してスクロールする動体を検知し、前記動体の前記画像情報における境界を検知し、前記画像情報において検知された前記境界である境界画素の画素値に対して補正する。 According to one embodiment, when executed by a signal processing circuit, the program detects a moving object that scrolls with respect to the background in the image information, detects a boundary of the moving object in the image information, and detects it in the image information. The pixel value of the boundary pixel, which is the boundary, is corrected.
入力信号と出力画像の一例を模式的に示す図。The figure which shows an example of an input signal and an output image schematically. 入力信号と出力画像の一例を模式的に示す図。The figure which shows an example of an input signal and an output image schematically. 入力信号と出力画像の一例を模式的に示す図。The figure which shows an example of an input signal and an output image schematically. 一実施形態に係る表示装置を模式的に示すブロック図。The block diagram schematically showing the display device which concerns on one Embodiment. 一実施形態に係る情報処理装置の処理を示すフローチャート。The flowchart which shows the processing of the information processing apparatus which concerns on one Embodiment. 一実施形態に係るスクロール検知の一例を模式的に示す図。The figure which shows typically an example of scroll detection which concerns on one Embodiment. 一実施形態に係るスクロール検知の対応画素領域の例を示す図。The figure which shows the example of the corresponding pixel area of scroll detection which concerns on one Embodiment. 一実施形態に係るスクロール検知の対応画素領域の例を示す図。The figure which shows the example of the corresponding pixel area of scroll detection which concerns on one Embodiment. 一実施形態に係るスクロール検知処理を示すフローチャート。The flowchart which shows the scroll detection process which concerns on one Embodiment. 一実施形態に係る境界検知の一例を模式的に示す図。The figure which shows typically the example of the boundary detection which concerns on one Embodiment. 一実施形態に係る境界検知の一例を模式的に示す図。The figure which shows typically the example of the boundary detection which concerns on one Embodiment. 一実施形態に係る境界検知の一例を模式的に示す図。The figure which shows typically the example of the boundary detection which concerns on one Embodiment. 一実施形態に係る境界検知処理を示すフローチャート。The flowchart which shows the boundary detection process which concerns on one Embodiment. 一実施形態に係る補正の一例を模式的に示す図。The figure which shows an example of the correction which concerns on one Embodiment schematically. 一実施形態に係る表示の一例を模式的に示す図。The figure which shows an example of the display which concerns on one Embodiment schematically. 一実施形態に係る補正処理を示すフローチャート。A flowchart showing a correction process according to an embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment. 一実施形態に係る補正処理の一例を模式的に示す図。The figure which shows typically an example of the correction process which concerns on one Embodiment.
 以下、図面を参照して本開示における実施形態の説明をする。図面は、説明のために用いるものであり、実際の装置における各部の構成の形状、サイズ、又は、他の構成とのサイズの比等が図に示されている通りである必要はない。また、図面は、簡略化して書かれているため、図に書かれている以外にも実装上必要な構成は、適切に備えるものとする。本開示において、「以下」「以上」との文言を使用するかもしれないが、適宜適切に、「より小さい」「より大きい」と読み替えることができる。すなわち、比較値と等しい場合が含まれるか否かは、設計により適宜変更できるものである。 Hereinafter, embodiments in the present disclosure will be described with reference to the drawings. The drawings are for illustration purposes only, and the shape, size, or size ratio of each part configuration to other configurations in an actual device need not be as shown in the figure. In addition, since the drawings are written in a simplified form, it is assumed that configurations necessary for mounting other than those shown in the drawings are appropriately prepared. In this disclosure, the terms "less than or equal to" and "greater than or equal to" may be used, but can be appropriately read as "less than" and "greater than". That is, whether or not a case equal to the comparison value is included can be appropriately changed by design.
 図1は、一般的な液晶を用いた発光パネルの液晶の配置及び入出力の状態の一例を示す図である。この図1に示すように、液晶パネル3は、例えば、表示面30と、対向基板31との間に、TFTを行使する液晶分子32を備える。液晶分子32は、図に示すように、液晶パネルの表示面30に対して所定の配向角度を有して配置される。 FIG. 1 is a diagram showing an example of the arrangement and input / output state of the liquid crystal of the light emitting panel using a general liquid crystal. As shown in FIG. 1, the liquid crystal panel 3 includes, for example, a liquid crystal molecule 32 that exercises a TFT between the display surface 30 and the facing substrate 31. As shown in the figure, the liquid crystal molecules 32 are arranged with a predetermined orientation angle with respect to the display surface 30 of the liquid crystal panel.
 画像信号(画像情報)として、黒に対応する画素については、液晶に黒に対応する電圧Vbを印加することにより、遮光状態とすることで黒を出力する。電圧Vbは、例えば、0Vであってもよい。電圧Vbを液晶に印加する(電圧を印加しない)ことにより、液晶分子により、発光部からの光を遮断させ、下図に示すように、表示パネル30を介して黒い画素として出力する。 As an image signal (image information), for pixels corresponding to black, black is output by applying a voltage Vb corresponding to black to the liquid crystal display to put it in a light-shielded state. The voltage Vb may be, for example, 0V. By applying the voltage Vb to the liquid crystal (no voltage is applied), the light from the light emitting portion is blocked by the liquid crystal molecules, and as shown in the figure below, the light is output as a black pixel via the display panel 30.
 図2は、白い画素と黒い画素が隣接する一例を示す図である。液晶分子の配向方向に向かって、黒画素、白画素、の順で並んでいる。白に対応する画素を出力する場合には、液晶分子に電圧Vwを印加することにより、液晶分子を傾けさせ、光を透過させる。このように液晶分子を制御する電圧を印加することで光を透過することにより、下図に示すように白い画素を出力する。 FIG. 2 is a diagram showing an example in which a white pixel and a black pixel are adjacent to each other. Black pixels and white pixels are arranged in this order toward the orientation direction of the liquid crystal molecules. When outputting a pixel corresponding to white, a voltage Vw is applied to the liquid crystal molecule to tilt the liquid crystal molecule and transmit light. By applying a voltage that controls the liquid crystal molecules in this way, light is transmitted, and white pixels are output as shown in the figure below.
 この場合、電圧を印加することによる白画素から黒画素への液晶の傾き方が、液晶の配向方向と一致するため、白画素内には、その端部に多少の灰色領域が存在するとしても、人間の眼にはそれほど影響が大きくなく、自然に白、黒の画素が分離できる。 In this case, the inclination of the liquid crystal from the white pixel to the black pixel by applying a voltage coincides with the orientation direction of the liquid crystal, so even if there is a slight gray area at the end of the white pixel. The effect on the human eye is not so great, and white and black pixels can be separated naturally.
 図3は、白い画素と黒い画素が隣接する他の例を示す図である。図3においては、液晶分子の配向方向とは逆にむかって、黒画素、白画素の順で並んでいる。図2の場合と同様に、白に対応する画素を出力する場合には、液晶分子に電圧Vwを印加することにより、液晶分子を傾けさせ、光を透過させる。 FIG. 3 is a diagram showing another example in which a white pixel and a black pixel are adjacent to each other. In FIG. 3, black pixels and white pixels are arranged in this order in the direction opposite to the orientation direction of the liquid crystal molecules. Similar to the case of FIG. 2, when the pixel corresponding to white is output, the liquid crystal molecule is tilted and light is transmitted by applying a voltage Vw to the liquid crystal molecule.
 下図に示すように、黒画素と白画素の間には、液晶の傾く方向とは逆の配向の液晶が備えられるため、隣接する黒画素の電位Vbにより、白画素の液晶の傾きが逆方向になる傾きの乱れが発生する領域が存在し、出力画素において、白画素中に目立つ黒画素の帯が入り込む。静止画の場合であれば、十分に時間が経過することにより、この液晶の傾きの影響を小さくすることもできる。 As shown in the figure below, since a liquid crystal having an orientation opposite to the tilting direction of the liquid crystal is provided between the black pixel and the white pixel, the tilt of the liquid crystal of the white pixel is reversed due to the potential Vb of the adjacent black pixel. There is a region where the turbulence of the tilt is generated, and in the output pixel, a conspicuous black pixel band is inserted in the white pixel. In the case of a still image, the influence of the tilt of the liquid crystal can be reduced by a sufficient time.
 一方で、動画の映像信号において、例えば、黒い物体が白い背景において、図の右側から左側へと移動する場合、隣接する黒画素の電圧Vbに起因する横電界により、白画素における液晶の傾きが大きな影響を受け、動体の右側に残像、尾引きが発生することがある。本開示では、このような残像の影響を少なくする制御を可能とする、入力信号の補正を実現する。以下、この液晶の配向の向きと逆の方向(例えば、図1から図3における左側から右側の方向)を、所定方向と記載する。 On the other hand, in a moving image signal, for example, when a black object moves from the right side to the left side of the figure on a white background, the liquid crystal display in the white pixels is tilted due to the lateral electric field caused by the voltage Vb of the adjacent black pixels. Due to the great influence, afterimages and tailing may occur on the right side of the moving object. In the present disclosure, correction of an input signal is realized, which enables control to reduce the influence of such an afterimage. Hereinafter, the direction opposite to the orientation of the liquid crystal display (for example, the direction from the left side to the right side in FIGS. 1 to 3) is referred to as a predetermined direction.
 上記では、黒い物体、白い背景としたが、これには限られない。広義の意味では、背景よりも画素値が小さい物体であればよい。 In the above, a black object and a white background were used, but it is not limited to this. In a broad sense, any object may have a pixel value smaller than that of the background.
 図4は、一実施形態に係る表示装置1を模式的に示すブロック図である。表示装置1は、情報処理装置2と、上記に説明した液晶パネル3と、を備える。表示装置1は、例えば、投影型の液晶ディスプレイであってもよいし、液晶プロジェクタであってもよい。 FIG. 4 is a block diagram schematically showing the display device 1 according to the embodiment. The display device 1 includes an information processing device 2 and a liquid crystal panel 3 described above. The display device 1 may be, for example, a projection type liquid crystal display or a liquid crystal projector.
 情報処理装置2は、情報処理部20と、記憶部21と、電圧制御部22と、を備える。この情報処理装置2は、液晶パネル3に表示する画像情報を適切に補正し、補正した画像情報を、液晶パネル3に表示するための電圧に変換して液晶パネル3を制御する。 The information processing device 2 includes an information processing unit 20, a storage unit 21, and a voltage control unit 22. The information processing device 2 appropriately corrects the image information displayed on the liquid crystal panel 3, converts the corrected image information into a voltage for displaying on the liquid crystal panel 3, and controls the liquid crystal panel 3.
 情報処理回路2の各構成要素は、処理回路、記憶回路等のデジタル又はアナログ回路により構成されてもよい。これらは、CPU(Central Processing Unit)等の汎用の処理回路であってもよいし、ASIC(Application Specified Integrated Circuitry)等の特定用途向けのIC(Integrated Circuitry)として構成されてもよい。 Each component of the information processing circuit 2 may be composed of a digital or analog circuit such as a processing circuit and a storage circuit. These may be general-purpose processing circuits such as CPU (Central Processing Unit), or may be configured as ICs (Integrated Circuitry) for specific applications such as ASIC (Application Specified Integrated Circuitry).
 汎用の処理回路を用いる場合には、ソフトウェアによる情報処理がハードウェア資源を用いて具体的に実現されるものであってもよい。この場合、非一時的な媒体であるストレージ、あるいは、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)等のメモリを備える記憶回路にソフトウェアに関連するプログラム等が格納されてもよい。 When a general-purpose processing circuit is used, information processing by software may be concretely realized by using hardware resources. In this case, a program related to software may be stored in a storage that is a non-temporary medium, or in a storage circuit having a memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
 情報処理部20は、入力された画像情報を補正して出力する。情報処理部20は、スクロール検知部200と、境界検知部201と、補正部202と、を備える。画像情報は、所定の色空間、例えば、RGB色空間で定義され、R、G、Bのそれぞれの色に対する信号を有する情報である。色空間は、RGBには限られず、Lab、Luv、XYZ等の任意の色空間であってもよい。画像情報が色ごとの情報である場合には、情報処理部20は、色ごとに補正を行って画像情報を出力し、この画像情報に基づいて、電圧制御部22が液晶パネル3の色の要素ごとに電圧を制御してもよい。出力画素における色の並び方は、例えば、ベイヤ配列であってもよいが、これに限られるものではない。 The information processing unit 20 corrects the input image information and outputs it. The information processing unit 20 includes a scroll detection unit 200, a boundary detection unit 201, and a correction unit 202. The image information is defined in a predetermined color space, for example, an RGB color space, and is information having a signal for each of R, G, and B colors. The color space is not limited to RGB, and may be any color space such as Lab, Luv, and XYZ. When the image information is information for each color, the information processing unit 20 corrects each color and outputs the image information, and based on this image information, the voltage control unit 22 determines the color of the liquid crystal panel 3. The voltage may be controlled for each element. The arrangement of colors in the output pixels may be, for example, a bayer arrangement, but the arrangement is not limited to this.
