WO2022100383A1 - 一种循环水数字化在线监测控制装置及方法 - Google Patents

一种循环水数字化在线监测控制装置及方法 Download PDF

Info

Publication number
WO2022100383A1
WO2022100383A1 PCT/CN2021/124764 CN2021124764W WO2022100383A1 WO 2022100383 A1 WO2022100383 A1 WO 2022100383A1 CN 2021124764 W CN2021124764 W CN 2021124764W WO 2022100383 A1 WO2022100383 A1 WO 2022100383A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating water
water
circulating
water tank
heat exchanger
Prior art date
Application number
PCT/CN2021/124764
Other languages
English (en)
French (fr)
Inventor
刘伟
黄文平
刘宇
齐冰
解芳
赵贵龙
王卫东
张伟
王兴俊
张秀成
荆海东
王长海
朱磊
王宏涛
王雷雷
Original Assignee
华能碳资产经营有限公司
华能集团技术创新中心有限公司
华夏大地控股有限公司
华能渑池热电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能碳资产经营有限公司, 华能集团技术创新中心有限公司, 华夏大地控股有限公司, 华能渑池热电有限责任公司 filed Critical 华能碳资产经营有限公司
Publication of WO2022100383A1 publication Critical patent/WO2022100383A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2605Wastewater treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to zero-discharge treatment of waste water, in particular to a digital on-line monitoring and control device and method for circulating water.
  • the circulating cooling water system is the system used in thermal power plants with the largest displacement, and it is also the key and difficult point of water saving and emission reduction.
  • sewage permit system saving water, improving the effect of sewage treatment, dosing and management automation are problems that need to be solved urgently at present, especially the water saving and reduction of circulating water and sewage in thermal power plants Processing has become a hot research technology today.
  • the circulating water sewage treatment technology is coagulation clarification ⁇ filtration ⁇ ultrafiltration - reverse osmosis treatment process
  • the concentration ratio of circulating water is generally controlled at 3 to 5 times, and membrane scaling, fouling and corrosion problems are prone to occur, and the chemical cleaning cycle is relatively
  • the present invention provides a digital on-line monitoring and control device for circulating water, including: a pharmaceutical control device, a circulating water tank, a cooling tower, a circulating pipeline and a heat exchanger;
  • the circulating water tank is communicated with the cooling tower, the circulating water tank is connected with the heat exchanger through a circulating pipeline, and the pharmaceutical control device is connected with the circulating water tank, and is used for injecting pharmaceuticals into the circulating water tank;
  • the circulating water is treated in the circulating water tank, enters the heat exchanger through the circulating pipeline for heat exchange, flows into the cooling tower for cooling, and returns to the circulating water tank.
  • the pharmaceutical control device includes an equipment controller, a pharmaceutical injection device and a water quality monitoring instrument;
  • the equipment controller is connected in communication with the pharmaceutical injection device and the water quality monitoring instrument;
  • the pharmaceutical injection device is connected to the circulating water tank for injecting pharmaceuticals, and the water quality monitoring instrument is arranged at the outlet of the circulating water tank for monitoring water quality.
  • each pipe is provided with a circulation pump
  • the heat exchanger is provided with a first sewage outlet for drainage.
  • the device further comprises a water supply tank, one end of the water supply tank is connected to the circulating water tank, and the other end is connected to a water inlet for circulating water;
  • the circulating water tank is provided with a second sewage outlet for discharging circulating water.
  • both the water inlet and the water outlet of the water inlet and the second sewage outlet are provided with water volume measuring instruments.
  • the medicament injection device is provided with a medicament measuring instrument.
  • the present invention also provides a digital online monitoring and control method for circulating water, including:
  • the circulating water includes:
  • the pharmaceutical control device monitors the water quality of the circulating water through the water quality monitoring instrument
  • the pharmaceutical control device controls the pharmaceutical injection device to inject pharmaceuticals into the circulating water tank according to the water quality conditions monitored by the water quality monitoring instrument to process the circulating water.
  • the medicament control device controls the medicament injection device to inject medicaments into the circulating water tank according to the water quality, and processes the circulating water, including:
  • the water inflow and discharge are determined by the water metering instrument, and the dosage of the chemical is determined by the chemical metering instrument and the concentration ratio of the circulating water, and the circulating water is treated.
  • the method further includes:
  • the treated circulating sewage is treated by osmosis device and reverse osmosis device to obtain product water and ultra-concentrated water;
  • the ultra-concentrated water is evaporated by using the swirling atomization flue to realize zero discharge of waste water.
  • the digital online monitoring and control device for circulating water includes: a pharmaceutical control device, a circulating water tank, a cooling tower, a circulating pipeline and a heat exchanger.
