WO2022100619A1 - 一种通机发电机冷却散热方法及通机发电机 - Google Patents

一种通机发电机冷却散热方法及通机发电机 Download PDF

Info

Publication number
WO2022100619A1
WO2022100619A1 PCT/CN2021/129845 CN2021129845W WO2022100619A1 WO 2022100619 A1 WO2022100619 A1 WO 2022100619A1 CN 2021129845 W CN2021129845 W CN 2021129845W WO 2022100619 A1 WO2022100619 A1 WO 2022100619A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
generator
air guide
muffler
temperature area
Prior art date
Application number
PCT/CN2021/129845
Other languages
English (en)
French (fr)
Inventor
尹登昌
Original Assignee
尹登昌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尹登昌 filed Critical 尹登昌
Publication of WO2022100619A1 publication Critical patent/WO2022100619A1/zh
Priority to US18/314,031 priority Critical patent/US20230353008A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • F02B63/044Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators the engine-generator unit being placed on a frame or in an housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • F02B63/044Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators the engine-generator unit being placed on a frame or in an housing
    • F02B63/048Portable engine-generator combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/06Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the invention relates to the technical field of general cooling, in particular to a cooling and heat dissipation method for a general generator and a general generator.
  • General machine refers to a general-purpose machine equipped with an engine, which is powered by the engine to complete various functions, such as installing a water pump to pump water, and installing a motor for power generation to generate electricity.
  • the general generator refers to a small portable generator composed of power generation components installed on the output end of the general engine, which is generally used by households.
  • the conventional general generator is composed of engine, generator assembly, control panel, fuel tank and other components. These components are generally packaged with a chassis shell to become a relatively sealed general body, which is easy to carry, soundproof, beautiful and safe. There are also other types of generators that do not need to be packaged in a case in order to save costs, commonly known as open-frame general-machine generators.
  • An existing general-purpose generator with a casing its structure includes a casing, a control panel is installed on one side of one end of the casing, and a fuel tank, a controller, a rectifier bridge, an engine, a generator assembly and a fuel tank are also installed inside the casing. Muffler; There are also air inlets and air outlets on the chassis shell. When working, rely on the hand-pulled fan of the engine and the generator fan to generate air flow from the air inlet to achieve air intake. Outflow.
  • this existing general-purpose generator has the following defects: 1.
  • the current structure is that various components are uniformly installed inside the casing, and each component is located in a large space. Since the work of the engine will generate a lot of heat, the work of the generator will also generate a lot of heat. Although there are two fans for exhaust air cooling, the overall cooling effect is poor, and the temperature in the entire chassis is high. At the same time, the cooling target of this method is also very poor, and the heat resistance performance of each component in the chassis is different. Some components are not well dissipated and the temperature is too high, which will affect the running quality of the whole machine, and even cause damage and cannot work. 2.
  • the muffler cover In the current position of the air outlet of the chassis shell, when installing the muffler, the muffler cover is directly fixed to the installation groove around the air outlet of the mechanical shell with screws, and the outlet end of the muffler is directly abutted on the muffler cover. Relying on elastic deformation to achieve sealing, the structure is simpler and the installation is more convenient.
  • the technical problem to be solved by the present invention is: how to provide a cooling and heat dissipation method for an on-machine generator that can have better heat-dissipation and cooling effect, improve the working stability of the machine, and prolong the life of the equipment.
  • the present invention adopts the following technical solutions:
  • a method for cooling and dissipating heat for a power-on generator which is characterized in that an air-guiding baffle is used to separate the inner cavity of the casing of the power-on generator into a low-temperature area on the left side and a high-temperature area on the right side, and the air-guiding baffle is opened
  • the air flow first passes through the engine assembly and the generator assembly, and then flows out of the air outlet through the muffler to cool the internal components of the generator.
  • the present invention separates the parts with poor high temperature tolerance in the general-machine generator into a low temperature area, separates the parts more capable of withstanding high temperature into the high temperature area, and guides the air flow path, so that the components in the two areas are in accordance with the Cooling tiers require sequential cooling. Therefore, the overall cooling effect of the general generator is greatly improved, the working stability is improved, and the service life of the equipment is prolonged.
  • the method is realized by using the following general generator, which includes a chassis shell, a control panel is installed on the chassis shell, and a fuel tank, a controller, a rectifier bridge, an engine assembly, a power generator are also installed inside the chassis shell.
  • Engine components and mufflers there are also air inlets and outlets on the chassis shell, and the muffler is installed at the air outlet. When working, it relies on the hand-pulled fan of the engine and the generator fan to generate air flow from the air inlet to enter the chassis shell.
  • the air flow through the muffler flows out from the air outlet; it is characterized in that a low temperature area and a high temperature area are arranged in the chassis shell, the control panel, the fuel tank, the controller and the rectifier bridge are installed at one end of the low temperature area, and the engine assembly , generator assembly and muffler are installed at one end of the high temperature area.
  • control panel, controller and rectifier bridge are electrical components, which have poor high temperature tolerance and can be placed in a low temperature area to better prolong their service life. Combustion and explosion, so placing it in a low temperature area can better improve the safety factor.
  • Engine components, generator components and mufflers will emit heat when they work, and their heat resistance is relatively high. They are placed in high temperature areas to reduce the impact on components in low temperature areas.
  • the upper end of the case shell is also provided with a handle, which is convenient for carrying through the machine.
  • an air guide baffle is arranged in the chassis shell.
  • the width of the air guide baffle is matched with the width in the front and rear directions of the inner cavity of the chassis shell and is integrally installed in the middle of the chassis shell vertically.
  • the upper clamping end that is clamped on the upper top surface also has a lower clamping end that is clamped to the lower bottom surface of the inner cavity of the chassis shell.
  • the air guide baffle is provided with air guide openings connecting the left and right sides.
  • the inner cavity of the case shell is separated to form a low temperature area and a high temperature area by means of air guide baffles, the structure is simple, the implementation is convenient, and the effect is reliable and stable.
  • control panel is installed on the left end face of the chassis shell, and the control panel air inlets are arranged around the control panel as the main air inlets.
  • control panel as the most core electrical control part, is installed at the far left, which is not only convenient for operation, but also the air flow from here to cool the control panel first, ensuring the best cooling effect and ensuring the reliability of its work to achieve electrical control. and service life.
  • controller and the rectifier bridge are vertically installed on the lower bottom surface of the chassis shell at the front end of the air inlet of the control panel, and the oil tank is installed and fixed on the top of the inner cavity of the chassis shell opposite to the controller and the rectifier bridge.
  • a controller rectifier bridge air inlet is also provided on the lower bottom surface of the chassis case where the controller and the rectifier bridge are located as a secondary air inlet, and the overall air intake area of the secondary air inlet is smaller than the main air inlet area.
  • the upper end surface is installed at a distance from the inner cavity surface of the case shell, and the lower part of the right end of the fuel tank has a concave part that is concave upward as a whole, and the concave part is used to form an air flow convergence area with a larger space on the air flow flow path between the concave part and the air guide baffle. Chamber.
  • the secondary air inlet can simultaneously intake air to better achieve direct cooling of the controller and the rectifier bridge, and the overall air intake area of the secondary air inlet is smaller than that of the main air inlet to ensure the preferential cooling effect on the controller.
  • the air flow entering from the secondary air inlet flows upward, and it will hit the air flow entering the main air inlet, causing it to flow upward as a whole, guiding most of the air flow from the lower surface of the fuel tank to the upper right side of the fuel tank to the air flow convergence area chamber. And form the main air flow path, and a small part of the air flow flows to the right along the interval between the left end of the fuel tank and the chassis shell to form a secondary air flow path.
  • the cooling effect of the fuel tank can be improved more reliably and comprehensively, and at the same time, the air flow assistance will not be reduced too much, so as to ensure smooth overall ventilation, and to ensure the cooling effect and overall cooling efficiency of subsequent components. Therefore, the above-mentioned layout structure, combined with the setting of the air guide baffles, can ensure that each component in the low temperature area can ensure a good cooling effect. The overall cooling effect of the machine is improved, and the stability of the machine is improved.
  • a layer of reflective layer is attached to the right side of the air guide baffle.
  • the reflective layer can better reflect the heat radiation emitted by the engine and generator in the high temperature area on the right side, avoid heat radiation from dissipating to the low temperature area on the left side, and better ensure the cooling effect of the low temperature area on the left side.
  • the reflective layer is a tin-platinum material layer.
  • a main air outlet is provided on the air guide baffle at the upper middle position.
  • the air flow path in the left low temperature region can be better guided to flow upward and rightward as a whole after the air has been taken in by the air inlet.
  • the lower end of the air guide baffle has a vertically arranged vertical section, the height of the vertical section matches the height of the engine assembly, the upper end of the vertical section is connected to a horizontal section through an integral rightward bending part, and the right end of the horizontal section is connected.
  • the join has a diagonal segment that goes up and to the right.
  • the fuel tank and the engine components can be separated more scientifically and reasonably, and the airflow in the left and right areas can be better guided.
  • the overall air-guiding clapboard is elastic, and the overall height is higher than the height of the inner cavity of the chassis shell when it is not subjected to external force. Snap-fit.
  • the air guide baffle can be an injection molded part. It is easy to manufacture and has sufficient strength and elasticity.
  • a position located between the bent portion and the horizontal section on the air guide baffle is also bent to form a step upward to the right, and the main air outlet is located at a bent position at the lower part of the step.
  • the curved step structure can cooperate with the concave part below the right end of the fuel tank, so as to better form an air flow converging area chamber with a larger space on the main air flow path, so as to better guide the air flow after converging here.