 以下において、黒画像、白画像という文言を用いるが、これは、各色の成分における画素値と言い換えてもよい。例えば、RGB色空間を用いる場合には、Rの画素値、Gの画素値、Bの画素値をそれぞれ処理するものとしてもよい。 In the following, the terms black image and white image are used, but this may be rephrased as the pixel value in each color component. For example, when the RGB color space is used, the pixel value of R, the pixel value of G, and the pixel value of B may be processed respectively.
 また、入力される画像情報、すなわち、補正の対象となる画像情報は、すでにガンマ補正された状態の色情報であってもよい。この他、必要となるフィルタ処理等の信号処理がされた後の投影直前の画像情報であってもよい。 Further, the input image information, that is, the image information to be corrected may be the color information already gamma-corrected. In addition, it may be image information immediately before projection after signal processing such as necessary filter processing has been performed.
 スクロール検知部200は、画像情報において、移動する物体を検知する。移動する物体は、例えば、背景に対して移動する画像内の動体である。この動体は、背景よりも暗い色を有していてもよい。例えば、動体の輪郭は、黒色であってもよいし、この動体自体が黒い色であってもよい。 The scroll detection unit 200 detects a moving object in the image information. A moving object is, for example, a moving object in an image that moves relative to the background. This moving object may have a darker color than the background. For example, the contour of the moving body may be black, or the moving body itself may be black.
 境界検知部201は、画像情報においてスクロール検知部200が検知した動体における境界を検知する。境界は、例えば、画素の位置として検知されてもよく、この場合、境界を構成する画素を、境界画素と記載する。境界の設定については、後述にて詳しく説明する。 The boundary detection unit 201 detects the boundary in the moving object detected by the scroll detection unit 200 in the image information. The boundary may be detected as, for example, the position of a pixel. In this case, the pixel constituting the boundary is referred to as a boundary pixel. The setting of the boundary will be described in detail later.
 補正部202は、境界検知部201が検出した境界画素、及び、その周辺画素の少なくとも1つの画素値を補正して出力する。 The correction unit 202 corrects and outputs at least one pixel value of the boundary pixel detected by the boundary detection unit 201 and its peripheral pixels.
 記憶部21は、情報処理装置2において必要となるデータ等を格納する。この記憶部21は、例えば、フレームメモリ210を備えていてもよい。 The storage unit 21 stores data and the like required by the information processing device 2. The storage unit 21 may include, for example, a frame memory 210.
 フレームメモリ210は、フレームごとの画像情報を格納する。スクロール検知部200は、現フレームの画像情報に対して、フレームメモリ210に格納されている過去の画像情報、例えば、前フレームの画像情報を用いて画像同士の差分を検出することにより、動体を検知する。 The frame memory 210 stores image information for each frame. The scroll detection unit 200 detects a moving object by detecting the difference between the images using the past image information stored in the frame memory 210, for example, the image information of the previous frame, with respect to the image information of the current frame. Detect.
 電圧制御部22は、補正部202が出力した補正された画像情報に基づいて、液晶パネル3の液晶分子に印加する電圧を制御する。電圧制御部22が制御する電圧により、液晶パネル3のそれぞれの画素に対応する液晶分子の傾きを制御することにより、表示装置1における画像の出力を実現する。 The voltage control unit 22 controls the voltage applied to the liquid crystal molecules of the liquid crystal panel 3 based on the corrected image information output by the correction unit 202. By controlling the inclination of the liquid crystal molecules corresponding to each pixel of the liquid crystal panel 3 by the voltage controlled by the voltage control unit 22, the output of the image on the display device 1 is realized.
 液晶パネル3は、上記のように、電圧制御部22により制御された電圧により、発光部からの光を液晶による遮光状態を変更することにより種々の輝度の光を射出する。上記のように、この光の強度(電圧制御部22により制御される印加する電圧の高さ)は、RGBのそれぞれの信号に対応するものであってもよい。この場合、液晶パネル3は、RGBに対応する色のフィルタを備えることにより、それぞれの色の光を適切に投影する。もちろん、他の色空間を出力として用いる場合についても同様である。 As described above, the liquid crystal panel 3 emits light of various brightness by changing the light shielding state of the liquid crystal from the light emitting unit by the voltage controlled by the voltage control unit 22. As described above, the intensity of this light (the height of the applied voltage controlled by the voltage control unit 22) may correspond to each of the RGB signals. In this case, the liquid crystal panel 3 appropriately projects the light of each color by providing the filter of the color corresponding to RGB. Of course, the same applies to the case where another color space is used as an output.
 図5は、一実施形態に係る情報処理部20の処理を示すフローチャートである。 FIG. 5 is a flowchart showing the processing of the information processing unit 20 according to the embodiment.
 まず、スクロール検知部200が、画像情報内におけるスクロールの検知を実行する(S10)。このスクロール検知は、画像内に、移動体である物体(動体)が存在するか否かを検知する処理である。この処理により、画像情報内の画素において、当該画素が動体であるか否かの判定を行う。 First, the scroll detection unit 200 detects scrolling in the image information (S10). This scroll detection is a process of detecting whether or not a moving object (moving object) exists in the image. By this processing, it is determined whether or not the pixel in the image information is a moving object.
 次に、境界検知部201が、画像情報内における境界の検知を実行する(S20)。この境界検知は、画像内における境界を示す境界画素を検知して抽出する処理である。この処理により、画像情報内の画素において、当該画素が境界画素であるか否かの判定を行う。 Next, the boundary detection unit 201 executes the detection of the boundary in the image information (S20). This boundary detection is a process of detecting and extracting boundary pixels indicating boundaries in an image. By this processing, it is determined whether or not the pixel in the image information is a boundary pixel.
 次に、補正部202が、それぞれの着目画素について、当該画素が動体に属する画素であり、かつ、境界を構成する画素である場合に、画素値の補正を行う(S30)。なお、境界画素だけではなく、少なくとも1つの境界に近接する画素をも補正してもよい。この画素値の補正を行うことにより、画像、映像における上述した横電界の影響を抑制する。 Next, the correction unit 202 corrects the pixel value of each pixel of interest when the pixel belongs to a moving object and constitutes a boundary (S30). It should be noted that not only the boundary pixel but also the pixel close to at least one boundary may be corrected. By correcting this pixel value, the influence of the above-mentioned lateral electric field on the image and the moving image is suppressed.
 次に、電圧制御部22が、補正された画像情報に基づいて、液晶パネル3の液晶分子に印加する電圧を生成し、液晶パネル3に印加する(S40)。このように制御された電圧を液晶分子に印加することにより、画像の劣化を抑制する。 Next, the voltage control unit 22 generates a voltage to be applied to the liquid crystal molecules of the liquid crystal panel 3 based on the corrected image information, and applies the voltage to the liquid crystal panel 3 (S40). By applying the voltage controlled in this way to the liquid crystal molecules, deterioration of the image is suppressed.
 上記に説明した各処理について、以下、情報処理部20の各要素の動作を説明することにより詳しく説明をする。 Each process described above will be described in detail below by explaining the operation of each element of the information processing unit 20.
 まず、スクロール検知部200における動体のスクロール検知方法について説明する。スクロール検知は、現フレームの画像情報における着目画素を基準とする所定領域内の画素と、過去フレームにおける着目画素から所定距離(第1距離)離れた画素を基準とする所定領域内の画素と、を比較して実行される。 First, the scroll detection method for moving objects in the scroll detection unit 200 will be described. Scroll detection includes pixels in a predetermined area based on the pixel of interest in the image information of the current frame, and pixels in a predetermined area based on pixels separated by a predetermined distance (first distance) from the pixel of interest in the past frame. Is compared and executed.
 画像情報に含まれるスクロール検知対象となる画素を着目画素として演算することにより、所望の画素をスクロール検知の対象とすることができる。例えば、画像情報の全ての画素を着目画素としてもよいし、縁部を除いた画素を着目画素としてもよい。これには限られず、任意の領域をスクロール検知対象の領域として、当該対象領域に属する画素を着目画素として設定してもよい。 By calculating the pixel to be the scroll detection target included in the image information as the pixel of interest, the desired pixel can be the target of scroll detection. For example, all the pixels of the image information may be the pixels of interest, or the pixels excluding the edges may be the pixels of interest. Not limited to this, an arbitrary area may be set as a scroll detection target area, and pixels belonging to the target area may be set as a pixel of interest.
 図6は、一実施形態に係るスクロール検知の一例について説明をするための画像情報の一部を示す図である。画像情報には、図6に示すように、複数の画素が含まれる。着目画素を斜線で示す画素(10と記載された画素)とする。また、所定領域を着目画素に対して図に示すような4 × 4の範囲、左側(上記に記載する所定方向)に距離4 dot離れた領域においてスクロール検知をするものとする。 FIG. 6 is a diagram showing a part of image information for explaining an example of scroll detection according to an embodiment. As shown in FIG. 6, the image information includes a plurality of pixels. The pixel of interest is a pixel indicated by a diagonal line (a pixel described as 10). Further, it is assumed that scroll detection is performed in a region of 4 × 4 as shown in the figure with respect to the predetermined area and a distance of 4 dots on the left side (predetermined direction described above).
 スクロール検知部200は、フレームメモリ210に格納されている前フレームの画素値と、現フレームの画素値とを比較することによりスクロールを検知する。図6に示すように、説明のために便宜上、現フレームの着目画素を基準とする画素を1 ~ 16とし、着目画素に対して前フレームにおいて所定方向に4 dot離れた画素を基準とする画素を1‘ ~ 16’とする。これらの画素値を、それぞれI01, I02, ..., I16、I’1, I’2, ..., I’16とおく。 The scroll detection unit 200 detects scrolling by comparing the pixel value of the previous frame stored in the frame memory 210 with the pixel value of the current frame. As shown in FIG. 6, for convenience of explanation, the pixels with reference to the pixel of interest in the current frame are set to 1 to 16, and the pixels with reference to the pixels separated by 4 dots in the predetermined direction in the previous frame from the pixels of interest are used as the reference. Is 1'~ 16'. These pixel values are set as I01, I02, ..., I16, I'1, I'2, ..., I'16, respectively.
 スクロール検知部200は、I01 ~ I16、及び、I’1 ~ I’16の値に基づいて、スクロールを検知する。スクロール検知部200は、一例として、これらの対応する画素がどの程度一致するかを示す一致度に基づいて、スクロールを検知する。
Figure JPOXMLDOC01-appb-M000001
例えば、スクロール検知部200は、式(1)のように、対応する各ピクセルについての2乗和を評価値Eとして求めることにより、スクロールを検知してもよい。スクロール検知部200は、Eが所定閾値Ethよりも小さい場合に、当該着目画素は、動体がスクロールした画素であると検知してもよい。
The scroll detection unit 200 detects scrolling based on the values of I01 to I16 and I'1 to I'16. As an example, the scroll detection unit 200 detects scrolling based on the degree of matching indicating how well these corresponding pixels match.
Figure JPOXMLDOC01-appb-M000001
For example, the scroll detection unit 200 may detect scrolling by obtaining the sum of squares for each corresponding pixel as the evaluation value E as in Eq. (1). When E is smaller than the predetermined threshold value Eth, the scroll detection unit 200 may detect that the pixel of interest is a pixel in which the moving object is scrolled.
 評価は、式(1)には限られず、例えば、対応する画素ごとの絶対値の和、2乗平均、2乗平均平方根、差のメディアン、モード、標準偏差等の他の統計量を用いてもよい。 The evaluation is not limited to Eq. (1), but uses other statistics such as the sum of absolute values for each corresponding pixel, root mean square, root mean square, median difference, mode, and standard deviation. May be good.
 上述したように、着目画素に対して、距離ごとに、この評価値を算出する。なお、着目画素に対して、ある方向、ある距離においてスクロールが検知できた場合には、当該着目画素をスクロールした動体である画素と判断し、後の計算を省略してもよい。 As described above, this evaluation value is calculated for each distance with respect to the pixel of interest. If scrolling can be detected in a certain direction and at a certain distance with respect to the pixel of interest, it may be determined that the pixel of interest is a pixel that is a scrolled moving object, and the subsequent calculation may be omitted.
 スクロール検知部200は、前フレーム等の過去の画素と、現フレームの画素との値を比較する場合には、並列演算により評価値の算出をしてもよい。 When comparing the values of the past pixels such as the previous frame and the pixels of the current frame, the scroll detection unit 200 may calculate the evaluation value by parallel calculation.