  • the circulating water tank is connected to the cooling tower, and the circulating water tank is connected to the heat exchanger through the circulating pipeline.
  • the pharmaceutical control device is connected to the circulating water tank, and is used to inject pharmaceuticals into the circulating water tank.
  • the circulating water is processed in the circulating water tank, enters the heat exchanger through a circulating pipeline for heat exchange, and then flows into the cooling tower to cool down. Then, it is returned to the circulating water tank; in the present invention, heat exchange is carried out through a heat exchanger, and the temperature of the waste water is maintained through a cooling tower, and a chemical control device is added to treat the waste water.
  • the present invention monitors and controls the amount of water, the amount of medicine, the water quality, the thermal resistance of the equipment, and the corrosion rate through the digital online monitoring and control device of the circulating water, so as to control the concentration ratio of the circulating water by automatically adjusting the dosage of the medicine, and achieve the discharge of the circulating water.
  • the economical zero discharge of wastewater is effectively realized.
  • Fig. 1 is the schematic diagram of the process flow diagram of circulating water digital treatment of the present invention
  • FIG. 2 is a schematic diagram of the process flow diagram of zero discharge of waste water from thermal power plants of the present invention.
  • the invention provides a digital on-line monitoring and control device for circulating water, comprising: a pharmaceutical control device, a circulating water tank, a cooling tower, a circulating pipeline and a heat exchanger;
  • the circulating water tank is communicated with the cooling tower, the circulating water tank is connected with the heat exchanger through the circulating pipeline, and the chemical control device is connected with the circulating water tank, which is used for putting medicines into the circulating water tank;
  • the circulating water is treated in the circulating water tank, enters the heat exchanger through the circulating pipeline for heat exchange, flows into the cooling tower for cooling, and returns to the circulating water tank.
  • the pharmaceutical control device includes an equipment controller, a pharmaceutical injection device and a water quality monitoring instrument;
  • the equipment controller is connected to the drug delivery device and the water quality monitoring instrument
  • the pharmaceutical injection device is connected with the circulating water tank for injecting pharmaceuticals, and the water quality monitoring instrument is arranged at the outlet of the circulating water tank to monitor the water quality.
  • each pipe is provided with a circulation pump, and the heat exchanger is provided with a first sewage outlet for drainage.
  • the device also includes a water supply tank, one end of the water supply tank is connected to the circulating water tank, and the other end is connected to the water inlet of the circulating water;
  • the circulating water tank is provided with a second sewage outlet for discharging circulating water.
  • Both the water inlet and the water outlet of the water inlet and the second sewage outlet are provided with water measuring instruments.
  • the drug delivery device is provided with a drug metering instrument.
  • the present invention proposes to optimize the economical zero-discharge treatment process of thermal power plant waste water through cascade utilization, adopting the technology of reducing the amount of sewage in the circulating water system + pretreatment of the circulating water and sewage + the advanced treatment and reuse system of the circulating water and sewage + terminal waste water.
  • the technical route of the cyclone atomization evaporation and solidification treatment system improves the concentration ratio of circulating water, reduces the amount of sewage discharged from circulating water, and realizes economical zero discharge of wastewater.
  • the process flow of circulating water pretreatment is: circulating water sewage ⁇ circulating water machine adding pool ⁇ variable pore filter ⁇ activated carbon filter ⁇ super filtration ⁇ fluid bed to remove hardness, using the existing machine adding pool and variable gap filtration Preliminary reduction of hardness, turbidity and COD was carried out in the device, and activated carbon filter, super filtration and fluidized bed de-hardening device were added to remove residual chlorine, turbidity and microorganisms, reduce COD and hardness, and meet the requirements of reverse osmosis influent water.
  • the deep reuse and evaporation and solidification of circulating water and sewage are as follows: circulating water pretreatment ⁇ reverse osmosis device ⁇ concentrated water reverse osmosis device ⁇ swirling atomization flue evaporation and solidification, reverse osmosis device and concentrated water reverse osmosis device
  • the produced water is reused to the boiler make-up water ultrafiltration water tank, and the concentrated water is sent to the swirling atomization flue for evaporation and solidification to achieve economical zero discharge of waste water.
  • the present invention realizes economical zero discharge by optimizing the waste water treatment process of thermal power plants through cascade utilization.