  • the position of the main air outlet and the right end formed by the depression at the bottom of the right end of the fuel tank are combined with the overall rightward protruding shape, which can better guide the air flow entering the air inlet in the low temperature area to flow to the right as a whole, and better make the fuel tank become the secondary cooling in the low temperature area. Sequence and complete the cooling of the fuel tank.
  • the position of the dominant air outlet also determines that the air inlet direction of the air flow introduced into the high temperature area is the air inlet from the lower right, which can better cool the engine case.
  • a secondary upper air guide is further arranged in the upper part of the oblique section on the air guide baffle, and the opening area of the secondary upper air guide is smaller than that of the main air outlet.
  • a secondary lower air guide port is also provided at the position of the rightmost end of the horizontal section on the air guide baffle near the oblique section, and the opening area of the secondary lower air guide port is smaller than the main air port.
  • the existence of such two secondary air guides forms the air flow outlet of the secondary air flow path in the low temperature area (especially the existence of the secondary upper air guide port), which can better guide the formation of the secondary air flow path in the low temperature area, so that Part of the air flows through the top of the fuel tank and between the casing to better cool the fuel tank.
  • the positions of the two secondary air guides are close to the main air guides and open downwards, so part of the air flow enters the high temperature area from the secondary air guides downward.
  • the air flow that will impact and guide the main air outlet into the high temperature area first flows downward to better cool the engine from beginning to end and improve the cooling effect of the engine.
  • the existence of the air guide can further place the components that are not resistant to high temperature in the engine assembly directly to the place where the air is taken in by the air guide to achieve targeted cooling and improve the overall cooling effect. Therefore, the shape and structure of the air-guiding baffle and the arrangement of each air-guiding port on it take into account the air flow in the low-temperature area and the high-temperature area on both sides of the baffle as a whole, which can comprehensively achieve the best overall heat dissipation and cooling effect.
  • the engine assembly in the high-temperature area, includes an engine case horizontally arranged on the inner bottom surface of the lower case shell in the high-temperature area.
  • the left end of the engine case is a pull-tray fan, and an air filter is arranged below the pull-tray fan.
  • the carburetor is set on the top facing the main air outlet, the engine cylinder head is set on the upper part of the engine box, and the high-pressure package is set on the engine cylinder head facing the secondary lower air duct.
  • the carburetor and high-pressure package that are not heat-resistant and need to be connected with the engine and are inconvenient to be placed in the low-temperature area can be firstly cooled by the air flow blown into the air guide, and then the air flow will pass through the resistance
  • the hotter air filter and engine case optimize the cooling secondary of each component in the high-temperature area more reasonably, and improve the overall heat dissipation and cooling effect in the high-temperature area.
  • the generator assembly is arranged on the right end of the engine case and includes a generator casing with an open left end butted on the right end face of the engine casing, a generator fan, a generator rotor and a generator stator arranged in the generator casing.
  • a generator air inlet is also provided on the right end face of the chassis shell facing the generator assembly, and the generator air inlet is connected to the opening at the right end of the generator casing through a generator air guide rubber sleeve to realize air intake.
  • the generator air inlet relies on the generator air guide rubber sleeve so that the air inlet can better independently cool the generator, ensure the cooling effect of the generator, and avoid the wind loss caused by the conflict between the air inlet and the existing wind flow paths in the high temperature area. , reduce the heat dissipation effect, the air inlet of the generator enters the wind flow to cool the generator, and then flows upward through the muffler after the right end of the engine box and the existing wind flow merge.
  • a grid-shaped generator air inlet cover plate is fixed and installed at the generator air inlet by screws, and the left end of the generator air guide rubber sleeve has a vertical generator abutting surface and abuts on the right end of the generator casing.
  • the right end of the generator air guide rubber sleeve has a vertical generator air inlet cover plate abutting surface and abuts the left end of the generator air inlet cover plate, and the middle part of the generator air guide rubber sleeve has a circle of bulges.
  • the air outlet is arranged at the upper position of the right end of the case shell, and a muffler outlet connection structure is arranged between the outlet end of the muffler and the air outlet.
  • the sink groove also includes a muffler air guide rubber sleeve on the right end of the muffler shell and a grille-shaped air outlet cover plate located on the installation sink groove. Flanging, the air outlet cover plate is crimped on the outer flange, the air outlet is also provided with fixing screws, and the fixing screws pass through the air outlet cover plate, the outer flange and the installation sink for fixing in sequence.
  • the air outlet connection structure of the muffler can better realize the sealing and fixing between the outlet end of the muffler and the air outlet, ensure smooth air outlet, and avoid leakage at the connection after the aging of the muffler air-guiding rubber sleeve of the muffler, and the air leaking back at the connection. It will cause confusion and conflict in the air flow into the chassis shell and affect the heat dissipation. To better ensure the stability of the overall cooling effect of the machine.
  • the side of the outer end of the outer flange facing away from the air outlet cover plate has a circle of protrusions, and the protrusions are crimped and fitted into a corresponding circle of grooves on the installation sink by the air outlet cover plate.
  • the left half of the muffler air guide rubber sleeve has a cone section and is fixed to the right end of the muffler shell
  • the right half of the muffler air guide rubber sleeve has a straight section
  • the right end of the straight section forms the outer flange
  • the middle of the straight section has a A bulging bulge.
  • a general-purpose generator which includes a case shell, a control panel is installed on the case shell, and a fuel tank, a controller, a rectifier bridge, an engine assembly, and a generator assembly are also installed inside the case shell. and muffler.
  • an air inlet and an air outlet are also opened on the chassis shell, and a muffler is installed at the air outlet; a low temperature area and a high temperature area are set in the chassis shell, and the control panel, the fuel tank, the controller and the rectifier bridge are installed in At one end of the low temperature area, the engine assembly, the generator assembly and the muffler are installed at one end of the high temperature area.
  • the chassis shell is provided with an air guide baffle, and the width of the air guide baffle matches the front-rear direction width of the inner cavity of the chassis shell and is integrally installed in the middle of the chassis shell vertically.
  • the cavity is divided into a low temperature area on the left side and a high temperature area on the right side, and air guide openings connecting the left and right sides are provided on the air guide baffle.
  • the air-guiding baffle has an upper clamping end that is clamped with the upper top surface of the inner cavity of the chassis shell and a lower clamping end that is clamped to the lower bottom surface of the inner cavity of the chassis shell.
  • the present invention has the advantages of better heat dissipation and cooling effect, improving the working stability of the machine, and prolonging the service life of the equipment.
  • FIG. 1 is a schematic structural diagram of a general-purpose generator adopted in the present invention.
  • FIG. 2 is a schematic structural diagram of a separate air-guiding baffle in FIG. 1 .
  • FIG. 3 is an enlarged structural schematic diagram of the outlet connection structure of the single muffler in FIG. 1 .
  • FIG. 4 is an enlarged schematic view of the structure at A in FIG. 3 .
  • a method for cooling and dissipating heat from an on-machine generator comprising an air-guiding baffle is used to connect the on-machine generator (such as a 1-kilowatt digital variable frequency generator, a 2-kilowatt digital variable frequency generator, etc.) to the chassis.
  • the inner cavity of the casing is divided into a low temperature area on the left and a high temperature area on the right.
  • the air guide baffle is provided with air guides connecting the left and right sides, and guides the air flow from the air inlet of the low temperature area at the left end of the chassis to flow through the control panel.
  • the panel, controller and rectifier bridge and then pass through the fuel tank and enter the high temperature area at the right end from the air guide.
  • the air flow first passes through the engine assembly (first through the heat-resistant parts of the engine assembly such as carburetor, high-pressure package, etc.) and
  • the generator assembly flows out from the air outlet through the muffler to cool the internal components of the generator.
  • the present invention separates the parts with poor high temperature tolerance in the general-machine generator into a low temperature area, separates the parts more capable of withstanding high temperature into the high temperature area, and guides the air flow path, so that the components in the two areas are in accordance with the Cooling tiers require sequential cooling. Therefore, the overall cooling effect of the general generator is greatly improved, the working stability is improved, and the service life of the equipment is prolonged.
  • the method is implemented by using the general engine generator shown in FIGS. 1-4 .
  • the general engine generator includes a case shell 1 on which a control panel 2 is installed, and a fuel tank 3 is also installed inside the case shell.
  • the chassis shell 1 is also provided with an air inlet and an air outlet, and the muffler 6 is installed at the air outlet.
  • the generator fan 8 generates air flow from the air inlet to achieve air intake, and the air flow entering the chassis shell cools each component and flows out from the air outlet through the muffler 6; wherein, the chassis shell 1 is provided with a low temperature area and a high temperature area, and the control panel 2.
  • the fuel tank 3, the controller 4 and the rectifier bridge 5 are installed at one end of the low temperature area, and the engine assembly, the generator assembly and the muffler 6 are installed at one end of the high temperature area.
  • control panel, controller and rectifier bridge are electrical components, which have poor high temperature tolerance and can be placed in a low temperature area to better prolong their service life. Combustion and explosion, so placing it in a low temperature area can better improve the safety factor.
  • Engine components, generator components and mufflers will emit heat when they work, and their heat resistance is relatively high. They are placed in high temperature areas to reduce the impact on components in low temperature areas.
  • the upper end of the case shell 1 is also provided with a handle 9, which is convenient for carrying through the machine.
  • the chassis shell is provided with an air guide baffle 10, the width of the air guide baffle 10 matches the width in the front and rear directions of the inner cavity of the chassis shell and is installed vertically in the middle of the chassis shell as a whole, and the air guide baffle 10 has a The upper clamping end that is clamped on the top surface of the inner cavity also has a lower clamping end that is clamped to the lower bottom surface of the inner cavity of the chassis shell.