 図7A及び図7Bに、所定領域を上記の4 × 4とし、第1距離4 dot以下の動体の動きを検出する場合の対応画素の一例を示す。これらの図において、点線で表された領域は、現フレームの領域、実線で表された領域は、前フレームの領域を示す。これらの図においては、前フレームから現フレームに、左、下、左下方向に4 dot以内の距離を動いた場合における対応する領域を示す図である。例えば、スクロール検知部200は、このように所定の方向に対して、第1距離ずれた所定領域について、スクロールの評価をしてもよい。 FIGS. 7A and 7B show an example of corresponding pixels when the predetermined area is set to the above 4 × 4 and the movement of a moving object with a first distance of 4 dots or less is detected. In these figures, the area represented by the dotted line indicates the area of the current frame, and the area represented by the solid line indicates the area of the previous frame. In these figures, it is a figure which shows the corresponding area when moving the distance within 4 dots in the left, the lower, the lower left direction from the previous frame to the present frame. For example, the scroll detection unit 200 may evaluate scrolling in a predetermined area deviated by a first distance with respect to a predetermined direction in this way.
 所定方向が決められている場合には、スクロール検知部200は、このように第1距離離れた対象画素を基準とした所定領域との間で評価値を算出する。これらのうち、少なくとも1つの対象画素との間の評価においてスクロールであると判定された場合には、着目画素が動体に属する画素であると判断してもよい。例えば、図7A、図7Bのような場合には、計24通りの評価値を算出して検知を行ってもよい。別の例として、1つの対象画素との間において動体であると判断された場合には、動体に属する画素として検知してもよい。 When the predetermined direction is determined, the scroll detection unit 200 calculates the evaluation value with the predetermined area based on the target pixel separated by the first distance in this way. Of these, when it is determined that scrolling is performed in the evaluation between the target pixel and at least one target pixel, it may be determined that the pixel of interest is a pixel belonging to the moving object. For example, in the case of FIGS. 7A and 7B, a total of 24 evaluation values may be calculated and detected. As another example, when it is determined that the pixel is a moving object with one target pixel, it may be detected as a pixel belonging to the moving object.
 また、スクロール検知部200は、1画素ごとに評価するのではなく、着目画素の周辺の結果と併せて動体か否かを判定してもよい。例えば、周辺の所定数個の画素のうち、閾値以上の画素において動体であると判定された場合に、当該着目画素を動体に属する画素であると判断してもよい。 Further, the scroll detection unit 200 may determine whether or not it is a moving object together with the result around the pixel of interest, instead of evaluating each pixel. For example, when it is determined that a pixel having a threshold value or more among a predetermined number of peripheral pixels is a moving body, the pixel of interest may be determined to be a pixel belonging to the moving body.
 所定方向は、例えば、図6等における水平方向左側から右側に向かう方向としてもよい。この場合、上記のように、左、下、左下方向だけではなく、さらに、上、左上方向についても評価の対象としてもよい。逆に、上、下を省略し、左下、左、左上の方向のみを対象としてスクロールの検知を実行してもよい。 The predetermined direction may be, for example, a direction from the left side in the horizontal direction to the right side in FIG. 6 or the like. In this case, as described above, not only the left, lower, and lower left directions but also the upper and upper left directions may be evaluated. On the contrary, the upper and lower parts may be omitted, and scroll detection may be executed only in the lower left, left, and upper left directions.
 所定領域及び第1距離は一例として示したものであり、図に示すような領域及び距離に限定されるものではない。 The predetermined area and the first distance are shown as an example, and are not limited to the area and the distance as shown in the figure.
 図8は、ある着目画素に対するスクロール検知部200の処理を示すフローチャートである。 FIG. 8 is a flowchart showing the processing of the scroll detection unit 200 for a certain pixel of interest.
 まず、スクロール検知部200は、入力された画像情報から着目画素を抽出し、着目画素に対する評価値を算出する(S100)。詳しい処理は、上述したとおりであり、着目画素に対する所定領域内の画素値と、着目画素から第1距離離れた対象画素に対する所定領域内の画素値とを比較することにより、評価値を取得する。 First, the scroll detection unit 200 extracts the pixel of interest from the input image information and calculates the evaluation value for the pixel of interest (S100). The detailed processing is as described above, and the evaluation value is acquired by comparing the pixel value in the predetermined region with respect to the pixel of interest and the pixel value in the predetermined region with respect to the target pixel first distance away from the pixel of interest. ..
 次に、スクロール検知部200は、評価値と閾値とを比較する(S102)。そして、評価値が閾値よりも小さければ、着目画素が動体に属する画素であると検知する(S104)。この処理は、上述したように、着目画素に対して複数の対象画素を設定し、対象画素ごとに評価値を算出して、これらの値から検知を実行してもよい。 Next, the scroll detection unit 200 compares the evaluation value with the threshold value (S102). Then, if the evaluation value is smaller than the threshold value, it is detected that the pixel of interest is a pixel belonging to the moving object (S104). In this process, as described above, a plurality of target pixels may be set for the pixel of interest, an evaluation value may be calculated for each target pixel, and detection may be executed from these values.
 そして、スクロール検知部200は、画像情報において、評価の対象となる着目画素の全てにおいてこの検知を実行する。この処理は、S100からS104の処理を繰り返すことにより実行されてもよいし、S100からS104の処理の全て又は少なくとも一部を並列演算により処理して実行されてもよい。 Then, the scroll detection unit 200 executes this detection on all the pixels of interest to be evaluated in the image information. This process may be executed by repeating the processes of S100 to S104, or may be executed by processing all or at least a part of the processes of S100 to S104 by parallel arithmetic.
 上記では、スクロール検知部200は、過去フレームを用いてスクロール検知を行ったが、これには限られない。例えば、画像情報を解析することにより、現フレームの画素値だけを用いてスクロール検知をしてもよい。一例として、画像情報をクラスタリングし、動体であると判断される領域を抽出し、当該動体である領域に対して解析を実行することによりスクロールしている物体が写っている領域を判断してもよい。 In the above, the scroll detection unit 200 has performed scroll detection using past frames, but the present invention is not limited to this. For example, by analyzing the image information, scroll detection may be performed using only the pixel value of the current frame. As an example, even if the image information is clustered, the area judged to be a moving object is extracted, and the analysis is performed on the moving object area to determine the area in which the scrolling object is shown. good.
 別の例として、十分な量の教師データを集め、機械学習により最適化されたモデルを用いてスクロールする動体を検知してもよい。このように、現フレームの画像情報のみからスクロールを検知してもよい。また、直接的に過去のフレームを用いるのではなく、過去フレームの特徴量等と、現フレームの特徴量等とを比較するといったアルゴリズムを用いてもよい。 As another example, a sufficient amount of teacher data may be collected and a scrolling moving object may be detected using a model optimized by machine learning. In this way, scrolling may be detected only from the image information of the current frame. Further, instead of directly using the past frame, an algorithm such as comparing the feature amount of the past frame with the feature amount of the current frame may be used.
 また、スクロール検知部200は、現フレーム及び前フレームからスクロールを検知する場合について説明したが、さらに多くの過去のフレームを参照してスクロールを検知してもよい。この場合、スクロールの検知は、複数フレームの画像情報から取得される、すでに知られている一般的な技術を用いてもよい。 Further, although the scroll detection unit 200 has described the case where scrolling is detected from the current frame and the previous frame, scrolling may be detected by referring to more past frames. In this case, scroll detection may use a general technique already known, which is acquired from image information of a plurality of frames.
 現フレームのみを用いることにより、フレームメモリを削減することが可能となる。一方で、過去の複数のフレームを用いることにより、検知精度を向上させることも可能となる。 By using only the current frame, it is possible to reduce the frame memory. On the other hand, it is also possible to improve the detection accuracy by using a plurality of past frames.
 スクロール検知部200は、上記のようにスクロールを検知すると、着目画素がスクロールする動体に関する画素であることを出力する。この出力は、画像情報内にフラグを立てることにより出力されてもよい。なお、第1距離は、上記においては4 dotとしたがデバイスの状態、環境等に基づいて適切に設定することができる。この第1距離を、同じデバイスであっても、使用状況等に応じて変更してもよい。 When the scroll detection unit 200 detects scrolling as described above, it outputs that the pixel of interest is a pixel related to the scrolling moving object. This output may be output by setting a flag in the image information. The first distance is set to 4 dots in the above, but it can be set appropriately based on the device condition, environment, and the like. This first distance may be changed even if the device is the same, depending on the usage conditions and the like.
 次に、境界検知部201の境界検知の動作について説明する。境界検知部は、画像情報において、境界となる画素を検知する。本開示において、境界画素とは、隣接画素、又は、所定数離れた画素との輝度値の差が所定値以上となる画素のうち、画素値の小さい画素と定義する。所定数離れた画素とは、例えば、2画素、3画素等離れた画素のことを示すが、画像情報の解像度によっては、さらに離れた画素のことを示してもよい。 Next, the operation of boundary detection of the boundary detection unit 201 will be described. The boundary detection unit detects pixels that are boundaries in the image information. In the present disclosure, a boundary pixel is defined as a pixel having a small pixel value among pixels having a luminance value difference of a predetermined value or more from adjacent pixels or pixels separated by a predetermined number. The pixel separated by a predetermined number means, for example, a pixel separated by 2 pixels, 3 pixels, etc., but may indicate a pixel further separated depending on the resolution of the image information.
 境界検知部201は、着目画素に対して所定距離(第2距離)離れた画素、及び、着目画素と当該第2距離離れた画素との間にある画素の画素値に基づいて、境界を検知する。 The boundary detection unit 201 detects the boundary based on the pixel values of the pixels separated by a predetermined distance (second distance) from the pixel of interest and the pixels between the pixel of interest and the pixel separated by the second distance. do.
 境界検知部201は、画像情報に含まれる全ての画素について、上記の処理を実行してもよい。この場合、スクロール検知部200によりスクロールが検知された、かつ、境界検知部201により境界であると検知された画素において、以下に示す補正処理を実行する。この場合、図5におけるS10とS20の処理を並行して実行してもよく、それぞれの結果の画素ごとの論理積をとることにより、補正対象画素を検知してもよい。 The boundary detection unit 201 may execute the above processing for all the pixels included in the image information. In this case, the correction processing shown below is executed on the pixels in which the scroll is detected by the scroll detection unit 200 and the boundary is detected by the boundary detection unit 201. In this case, the processes of S10 and S20 in FIG. 5 may be executed in parallel, or the pixel to be corrected may be detected by taking the logical product of each result pixel.
 また、境界検知部201は、別の例として、スクロール検知部200により動体であることが検知された画素に対して、上記の境界検知を実行してもよい。そして、境界検知部201が境界であることを検知した画素について、以下に示す補正処理を実行する。 Further, as another example, the boundary detection unit 201 may execute the above boundary detection on a pixel detected by the scroll detection unit 200 as a moving object. Then, the correction processing shown below is executed for the pixel detected by the boundary detection unit 201 as the boundary.
 さらに別の例としては、境界検知とスクロール検知の順番を逆にし、境界として検知された画素を着目画素としてスクロール検知をしてもよい。すなわち、図5におけるS10と、S20の順序は入れ替えてもよい。この場合、スクロールを検知した着目画素について、以下の補正処理を実行してもよい。 As yet another example, the order of boundary detection and scroll detection may be reversed, and scroll detection may be performed using the pixel detected as the boundary as the pixel of interest. That is, the order of S10 and S20 in FIG. 5 may be exchanged. In this case, the following correction processing may be executed for the pixel of interest that has detected scrolling.
 図9は、第2距離を1 dotとした場合の境界の検知方法について、模式的に説明する図である。まず、境界検知部201は、着目画素の画素値が第1画素値よりも小さいか否かを確認する。この画素値が第1画素値以上である場合には、着目画素が境界画素ではないと判断し、次の着目画素の評価に移行する。 FIG. 9 is a diagram schematically explaining a boundary detection method when the second distance is 1 dot. First, the boundary detection unit 201 confirms whether or not the pixel value of the pixel of interest is smaller than the first pixel value. When this pixel value is equal to or greater than the first pixel value, it is determined that the pixel of interest is not a boundary pixel, and the process proceeds to the evaluation of the next pixel of interest.
 着目画素の画素値が第1画素値よりも小さい場合には、境界候補とする。次に、所定方向に第2距離離れた画素、この場合は、右側の隣接画素の画素値を参照する。隣接画素の画素値が第2画素値よりも大きい場合には、境界検知部201は、着目画素を境界画素として検知する。 If the pixel value of the pixel of interest is smaller than the first pixel value, it is considered as a boundary candidate. Next, the pixel values of the pixels separated by the second distance in the predetermined direction, in this case, the pixel values of the adjacent pixels on the right side are referred to. When the pixel value of the adjacent pixel is larger than the second pixel value, the boundary detection unit 201 detects the pixel of interest as the boundary pixel.