  • the technical scheme adopted in the present invention is: adopting a new type of water treatment agent, supplemented by digital management technology, improving the concentration ratio of circulating water, realizing the water-saving and reducing treatment of circulating water and sewage, and optimizing the subsequent recycling treatment of circulating water concentration process, and ultimately achieve the purpose of automatic management and economical zero discharge of wastewater.
  • the circulating water After the circulating water is treated by new water treatment agents and digital management technology, it enters the "activated carbon + super filtration + fluidized bed to remove hardness", and then enters the mature "solid-liquid separation membrane system + RO reverse osmosis” membrane concentration combined treatment unit , the produced water is collected into the ultrafiltration water tank, and then pumped to the boiler make-up water; the concentrated waste water enters the cyclone atomization flue evaporation and solidification treatment unit to achieve economical zero discharge of waste water.
  • This innovative technical solution can also realize management standardization, intelligent decision-making and environmental friendliness of the whole plant water system, which is of great significance for thermal power plants in the power industry to achieve economical zero discharge of wastewater and smart water management.
  • the digital sewage reduction technology of the circulating water system establishes an online perception system for the entire operation of the circulating cooling water system, including: industrial water quality monitoring, circulating water quality monitoring, water and drug dosage measurement, liquid level monitoring, meteorological monitoring, replacement Thermal equipment monitoring, cooling tower monitoring, circulating water pump monitoring, etc.; secondly, through online monitoring of parameters such as fouling thermal resistance, heat transfer coefficient, corrosion rate, concentration ratio and dosing concentration, the optimal concentration ratio operating range is set, and the sewage is automatically controlled online. Electric valve, so that the concentration rate can be controlled stably; finally, all the monitored analog signals during the operation of the circulating cooling water system are converted into digital signals, and the establishment of the network layer is based on the relevant regulations of the power plant.
  • the model is converted into binary code, and the computer is introduced for unified processing.
  • the application layer system is gradually developed and improved to realize the digital online monitoring and control of the circulating water system.
  • the circulating water is treated with new water treatment chemicals, supplemented by digital technology management control, the concentration ratio can be significantly improved, and the sewage discharge of the circulating water can be reduced.
  • the effluent is treated with a reverse osmosis and concentrated water reverse osmosis device, and the product water is reused to the ultrafiltration water tank of the boiler make-up water system, and the ultra-concentrated water is evaporated and solidified through the swirling atomization flue.
  • the circulating water is treated with new water treatment chemicals, supplemented by digital technology management and control, which can significantly increase the concentration ratio and reduce the amount of sewage discharged from the circulating water. Then, the circulating sewage is deeply reused and treated by swirling atomization flue evaporation and solidification. To achieve economical zero discharge of waste water from thermal power plants.
  • the present invention also provides a digital online monitoring and control method for circulating water, including:
  • the circulating water After the circulating water is processed by the circulating water tank where the medicine is put into the medicine delivery device, it includes:
  • the pharmaceutical control device monitors the water quality of the circulating water through the water quality monitoring instrument
  • the pharmaceutical control device controls the pharmaceutical injection device to inject pharmaceuticals into the circulating water tank according to the water quality conditions monitored by the water quality monitoring instrument to process the circulating water.
  • the pharmaceutical control device controls the pharmaceutical injection device to inject pharmaceuticals into the circulating water tank according to the water quality, and treats the circulating water, including:
  • the water inflow and discharge are determined by the water metering instrument, and the dosage of the chemical is determined by the chemical metering instrument and the concentration ratio of the circulating water, and the circulating water is treated.
  • the treated circulating sewage is treated by osmosis device and reverse osmosis device to obtain product water and ultra-concentrated water;
  • the ultra-concentrated water is evaporated by the swirling atomization flue to achieve zero discharge of waste water.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种循环水数字化在线监测控制装置,包括:药剂控制装置、循环水箱、冷却塔、循环管道和换热器,循环水箱与冷却塔连通,循环水箱通过循环管道与换热器连接,药剂控制装置与循环水箱连接,用于为循环水箱投放药剂,循环水在循环水箱中经过处理,通过循环管道进入换热器进行热交换后,流入冷却塔降温后返回循环水箱;通过循环水数字化在线监测控制装置对水量、药剂量、水质、换热器的污垢热阻进行监测控制,实现通过自动调节药剂投加量控制循环水浓缩倍率,达到循环水排污水减量的目的,再通过循环水排污水预处理、循环水排污水深度处理回用和末端废水旋流雾化蒸发处理,有效的实现了废水经济性零排放。