  • the air guide baffle is provided with air guide openings connecting the left and right sides.
  • the inner cavity of the case shell is separated to form a low temperature area and a high temperature area by means of air guide baffles, the structure is simple, the implementation is convenient, and the effect is reliable and stable.
  • control panel 2 is installed on the left end face of the chassis shell 1, and the control panel air inlet 11 is arranged around the control panel as the main air inlet.
  • control panel as the most core electrical control part, is installed at the far left, which is not only convenient for operation, but also the air flow from here to cool the control panel first, ensuring the best cooling effect and ensuring the reliability of its work to achieve electrical control. and service life.
  • the controller 4 and the rectifier bridge 5 are vertically installed on the lower bottom surface of the casing at the front end of the air inlet 11 of the control panel, and the fuel tank 3 is installed and fixed on the top of the casing cavity opposite the controller and the rectifier bridge.
  • the controller 4 and the rectifier bridge 5 are also provided with a controller rectifier bridge air inlet 12 as a secondary air inlet on the bottom surface of the chassis shell where the controller 4 and the rectifier bridge 5 are located.
  • the left end and the upper end surface are installed at intervals from the inner cavity surface of the case shell, and the lower part of the right end of the fuel tank has a concave part 13 which is recessed upward as a whole. Large wind converging area chamber.
  • the secondary air inlet can simultaneously intake air to better achieve direct cooling of the controller and the rectifier bridge, and the overall air intake area of the secondary air inlet is smaller than that of the main air inlet to ensure the preferential cooling effect on the controller.
  • the air flow entering from the secondary air inlet flows upward, and it will hit the air flow entering the main air inlet, causing it to flow upward as a whole, guiding most of the air flow from the lower surface of the fuel tank to the upper right side of the fuel tank to the air flow convergence area chamber. And form the main air flow path, and a small part of the air flow flows to the right along the interval between the left end of the fuel tank and the chassis shell to form a secondary air flow path.
  • the cooling effect of the fuel tank can be improved more reliably and comprehensively, and at the same time, the air flow assistance will not be reduced too much, so as to ensure smooth overall ventilation, and to ensure the cooling effect and overall cooling efficiency of subsequent components. Therefore, the above-mentioned layout structure, combined with the setting of the air guide baffles, can ensure that each component in the low temperature area can ensure a good cooling effect.
  • the overall cooling effect of the machine is improved, and the stability of the machine is improved.
  • the arrows in the drawings indicate the direction of wind flow.
  • a layer of reflective layer 14 is attached to the right side of the air guide baffle 10 .
  • the reflective layer can better reflect the heat radiation emitted by the engine and generator in the high temperature area on the right side, avoid heat radiation from dissipating to the low temperature area on the left side, and better ensure the cooling effect of the low temperature area on the left side.
  • the reflective layer 14 is a tin-platinum material layer.
  • a main air outlet 15 is provided on the air guide baffle 10 at the upper middle position.
  • the air flow path in the left low temperature region can be better guided to flow upward and rightward as a whole after the air has been taken in by the air inlet.
  • the lower end of the air guide baffle has a vertical section 16 arranged vertically, the height of the vertical section 16 matches the height of the engine assembly, and the upper end of the vertical section 16 is connected to a horizontal section 18 through an integral rightward bending part 17 , the right end of the horizontal section 18 is connected with a diagonal section 19 upward to the right.
  • the fuel tank and the engine components can be separated more scientifically and reasonably, and the airflow in the left and right areas can be better guided.
  • the air guide baffle 10 is elastic as a whole, and the overall height is higher than the height of the inner cavity of the chassis shell when it is not subjected to external force. snap-on fixation.
  • the air guide baffle 10 can be an injection molded part. It is easy to manufacture and has sufficient strength and elasticity.
  • the position between the bent portion 17 and the horizontal section 18 on the air-guiding baffle 10 is also bent to form a step 20 upward to the right, and the main air outlet 15 is located at the lower curved position of the step.
  • the curved step structure can cooperate with the concave part below the right end of the fuel tank, so as to better form an air flow converging area chamber with a larger space on the main air flow path, so as to better guide the air flow after converging here.
  • the position of the main air outlet and the right end formed by the depression at the bottom of the right end of the fuel tank are combined with the overall rightward protruding shape, which can better guide the air flow entering the air inlet in the low temperature area to flow to the right as a whole, and better make the fuel tank become the secondary cooling in the low temperature area. Sequence and complete the cooling of the fuel tank.
  • the position of the dominant air outlet also determines that the air inlet direction of the air flow introduced into the high temperature area is the air inlet from the lower right, which can better cool the engine case.
  • a secondary upper air guide 21 is also provided in the upper part of the upper oblique section 19 of the air guide baffle 10 , and the opening area of the secondary upper air guide 21 is smaller than that of the main air duct 15 .
  • a secondary lower air guide port 22 is also provided at the position of the rightmost end of the horizontal section on the air guide baffle near the oblique section.
  • the existence of such two secondary air guides forms the air flow outlet of the secondary air flow path in the low temperature area (especially the existence of the secondary upper air guide port), which can better guide the formation of the secondary air flow path in the low temperature area, so that Part of the air flows through the top of the fuel tank and between the casing to better cool the fuel tank.
  • the positions of the two secondary air guides are close to the main air guides and open downwards, so part of the air flow enters the high temperature area from the secondary air guides downward.
  • the air flow that will impact and guide the main air outlet into the high temperature area first flows downward to better cool the engine from beginning to end and improve the cooling effect of the engine.
  • the existence of the air guide can further place the components that are not resistant to high temperature in the engine assembly directly to the place where the air is taken in by the air guide to achieve targeted cooling and improve the overall cooling effect. Therefore, the shape and structure of the air-guiding baffle and the arrangement of each air-guiding port on it take into account the air flow in the low-temperature area and the high-temperature area on both sides of the baffle as a whole, which can comprehensively achieve the best overall heat dissipation and cooling effect.
  • the engine assembly in the high temperature area, includes an engine case 23 horizontally arranged on the inner bottom surface of the lower case shell in the high temperature area.
  • the left end of the engine case 23 is a pull-tray fan 7, and an air filter 24 is arranged below the pull-tray fan 7.
  • a carburetor 25 is provided above the pull-drum fan 7 facing the main air vent, an engine cylinder head 26 is provided on the upper part of the engine case, and a high pressure pack 27 is provided on the engine cylinder head 26 facing the secondary lower air vent.
  • the carburetor and high-pressure package that are not heat-resistant and need to be connected with the engine and are inconvenient to be placed in the low-temperature area can be firstly cooled by the air flow blown into the air guide, and then the air flow will pass through the resistance
  • the hotter air filter and engine case optimize the cooling secondary of each component in the high-temperature area more reasonably, and improve the overall heat dissipation and cooling effect in the high-temperature area.
  • the generator assembly is arranged on the right end of the engine case and includes a generator casing 28 with an open left end butted to the right end face of the engine casing, a generator fan 29 , a generator rotor 30 and a generator stator arranged in the generator casing 28 31.
  • a generator air inlet 32 is also provided on the right end face of the case shell facing the generator assembly. The generator air inlet is connected to the opening at the right end of the generator casing 28 through a generator air guide rubber sleeve 33 to realize air intake.
  • the generator air inlet relies on the generator air guide rubber sleeve so that the air inlet can better independently cool the generator, ensure the cooling effect of the generator, and avoid the wind loss caused by the conflict between the air inlet and the existing wind flow paths in the high temperature area. , reduce the heat dissipation effect, the air inlet of the generator enters the wind flow to cool the generator, and then flows upward through the muffler after the right end of the engine box and the existing wind flow merge.
  • the generator air inlet is fixed with a grid-shaped generator air inlet cover by screws, and the left end of the generator air guide rubber sleeve 33 has a vertical generator contact surface and abuts on the right end of the generator casing , the right end of the generator air guide rubber sleeve 33 has a vertical generator air inlet cover plate abutting surface and abuts on the left end of the generator air inlet cover plate, and the middle part of the generator air guide rubber sleeve 33 has a circle of convex drums rise.
  • the air outlet is arranged at the upper part of the right end of the case shell, and a muffler outlet connection structure is arranged between the outlet end of the muffler 6 and the air outlet.
  • the sink groove also includes a muffler air guide rubber sleeve 34 on the right end of the muffler shell and a grille-shaped air outlet cover 35 located on the installation sink.
  • the right end of the muffler air guide rubber sleeve 34 has a circle overlapping the installation sink groove.
  • the air outlet cover is crimped on the outer flange 36, and the air outlet is also provided with a fixing screw 37, and the fixing screw 37 passes through the air outlet cover 35, the outer flange 36 and the installation sink in turn. Slots are fixed.
  • the air outlet connection structure of the muffler can better realize the sealing and fixing between the outlet end of the muffler and the air outlet, ensure smooth air outlet, and avoid leakage at the connection after the aging of the muffler air-guiding rubber sleeve of the muffler, and the air leaking back at the connection. It will cause confusion and conflict in the air flow into the chassis shell and affect the heat dissipation. To better ensure the stability of the overall cooling effect of the machine.
  • the side of the outer flange 36 facing away from the air outlet cover plate has a circle of protrusions 38, and the protrusions are crimped and fitted into a corresponding circle of grooves on the installation sink by the air outlet cover plate.
  • the left half of the muffler air guide rubber sleeve 34 has a cone section and is fixed to the right end of the muffler shell, the right half of the muffler air guide rubber sleeve has a straight section, the right end of the straight section forms the outer flange, and the middle of the straight section has a A bulging bulge.
  • the muffler air guide rubber sleeve can be better docked between the muffler shell and the air outlet, and the elasticity generated by a circle of bulges in the middle of the straight barrel section can better eliminate installation errors and facilitate installation in place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本发明公开了一种通机发电机冷却散热方法及通机发电机。在该方法中,采用一个导风隔板,将通机发电机机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口,并引导风流从机箱壳左端低温区域的进风口进入后先流经控制面板以及控制器和整流桥,再经过油箱后从导风口进入右端高温区域,在高温区域中风流先经过发动机组件和发电机组件,再经过消声器从出风口流出,实现对通机发电机内部构件的冷却。本发明具有更好地散热降温效果,提高通机工作稳定性,延长设备寿命的优点。