 ここで、第1画素値は、この値よりも小さい画素値を有する画素を黒画素とする画素値であり、第2画素値は、この値よりも大きい画素値を有する画素を白画素とする画素値である。上記のように、境界検知部201は、着目画素が黒画素であり、第2距離離れ対象画素が白画素である場合、着目画素が境界画素であると検知する。 Here, the first pixel value is a pixel value in which a pixel having a pixel value smaller than this value is a black pixel, and the second pixel value is a pixel having a pixel value larger than this value as a white pixel. It is a pixel value. As described above, when the pixel of interest is a black pixel and the second distance-distance target pixel is a white pixel, the boundary detection unit 201 detects that the pixel of interest is a boundary pixel.
 一方で、画像情報において境界が隣接画素同士において、黒、白といった画素値ではない動体である場合や、動体の動きが速い場合がある。このような場合には、上記のような境界の検知では、境界であると判定するべきであるが、境界として検知されないことがある。そこで、以下に示すように、黒画素及び白画素ではない灰色画素を定義し、第2距離を2 dot以上として、境界検知部201は、境界の検知をしてもよい。 On the other hand, in the image information, there are cases where the boundary is a moving object such as black or white that is not a pixel value between adjacent pixels, or the moving object moves quickly. In such a case, in the above-mentioned boundary detection, it should be determined that the boundary is a boundary, but it may not be detected as a boundary. Therefore, as shown below, the boundary detection unit 201 may detect the boundary by defining a gray pixel other than a black pixel and a white pixel and setting the second distance to 2 dots or more.
 図10は、境界検知の他の状況について説明するための模式図である。図10においては、一例として、第2距離を2 dotとしている。図10に示すように、着目画素に対して、2 dot離れた対象画素と、その間にある画素とに着目し、境界検知部201は、着目画素が境界画素であるか否かを検知する。 FIG. 10 is a schematic diagram for explaining other situations of boundary detection. In FIG. 10, as an example, the second distance is 2 dots. As shown in FIG. 10, focusing on the target pixel 2 dots away from the pixel of interest and the pixel in between, the boundary detection unit 201 detects whether or not the pixel of interest is a boundary pixel.
 着目画素の画素値が第1画素値以下であり、第2距離離れた対象画素の画素値が第2画素値よりも大きい場合に、境界検知部201は、当該着目画素を境界画素と検知してもよい。 When the pixel value of the pixel of interest is equal to or less than the first pixel value and the pixel value of the target pixel separated by the second distance is larger than the second pixel value, the boundary detection unit 201 detects the pixel of interest as the boundary pixel. You may.
 境界検知部201は、上記に加えて、さらに、着目画素と対象画素の間に存在する画素の画素値を取得してもよい。例えば、図10に示すように、着目画素と対象画素の間において、着目画素に隣接する画素が灰色画素である場合に、境界検知部201は、当該着目画素を境界画素と検知してもよい。灰色画素の検知は、例えば、着目画素と隣接画素の画素値の差が第3画素値よりも大きいことに基づいて実行されてもよい。図10に示すように、着目画素が黒、隣接画素が灰色、対象画素が白となる場合に、境界検知部201は、着目画素を境界画素と検知してもよい。 In addition to the above, the boundary detection unit 201 may further acquire the pixel value of the pixel existing between the pixel of interest and the target pixel. For example, as shown in FIG. 10, when the pixel adjacent to the pixel of interest is a gray pixel between the pixel of interest and the target pixel, the boundary detection unit 201 may detect the pixel of interest as the boundary pixel. .. The detection of gray pixels may be executed, for example, based on the difference between the pixel values of the pixel of interest and the adjacent pixels being larger than the third pixel value. As shown in FIG. 10, when the pixel of interest is black, the adjacent pixel is gray, and the target pixel is white, the boundary detection unit 201 may detect the pixel of interest as the boundary pixel.
 さらに、境界検知部201は、図に点線の矢印で示されるように、隣接画素と対象画素との画素値の差が第3画素値よりも大きいことを判定基準として用いてもよい。第3画素値は、第1画素値よりも大きい値を有する画素値であってもよく、さらに、第2画素値よりも小さい値を有する画素値であってもよい。 Further, the boundary detection unit 201 may use as a determination criterion that the difference between the pixel values of the adjacent pixel and the target pixel is larger than the third pixel value, as shown by the dotted arrow in the figure. The third pixel value may be a pixel value having a value larger than the first pixel value, and may be a pixel value having a value smaller than the second pixel value.
 第1画素値、第2画素値、及び、第3画素値は、デバイスに固有の値として設定されてもよいし、デバイスの起動時等に自動的にデバイスの設置環境等に基づいて計測、決定される値であってもよい。 The first pixel value, the second pixel value, and the third pixel value may be set as values unique to the device, and are automatically measured at the time of starting the device, etc., based on the installation environment of the device, etc. It may be a determined value.
 図11は、境界検知のさらに別の例を示す図である。この図11に示されるように、第2距離は、1 dot、2 dotには限られるものではなく、例えば、3 dot、4 dot、5 dot等であってもよい。 FIG. 11 is a diagram showing still another example of boundary detection. As shown in FIG. 11, the second distance is not limited to 1 dot, 2 dot, and may be, for example, 3 dot, 4 dot, 5 dot, or the like.
 例えば、第2距離が3 dotの場合には、着目画素が黒、第2距離離れた対象画素が白であり、着目画素と対象画素の間の画素であり着目画素に隣接する画素と着目画素の画素値の差が、第3画素値よりも大きく、着目画素と対象画素の間の画素であり着目画素に隣接する画素と、対象画素に隣接する画素との画素値の差が第3画素値よりも大きいことに基づいて境界であると検知されてもよい。 For example, when the second distance is 3 dots, the pixel of interest is black, the target pixel separated by the second distance is white, the pixel between the pixel of interest and the target pixel, and the pixel adjacent to the pixel of interest and the pixel of interest. The difference in pixel value is larger than the third pixel value, and the difference in pixel value between the pixel between the pixel of interest and the target pixel and adjacent to the pixel of interest and the pixel adjacent to the target pixel is the third pixel. It may be detected as a boundary based on a value greater than the value.
 第2距離が4 dot以上の場合も同様に、境界検知部201は、境界を検知することが可能となる。 Similarly, when the second distance is 4 dots or more, the boundary detection unit 201 can detect the boundary.
 また、境界検知部201は、例えば、第2距離が2 dotである場合には、まず、着目画素が、着目画素と1 dotの距離にある対象画素との関係において境界画素であるか否かを判定してもよい。そして、境界画素と判定されなかった場合には、次に、着目画素と2 dotの距離にある対象画素との関係において境界画素であるか否かを判定してもよい。 Further, for example, when the second distance is 2 dots, the boundary detection unit 201 first determines whether or not the pixel of interest is a boundary pixel in the relationship between the pixel of interest and the target pixel at a distance of 1 dot. May be determined. Then, if it is not determined to be a boundary pixel, then it may be determined whether or not it is a boundary pixel in the relationship between the pixel of interest and the target pixel at a distance of 2 dots.
 第2距離が3 dot以上の場合も同様であり、境界検知部201は、着目画素から所定方向に第2距離以内の画素を次々と対象画素とし、着目画素が対象画素との関係において境界画素であるか否かを判定して、境界画素を検知してもよい。 The same applies when the second distance is 3 dots or more, and the boundary detection unit 201 sets pixels within the second distance in a predetermined direction from the pixel of interest as target pixels one after another, and the pixel of interest is a boundary pixel in relation to the target pixel. It may be determined whether or not it is, and the boundary pixel may be detected.
 第2距離が3 dot以上である場合には、着目画素の所定方向にある隣接画素について、画素値の差が第3画素値よりも小さいか否かを判定する。その後、隣接画素に隣接する画素についても同様に、着目画素との画素値の差、又は、隣接画素との画素値の差が第3画素値よりも小さいか否かを判定する。着目画素と対象画素の間に存在する画素が灰色画素である場合には、境界検知部201は、着目画素が境界画素であると検知する。黒、灰色、白の閾値による判定は、上記の処理に限られなくてもよく、適切に黒、灰色、白とみなすことができる判断基準及びアルゴリズムを用いて判定される処理であればよい。 When the second distance is 3 dots or more, it is determined whether or not the difference between the pixel values is smaller than the third pixel value for the adjacent pixels in the predetermined direction of the pixel of interest. After that, for the pixels adjacent to the adjacent pixels, it is similarly determined whether or not the difference in the pixel value from the pixel of interest or the difference in the pixel value from the adjacent pixel is smaller than the third pixel value. When the pixel existing between the pixel of interest and the target pixel is a gray pixel, the boundary detection unit 201 detects that the pixel of interest is a boundary pixel. The determination based on the black, gray, and white thresholds does not have to be limited to the above processing, and may be any processing that is determined using a determination criterion and an algorithm that can be appropriately regarded as black, gray, and white.
 上記の一連の境界検知処理は、例えば、着目画素が黒画素だと判定された後に、着目画素から所定方向に画素値を走査し、最大第2距離以内にある白画素となる画素を対象画素と判定してもよい。例えば、最大第2距離を5 dotとし、境界検知部201は、着目画素から5 dot以内に白画素が存在した場合に、当該画素を対象画素としてもよい。 In the above series of boundary detection processes, for example, after it is determined that the pixel of interest is a black pixel, the pixel value is scanned in a predetermined direction from the pixel of interest, and the pixel that becomes a white pixel within a maximum second distance is the target pixel. May be determined. For example, if the maximum second distance is 5 dots and the white pixel exists within 5 dots from the pixel of interest, the boundary detection unit 201 may set the pixel as the target pixel.
 さらに、着目画素は、所定方向に隣接する隣接画素の画素値が第1画素値よりも小さい場合には、境界検知部201は、当該着目画素が境界画素ではないと判定し、当該隣接画素を新たな着目画素として処理を繰り返してもよい。 Further, when the pixel value of the adjacent pixel adjacent to the pixel of interest is smaller than the first pixel value, the boundary detection unit 201 determines that the pixel of interest is not a boundary pixel, and determines that the adjacent pixel is not a boundary pixel. The process may be repeated as a new pixel of interest.
 図12は、境界検知部201による境界画素の検知の処理を示すフローチャートである。 FIG. 12 is a flowchart showing the process of detecting the boundary pixel by the boundary detection unit 201.
 境界検知部201は、まず、着目画素を選択し、着目画素の画素値が、第1画素値よりも小さいか否かを判定する(S200)。着目画素の選択は、上述したように、すでにスクロール検知がされている場合には、スクロールする動体に属する画素を順番に選択してもよい。また、別の例として、画像情報の全て又は一部の画素を順に選択してもよい。 The boundary detection unit 201 first selects the pixel of interest and determines whether or not the pixel value of the pixel of interest is smaller than the first pixel value (S200). As for the selection of the pixel of interest, as described above, if scroll detection has already been performed, the pixels belonging to the scrolling moving object may be selected in order. Further, as another example, all or a part of the pixels of the image information may be selected in order.
 着目画素の画素値が第1画素値よりも小さい場合、すなわち、着目画素が黒画素であると判断した場合(S200: YES)、着目画素から所定方向に第2距離離れた対象画素の画素値が第2画素値よりも大きいか否かを判定する(S202)。 When the pixel value of the pixel of interest is smaller than the first pixel value, that is, when it is determined that the pixel of interest is a black pixel (S200: YES), the pixel value of the target pixel that is a second distance away from the pixel of interest in a predetermined direction. Is larger than the second pixel value (S202).
 対象画素の画素値が第2画素値よりも大きい場合、すなわち、対象画素が白画素であると判断した場合(S202: YES)、着目画素と対象画素の間の画素について、上記に記載した灰色画素である条件を満たすか否かを判定する(S204)。なお、着目画素と対象画素が隣接する画素である場合には、S204の処理を飛ばして、S206の処理を実行する。 When the pixel value of the target pixel is larger than the second pixel value, that is, when it is determined that the target pixel is a white pixel (S202: YES), the gray color described above describes the pixel between the target pixel and the target pixel. It is determined whether or not the condition of being a pixel is satisfied (S204). If the pixel of interest and the target pixel are adjacent pixels, the processing of S204 is skipped and the processing of S206 is executed.
 着目画素と対象画素の間にある画素が灰色の条件を満たす場合(S204: YES)、境界検知部201は、着目画素を境界画素であると検知して出力する(S206)。これ以外の場合(S200: NO、S202: NO、S204: NO)には、境界検知部201は、着目画素を境界画素と検知せずに、次の着目画素を選択して処理を繰り返す。着目画素として選択すべき全ての画素について処理をした後に、境界検知部201は、処理を終了する。 When the pixel between the pixel of interest and the target pixel satisfies the gray condition (S204: YES), the boundary detection unit 201 detects the pixel of interest as a boundary pixel and outputs it (S206). In other cases (S200: NO, S202: NO, S204: NO), the boundary detection unit 201 does not detect the pixel of interest as the boundary pixel, selects the next pixel of interest, and repeats the process. After processing all the pixels to be selected as the pixel of interest, the boundary detection unit 201 ends the processing.