Description

一种循环水数字化在线监测控制装置及方法 技术领域
本发明涉及废水零排放处理,具体涉及一种循环水数字化在线监测控制装置及方法。
背景技术
循环冷却水系统是火电厂用、排水量最大的系统,也是节水减排的重点难点。在《水污染防治行动计划》排污许可制度等新的环保要求下,节省用水、提高污水处理效果、加药及管理自动化是目前急需解决的问题,特别是火电厂循环水排污水节水减量处理已成为当今的热点研究技术。循环水排污水处理技术为混凝澄清→过滤→超滤-反渗透处理工艺,循环水浓缩倍率普遍控制在3~5倍,且易出现膜结垢、污堵及腐蚀问题,化学清洗周期相对较短,为保证系统安全稳定运行,通常需增设完善的废水预处理,投资和运行费用较高,现有技术对废水处理依旧不够完善。
发明内容
针对现有技术无法完善对废水的处理,本发明提供了一种循环水数字化在线监测控制装置,包括:药剂控制装置、循环水箱、冷却塔、循环管道和换热器;
循环水箱与所述冷却塔连通,循环水箱通过循环管道与换热器连接,所述药剂控制装置与所述循环水箱连接,用于为所述循环水箱投放药剂;
循环水在循环水箱中经过处理,通过循环管道进入所述换热器进行热交换后,流入所述冷却塔降温后返回所述循环水箱。
优选的,所述药剂控制装置包括设备控制器、药剂投放装置和水质监测仪器;
所述设备控制器与药剂投放装置、水质监测仪器通讯连接;
所述药剂投放装置与所述循环水箱连接用于投放药剂,所述水质监测仪器设置于所述循环水箱出口处,用于监测水质。
优选的,所述循环管道设有两条,每条管道上均设有循环泵,所述换热器设有排水的第一排污口。
优选的,所述装置还包括补水箱,所述补水箱一端与所述循环水箱连接,另一端连接进入循环水的进水口;
所述循环水箱设有排循环水的第二排污口。
优选的,所述进水口与所述第二排污口的进水处和出水处均设有水量计量仪器。
优选的,所述药剂投放装置设有药量计量仪器。
基于同一发明构思,本发明还提供了一种循环水数字化在线监测控制方法,包括:
循环水经过药剂控制装置投放药剂的循环水箱处理后;
通过循环管道进入所述换热器进行热交换后,流入所述冷却塔降温后返回所述循环水箱。
优选的,所述循环水经过药剂投放装置投放药剂的循环水箱处理后,包括:
药剂控制装置通过水质监测仪器,监测循环水的水质;
药剂控制装置根据水质监测仪器监测的水质情况,控制药剂投放装置向循环水箱投放药剂,对循环水进行处理。
优选的,所述药剂控制装置根据水质,控制药剂投放装置向循环水箱投放药剂,对循环水进行处理,包括:
通过水量计量仪器确定的进水量和排水量,由药量计量仪器和循环水浓缩倍率确定药剂的投加量,对循环水进行处理。
优选的,所述通过循环管道进入所述换热器进行热交换后,流入所述冷却塔降温后返回所述循环水箱之后,还包括:
处理后的循环排污水通过渗透装置和反渗透装置处理,获得产品水和超浓水;
将所述产品水通过超滤水箱,用于锅炉补给水;
将所述超浓水利用旋流雾化烟道蒸发处理,实现废水零排放。
与现有技术相比,本发明的有益效果为:
1、循环水数字化在线监测控制装置,包括:药剂控制装置、循环水箱、冷却塔、循环管道和换热器,循环水箱与所述冷却塔连通,循环水箱通过循环管道与换热器连接,所述药剂控制装置与所述循环水箱连接,用于为所述循环水箱投放药剂,循环水在循环水箱中经过处理,通过循环管道进入所述换热器进行热交 换后,流入所述冷却塔降温后返回所述循环水箱;本发明通过换热器进行热交换,再通过冷却塔对废水进行维持温度,并增加药剂控制装置对废水进行处理。