Description

一种通机发电机冷却散热方法及通机发电机 技术领域
本发明涉及通机冷却技术领域,具体涉及一种通机发电机冷却散热方法及通机发电机。
背景技术
通机是指装有发动机的通用机器,由发动机提供动力支持,完成各种功能,例如安上水泵可抽水,安上用于发电的电机可用于发电。通机发电机即指在通机发动机输出端安装发电组件构成的小型便携式发电机,一般供家庭使用。
常规的通机发电机,由发动机、发电机组件、控制面板、油箱等部件组成,这些部件一般用机箱壳包装起来,成为一个相对密封的通机体,这样便于携带,隔音,美观,安全。也有为了节约成本,不用机箱壳包装起来,俗称开架式通机发电机。
现有的一种具有机壳的通机发电机,其结构包括一个机箱壳,机箱壳一端侧面安装有控制面板,机箱壳内部还安装有油箱、控制器、整流桥、发动机、发电机组件和消声器;机箱壳上还开有进风口和出风口,工作时依靠发动机的手拉盘风扇和发电机风扇产生风流从进风口实现进风,进入机箱壳内的风流冷却各部件后经过消声器从出风口流出。
故这种现有的通机发电机,存在以下缺陷:1现在的结构是把各种零部件统一安装在机箱壳内部,各构件位于一个大空间中。由于发动机工作会产生大量的热量,发电机工作也要产生大量的热量,虽然有两个风扇排风冷却,但整体冷却效果较差,整个机箱内温度较高。同时这种方式冷却针对性也很差,而机箱中各构件耐热性能不一样,有些部件散热不好温度过高后影响整机运行质量,甚至造成损坏,不能工作。2现有的机箱壳出风口位置,安装消声器时,是将消声器盖板直接采用螺钉固定到机械壳体出风口周边的安装槽上,消声器出口端是直接对碰抵接在消声器盖板上,依靠弹性变形实现密封,这样结构更简单,安装更方便。但由于各零部件制造误差,各批次误差,以及消声器导向胶套长期高温环境下老化收缩,容易造成消声器出口端抵接密封不严,产生缝隙,使得热气容易从缝隙窜回到设备内腔中,不仅热量回流而且冲击影响了设备内腔中原本的散热风流正常路径,而和消声器相邻位置恰好是发电机组件位置,发电机组件散热不好容易导致故障并降低寿命。
发明内容
针对上述现有技术的不足,本发明所要解决的技术问题是:怎样提供一种能够具有更好地散热降温效果,提高通机工作稳定性,延长设备寿命的通机发电机冷却散热方法。
为了解决上述技术问题,本发明采用了如下的技术方案:
一种通机发电机冷却散热方法,其特征在于,采用一个导风隔板,将通机发电机机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口,并引导风流从机箱壳左端低温区域的进风口进入后先流经控制面板以及控制器和整流桥,再经过油箱后从导风口进入右端高温区域,在高温区域中风流先经过发动机组件和发电机组件,再经过消声器从出风口流出,实现对通机发电机内部构件的冷却。
这样,本发明将通机发电机中高温耐受性较差的部件分隔到一个低温区域,将更能承受高温的部件分隔到高温区域,并通过引导风流路径,使得两个区域中各部件按照冷却层级要求依次冷却。故整体极大地提高了通机发电机的冷却散热效果,提高了工作稳定性,延长了设备使用寿命。
进一步地,本方法采用以下的通机发电机实现,所述通机发电机包括机箱壳,机箱壳上安装有控制面板,机箱壳内部还安装有油箱、控制器、整流桥、发动机组件、发电机组件和消声器;机箱壳上还开有进风口和出风口,消声器安装在出风口处,工作时依靠发动机的手拉盘风扇和发电机风扇产生风流从进风口实现进风,进入机箱壳内的风流冷却各部件后经过消声器从出风口流出;其特征在于,机箱壳内设置有低温区域和高温区域,所述控制面板、油箱、控制器和整流桥安装在低温区域一端,所述发动机组件、发电机组件和消声器安装在高温区域一端。
这样,控制面板、控制器和整流桥为电气构件,高温耐受性较差,置于低温区域可以更好地延长使用寿命,油箱为高危构件,受热过高汽油(或柴油)容易反应变质甚至燃烧爆炸,故置于低温区域可以更好地提高安全系数。发动机组件、发电机组件和消声器自身工作会散发热量,且自身耐热性相对较高,单独置于高温区域使其降低对低温区域构件的影响。
进一步地,机箱壳上端还设置有提手,方便通机的携带。
作为优化,机箱壳内设置有导风隔板,导风隔板宽度和机箱壳内腔前后方向宽度匹配并整体沿竖向安装在机箱壳内中部,导风隔板具有一个和机箱壳内腔上顶面卡接的上卡接端,还具有一个和机箱壳内腔下底面卡接的下卡接端,导风隔板将机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口。
这样,采用导风隔板的方式,将机箱壳内腔分隔开形成低温区域和高温区域,结构简单,实施方便,效果可靠稳定。
进一步地,控制面板安装在机箱壳左端端面上,控制面板四周设置有控制面板进风口作为主进风口。
这样,控制面板作为最核心的电气控制部分构件,安装在最左端,不仅仅方便操作,而且风流从此处进风最先冷却控制面板,保证冷却效果最佳,保证其工作实现电控的可靠性以 及使用寿命。
进一步地,控制器和整流桥间隔并列地竖向安装在控制面板进风口前端的机箱壳下底面,油箱安装固定在控制器和整流桥所对的机箱壳内腔顶部。
这样,从控制面板进风口进入的风流直接吹拂在控制器和整流桥上,对重要的电气构件进行冷却,保证其工作可靠性,同时吹入的风流经控制器和整流桥遮挡后被引导向上流动,经过并冷却油箱。
进一步地,所述控制器和整流桥所在机箱壳下底面上还开设有控制器整流桥进风口作为次进风口,次进风口进风面积整体小于主进风口进风面积,所述油箱左端和上端表面与机箱壳内腔面间隔安装,所述油箱右端下部具有一个整体向上凹陷的凹陷部,凹陷部用于和导风隔板之间形成一个在风流流动路径上空间变大的风流汇聚区域腔室。
这样,次进风口能够同时进风更好地实现对控制器和整流桥的直接冷却,次进风口进风面积整体小于主进风口进风面积可以确保对控制器的优先冷却效果。同时从次进风口进入的风流向上流动,会撞击到主进风口进入的风流使其产生整体向上流动的趋势,引导大部分风流从油箱下表面贴着油箱向右上方流动至风流汇聚区域腔室并形成主要风流流动路径,小部分风流沿油箱左端和机箱壳之间的间隔向右流动并形成次要风流流动路径。这样可以更加可靠全面地提高对油箱的冷却效果,同时不会过多地降低风流助力,保证整体通风顺畅,保证后续构件冷却效果和整体冷却效率。故上述的布局结构,结合导风隔板的设置,能够使得低温区域内各构件均能够保证良好的冷却效果,同时各构件冷却次级分明,风流路径合理,整体通风顺畅,极大地提高和优化了通机的整体冷却效果,提高了通机工作稳定性。
进一步地,所述导风隔板右侧侧面上贴合设置有一层反射层。
这样,反射层可以更好地反射右侧高温区域中发动机和发电机散发的热辐射,避免热量辐射散发到左侧低温区域中,更好地保证左侧低温区域的冷却效果。
进一步地,所述反射层为锡铂材料层。
这样,可以更好地保证热反射效果以及隔热效果。
进一步地,导风隔板上位于中上部的位置设置有主导风口。
这样,可以更好地引导左侧低温区域中进风口进风后风流路径整体向右上方流动。
进一步地,导风隔板下端具有一个竖直设置的竖直段,竖直段高度和发动机组件高度匹配,竖直段上端通过一个整体向右的弯折部衔接有一个水平段,水平段右端衔接有一个向右上方的斜向段。
这样,可以更加科学合理地将油箱和发动机组件隔开,同时能够更好地引导左右两个区域内的风流流动。
进一步地,导风隔板整体具有弹性,且不受外力时整体高度高于机箱壳内腔高度,机箱壳内腔下底面和上顶面对应设置有隔板卡槽实现导风隔板的卡接固定。
这样可以依靠导风隔板中上部的弯折结构形成的弹性变形,使得导风隔板在安装的时候可以更加稳定可靠地抵接卡紧固定在机箱壳中。
进一步地,导风隔板可为注塑件。使其利于制造且既具有足够的强度又具备一定弹性。
作为优化,导风隔板上位于弯折部和水平段之间的位置还弯曲形成有一个向右上方的台阶,所述主导风口位于台阶下部弯曲位置。
这样,该弯曲的台阶结构能够和油箱右端下方的凹陷部配合,以更好地形成一个在主要风流流动路径上空间变大的风流汇聚区域腔室,以更好地引导风流在此处汇聚后再经过主导风口进入到导风隔板右端的高温区域中。同时主导风口的位置和油箱右端下方凹陷形成的右端整体向右突出外形配合,能够更好地引导低温区域进风口进入的风流整体上并向右流动,更好地使得油箱成为低温区域次级冷却序列并完成对油箱的冷却,同时该主导风口位置还决定了其引入高温区域的风流进风方向是向右下方进风,可以更好地对发动机箱体进行冷却。