 上記においては、黒画素である着目画素に対して、所定方向にある白画素である対象画素、及び、それらの画素の間に存在する画素の画素値により境界画素を検知したが、さらに、着目画素の所定方向逆側の画素を考慮してもよい。すなわち、境界検知部201は、さらに、着目画素の所定方向逆側にある所定個の画素が、黒画素であることをもって着目画素が境界画素であると検知してもよい。 In the above, with respect to the pixel of interest which is a black pixel, the boundary pixel is detected by the target pixel which is a white pixel in a predetermined direction and the pixel value of the pixel existing between those pixels. Pixels on the opposite side of a predetermined direction of pixels may be considered. That is, the boundary detection unit 201 may further detect that the pixel of interest is a boundary pixel when the predetermined number of pixels on the opposite side of the pixel of interest in the predetermined direction are black pixels.
 例えば、境界検知部201は、着目画素の所定方向と逆側に隣接する画素、着目画素、着目画素の所定方向に連続する5画素、の計7画素を用いて境界検知を実行してもよい。この場合、所定方向と逆側に隣接する画素及び着目画素が黒画素であり、所定方向に存在する5画素のうち、2つの連続する画素が白画素(背景色の画素)であり、黒、灰色、白のように遷移している場合に、着目画素を境界画素であると検知してもよい。このように、さらに特定のパターンを用いて、境界画素を検知することもできる。 For example, the boundary detection unit 201 may execute boundary detection using a total of 7 pixels, that is, a pixel adjacent to the predetermined direction of the pixel of interest, a pixel of interest, and 5 pixels continuous in the predetermined direction of the pixel of interest. .. In this case, the pixels adjacent to the opposite side of the predetermined direction and the pixel of interest are black pixels, and of the five pixels existing in the predetermined direction, two consecutive pixels are white pixels (background color pixels), and black. When the transition is gray or white, the pixel of interest may be detected as a boundary pixel. In this way, it is also possible to detect the boundary pixel by using a specific pattern.
 上記においては、境界の検知は、水平方向に行う場合を記載したが、垂直方向にも実行してもよい。 In the above, the case where the boundary is detected in the horizontal direction is described, but the boundary may be detected in the vertical direction as well.
 なお、上述の動体検出、境界検出は、他の方法を用いて実行されてもよい。上記の方法、又は、他の適切な方法により検出された境界画素を用いて、補正部202が適切に補正をできる形態であればよい。 The above-mentioned motion detection and boundary detection may be performed by using other methods. Any form may be used as long as the correction unit 202 can appropriately correct using the boundary pixels detected by the above method or another appropriate method.
 次に、補正部202の処理について説明する。 Next, the processing of the correction unit 202 will be described.
 図13は、一実施形態に係る補正の一例を模式的に示す図である。補正部202は、境界画素及び所定方向において境界画素に隣接する隣接画素について画素値を補正する。なお、ここでは、上記において第1所定値よりも小さい値を有する画素を黒画素とし、第2所定値よりも大きい値を有する画素を白画素として示している。これらは、厳密に光の強度の最小値、最大値をそれぞれ示す画素というわけではなく、多少の誤差を含んでいてもよいが、以下の図面においては説明のため黒、白にフリップした図面を用いている。 FIG. 13 is a diagram schematically showing an example of the correction according to the embodiment. The correction unit 202 corrects the pixel value of the boundary pixel and the adjacent pixel adjacent to the boundary pixel in a predetermined direction. Here, in the above, the pixel having a value smaller than the first predetermined value is shown as a black pixel, and the pixel having a value larger than the second predetermined value is shown as a white pixel. These are not strictly pixels that indicate the minimum and maximum values of light intensity, and may include some errors, but in the following drawings, the drawings flipped to black and white are shown for explanation. I am using it.
 以下、所定方向において境界画素と隣接する画素を隣接画素と記載する。 Hereinafter, a pixel adjacent to a boundary pixel in a predetermined direction is referred to as an adjacent pixel.
 この図13に示すように、補正部202は、境界画素の画素値を元の画素値よりも大きく補正し、かつ、隣接画素の画素値を元の画素値よりも小さく補正する。補正部202は、例えば、境界画素の画素値を白画素、すなわち、画素値の最大値に補正してもよい。また、補正部202は、隣接画素の画素値を黒画素又は灰色画素、すなわち、画素値の最小値又は上記した第3画素値の値と補正してもよい。 As shown in FIG. 13, the correction unit 202 corrects the pixel value of the boundary pixel to be larger than the original pixel value, and corrects the pixel value of the adjacent pixel to be smaller than the original pixel value. For example, the correction unit 202 may correct the pixel value of the boundary pixel to a white pixel, that is, the maximum value of the pixel value. Further, the correction unit 202 may correct the pixel value of the adjacent pixel to a black pixel or a gray pixel, that is, the minimum value of the pixel value or the value of the third pixel value described above.
 図14は、所定方向と逆方向にスクロールする動体の表示の一例を示す図である。画像情報には、例えば、正三角形がスクロール方向に動く状態が含まれる。図に示すように、補正をしない左図の状態では、液晶分子の配向方向と逆方向に、隣接する画素の横電界の影響から、残像が発生する。 FIG. 14 is a diagram showing an example of the display of a moving object that scrolls in the direction opposite to the predetermined direction. The image information includes, for example, a state in which an equilateral triangle moves in the scroll direction. As shown in the figure, in the state of the left figure without correction, an afterimage is generated due to the influence of the lateral electric field of the adjacent pixels in the direction opposite to the orientation direction of the liquid crystal molecules.
 一方で、補正後の右図の状態では、境界画素を白画素とし、隣接画素を灰色画素とすることにより、表示における残像の影響を小さくすることが可能となる。このように画素値の補正をすることにより、自然な映像を表示するとともに、動体の境界をはっきりとさせることが可能となる。 On the other hand, in the state shown on the right after correction, the influence of the afterimage on the display can be reduced by setting the boundary pixel as a white pixel and the adjacent pixel as a gray pixel. By correcting the pixel values in this way, it is possible to display a natural image and make the boundaries of moving objects clear.
 図15は、一実施形態に係る補正部202の処理を示すフローチャートである。 FIG. 15 is a flowchart showing the processing of the correction unit 202 according to the embodiment.
 まず、補正部202は、境界画素の画素値を大きくする(S300)。補正部202は、例えば、境界画素の画素値を最大値、又は、第2画素値よりも大きな値に補正してもよい。 First, the correction unit 202 increases the pixel value of the boundary pixel (S300). For example, the correction unit 202 may correct the pixel value of the boundary pixel to a maximum value or a value larger than the second pixel value.
 次に、補正部202は、所定方向において境界画素と隣接する隣接画素の画素値を小さくする(S302)。補正部202は、例えば、隣接画素の画素値を、当該が措置よりも小さい所定の灰色画素の画素値となるように補正してもよい。 Next, the correction unit 202 reduces the pixel values of the adjacent pixels adjacent to the boundary pixels in a predetermined direction (S302). For example, the correction unit 202 may correct the pixel value of the adjacent pixel so that the pixel value of the predetermined gray pixel is smaller than the measure.
 補正部202は、このように補正された画素値を含む画像情報を出力する。そして、電圧制御部22は、この補正部202が出力した画像情報に基づいて、液晶に印加するための電圧を制御するための信号を出力する。 The correction unit 202 outputs image information including the pixel value corrected in this way. Then, the voltage control unit 22 outputs a signal for controlling the voltage to be applied to the liquid crystal display based on the image information output by the correction unit 202.
 以上のように、本実施形態によれば、横電界の影響を小さくするべく、白画素へと補正することにより、所定方向に連なる画素における横電界の影響をリセットし、残像、尾引き現象を抑制することが可能となる。また、この境界画素の画素値を大きくするとともに、隣接画素の画素値を小さくすることにより、輝度、コントラストの低下を抑制することができる。本形態によれば、境界画素と隣接画素に画素値の補正を実行するため、それ以外の画素における視認性を低下させることなく、横電界による残像等の影響を抑制することが可能となる。 As described above, according to the present embodiment, in order to reduce the influence of the lateral electric field, the effect of the lateral electric field on the pixels connected in a predetermined direction is reset by correcting the white pixels, and the afterimage and the tailing phenomenon are caused. It becomes possible to suppress it. Further, by increasing the pixel value of the boundary pixel and decreasing the pixel value of the adjacent pixel, it is possible to suppress the decrease in luminance and contrast. According to this embodiment, since the pixel values are corrected for the boundary pixels and the adjacent pixels, it is possible to suppress the influence of afterimages and the like due to the lateral electric field without deteriorating the visibility of the other pixels.
 図14においては、スクロール方向が所定方向の完全な逆向きとして説明しているが、これには限られない。例えば、スクロール方向は、所定方向と逆向きの方向を正の成分として有する方向であっても、情報処理装置2において同様に境界に対する補正をすることが可能である。図14の例では、スクロール方向は、左上方向、左下方向であっても構わない。このような方向であっても、同様に情報処理装置2による補正によって、表示部における残像等を抑制することが可能となる。 In FIG. 14, the scroll direction is described as being completely opposite to the predetermined direction, but the scroll direction is not limited to this. For example, even if the scroll direction has a direction opposite to the predetermined direction as a positive component, the information processing apparatus 2 can similarly correct the boundary. In the example of FIG. 14, the scroll direction may be the upper left direction or the lower left direction. Even in such a direction, afterimages and the like in the display unit can be suppressed by the correction by the information processing apparatus 2 as well.
 また、スクロール方向が所定方向の正の成分を含む場合、横電界によるこのような残像等の影響は、発生しづらいため特に補正を実行する必要はない。これは、上述したスクロール検知部200、及び、境界検知部201の所定方向を適用した処理により実現することが可能である。 Further, when the scroll direction includes a positive component in a predetermined direction, it is not necessary to perform correction in particular because the influence of such an afterimage due to the lateral electric field is unlikely to occur. This can be realized by the processing to which the predetermined directions of the scroll detection unit 200 and the boundary detection unit 201 described above are applied.
 また、上記の図に示すように、所定方向は、水平方向のみに限られるものではない。この場合、所定方向を画素の並んでいる水平方向、垂直方向に分割して考えてもよい。スクロール検知においては、上述の処理と同様の処理で水平方向、垂直方向のスクロールを検知することが可能である。 Further, as shown in the above figure, the predetermined direction is not limited to the horizontal direction. In this case, the predetermined direction may be divided into the horizontal direction and the vertical direction in which the pixels are arranged. In scroll detection, it is possible to detect scrolling in the horizontal direction and the vertical direction by the same processing as the above-mentioned processing.
 境界検知においては、上記の水平方向に対する処理を、並行して垂直方向に対しても実行してもよい。そして、補正部202は、境界画素に対して、水平方向、垂直方向に適切な補正を実行することにより、液晶の配向がどのような方向であるかによらず、適切な処理をすることが可能となる。 In boundary detection, the above processing in the horizontal direction may be executed in parallel in the vertical direction as well. Then, the correction unit 202 performs appropriate correction in the horizontal direction and the vertical direction with respect to the boundary pixel, so that appropriate processing can be performed regardless of the orientation of the liquid crystal. It will be possible.
 以下に、補正部202における他の補正方法について、限定的ではないいくつかの例を挙げて説明する。 The other correction methods in the correction unit 202 will be described below with some non-limiting examples.
 図16は、補正の別の例を示す図である。この図16に示すように、白画素値に対して、ゲインを掛けて境界画素の画素値を決定してもよい。このゲイン値は、予め決められた所定値であってもよいし、境界画素と隣接画素との差分、又は、境界画素と背景画素値に基づいて取得されたゲイン値であってもよい。また、図16の変形例として、境界画素値のみならず、隣接画素の画素値もゲインにより求められてもよい。 FIG. 16 is a diagram showing another example of correction. As shown in FIG. 16, the pixel value of the boundary pixel may be determined by multiplying the white pixel value by a gain. This gain value may be a predetermined predetermined value, or may be a gain value acquired based on the difference between the boundary pixel and the adjacent pixel, or the boundary pixel and the background pixel value. Further, as a modification of FIG. 16, not only the boundary pixel value but also the pixel value of the adjacent pixel may be obtained by the gain.