2、本发明通过循环水数字化在线监测控制装置对水量、药剂量、水质、设备的污垢热阻、腐蚀率进行监测控制从而实现通过自动调节药剂投加量控制循环水浓缩倍率,达到循环水排污水减量的目的,再通过循环水排污水预处理、循环水排污水深度处理回用和末端废水旋流雾化蒸发固化处理,有效的实现了废水经济性零排放。
附图说明
图1为本发明的循环水数字化处理工艺流程示意图;
图2为本发明的火电厂废水零排放工艺流程示意图。
具体实施方式
结合附图对本发明的实施例作进一步的说明。
实施例1
本发明提供了一种循环水数字化在线监测控制装置,包括:药剂控制装置、循环水箱、冷却塔、循环管道和换热器;
循环水箱与冷却塔连通,循环水箱通过循环管道与换热器连接,药剂控制装置与循环水箱连接,用于为循环水箱投放药剂;
循环水在循环水箱中经过处理,通过循环管道进入换热器进行热交换后,流入冷却塔降温后返回循环水箱。
药剂控制装置包括设备控制器、药剂投放装置和水质监测仪器;
设备控制器与药剂投放装置、水质监测仪器通讯连接;
药剂投放装置与循环水箱连接用于投放药剂,水质监测仪器设置于循环水箱出口处,用于监测水质。
循环管道设有两条,每条管道上均设有循环泵,换热器设有排水的第一排污口。
装置还包括补水箱,补水箱一端与循环水箱连接,另一端连接进入循环水的进水口;
循环水箱设有排循环水的第二排污口。
进水口与第二排污口的进水处和出水处均设有水量计量仪器。
药剂投放装置设有药量计量仪器。
实施例2
为实现发明目的,本发明提出了通过梯级利用优化火电厂废水经济零排放处理工艺,采用循环水系统排污减量技术+循环水排污水预处理+循环水排污水深度处理回用系统+末端废水旋流雾化蒸发固化处理系统的技术路线,提高循环水浓缩倍率,减少循环水排污量,实现废水经济零排放。
建立循环水数字化在线监测体系,实现系统运行各环节数据实时“看得见”;增设新型水处理药剂投加系统,提高浓缩倍数,减少循环水排污量;增设循环水数字化在线控制系统,使排污水量达到精细化控制;解决腐蚀性水质对高浓缩倍率运行的制约,实现在低pH值、高氯离子、高硫酸根的水质条件下,对金属腐蚀能够“控制住”。
循环水预处理其采用的工艺流程为:循环水排污水→循环水机加池→变孔隙过滤器→活性炭过滤器→超级过滤→流动床除硬度,利用现有的机加池和变空隙过滤器进行初步降硬、降浊、降COD,新增活性炭过滤器、超级过滤和流动床除硬装置再次进行去除余氯、浊度、微生物,降低COD和硬度,满足反渗透进水要求。
循环水排污水深度回用和蒸发固化其采用的工艺流程为:循环水预处理→反渗透装置→浓水反渗透装置→旋流雾化烟道蒸发固化,反渗透装置和浓水反渗透装置产水回用至锅炉补给水超滤水箱,浓水送至旋流雾化烟道蒸发固化,实现废水经济零排放。
为了克服上述现有技术的不足,本发明通过梯级利用优化火电厂废水处理工艺实现经济零排放。
为了达到以上目的,本发明采用的技术方案是:采用新型水处理药剂,辅以数字化管理技术,提高循环水浓缩倍率,实现循环水排污水节水减量处理,优化后续循环水浓度回用处理工艺,最终达到自动化管理和废水经济零排放的目的。
由于本发明采用了以上的技术方案,其优点在于:
建立循环水数字化在线监测体系,实现系统运行各环节数据实时“看得见”; 增设新型水处理药剂投加系统,可显著提高浓缩倍数,减少循环水排污量;增设循环水数字化在线控制系统,使排污水量达到精细化控制,降低废水零排放项目的投资和运行费用。