进一步地,导风隔板上斜向段中上部位置还设置有次上导风口,次上导风口开口面积小于主导风口。进一步地,导风隔板上水平段最右端靠近斜向段位置还设置有一个次下导风口,次下导风口开口面积小于主导风口。
这样两个次级导风口的存在,形成了低温区域中次要风流路径的风流出口(尤其是次上导风口的存在),可以更好地引导低温区域中次要风流流动路径的形成,使得一部分风流经油箱上方和机壳之间前行更好地实现对油箱的冷却。其次,两个次级导风口的位置(尤其是次下导风口)和主导风口相邻较近且是往向下的方向开口,故部分风流从次级导风口向下进入到高温区域后,会冲击并引导主导风口进入高温区域的风流先向下流动,以更好地从头到尾实现对发动机的冷却,提高对发动机冷却效果。避免主导风口由于需要引导低温区域内风流流动路径而设置得较高后,进风不利于对发动机冷却的缺陷。另外,导风口的存在,还可以进一步将发动机组件中不耐高温的部件正对设置于导风口进风的地方以实现针对性冷却,提高整体冷却效果。故导风隔板的外形结构以及其上各个导风口的布置结构,整体考虑了隔板两侧低温区域和高温区域各自的风流流动情况,能够综合实现最佳的整体散热冷却效果。
作为优化,高温区域中,发动机组件包括水平设置于高温区域下部机箱壳内底面上的发动机箱体,发动机箱体左端为手拉盘风扇,手拉盘风扇下方设置有空滤器,手拉盘风扇上方正对主导风口位置设置化油器,发动机箱体上部设置发动机气缸头,发动机气缸头上正对次下导风口位置设置高压包。
这样,发动机组件中不耐热同时需要和发动机连在一起不方便放入到低温区域的化油器 和高压包,能够先被导风口吹入的风流进行针对性地冷却,然后风流再经过耐热程度更高的空滤器和发动机箱体,更合理地优化了高温区域各部件的冷却次级,提高了高温区域整体散热冷却效果。
进一步地,发电机组件设置于发动机箱体右端并包括左端开放式对接在发动机箱体右端面的发电机外壳和设置在发电机外壳内的发电机风扇、发电机转子以及发电机定子,所述机箱壳右端面正对发电机组件位置还设置有发电机进风口,发电机进风口通过一个发电机导风胶套和发电机外壳右端的开口对接实现进风。
这样,发电机进风口依靠发电机导风胶套使得进风能够更好地单独实现对发电机的冷却,保证发电机冷却效果,且避免进风和高温区域内已有风流路径冲突造成风力损耗,降低散热效果,发电机进风口进入风流冷却发电机后在发动机箱体右端和已有风流汇合后向上经消声器流出。
进一步地,发电机进风口处靠螺钉固定安装有一个格栅状的发电机进风口盖板,发电机导风胶套左端具有一个竖向的发电机抵接面并抵接在发电机外壳右端,发电机导风胶套右端具有一个竖向的发电机进风口盖板抵接面并抵接在发电机进风口盖板左端,发电机导风胶套中部具有一圈外凸的鼓起。
这样,发电机导风胶套由于处于进风口位置,自身温度较低,不易老化变形,故只需依靠弹性抵接安装即可,既保证了连接的可靠性,又提高了安装的便捷性。
进一步地,出风口设置于机箱壳右端上部位置,消声器出口端和出风口之间设置有消声器出风连接结构,所述消声器出风连接结构,包括机箱壳右端表面位于出风口处的一圈安装沉槽,还包括消声器外壳右端的一个消声器导风胶套以及位于安装沉槽上的一个格栅状的出风口盖板,消声器导风胶套右端具有一圈搭接在安装沉槽上的外翻边,所述出风口盖板压接在外翻边上,出风口上还设置有固定螺钉,固定螺钉依次穿过出风口盖板、外翻边和安装沉槽实现固定。
这样,该消声器出风连接结构可以更好地实现消声器出口端和出风口之间的密封固定,保证出风顺畅,避免消声器的消声器导风胶套老化后在连接处造成泄漏,连接处漏风回到机箱壳内造成风流混乱冲突而影响散热。更好地保证通机整体散热效果的稳定性。
进一步地,外翻边外端背对出风口盖板的一侧具有一圈凸起,所述凸起被出风口盖板压接贴合到安装沉槽上对应的一圈凹槽中。
这样可以更好地实现消声器导风胶套右端和出风口之间的定位和密封固定,提高了固定效果和密封效果。
进一步地,消声器导风胶套左半部具有一个锥筒段并固定到消声器外壳右端,消声器导 风胶套右半部具有一个直筒段,直筒段右端形成所述外翻边,直筒段中部具有一圈外凸的鼓起。这样,消声器导风胶套可以更好地对接在消声器外壳和出风口之间,依靠直筒段中部的一圈外凸的鼓起产生的弹性能够更好地消除安装误差,方便安装到位。
在本发明的另一方面,提供了一种通机发电机,其包括机箱壳,机箱壳上安装有控制面板,机箱壳内部还安装有油箱、控制器、整流桥、发动机组件、发电机组件和消声器。在一些实施方案中,机箱壳上还开有进风口和出风口,消声器安装在出风口处;机箱壳内设置有低温区域和高温区域,所述控制面板、油箱、控制器和整流桥安装在低温区域一端,所述发动机组件、发电机组件和消声器安装在高温区域一端。在一些实施方案中,机箱壳内设置有导风隔板,导风隔板宽度和机箱壳内腔前后方向宽度匹配并整体沿竖向安装在机箱壳内中部,导风隔板将机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口。在一些进一步的实施方案中,导风隔板具有与机箱壳内腔上顶面卡接的上卡接端和与机箱壳内腔下底面卡接的下卡接端。
综上所述,本发明具有更好地散热降温效果,提高通机工作稳定性,延长设备寿命的优点。
附图说明
图1为本发明采用的通机发电机的结构示意图。
图2为图1中单独导风隔板的结构示意图。
图3为图1中单独消声器出风连接结构放大后的结构示意图。
图4为图3中A处结构放大示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步的详细说明。
具体实施时:一种通机发电机冷却散热方法,其改进之处在于,采用一个导风隔板,将通机发电机(如1千瓦数码变频发电机,2千瓦数码变频发电机等)机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口,并引导风流从机箱壳左端低温区域的进风口进入后先流经控制面板以及控制器和整流桥,再经过油箱后从导风口进入右端高温区域,在高温区域中风流先经过发动机组件(最先经过发动机组件不耐热零部件如化油器、高压包等)和发电机组件,再经过消声器从出风口流出,实现对通机发电机内部构件的冷却。
这样,本发明将通机发电机中高温耐受性较差的部件分隔到一个低温区域,将更能承受 高温的部件分隔到高温区域,并通过引导风流路径,使得两个区域中各部件按照冷却层级要求依次冷却。故整体极大地提高了通机发电机的冷却散热效果,提高了工作稳定性,延长了设备使用寿命。
具体实施时,本方法采用了图1-4所示的通机发电机实现,该通机发电机包括一个机箱壳1,机箱壳1上安装有控制面板2,机箱壳内部还安装有油箱3、控制器4、整流桥5、发动机组件、发电机组件和消声器6;机箱壳1上还开有进风口和出风口,消声器6安装在出风口处,工作时依靠发动机的手拉盘风扇7和发电机风扇8产生风流从进风口实现进风,进入机箱壳内的风流冷却各部件后经过消声器6从出风口流出;其中,机箱壳1内设置有低温区域和高温区域,所述控制面板2、油箱3、控制器4和整流桥5安装在低温区域一端,所述发动机组件、发电机组件和消声器6安装在高温区域一端。
这样,控制面板、控制器和整流桥为电气构件,高温耐受性较差,置于低温区域可以更好地延长使用寿命,油箱为高危构件,受热过高汽油(或柴油)容易反应变质甚至燃烧爆炸,故置于低温区域可以更好地提高安全系数。发动机组件、发电机组件和消声器自身工作会散发热量,且自身耐热性相对较高,单独置于高温区域使其降低对低温区域构件的影响。
其中,机箱壳1上端还设置有提手9,方便通机的携带。
其中,机箱壳内设置有导风隔板10,导风隔板10宽度和机箱壳内腔前后方向宽度匹配并整体沿竖向安装在机箱壳内中部,导风隔板10具有一个和机箱壳内腔上顶面卡接的上卡接端,还具有一个和机箱壳内腔下底面卡接的下卡接端,导风隔板10将机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口。
这样,采用导风隔板的方式,将机箱壳内腔分隔开形成低温区域和高温区域,结构简单,实施方便,效果可靠稳定。