 このようにゲインを掛けることにより、スクロールする物体の輪郭の強調度合いを前述の実施形態よりも弱めることが可能となる。この輪郭の強調度合いと、残像の抑制効果とはトレードオフの関係になるため、背景画素の色、境界画素移行の隣接画素の階調等により、適切に調整されてもよい。このようにゲインを掛ける場合には、補正後の境界画素の画素値が、補正後の隣接画素の画素値よりも大きくなるよう、すなわち、上記の実施形態と同様の大小関係を保つように補正が実行される。 By applying the gain in this way, it is possible to weaken the degree of emphasis of the contour of the scrolling object as compared with the above-described embodiment. Since there is a trade-off relationship between the degree of enhancement of the contour and the effect of suppressing the afterimage, it may be appropriately adjusted by the color of the background pixel, the gradation of the adjacent pixel at the boundary pixel transition, and the like. When the gain is applied in this way, the correction is made so that the pixel value of the corrected boundary pixel becomes larger than the pixel value of the corrected adjacent pixel, that is, the magnitude relationship similar to that of the above embodiment is maintained. Is executed.
 図17、図18は、補正の別の例を示す図である。この図17に示すように、白画素値ではなく、背景画素の画素値により、補正量を変更してもよい。このような場合には、スクロール検知部200におけるスクロール検知、及び、境界検知部201による境界検知においても、白画素ではなく、背景画素を基準と実行する。そして、この背景画素の画素値に合わせるように、境界画素及び隣接画素の画素値を決定してもよい。背景画素の画素値が図17よりも小さい図18においても同様である。 17 and 18 are diagrams showing another example of correction. As shown in FIG. 17, the correction amount may be changed not by the white pixel value but by the pixel value of the background pixel. In such a case, the scroll detection by the scroll detection unit 200 and the boundary detection by the boundary detection unit 201 also execute the background pixel as a reference instead of the white pixel. Then, the pixel values of the boundary pixels and the adjacent pixels may be determined so as to match the pixel values of the background pixels. The same applies to FIG. 18 in which the pixel value of the background pixel is smaller than that in FIG.
 このように、背景画素の画素値が白画素よりも小さい値である場合であっても、同様の補正を実行することにより、背景画素に対する表示おける残像等を抑制することもできる。 As described above, even when the pixel value of the background pixel is smaller than that of the white pixel, it is possible to suppress the afterimage or the like displayed on the background pixel by performing the same correction.
 図19は、隣接画素が背景画素よりも低い輝度値、例えば、背景画素が白画素である場合における灰色画素である場合について説明する図である。上図は、補正前の状態、下図は、補正後の状態を示す。この図19に示すように、補正部202は、境界画素が元の画素値よりも大きく、隣接画素が元の画素値よりも小さくなるように補正する。この場合においても、補正後の境界画素の画素値が補正後の隣接画素の画素値よりも大きくなることに留意されたい。 FIG. 19 is a diagram illustrating a case where an adjacent pixel has a lower luminance value than a background pixel, for example, a gray pixel when the background pixel is a white pixel. The upper figure shows the state before correction, and the lower figure shows the state after correction. As shown in FIG. 19, the correction unit 202 corrects so that the boundary pixel is larger than the original pixel value and the adjacent pixel is smaller than the original pixel value. It should be noted that even in this case, the pixel value of the corrected boundary pixel is larger than the pixel value of the corrected adjacent pixel.
 図20は、同様に隣接画素が背景画素よりも低い輝度値を有する場合について説明する図である。図20に示されるように、境界画素と対象画素との間の灰色画素が複数であってもよい。この場合も同様に、境界画素の画素値を元よりも大きく、隣接画素の画素値を元よりも小さくすることにより、黒画素による横電界の影響を小さくすることが可能となる。 FIG. 20 is a diagram illustrating a case where adjacent pixels also have a lower luminance value than background pixels. As shown in FIG. 20, there may be a plurality of gray pixels between the boundary pixel and the target pixel. Similarly, in this case as well, by making the pixel value of the boundary pixel larger than the original and the pixel value of the adjacent pixel smaller than the original, it is possible to reduce the influence of the lateral electric field due to the black pixel.
 図21は、図20における場合の別の補正例を示す図である。図21に示すように、補正部202は、境界画素の両隣の画素をそれぞれ補正してもよい。境界画素及び隣接画素は、図20と同様に補正する。一方で、境界画素の所定方向逆側に隣接する画素は、境界画素と同じ画素値まで画素値を引き上げる。このようにすることで、より横電界の影響が境界画素におよぶ可能性をより低くすることができる。 FIG. 21 is a diagram showing another correction example in the case of FIG. 20. As shown in FIG. 21, the correction unit 202 may correct the pixels on both sides of the boundary pixel. Boundary pixels and adjacent pixels are corrected in the same manner as in FIG. On the other hand, the pixel adjacent to the boundary pixel on the opposite side in the predetermined direction raises the pixel value to the same pixel value as the boundary pixel. By doing so, it is possible to reduce the possibility that the influence of the lateral electric field affects the boundary pixels.
 図22は、図20における場合のさらに別の補正例を示す図である。図22に示すように、補正部202は、境界画素を背景色まで画素値を大きく補正するとともに、隣接画素を黒画素の画素値とする。さらに、隣接画素と対象画素との間の画素値をも背景色の画素値としてもよい。このように補正することで、残像等をより効果的に抑制し、輪郭を強調することが可能となる。 FIG. 22 is a diagram showing still another correction example in the case of FIG. 20. As shown in FIG. 22, the correction unit 202 largely corrects the pixel value up to the background color of the boundary pixel, and sets the adjacent pixel as the pixel value of the black pixel. Further, the pixel value between the adjacent pixel and the target pixel may also be the pixel value of the background color. By making such corrections, afterimages and the like can be suppressed more effectively and contours can be emphasized.
 上記においては、補正部202による現フレームにおける補正処理について説明した。別の例として、補正部202は、現フレームにおけるサブフレームにおいて補正処理を実行してもよい。 In the above, the correction process in the current frame by the correction unit 202 has been described. As another example, the correction unit 202 may execute the correction process in the subframe in the current frame.
 図23は、フレーム内のサブフレームを示す図である。例えば、第Mフレームにおける画像情報が、境界画素を基準として、図20と同様の画素値を有しているとする。第Mフレームには、第0サブフレーム、第1サブフレーム、第2サブフレーム、第3サブフレームがあるとする。このような場合、補正部202は、以下のように各サブフレームにおける画像情報の補正をしてもよい。 FIG. 23 is a diagram showing subframes in the frame. For example, it is assumed that the image information in the Mth frame has the same pixel value as in FIG. 20 with reference to the boundary pixel. It is assumed that the third M frame includes a 0th subframe, a 1st subframe, a 2nd subframe, and a 3rd subframe. In such a case, the correction unit 202 may correct the image information in each subframe as follows.
 図24は、サブフレームにおける補正の一例を示す図である。横軸は、画素の位置、縦軸は、画素値とする。また、点線は、補正前の画素値を示す。このように、第0サブフレームでは、補正部202は、境界画素を白画素(背景画素)よりも低く(例えば、所定のゲインを掛けた値)補正し、隣接画素の画素値を元の画素値よりも低く補正する。 FIG. 24 is a diagram showing an example of correction in the subframe. The horizontal axis is the position of the pixel, and the vertical axis is the pixel value. The dotted line indicates the pixel value before correction. In this way, in the 0th subframe, the correction unit 202 corrects the boundary pixel to be lower than the white pixel (background pixel) (for example, a value multiplied by a predetermined gain), and the pixel value of the adjacent pixel is the original pixel. Correct below the value.
 第1サブフレームにおいては、いったん元の画素値へと戻す。 In the first subframe, return to the original pixel value once.
 第2サブフレームにおいては、補正部202は、境界画素の画素値を白画素(背景画素)と同じレベルに、隣接画素を第0サブフレームと同じレベルに補正する。 In the second subframe, the correction unit 202 corrects the pixel value of the boundary pixel to the same level as the white pixel (background pixel) and the adjacent pixel to the same level as the 0th subframe.
 第3サブフレームにおいては、補正部202は、第0サブフレームと同様に補正をする。 In the third subframe, the correction unit 202 corrects in the same manner as in the 0th subframe.
 このように、サブフレームごとに、補正量をかえることにより、横電界の影響を小さくしつつ、視認性を確保する形態としてもよい。 In this way, by changing the correction amount for each subframe, the influence of the lateral electric field may be reduced and the visibility may be ensured.
 図25は、サブフレームにおける補正の別の例を示す図である。第1サブフレーム及び第3サブフレームにおいて、補正部202が補正をする。第1サブフレームについて、境界画素、及び、隣接画素に補正を行うが、補正部202は、境界画素が元の画素値よりも大きく補正する一方で、隣接画素についても画素値が大きくなるように補正する。 FIG. 25 is a diagram showing another example of correction in the subframe. In the first subframe and the third subframe, the correction unit 202 makes corrections. For the first subframe, the boundary pixel and the adjacent pixel are corrected, and the correction unit 202 corrects the boundary pixel to be larger than the original pixel value, while the pixel value of the adjacent pixel is also large. to correct.
 そして、第3サブフレームについて、補正部202は、隣接画素のサブフレームごとにおける画素値の平均値がフレームの隣接画素の画素値と一致するように、画素値を小さく補正する。 Then, for the third subframe, the correction unit 202 corrects the pixel value to be small so that the average value of the pixel values for each subframe of the adjacent pixel matches the pixel value of the adjacent pixel of the frame.
 このように補正部202は、サブフレームごとの補正を実行してもよい。 In this way, the correction unit 202 may perform correction for each subframe.
 図24においても、補正部202は、隣接画素について、画素値を小さくするのではなく、視認性を考慮して大きく補正してもよい。このような処理をする場合には、フレームとしての横電界の影響を小さく抑えることが可能であるため、隣接画素についても画素値を大きくすることによっても、残像の影響を小さくすることができるとともに、視認性の低下を抑制することが可能となる。 Also in FIG. 24, the correction unit 202 may make a large correction for adjacent pixels in consideration of visibility instead of reducing the pixel value. In the case of such processing, it is possible to suppress the influence of the lateral electric field as a frame to be small, so that the influence of the afterimage can be reduced by increasing the pixel value of the adjacent pixels as well. , It is possible to suppress the deterioration of visibility.
 全ての例において、補正部202は、白画素の画素値以上とならないように境界画素の補正をしたが、これには限られない。 In all the examples, the correction unit 202 corrected the boundary pixels so as not to exceed the pixel value of the white pixels, but this is not limited to this.
 図26は、補正部202がより補正の効果を大きくする一例を示す図である。例えば、補正部202は、境界画素の補正値として、白画素値よりも大きい値を指定することもできる。そして、この画像情報を電圧制御部22に出力する。この電圧制御部22は、この画素値に基づいて、白画素として液晶に与える電圧よりも大きな電圧を当該境界画素に印加するように、電圧を制御してもよい。このように白画素値よりも大きな電圧を印加することにより、横電界の影響を白画素値にするよりもさらに抑制することができる。 FIG. 26 is a diagram showing an example in which the correction unit 202 further increases the effect of correction. For example, the correction unit 202 may specify a value larger than the white pixel value as the correction value of the boundary pixel. Then, this image information is output to the voltage control unit 22. Based on this pixel value, the voltage control unit 22 may control the voltage so as to apply a voltage larger than the voltage applied to the liquid crystal as white pixels to the boundary pixels. By applying a voltage larger than the white pixel value in this way, the influence of the lateral electric field can be further suppressed as compared with the white pixel value.
 なお、この場合であっても、液晶分子の配向を半永久的に変えてしまうような大きな電圧を印加するべきではないことに留意されたい。 It should be noted that even in this case, a large voltage that would change the orientation of the liquid crystal molecules semi-permanently should not be applied.
 上記においては、明るい背景の中に背景よりも暗い動体がある場合について説明したが、逆であってもよい。この場合、上記と同様に処理をすることにより、動体の所定方向前側の面が、動体に属する画素、及び、境界画素として検知される。以下の補正については、いずれの場合にも同様の処理を施すことにより、黒画素から白画素への横電界の影響を小さくすることが可能となる。 In the above, the case where there is a moving object darker than the background in the bright background has been described, but the opposite may be true. In this case, by performing the same processing as described above, the front surface of the moving body in a predetermined direction is detected as pixels belonging to the moving body and boundary pixels. For the following corrections, it is possible to reduce the influence of the lateral electric field from the black pixels to the white pixels by performing the same processing in any case.
 前述した実施形態は、以下のような形態としてもよい。 The above-mentioned embodiment may be in the following form.
(1)
 記憶回路と、信号処理回路と、を備え、
 前記信号処理回路は、
  画像情報において背景に対してスクロールする動体を検知し、
  前記動体の前記画像情報における境界を検知し、
  前記画像情報において検知された前記境界である境界画素の画素値に対して補正する、
 情報処理装置。
(1)
Equipped with a storage circuit and a signal processing circuit,
The signal processing circuit is
Detects a moving object that scrolls with respect to the background in the image information,
Detecting the boundary of the moving object in the image information,
The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
Information processing equipment.