循环水经新型水处理药剂辅以数字化管理技术处理后,进入“活性炭+超级过滤+流化床除硬度”,再进入成熟的“固液分离膜系统+RO反渗透”的膜浓缩组合处理单元,产水收集至超滤水箱,然后用泵送至锅炉补给水处;经过浓缩后的废水进入旋流雾化烟道蒸发固化处理单元,实现废水经济零排放。
该创新技术方案还可实现全厂水系统的管理标准化、决策智能化和环境友好化,对电力行业的火电厂实现废水经济零排放和智慧水务管理具有重要意义。
结合图1,循环水系统数字化排污减量技术,建立循环冷却水系统运行全过程的在线感知体系,包括:工业水质监测、循环水质监测、水量与药量计量、液位监测、气象监测、换热设备监测、冷却塔监测、循环水泵监测等;其次,通过在线监测污垢热阻、传热系数、腐蚀速率、浓缩倍率和加药浓度等参数,设置最佳浓缩倍率运行范围,在线自动控制排污电动阀,使浓缩倍率得到稳定控制;最终将循环冷却水系统运行过程中所有监测的模拟信号转变为数字化信号,网络层的建立按照电厂相关规定选用通讯方式;最后,以这些数据建立需要的数字化模型,转变为二进制代码,引入计算机进行统一处理,随着运行数据的积累,逐步开发完善应用层体系,实现循环水系统数字化在线监测与控制。循环水经新型水处理药剂处理,辅以数字化技术管理控制,浓缩倍率可显著提高,减少循环水排污量。
结合图2,循环排污水深度处理回用系统方案工艺路线:循环排污水→循环水机加池→变孔隙过滤器→活性炭过滤器→超级过滤→流动床除硬度→反渗透装置→浓水反渗透装置→旋流雾化烟道蒸发固化。利用现有的机加池和变空隙过滤器进行初步降硬、降浊、降COD;新增活性炭过滤器、超级过滤和流动床除硬装置再次进行去除余氯、浊度、微生物,降低COD和硬度,满足反渗透进水要求。流动床降硬后出水新增反渗透和浓水反渗透装置处理,产品水回用至锅炉补给水系统的超滤水箱,超浓水通过旋流雾化烟道蒸发固化处理。
综上,循环水经新型水处理药剂处理,辅以数字化技术管理控制,显著提高浓缩倍率,减少循环水排污量,再经循环排污水深度回用处理和旋流雾化烟道蒸 发固化处理,实现火电厂废水经济零排放。
实施例3
基于同一发明构思,本发明还提供了一种循环水数字化在线监测控制方法,包括:
循环水经过药剂控制装置投放药剂的循环水箱处理后;
通过循环管道进入换热器进行热交换后,流入冷却塔降温后返回循环水箱。
循环水经过药剂投放装置投放药剂的循环水箱处理后,包括:
药剂控制装置通过水质监测仪器,监测循环水的水质;
药剂控制装置根据水质监测仪器监测的水质情况,控制药剂投放装置向循环水箱投放药剂,对循环水进行处理。
药剂控制装置根据水质,控制药剂投放装置向循环水箱投放药剂,对循环水进行处理,包括:
通过水量计量仪器确定的进水量和排水量,由药量计量仪器和循环水浓缩倍率确定药剂的投加量,对循环水进行处理。
通过循环管道进入换热器进行热交换后,流入冷却塔降温后返回循环水箱之后,还包括:
处理后的循环排污水通过渗透装置和反渗透装置处理,获得产品水和超浓水;
将产品水通过超滤水箱,用于锅炉补给水;
将超浓水利用旋流雾化烟道蒸发处理,实现废水零排放。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可 编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。