其中,控制面板2安装在机箱壳1左端端面上,控制面板四周设置有控制面板进风口11作为主进风口。
这样,控制面板作为最核心的电气控制部分构件,安装在最左端,不仅仅方便操作,而且风流从此处进风最先冷却控制面板,保证冷却效果最佳,保证其工作实现电控的可靠性以及使用寿命。
其中,控制器4和整流桥5间隔并列地竖向安装在控制面板进风口11前端的机箱壳下底面,油箱3安装固定在控制器和整流桥所对的机箱壳内腔顶部。
这样,从控制面板进风口进入的风流直接吹拂在控制器和整流桥上,对重要的电气构件进行冷却,保证其工作可靠性,同时吹入的风流经控制器和整流桥遮挡后被引导向上流动,经过并冷却油箱。
其中,所述控制器4和整流桥5所在机箱壳下底面上还开设有控制器整流桥进风口12作为次进风口,次进风口进风面积整体小于主进风口进风面积,所述油箱左端和上端表面与机箱壳内腔面间隔安装,所述油箱右端下部具有一个整体向上凹陷的凹陷部13,凹陷部13用于和导风隔板10之间形成一个在风流流动路径上空间变大的风流汇聚区域腔室。
这样,次进风口能够同时进风更好地实现对控制器和整流桥的直接冷却,次进风口进风面积整体小于主进风口进风面积可以确保对控制器的优先冷却效果。同时从次进风口进入的风流向上流动,会撞击到主进风口进入的风流使其产生整体向上流动的趋势,引导大部分风流从油箱下表面贴着油箱向右上方流动至风流汇聚区域腔室并形成主要风流流动路径,小部分风流沿油箱左端和机箱壳之间的间隔向右流动并形成次要风流流动路径。这样可以更加可靠全面地提高对油箱的冷却效果,同时不会过多地降低风流助力,保证整体通风顺畅,保证后续构件冷却效果和整体冷却效率。故上述的布局结构,结合导风隔板的设置,能够使得低温区域内各构件均能够保证良好的冷却效果,同时各构件冷却次级分明,风流路径合理,整体通风顺畅,极大地提高和优化了通机的整体冷却效果,提高了通机工作稳定性。附图中箭头表示风流方向。
其中,所述导风隔板10右侧侧面上贴合设置有一层反射层14。
这样,反射层可以更好地反射右侧高温区域中发动机和发电机散发的热辐射,避免热量辐射散发到左侧低温区域中,更好地保证左侧低温区域的冷却效果。
其中,所述反射层14为锡铂材料层。
这样,可以更好地保证热反射效果以及隔热效果。
其中,导风隔板10上位于中上部的位置设置有主导风口15。
这样,可以更好地引导左侧低温区域中进风口进风后风流路径整体向右上方流动。
其中,导风隔板下端具有一个竖直设置的竖直段16,竖直段16高度和发动机组件高度匹配,竖直段16上端通过一个整体向右的弯折部17衔接有一个水平段18,水平段18右端衔接有一个向右上方的斜向段19。
这样,可以更加科学合理地将油箱和发动机组件隔开,同时能够更好地引导左右两个区域内的风流流动。
其中,导风隔板10整体具有弹性,且不受外力时整体高度高于机箱壳内腔高度,机箱壳内腔下底面和上顶面对应设置有隔板卡槽实现导风隔板10的卡接固定。
这样可以依靠导风隔板中上部的弯折结构形成的弹性变形,使得导风隔板在安装的时候可以更加稳定可靠地抵接卡紧固定在机箱壳中。
其中,导风隔板10可为注塑件。使其利于制造且既具有足够的强度又具备一定弹性。
其中,导风隔板10上位于弯折部17和水平段18之间的位置还弯曲形成有一个向右上方的台阶20,所述主导风口15位于台阶下部弯曲位置。
这样,该弯曲的台阶结构能够和油箱右端下方的凹陷部配合,以更好地形成一个在主要风流流动路径上空间变大的风流汇聚区域腔室,以更好地引导风流在此处汇聚后再经过主导风口进入到导风隔板右端的高温区域中。同时主导风口的位置和油箱右端下方凹陷形成的右端整体向右突出外形配合,能够更好地引导低温区域进风口进入的风流整体上并向右流动,更好地使得油箱成为低温区域次级冷却序列并完成对油箱的冷却,同时该主导风口位置还决定了其引入高温区域的风流进风方向是向右下方进风,可以更好地对发动机箱体进行冷却。
其中,导风隔板10上斜向段19中上部位置还设置有次上导风口21,次上导风口21开口面积小于主导风口15。进一步地,导风隔板上水平段最右端靠近斜向段位置还设置有一个次下导风口22,次下导风口22开口面积小于主导风口15。
这样两个次级导风口的存在,形成了低温区域中次要风流路径的风流出口(尤其是次上导风口的存在),可以更好地引导低温区域中次要风流流动路径的形成,使得一部分风流经油箱上方和机壳之间前行更好地实现对油箱的冷却。其次,两个次级导风口的位置(尤其是次下导风口)和主导风口相邻较近且是往向下的方向开口,故部分风流从次级导风口向下进入到高温区域后,会冲击并引导主导风口进入高温区域的风流先向下流动,以更好地从头到尾实现对发动机的冷却,提高对发动机冷却效果。避免主导风口由于需要引导低温区域内风流流动路径而设置得较高后,进风不利于对发动机冷却的缺陷。另外,导风口的存在,还可以进一步将发动机组件中不耐高温的部件正对设置于导风口进风的地方以实现针对性冷却,提高整体冷却效果。故导风隔板的外形结构以及其上各个导风口的布置结构,整体考虑了隔板两侧低温区域和高温区域各自的风流流动情况,能够综合实现最佳的整体散热冷却效果。
其中,高温区域中,发动机组件包括水平设置于高温区域下部机箱壳内底面上的发动机箱体23,发动机箱体23左端为手拉盘风扇7,手拉盘风扇7下方设置有空滤器24,手拉盘风扇7上方正对主导风口位置设置化油器25,发动机箱体上部设置发动机气缸头26,发动机气缸头26上正对次下导风口位置设置高压包27。
这样,发动机组件中不耐热同时需要和发动机连在一起不方便放入到低温区域的化油器和高压包,能够先被导风口吹入的风流进行针对性地冷却,然后风流再经过耐热程度更高的空滤器和发动机箱体,更合理地优化了高温区域各部件的冷却次级,提高了高温区域整体散热冷却效果。
其中,发电机组件设置于发动机箱体右端并包括左端开放式对接在发动机箱体右端面的发电机外壳28和设置在发电机外壳28内的发电机风扇29、发电机转子30以及发电机定子 31,所述机箱壳右端面正对发电机组件位置还设置有发电机进风口32,发电机进风口通过一个发电机导风胶套33和发电机外壳28右端的开口对接实现进风。
这样,发电机进风口依靠发电机导风胶套使得进风能够更好地单独实现对发电机的冷却,保证发电机冷却效果,且避免进风和高温区域内已有风流路径冲突造成风力损耗,降低散热效果,发电机进风口进入风流冷却发电机后在发动机箱体右端和已有风流汇合后向上经消声器流出。
其中,发电机进风口处靠螺钉固定安装有一个格栅状的发电机进风口盖板,发电机导风胶套33左端具有一个竖向的发电机抵接面并抵接在发电机外壳右端,发电机导风胶套33右端具有一个竖向的发电机进风口盖板抵接面并抵接在发电机进风口盖板左端,发电机导风胶套33中部具有一圈外凸的鼓起。
这样,发电机导风胶套由于处于进风口位置,自身温度较低,不易老化变形,故只需依靠弹性抵接安装即可,既保证了连接的可靠性,又提高了安装的便捷性。
其中,出风口设置于机箱壳右端上部位置,消声器6出口端和出风口之间设置有消声器出风连接结构,所述消声器出风连接结构,包括机箱壳右端表面位于出风口处的一圈安装沉槽,还包括消声器外壳右端的一个消声器导风胶套34以及位于安装沉槽上的一个格栅状的出风口盖板35,消声器导风胶套34右端具有一圈搭接在安装沉槽上的外翻边36,所述出风口盖板压接在外翻边36上,出风口上还设置有固定螺钉37,固定螺钉37依次穿过出风口盖板35、外翻边36和安装沉槽实现固定。
这样,该消声器出风连接结构可以更好地实现消声器出口端和出风口之间的密封固定,保证出风顺畅,避免消声器的消声器导风胶套老化后在连接处造成泄漏,连接处漏风回到机箱壳内造成风流混乱冲突而影响散热。更好地保证通机整体散热效果的稳定性。
其中,外翻边36外端背对出风口盖板的一侧具有一圈凸起38,所述凸起被出风口盖板压接贴合到安装沉槽上对应的一圈凹槽中。
这样可以更好地实现消声器导风胶套右端和出风口之间的定位和密封固定,提高了固定效果和密封效果。
其中,消声器导风胶套34左半部具有一个锥筒段并固定到消声器外壳右端,消声器导风胶套右半部具有一个直筒段,直筒段右端形成所述外翻边,直筒段中部具有一圈外凸的鼓起。
这样,消声器导风胶套可以更好地对接在消声器外壳和出风口之间,依靠直筒段中部的一圈外凸的鼓起产生的弹性能够更好地消除安装误差,方便安装到位。