(2)
 前記信号処理回路は、
  前記境界画素の前記画素値が第1画素値よりも小さい場合に、前記画像情報における前記境界画素の前記画素値よりも大きい値に補正する、
 (1)に記載の情報処理装置。
(2)
The signal processing circuit is
When the pixel value of the boundary pixel is smaller than the first pixel value, it is corrected to a value larger than the pixel value of the boundary pixel in the image information.
The information processing device according to (1).
(3)
 前記信号処理回路は、
  前記境界画素の前記画素値を、前記背景を示す前記画素値に補正する、
 (2)に記載の情報処理装置。
(3)
The signal processing circuit is
The pixel value of the boundary pixel is corrected to the pixel value indicating the background.
The information processing device according to (2).
(4)
 前記信号処理回路は、
  前記境界画素の前記画素値を、前記画素値の最大値に補正する、
 (2)に記載の情報処理装置。
(Four)
The signal processing circuit is
The pixel value of the boundary pixel is corrected to the maximum value of the pixel value.
The information processing device according to (2).
(5)
 前記信号処理回路は、
  前記境界画素の前記画素値を、前記画素値の最大値に所定割合を乗算した値に補正する、
 (2)に記載の情報処理装置。
(Five)
The signal processing circuit is
The pixel value of the boundary pixel is corrected to a value obtained by multiplying the maximum value of the pixel value by a predetermined ratio.
The information processing device according to (2).
(6)
 前記信号処理回路は、さらに、
  前記境界画素に隣接する隣接画素の前記画素値を前記画像情報における前記隣接画素の前記画素値よりも小さい値に補正する、
 (3)に記載の情報処理装置。
(6)
The signal processing circuit further
The pixel value of the adjacent pixel adjacent to the boundary pixel is corrected to a value smaller than the pixel value of the adjacent pixel in the image information.
The information processing device according to (3).
(7)
 前記隣接画素は、前記境界画素に対して所定方向において隣接する画素である、
 (4)に記載の情報処理装置。
(7)
The adjacent pixel is a pixel adjacent to the boundary pixel in a predetermined direction.
The information processing device according to (4).
(8)
 前記信号処理回路は、
  フレームごとに取得した前記画像情報について、前記フレームに属するサブフレームごとに前記画素値を補正する、
 (1)から(7)のいずれかに記載の情報処理装置。
(8)
The signal processing circuit is
With respect to the image information acquired for each frame, the pixel value is corrected for each subframe belonging to the frame.
The information processing device according to any one of (1) to (7).
(9)
 前記信号処理回路は、
  前記フレームにおいて、前記サブフレームにおいて前記隣接画素のそれぞれに補正した補正値の平均が、前記画像情報における前記隣接画素の前記画素値と等しくなるように補正する、
 (8)に記載の情報処理装置。
(9)
The signal processing circuit is
In the frame, the average of the correction values corrected for each of the adjacent pixels in the subframe is corrected so as to be equal to the pixel value of the adjacent pixels in the image information.
The information processing device according to (8).
(10)
 前記信号処理回路は、
  前記画像情報を所定色空間における各成分に対して前記画素値を補正し、
  補正した前記画素値を合成して前記画像情報を取得する、
 (1)から(9)のいずれかに記載の情報処理装置。
(Ten)
The signal processing circuit is
The image information is corrected for the pixel value for each component in a predetermined color space, and the pixel value is corrected.
The image information is acquired by synthesizing the corrected pixel values.
The information processing apparatus according to any one of (1) to (9).
(11)
 前記記憶回路は、フレームメモリを備え、
 前記信号処理回路は、
  現フレームの前記画像情報と、前記フレームメモリに格納された過去フレームの前記画像情報と、を比較して、スクロールを検知する、
 (1)から(10)のいずれかに記載の情報処理装置。
(11)
The storage circuit includes a frame memory.
The signal processing circuit is
Scrolling is detected by comparing the image information of the current frame with the image information of the past frame stored in the frame memory.
The information processing apparatus according to any one of (1) to (10).
(12)
 前記信号処理回路は、
  前記現フレームにおける着目画素を基準とする所定領域内にある前記画素の前記画素値と、前記過去フレームにおける前記着目画素から第1距離にある画素を基準とする所定領域内にある前記画素の前記画素値と、をそれぞれ比較して、前記着目画素におけるスクロールを検知する、
 (11)に記載の情報処理装置。
(12)
The signal processing circuit is
The pixel value of the pixel in a predetermined region based on the pixel of interest in the current frame and the pixel of the pixel in the predetermined region of the pixel at the first distance from the pixel of interest in the past frame. Scrolling in the pixel of interest is detected by comparing the pixel value with each other.
The information processing device according to (11).
(13)
 前記信号処理回路は、
  前記画像情報の着目画素の前記画素値が第1所定値よりも小さく、前記着目画素から所定方向において第2距離以内に属する画素の前記画素値が第2画素値よりも大きい場合に、前記着目画素を前記境界画素であると検知する、
 (1)から(12)のいずれかに記載の情報処理装置。
(13)
The signal processing circuit is
When the pixel value of the pixel of interest in the image information is smaller than the first predetermined value and the pixel value of a pixel belonging to within a second distance in a predetermined direction from the pixel of interest is larger than the second pixel value, the attention is given. Detecting a pixel as the boundary pixel,
The information processing apparatus according to any one of (1) to (12).
(14)
 前記信号処理回路は、
  前記着目画素の前記所定方向において隣接する隣接画素の前記画素値と、前記着目画素の前記画素値との差が、第3画素値よりも大きい場合に、前記着目画素を前記境界画素であると検知する、
 (13)に記載の情報処理装置。
(14)
The signal processing circuit is
When the difference between the pixel value of the adjacent pixel adjacent to the pixel of interest in the predetermined direction and the pixel value of the pixel of interest is larger than the third pixel value, the pixel of interest is defined as the boundary pixel. Detect,
The information processing apparatus according to (13).
(15)
 前記所定方向は、カイラル方向である、
 (7)又は(13)に記載の情報処理装置。
(15)
The predetermined direction is the chiral direction.
The information processing apparatus according to (7) or (13).
(16)
 前記信号処理回路は、
  前記所定方向とは逆の方向に隣接する前記画素の前記画素値が、前記第1所定値よりも小さい場合に、当該隣接する画素について、前記境界画素の前記画素値に対する補正と同様の補正をする、
 (7)又は(13)に記載の情報処理装置。
(16)
The signal processing circuit is
When the pixel value of the pixel adjacent to the predetermined direction is smaller than the first predetermined value, the adjacent pixel is corrected in the same manner as the correction for the pixel value of the boundary pixel. do,
The information processing apparatus according to (7) or (13).
(17)
 前記情報処理装置は、IC(Integrated Circuitry)に実装される、
 (1)から(16)のいずれかに記載の情報処理装置。
(17)
The information processing device is mounted on an IC (Integrated Circuitry).
The information processing apparatus according to any one of (1) to (16).
(18)
 前記信号処理回路が出力する補正後の前記画像情報に基づいて、液晶に印加する電圧を制御する、制御回路、
 をさらに備える、(1)から(17)のいずれかに記載の情報処理装置。
(18)
A control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit.
The information processing apparatus according to any one of (1) to (17).
(19)
 前記信号処理回路が出力する補正後の前記画像情報に基づいて、液晶に印加する電圧を制御する、制御回路、
 をさらに備え、
 前記信号処理回路は、
  前記境界画素の前記画素値を、前記制御回路において前記画素値の最大値を与える電圧よりも大きい値に補正する、
 (2)に記載の情報処理装置。
(19)
A control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit.
Further prepare
The signal processing circuit is
The pixel value of the boundary pixel is corrected to a value larger than the voltage that gives the maximum value of the pixel value in the control circuit.
The information processing device according to (2).
(20)
 記憶回路と、信号処理回路と、制御回路と、液晶パネルと、を備え、
 前記信号処理回路は、
  画像情報において背景に対してスクロールする動体を検知し、
  前記動体の前記画像情報における境界のパターンを検知し、
  前記画像情報において検知された前記境界である境界画素の画素値に対して補正し、
 前記制御回路は、
  前記信号処理回路が出力する補正後の前記画像情報に基づいて、前記液晶パネルに属する液晶に印加する電圧を制御し、
 前記液晶パネルは、
  前記制御回路から出力された電圧値に基づいて、射出する光の強度が制御される、
 表示装置。
(20)
It is equipped with a storage circuit, a signal processing circuit, a control circuit, and a liquid crystal panel.
The signal processing circuit is
Detects a moving object that scrolls with respect to the background in the image information,
Detecting the boundary pattern in the image information of the moving object,
The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected and corrected.
The control circuit is
Based on the corrected image information output by the signal processing circuit, the voltage applied to the liquid crystal belonging to the liquid crystal panel is controlled.
The liquid crystal panel is
The intensity of the emitted light is controlled based on the voltage value output from the control circuit.
Display device.
(21)
 信号処理回路により、
  画像情報において背景に対してスクロールする動体を検知し、
  前記動体の前記画像情報における境界を検知し、
  前記画像情報において検知された前記境界である境界画素の画素値に対して補正する、
 情報処理方法。
(twenty one)
By signal processing circuit
Detects a moving object that scrolls with respect to the background in the image information,
Detecting the boundary of the moving object in the image information,
The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
Information processing method.
(22)
 信号処理回路により実行されると、
  画像情報において背景に対してスクロールする動体を検知し、
  前記動体の前記画像情報における境界を検知し、
  前記画像情報において検知された前記境界である境界画素の画素値に対して補正する、
 方法を実行するプログラム。
(twenty two)
When executed by a signal processing circuit,
Detects a moving object that scrolls with respect to the background in the image information,
Detecting the boundary of the moving object in the image information,
The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
A program that executes the method.
 本開示の態様は、前述した実施形態に限定されるものではなく、想到しうる種々の変形も含むものであり、本開示の効果も前述の内容に限定されるものではない。各実施形態における構成要素は、適切に組み合わされて適用されてもよい。すなわち、特許請求の範囲に規定された内容及びその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 The aspect of the present disclosure is not limited to the above-mentioned embodiment, but also includes various possible modifications, and the effect of the present disclosure is not limited to the above-mentioned contents. The components in each embodiment may be applied in appropriate combinations. That is, various additions, changes and partial deletions are possible without departing from the conceptual idea and purpose of the present disclosure derived from the contents specified in the claims and their equivalents.
1: 表示装置、
2: 情報処理装置、
20: 情報処理部、
200: スクロール検知部、201: 境界検知部、202: 補正部、
21: 記憶部、
210: フレームメモリ、
22: 電圧制御部、
3: 液晶パネル、
30: 表示パネル、31: 対向基板、32: 液晶分子
1: Display device,
2: Information processing device,
20: Information processing department,
200: Scroll detector, 201: Boundary detector, 202: Correction,
21: Memory,
210: Frame memory,
22: Voltage control unit,
3: LCD panel,
30: Display panel, 31: Opposed substrate, 32: Liquid crystal molecule

Claims (20)

  1.  記憶回路と、信号処理回路と、を備え、
     前記信号処理回路は、
      画像情報において背景に対してスクロールする動体を検知し、
      前記動体の前記画像情報における境界を検知し、
      前記画像情報において検知された前記境界である境界画素の画素値に対して補正する、
     情報処理装置。
    Equipped with a storage circuit and a signal processing circuit,
    The signal processing circuit is
    Detects a moving object that scrolls with respect to the background in the image information,
    Detecting the boundary of the moving object in the image information,
    The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
    Information processing equipment.
  2.  前記信号処理回路は、
      前記境界画素の前記画素値が第1画素値よりも小さい場合に、前記画像情報における前記境界画素の前記画素値よりも大きい値に補正する、
     請求項1に記載の情報処理装置。
    The signal processing circuit is
    When the pixel value of the boundary pixel is smaller than the first pixel value, it is corrected to a value larger than the pixel value of the boundary pixel in the image information.
    The information processing apparatus according to claim 1.
  3.  前記信号処理回路は、
      前記境界画素の前記画素値を、前記背景を示す前記画素値に補正する、
     請求項2に記載の情報処理装置。
    The signal processing circuit is
    The pixel value of the boundary pixel is corrected to the pixel value indicating the background.
    The information processing apparatus according to claim 2.
  4.  前記信号処理回路は、
      前記境界画素の前記画素値を、前記画素値の最大値に補正する、
     請求項2に記載の情報処理装置。
    The signal processing circuit is
    The pixel value of the boundary pixel is corrected to the maximum value of the pixel value.