Claims (10)

  1. 一种循环水数字化在线监测控制装置,其特征在于,包括:药剂控制装置、循环水箱、冷却塔、循环管道和换热器;
    循环水箱与所述冷却塔连通,循环水箱通过循环管道与换热器连接,所述药剂控制装置与所述循环水箱连接,用于为所述循环水箱投放药剂;
    循环水在循环水箱中经过处理,通过循环管道进入所述换热器进行热交换后,流入所述冷却塔降温后返回所述循环水箱。
  2. 如权利要求1所述的装置,其特征在于,所述药剂控制装置包括设备控制器、药剂投放装置和水质监测仪器;
    所述设备控制器与药剂投放装置、水质监测仪器通讯连接;
    所述药剂投放装置与所述循环水箱连接用于投放药剂,所述水质监测仪器设置于所述循环水箱出口处,用于监测水质。
  3. 如权利要求1所述的装置,其特征在于,所述循环管道设有两条,每条管道上均设有循环泵,所述换热器设有排水的第一排污口。
  4. 如权利要求1所述的装置,其特征在于,所述装置还包括补水箱,所述补水箱一端与所述循环水箱连接,另一端连接进入循环水的进水口;
    所述循环水箱设有排循环水的第二排污口。
  5. 如权利要求4所述的装置,其特征在于,所述进水口与所述第二排污口的进水处和出水处均设有水量计量仪器。
  6. 如权利要求2所述的装置,其特征在于,所述药剂投放装置设有药量计量仪器。
  7. 一种循环水数字化在线监测控制方法,其特征在于,包括:
    循环水经过药剂控制装置投放药剂的循环水箱处理后;
    通过循环管道进入所述换热器进行热交换后,流入所述冷却塔降温后返回所述循环水箱。
  8. 如权利要求7所述的方法,其特征在于,所述循环水经过药剂投放装置投放药剂的循环水箱处理后,包括:
    药剂控制装置通过水质监测仪器,监测循环水的水质;
    药剂控制装置根据水质监测仪器监测的水质情况,控制药剂投放装置向循环水箱投放药剂,对循环水进行处理。
  9. 如权利要求8所述的方法,其特征在于,所述药剂控制装置根据水质,控制药剂投放装置向循环水箱投放药剂,对循环水进行处理,包括:
    通过水量计量仪器确定的进水量和排水量,由药量计量仪器和循环水浓缩倍率确定药剂的投加量,对循环水进行处理。
  10. 如权利要求9所述的方法,其特征在于,所述通过循环管道进入所述换热器进行热交换后,流入所述冷却塔降温后返回所述循环水箱之后,还包括:
    处理后的循环排污水通过渗透装置和反渗透装置处理,获得产品水和超浓水;
    将所述产品水通过超滤水箱,用于锅炉补给水;
    将所述超浓水利用旋流雾化烟道蒸发处理,实现废水零排放。
PCT/CN2021/124764 2020-11-16 2021-10-19 一种循环水数字化在线监测控制装置及方法 WO2022100383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011275861.2A CN112415965A (zh) 2020-11-16 2020-11-16 一种循环水数字化在线监测控制装置及方法
CN202011275861.2 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022100383A1 true WO2022100383A1 (zh) 2022-05-19

Family

ID=74832277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124764 WO2022100383A1 (zh) 2020-11-16 2021-10-19 一种循环水数字化在线监测控制装置及方法

Country Status (2)