Claims (12)

  1. 一种通机发电机冷却散热方法,其特征在于,采用导风隔板将通机发电机机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口,并引导风流从机箱壳左端低温区域的进风口进入后先流经控制面板以及控制器和整流桥,再经过油箱后从导风口进入右端高温区域,在高温区域中风流先经过发动机组件和发电机组件,再经过消声器从出风口流出。
  2. 根据权利要求1所述的通机发电机冷却散热方法,其特征在于,所述方法采用以下的通机发电机实现,所述通机发电机包括机箱壳,机箱壳上安装有控制面板,机箱壳内部还安装有油箱、控制器、整流桥、发动机组件、发电机组件和消声器;机箱壳上还开有进风口和出风口,消声器安装在出风口处,工作时依靠发动机的手拉盘风扇和发电机风扇产生风流从进风口实现进风,进入机箱壳内的风流冷却各部件后经过消声器从出风口流出;机箱壳内设置有低温区域和高温区域,所述控制面板、油箱、控制器和整流桥安装在低温区域一端,所述发动机组件、发电机组件和消声器安装在高温区域一端;
    机箱壳内设置有导风隔板,导风隔板宽度和机箱壳内腔前后方向宽度匹配并整体沿竖向安装在机箱壳内中部,导风隔板具有一个和机箱壳内腔上顶面卡接的上卡接端,还具有一个和机箱壳内腔下底面卡接的下卡接端,导风隔板将机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口。
  3. 根据权利要求2所述的通机发电机冷却散热方法,其特征在于,控制面板安装在机箱壳左端端面上,控制面板四周设置有控制面板进风口作为主进风口;
    控制器和整流桥间隔并列地竖向安装在控制面板进风口前端的机箱壳下底面,油箱安装固定在控制器和整流桥所对的机箱壳内腔顶部。
  4. 根据权利要求3所述的通机发电机冷却散热方法,其特征在于,所述控制器和整流桥所在机箱壳下底面上还开设有控制器整流桥进风口作为次进风口,次进风口进风面积整体小于主进风口进风面积,所述油箱左端和上端表面与机箱壳内腔面间隔安装,所述油箱右端下部具有一个整体向上凹陷的凹陷部,凹陷部用于和导风隔板之间形成一个在风流流动路径上空间变大的风流汇聚区域腔室。
  5. 根据权利要求2所述的通机发电机冷却散热方法,其特征在于,所述导风隔板右侧侧面上贴合设置有一层反射层;所述反射层为锡铂材料层。
  6. 根据权利要求2所述的通机发电机冷却散热方法,其特征在于,导风隔板上位于中上部的位置设置有主导风口;
    导风隔板下端具有一个竖直设置的竖直段,竖直段高度和发动机组件高度匹配,竖直段上端通过一个整体向右的弯折部衔接有一个水平段,水平段右端衔接有一个向右上方的 斜向段;
    导风隔板整体具有弹性,且不受外力时整体高度高于机箱壳内腔高度,机箱壳内腔下底面和上顶面对应设置有隔板卡槽实现导风隔板的卡接固定;
    导风隔板为注塑件。
  7. 根据权利要求6所述的通机发电机冷却散热方法,其特征在于,导风隔板上位于弯折部和水平段之间的位置还弯曲形成有一个向右上方的台阶,所述主导风口位于台阶下部弯曲位置;
    导风隔板上斜向段中上部位置还设置有次上导风口,次上导风口开口面积小于主导风口;导风隔板上水平段最右端靠近斜向段位置还设置有一个次下导风口,次下导风口开口面积小于主导风口。
  8. 根据权利要求7所述的通机发电机冷却散热方法,其特征在于,高温区域中,发动机组件包括水平设置于高温区域下部机箱壳内底面上的发动机箱体,发动机箱体左端为手拉盘风扇,手拉盘风扇下方设置有空滤器,手拉盘风扇上方正对主导风口位置设置化油器,发动机箱体上部设置发动机气缸头,发动机气缸头上正对次下导风口位置设置高压包。
  9. 根据权利要求2所述的通机发电机冷却散热方法,其特征在于,发电机组件设置于发动机箱体右端并包括左端开放式对接在发动机箱体右端面的发电机外壳和设置在发电机外壳内的发电机风扇、发电机转子以及发电机定子,所述机箱壳右端面正对发电机组件位置还设置有发电机进风口,发电机进风口通过一个发电机导风胶套和发电机外壳右端的开口对接实现进风;
    发电机进风口处靠螺钉固定安装有一个格栅状的发电机进风口盖板,发电机导风胶套左端具有一个竖向的发电机抵接面并抵接在发电机外壳右端,发电机导风胶套右端具有一个竖向的发电机进风口盖板抵接面并抵接在发电机进风口盖板左端,发电机导风胶套中部具有一圈外凸的鼓起。
  10. 根据权利要求2所述的通机发电机冷却散热方法,其特征在于,出风口设置于机箱壳右端上部位置,消声器出口端和出风口之间设置有消声器出风连接结构,所述消声器出风连接结构,包括机箱壳右端表面位于出风口处的一圈安装沉槽,还包括消声器外壳右端的一个消声器导风胶套以及位于安装沉槽上的一个格栅状的出风口盖板,消声器导风胶套右端具有一圈搭接在安装沉槽上的外翻边,所述出风口盖板压接在外翻边上,出风口上还设置有固定螺钉,固定螺钉依次穿过出风口盖板、外翻边和安装沉槽实现固定;
    外翻边外端背对出风口盖板的一侧具有一圈凸起,所述凸起被出风口盖板压接贴合到安装沉槽上对应的一圈凹槽中;
    消声器导风胶套左半部具有一个锥筒段并固定到消声器外壳右端,消声器导风胶套右半部具有一个直筒段,直筒段右端形成所述外翻边,直筒段中部具有一圈外凸的鼓起。
  11. 一种通机发电机,其特征在于,包括机箱壳,机箱壳上安装有控制面板,机箱壳内部还安装有油箱、控制器、整流桥、发动机组件、发电机组件和消声器;机箱壳上还开有进风口和出风口,消声器安装在出风口处;机箱壳内设置有低温区域和高温区域,所述控制面板、油箱、控制器和整流桥安装在低温区域一端,所述发动机组件、发电机组件和消声器安装在高温区域一端;
    机箱壳内设置有导风隔板,导风隔板宽度和机箱壳内腔前后方向宽度匹配并整体沿竖向安装在机箱壳内中部,导风隔板具有一个和机箱壳内腔上顶面卡接的上卡接端,还具有一个和机箱壳内腔下底面卡接的下卡接端,导风隔板将机箱壳内腔分隔为左侧的低温区域和右侧的高温区域,导风隔板上开设有连通左右两侧的导风口。
  12. 根据权利要求11所述的通机发电机,其特征在于,所述导风隔板具有与机箱壳内腔上顶面卡接的上卡接端和与机箱壳内腔下底面卡接的下卡接端。
PCT/CN2021/129845 2020-11-10 2021-11-10 一种通机发电机冷却散热方法及通机发电机 WO2022100619A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/314,031 US20230353008A1 (en) 2020-11-10 2023-05-08 Heat dissipation method for complete general-purpose machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011244280.2A CN112260458B (zh) 2020-11-10 2020-11-10 一种通机发电机冷却散热方法
CN202011244280.2 2020-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/314,031 Continuation US20230353008A1 (en) 2020-11-10 2023-05-08 Heat dissipation method for complete general-purpose machine