    The information processing apparatus according to claim 2.
  5.  前記信号処理回路は、
      前記境界画素の前記画素値を、前記画素値の最大値に所定割合を乗算した値に補正する、
     請求項2に記載の情報処理装置。
    The signal processing circuit is
    The pixel value of the boundary pixel is corrected to a value obtained by multiplying the maximum value of the pixel value by a predetermined ratio.
    The information processing apparatus according to claim 2.
  6.  前記信号処理回路は、さらに、
      前記境界画素に隣接する隣接画素の前記画素値を前記画像情報における前記隣接画素の前記画素値よりも小さい値に補正する、
     請求項3に記載の情報処理装置。
    The signal processing circuit further
    The pixel value of the adjacent pixel adjacent to the boundary pixel is corrected to a value smaller than the pixel value of the adjacent pixel in the image information.
    The information processing apparatus according to claim 3.
  7.  前記隣接画素は、前記境界画素に対して所定方向において隣接する画素である、
     請求項4に記載の情報処理装置。
    The adjacent pixel is a pixel adjacent to the boundary pixel in a predetermined direction.
    The information processing apparatus according to claim 4.
  8.  前記信号処理回路は、
      フレームごとに取得した前記画像情報について、前記フレームに属するサブフレームごとに前記画素値を補正する、
     請求項1に記載の情報処理装置。
    The signal processing circuit is
    With respect to the image information acquired for each frame, the pixel value is corrected for each subframe belonging to the frame.
    The information processing apparatus according to claim 1.
  9.  前記信号処理回路は、
      前記フレームにおいて、前記サブフレームにおいて前記隣接画素のそれぞれに補正した補正値の平均が、前記画像情報における前記隣接画素の前記画素値と等しくなるように補正する、
     請求項8に記載の情報処理装置。
    The signal processing circuit is
    In the frame, the average of the correction values corrected for each of the adjacent pixels in the subframe is corrected so as to be equal to the pixel value of the adjacent pixels in the image information.
    The information processing apparatus according to claim 8.
  10.  前記信号処理回路は、
      前記画像情報を所定色空間における各成分に対して前記画素値を補正し、
      補正した前記画素値を合成して前記画像情報を取得する、
     請求項1に記載の情報処理装置。
    The signal processing circuit is
    The image information is corrected for the pixel value for each component in a predetermined color space, and the pixel value is corrected.
    The image information is acquired by synthesizing the corrected pixel values.
    The information processing apparatus according to claim 1.
  11.  前記記憶回路は、フレームメモリを備え、
     前記信号処理回路は、
      現フレームの前記画像情報と、前記フレームメモリに格納された過去フレームの前記画像情報と、を比較して、スクロールを検知する、
     請求項1に記載の情報処理装置。
    The storage circuit includes a frame memory.
    The signal processing circuit is
    Scrolling is detected by comparing the image information of the current frame with the image information of the past frame stored in the frame memory.
    The information processing apparatus according to claim 1.
  12.  前記信号処理回路は、
      前記現フレームにおける着目画素を基準とする所定領域内にある前記画素の前記画素値と、前記過去フレームにおける前記着目画素から第1距離にある画素を基準とする所定領域内にある前記画素の前記画素値と、をそれぞれ比較して、前記着目画素におけるスクロールを検知する、
     請求項11に記載の情報処理装置。
    The signal processing circuit is
    The pixel value of the pixel in a predetermined region based on the pixel of interest in the current frame and the pixel of the pixel in the predetermined region of the pixel at the first distance from the pixel of interest in the past frame. Scrolling in the pixel of interest is detected by comparing the pixel value with each other.
    The information processing apparatus according to claim 11.
  13.  前記信号処理回路は、
      前記画像情報の着目画素の前記画素値が第1所定値よりも小さく、前記着目画素から所定方向において第2距離以内に属する画素の前記画素値が第2画素値よりも大きい場合に、前記着目画素を前記境界画素であると検知する、
     請求項1に記載の情報処理装置。
    The signal processing circuit is
    When the pixel value of the pixel of interest in the image information is smaller than the first predetermined value and the pixel value of a pixel belonging to within a second distance in a predetermined direction from the pixel of interest is larger than the second pixel value, the attention is given. Detecting a pixel as the boundary pixel,
    The information processing apparatus according to claim 1.
  14.  前記信号処理回路は、
      前記着目画素の前記所定方向において隣接する隣接画素の前記画素値と、前記着目画素の前記画素値との差が、第3画素値よりも大きい場合に、前記着目画素を前記境界画素であると検知する、
     請求項13に記載の情報処理装置。
    The signal processing circuit is
    When the difference between the pixel value of the adjacent pixel adjacent to the pixel of interest in the predetermined direction and the pixel value of the pixel of interest is larger than the third pixel value, the pixel of interest is defined as the boundary pixel. Detect,
    The information processing apparatus according to claim 13.
  15.  前記情報処理回路は、IC(Integrated Circuitry)に実装される、
     請求項1に記載の情報処理装置。
    The information processing circuit is mounted on an IC (Integrated Circuitry).
    The information processing apparatus according to claim 1.
  16.  前記信号処理回路が出力する補正後の前記画像情報に基づいて、液晶に印加する電圧を制御する、制御回路、
     をさらに備える、請求項1に記載の情報処理装置。
    A control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit.
    The information processing apparatus according to claim 1, further comprising.
  17.  前記信号処理回路が出力する補正後の前記画像情報に基づいて、液晶に印加する電圧を制御する、制御回路、
     をさらに備え、
     前記信号処理回路は、
      前記境界画素の前記画素値を、前記制御回路において前記画素値の最大値を与える電圧よりも大きい値に補正する、
     請求項2に記載の情報処理装置。
    A control circuit that controls the voltage applied to the liquid crystal display based on the corrected image information output by the signal processing circuit.
    Further prepare
    The signal processing circuit is
    The pixel value of the boundary pixel is corrected to a value larger than the voltage that gives the maximum value of the pixel value in the control circuit.
    The information processing apparatus according to claim 2.
  18.  記憶回路と、信号処理回路と、制御回路と、液晶パネルと、を備え、
     前記信号処理回路は、
      画像情報において背景に対してスクロールする動体を検知し、
      前記動体の前記画像情報における境界のパターンを検知し、
      前記画像情報において検知された前記境界である境界画素の画素値に対して補正し、
     前記制御回路は、
      前記信号処理回路が出力する補正後の前記画像情報に基づいて、前記液晶パネルに属する液晶に印加する電圧を制御し、
     前記液晶パネルは、
      前記制御回路から出力された電圧値に基づいて、射出する光の強度が制御される、
     表示装置。
    It is equipped with a storage circuit, a signal processing circuit, a control circuit, and a liquid crystal panel.
    The signal processing circuit is
    Detects a moving object that scrolls with respect to the background in the image information,
    Detecting the boundary pattern in the image information of the moving object,
    The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected and corrected.
    The control circuit is
    Based on the corrected image information output by the signal processing circuit, the voltage applied to the liquid crystal belonging to the liquid crystal panel is controlled.
    The liquid crystal panel is
    The intensity of the emitted light is controlled based on the voltage value output from the control circuit.
    Display device.
  19.  信号処理回路により、
      画像情報において背景に対してスクロールする動体を検知し、
      前記動体の前記画像情報における境界を検知し、
      前記画像情報において検知された前記境界である境界画素の画素値に対して補正する、
     情報処理方法。
    By signal processing circuit
    Detects a moving object that scrolls with respect to the background in the image information,
    Detecting the boundary of the moving object in the image information,
    The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
    Information processing method.
  20.  信号処理回路により実行されると、
      画像情報において背景に対してスクロールする動体を検知し、
      前記動体の前記画像情報における境界を検知し、
      前記画像情報において検知された前記境界である境界画素の画素値に対して補正する、
     方法を実行するプログラム。
    When executed by a signal processing circuit,
    Detects a moving object that scrolls with respect to the background in the image information,
    Detecting the boundary of the moving object in the image information,
    The pixel value of the boundary pixel, which is the boundary detected in the image information, is corrected.
    A program that executes the method.
PCT/JP2021/038114 2020-11-10 2021-10-14 Information processing device, display device, information processing method, and program WO2022102337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022561353A JPWO2022102337A1 (en) 2020-11-10 2021-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187460 2020-11-10
JP2020-187460 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102337A1 true WO2022102337A1 (en) 2022-05-19

Family

ID=81607371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038114 WO2022102337A1 (en) 2020-11-10 2021-10-14 Information processing device, display device, information processing method, and program

Country Status (2)

Country Link
JP (1) JPWO2022102337A1 (en)
WO (1) WO2022102337A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211848A (en) * 1995-02-06 1996-08-20 Fujitsu Ltd Halftone display method and halftone display device
KR20080078770A (en) * 2007-02-24 2008-08-28 엘지디스플레이 주식회사 Liquid crystal display without motion blur and driving method of the same
WO2008136289A1 (en) * 2007-04-27 2008-11-13 Sharp Kabushiki Kaisha Image processing device, method, image display device and method
JP2008301441A (en) * 2007-06-04 2008-12-11 Sanyo Electric Co Ltd Signal processor, video display device, and signal processing method
KR20090017205A (en) * 2007-08-14 2009-02-18 엘지전자 주식회사 Correction apparatus and method of image using edge information and motion vector
JP2010048958A (en) * 2008-08-20 2010-03-04 Epson Imaging Devices Corp Image processing device, processing method therefor and image display system
WO2011027422A1 (en) * 2009-09-02 2011-03-10 ルネサスエレクトロニクス株式会社 Image processing apparatus and video reproducing device
JP2012004772A (en) * 2010-06-16 2012-01-05 Seiko Epson Corp Image display device, image supply device, image processing method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211848A (en) * 1995-02-06 1996-08-20 Fujitsu Ltd Halftone display method and halftone display device
KR20080078770A (en) * 2007-02-24 2008-08-28 엘지디스플레이 주식회사 Liquid crystal display without motion blur and driving method of the same
WO2008136289A1 (en) * 2007-04-27 2008-11-13 Sharp Kabushiki Kaisha Image processing device, method, image display device and method
JP2008301441A (en) * 2007-06-04 2008-12-11 Sanyo Electric Co Ltd Signal processor, video display device, and signal processing method
KR20090017205A (en) * 2007-08-14 2009-02-18 엘지전자 주식회사 Correction apparatus and method of image using edge information and motion vector
JP2010048958A (en) * 2008-08-20 2010-03-04 Epson Imaging Devices Corp Image processing device, processing method therefor and image display system
WO2011027422A1 (en) * 2009-09-02 2011-03-10 ルネサスエレクトロニクス株式会社 Image processing apparatus and video reproducing device
JP2012004772A (en) * 2010-06-16 2012-01-05 Seiko Epson Corp Image display device, image supply device, image processing method, and program

Also Published As

Publication number Publication date
JPWO2022102337A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US7782335B2 (en) Apparatus for driving liquid crystal display device and driving method using the same
KR100818988B1 (en) Method and apparatus for processing image signal
JP5026545B2 (en) Display device, luminance unevenness correction method, correction data creation device, and correction data creation method
US8610654B2 (en) Correction of visible mura distortions in displays using filtered mura reduction and backlight control
US7486417B2 (en) Apparatus for driving liquid crystal display device and driving method using the same
TWI426481B (en) Display device and display device
CN109192174B (en) Driving method and driving device of display panel and display device
KR100936862B1 (en) Display Gradation Presenting Device and Method
KR100772906B1 (en) Method and apparatus for displaying image signal
US20100013750A1 (en) Correction of visible mura distortions in displays using filtered mura reduction and backlight control
US8866728B2 (en) Liquid crystal display
US9940883B2 (en) Display panel inspection apparatus
JP2004538523A (en) Method and system for sub-pixel rendering with gamma adjustment and adaptive filtering
TWI573126B (en) Image adjusting method capable of executing optimal adjustment according to envorimental variation and related display
WO2009051251A1 (en) Correction of visible mura distortions in displays
US11030971B2 (en) Display device and image processing method for color correction based on image type
US7164284B2 (en) Dynamic gamma for a liquid crystal display
CN111402769B (en) Method for judging response speed of display panel
US20120308155A1 (en) Image processor, display device, and image processing method
JP6265710B2 (en) Image processing apparatus, computer program, and image processing method
WO2022102337A1 (en) Information processing device, display device, information processing method, and program
JP2010117579A (en) Liquid crystal display device and method of improving viewing angle characteristic in the same
CN111862877B (en) Wide-viewing-angle adjustment method, display panel and computer-readable storage medium
US20090073159A1 (en) Overdrive method for anti-double edge of lcd
JP2000102044A (en) Display image evaluation method and display image evaluation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891584

Country of ref document: EP

Kind code of ref document: A1