Country Link
CN (1) CN112415965A (zh)
WO (1) WO2022100383A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115771921A (zh) * 2022-12-19 2023-03-10 北京新世翼节能环保科技股份有限公司 氟塑料烟气余热利用循环水水质调节系统及控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415965A (zh) * 2020-11-16 2021-02-26 华能碳资产经营有限公司 一种循环水数字化在线监测控制装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912955A (zh) * 2012-12-31 2014-07-09 王炜 中央空调水系统在线监测预判控制加药系统及其应用
CN104250042A (zh) * 2014-09-22 2014-12-31 许锦璐 用于循环冷却水自动处理和排污水回用的集成设备及方法
CN204945747U (zh) * 2015-08-08 2016-01-06 秦勇 一种工业循环冷却水的全自动水质控制处理系统
CN207473382U (zh) * 2017-09-15 2018-06-08 武汉江汉化工设计有限公司 一种工业循环冷却水智能运行管理系统
CN108383313A (zh) * 2018-05-10 2018-08-10 广东德嘉电力环保科技有限公司 一种mvr浓缩与旋流雾化协同处理工艺及系统
CN108408991A (zh) * 2018-06-15 2018-08-17 山东海能环境技术有限公司 一种工业循环冷却水零排放系统
CN110436687A (zh) * 2018-05-04 2019-11-12 芜湖佳泽利环境资源科技有限公司北京分公司 一种适合工业循环水的零排放系统和方法
WO2019230706A1 (ja) * 2018-05-30 2019-12-05 栗田工業株式会社 水処理制御監視装置
CN112415965A (zh) * 2020-11-16 2021-02-26 华能碳资产经营有限公司 一种循环水数字化在线监测控制装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869122B2 (ja) * 2007-03-27 2012-02-08 シャープ株式会社 冷却方法および冷却装置
CN201842702U (zh) * 2010-10-15 2011-05-25 廖宝 全自动智能循环水处理装置
CN204111459U (zh) * 2014-05-21 2015-01-21 国家电网公司 一种电厂循环水排污水回用处理系统
CN105988378A (zh) * 2015-01-30 2016-10-05 上海洗霸科技股份有限公司 循环冷却水控制系统及加药控制装置和方法
CN210394054U (zh) * 2019-07-08 2020-04-24 苏州冰驰冷暖科技有限公司 一种冷却水移动净化处理设备
CN210559814U (zh) * 2019-08-27 2020-05-19 三和冷机(广州)有限公司 一种自动加药的循环水系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912955A (zh) * 2012-12-31 2014-07-09 王炜 中央空调水系统在线监测预判控制加药系统及其应用
CN104250042A (zh) * 2014-09-22 2014-12-31 许锦璐 用于循环冷却水自动处理和排污水回用的集成设备及方法
CN204945747U (zh) * 2015-08-08 2016-01-06 秦勇 一种工业循环冷却水的全自动水质控制处理系统
CN207473382U (zh) * 2017-09-15 2018-06-08 武汉江汉化工设计有限公司 一种工业循环冷却水智能运行管理系统
CN110436687A (zh) * 2018-05-04 2019-11-12 芜湖佳泽利环境资源科技有限公司北京分公司 一种适合工业循环水的零排放系统和方法
CN108383313A (zh) * 2018-05-10 2018-08-10 广东德嘉电力环保科技有限公司 一种mvr浓缩与旋流雾化协同处理工艺及系统
WO2019230706A1 (ja) * 2018-05-30 2019-12-05 栗田工業株式会社 水処理制御監視装置
CN108408991A (zh) * 2018-06-15 2018-08-17 山东海能环境技术有限公司 一种工业循环冷却水零排放系统
CN112415965A (zh) * 2020-11-16 2021-02-26 华能碳资产经营有限公司 一种循环水数字化在线监测控制装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115771921A (zh) * 2022-12-19 2023-03-10 北京新世翼节能环保科技股份有限公司 氟塑料烟气余热利用循环水水质调节系统及控制方法

Also Published As

Publication number Publication date
CN112415965A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022100383A1 (zh) 一种循环水数字化在线监测控制装置及方法
CN104250042B (zh) 用于循环冷却水自动处理和排污水回用的集成设备及方法
CN107240432B (zh) 一种核电厂放射性废液处理工艺方法
CN105585183A (zh) 铜冶炼中水处理回收装置及零排放方法
CN105254096A (zh) 一种造气含氨含氰含酚的循环水预处理方法及装置
CN204138472U (zh) 用于循环冷却水自动处理和排污水回用的集成设备
CN205442869U (zh) 一种提高苦咸水产水回收率的苦咸水淡化系统
CN112321028A (zh) 一种基于数字化实时监控的火电厂循环水零外排系统
CN106277486A (zh) 一种钢铁行业盐酸酸洗废液的处理回收方法及其系统
CN110436687A (zh) 一种适合工业循环水的零排放系统和方法
CN106986400A (zh) 一种去除蒸汽中cod、氨氮的处理系统
CN205024011U (zh) 纯化水处理系统
CN207986902U (zh) 一种低氯根水源火电厂循环水冷却塔零排污处理系统
CN204173955U (zh) 一种节能节水和水质安全的医用反渗透纯水系统
CN105016432A (zh) 一种炼油再生水回用高浓缩倍率循环水处理方法及设备
CN108726731A (zh) 一种电厂凝结水精处理再生废水处理系统及工艺
CN214399938U (zh) 一种渗滤液回灌用消泡装置
CN108147589A (zh) 低氯根水源火电厂循环水冷却塔零排污处理系统及方法
CN212151923U (zh) 基于频繁倒极电渗析的循环冷却水的脱盐处理系统
CN211998906U (zh) 一种脱硫废水烟道浓缩处理装置
CN206927718U (zh) 臭氧协同膜处理的循环冷却水处理系统
CN204039104U (zh) 一种应用在电站中的循环水装置
CN204509078U (zh) 一种新型超临界水氧化处理污泥系统
CN203839061U (zh) 一种用于核电站废液处理系统的反渗透硼浓缩装置
CN106946376A (zh) 臭氧协同悬浮物在线监控的循环冷却水处理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21890910

Country of ref document: EP

Kind code of ref document: A1