Publications (1)

Publication Number Publication Date
WO2022100619A1 true WO2022100619A1 (zh) 2022-05-19

Family

ID=74266730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129845 WO2022100619A1 (zh) 2020-11-10 2021-11-10 一种通机发电机冷却散热方法及通机发电机

Country Status (3)

Country Link
US (1) US20230353008A1 (zh)
CN (1) CN112260458B (zh)
WO (1) WO2022100619A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260458B (zh) * 2020-11-10 2024-04-09 尹登昌 一种通机发电机冷却散热方法
CN113998330A (zh) * 2021-11-05 2022-02-01 中车长江运输设备集团有限公司 冷藏集装箱前端结构及具有其的冷藏集装箱
CN113898462B (zh) * 2021-11-15 2024-02-23 尹登昌 一种数码发电机风冷散热方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105003336A (zh) * 2015-07-28 2015-10-28 重庆安来动力机械有限公司 高效双冷却风道的发电机组
JP2016000968A (ja) * 2014-06-11 2016-01-07 日本車輌製造株式会社 エンジン作業機
CN109899158A (zh) * 2019-04-09 2019-06-18 重庆华世丹动力科技股份有限公司 全包式发电机组的冷却风道结构
CN109989826A (zh) * 2019-04-15 2019-07-09 重庆华世丹动力科技股份有限公司 发电机组冷却风道结构
CN112260458A (zh) * 2020-11-10 2021-01-22 尹登昌 一种通机发电机冷却散热方法
CN213305144U (zh) * 2020-11-10 2021-05-28 重庆万如机械制造有限公司 一种通机发电机外壳结构
CN213392386U (zh) * 2020-11-10 2021-06-08 重庆万如机械制造有限公司 一种导风隔板
CN213478482U (zh) * 2020-11-10 2021-06-18 重庆万如机械制造有限公司 一种利于冷却的通机发电机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5684047B2 (ja) * 2011-05-23 2015-03-11 株式会社三社電機製作所 電気装置
CN103184929B (zh) * 2013-03-21 2015-04-29 江苏苏美达机电有限公司 发动机驱动的发电机组
CN108194196A (zh) * 2018-03-16 2018-06-22 宁德本田动力有限公司 一种低噪音风冷柴油变频发电机组冷却系统
CN109915257A (zh) * 2019-04-20 2019-06-21 济南吉美乐电源技术有限公司 一种强制风冷静音柴油发电机组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000968A (ja) * 2014-06-11 2016-01-07 日本車輌製造株式会社 エンジン作業機
CN105003336A (zh) * 2015-07-28 2015-10-28 重庆安来动力机械有限公司 高效双冷却风道的发电机组
CN109899158A (zh) * 2019-04-09 2019-06-18 重庆华世丹动力科技股份有限公司 全包式发电机组的冷却风道结构
CN109989826A (zh) * 2019-04-15 2019-07-09 重庆华世丹动力科技股份有限公司 发电机组冷却风道结构
CN112260458A (zh) * 2020-11-10 2021-01-22 尹登昌 一种通机发电机冷却散热方法
CN213305144U (zh) * 2020-11-10 2021-05-28 重庆万如机械制造有限公司 一种通机发电机外壳结构
CN213392386U (zh) * 2020-11-10 2021-06-08 重庆万如机械制造有限公司 一种导风隔板
CN213478482U (zh) * 2020-11-10 2021-06-18 重庆万如机械制造有限公司 一种利于冷却的通机发电机

Also Published As

Publication number Publication date
CN112260458B (zh) 2024-04-09
CN112260458A (zh) 2021-01-22
US20230353008A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2022100619A1 (zh) 一种通机发电机冷却散热方法及通机发电机
CN213392386U (zh) 一种导风隔板
US10066544B2 (en) Box-type generator driven by engine
US10132224B2 (en) Mounting configuration for a heat duct in an electric generator
CN209586494U (zh) 一种变频发电机组冷却系统
WO2012139284A1 (zh) 双排风式同步发电机及风冷超静音发电机组
CN213478482U (zh) 一种利于冷却的通机发电机
CN103696844A (zh) 一种发电机组
CN101635486B (zh) 一种用发动机驱动的发电机
CN105846592A (zh) 一种变频发电机组进风冷却系统
CN109899158A (zh) 全包式发电机组的冷却风道结构
US11668233B2 (en) Backplate for engine-alternator coupling in standby generator
CN213305144U (zh) 一种通机发电机外壳结构
CN209358383U (zh) 一种变频发电机组的变频器安装及冷却结构
CN113898462B (zh) 一种数码发电机风冷散热方法
CN106285893B (zh) 数码变频发电机冷却系统
CN110417166A (zh) 一种发电设备机壳
CN113364212B (zh) 静音变频发电机组冷却风道
CN207230939U (zh) 多通道散热的磁能热水器
CN217080607U (zh) 一种通机外壳排风端结构
CN214851005U (zh) 逆变器冷却风道
CN206016946U (zh) 数码变频发电机冷却系统
CN211314362U (zh) 柴油发动机导风罩
CN221277853U (zh) 一种前置变频动力风道结构及发动机
CN216342416U (zh) 一种风冷柴油发电机组的散热风道结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891139

Country of ref document: EP

Kind code of ref document: A1