WO2022100134A1 - 自动导引装置的控制方法及装置、处理器、电子设备 - Google Patents

自动导引装置的控制方法及装置、处理器、电子设备 Download PDF

Info

Publication number
WO2022100134A1
WO2022100134A1 PCT/CN2021/106980 CN2021106980W WO2022100134A1 WO 2022100134 A1 WO2022100134 A1 WO 2022100134A1 CN 2021106980 W CN2021106980 W CN 2021106980W WO 2022100134 A1 WO2022100134 A1 WO 2022100134A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic
driving
mentioned
speed
travel
Prior art date
Application number
PCT/CN2021/106980
Other languages
English (en)
French (fr)
Inventor
张喜斌
刘宗生
任涛
傅后益
冯健明
史弦立
Original Assignee
珠海格力智能装备有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力智能装备有限公司, 珠海格力电器股份有限公司 filed Critical 珠海格力智能装备有限公司
Publication of WO2022100134A1 publication Critical patent/WO2022100134A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the present invention relates to the field of automatic guidance device control, and in particular, to a control method and device of an automatic guidance device, a processor and an electronic device.
  • Autopilot guided vehicles mainly include navigation methods such as tape navigation, laser navigation and QR code inertial navigation.
  • QR code inertial navigation has become the most widely used navigation method for autopilot guided vehicles due to its low cost and flexible path deployment. .
  • Embodiments of the present invention provide a control method and device, a processor, and an electronic device for an automatic guidance device, so as to at least solve the inability to effectively realize differential speed in the process of using a two-dimensional code inertial navigation for an automatic driving guided vehicle in the prior art Correction of technical issues.
  • a method for controlling an automatic guide device comprising: when detecting that the travel path of the automatic guide device deviates from a target path during driving, determining the deviation of the automatic guide device.
  • the above-mentioned automatic guiding device includes a first driving wheel and a second driving wheel; according to the distance value between the wheels and the above-mentioned offset information, the above-mentioned first driving wheel, the above-mentioned second driving wheel and the above-mentioned automatic guiding device are determined.
  • detecting whether the above-mentioned driving path deviates from the above-mentioned target path is carried out in the following manner, including: detecting whether the identifier of the above-mentioned automatic guidance device obtains identification code information, wherein the above-mentioned identification code information carries the above-mentioned identification code in the above-mentioned target path.
  • the first position information in the path if the above-mentioned identifier obtains the above-mentioned identification code information, then according to the above-mentioned identification code information, it is judged whether the distance value between the above-mentioned automatic guidance device and the above-mentioned target path is greater than or equal to the deviation threshold, and if so It is determined that the automatic guidance device deviates from the target path; if the identifier information is not obtained by the identifier, it is determined that the automatic guidance device deviates from the target path.
  • determining the offset information of the automatic guidance device includes: acquiring the first position information carried in the identification code information; locating the current position of the automatic guidance device to obtain the second position information; based on The first position information and the second position information are calculated to obtain the offset distance value and the offset angle value of the automatic guidance device.
  • determining the driving speed relationship between at least two of the first driving wheel, the second driving wheel, and the automatic guidance device according to the distance between the wheels and the offset information including: according to the offset distance
  • the first deviation correction parameter and the second deviation correction parameter are obtained by calculating the value and the above-mentioned offset angle value; according to the above-mentioned distance value between the wheels, the above-mentioned first deviation-correcting parameter and the above-mentioned second deviation-correcting parameter, the above-mentioned driving speed relational formula is determined.
  • the above-mentioned driving speed relational formula includes: a relational formula between the first driving speed of the above-mentioned first driving wheel and the second driving speed of the above-mentioned second driving wheel; parameters and the above-mentioned second deviation correction parameter, determine the above-mentioned driving speed relational formula as:
  • v 1 is the above-mentioned first travel speed
  • v 2 is the above-mentioned second travel speed
  • b is the above-mentioned distance between wheels.
  • the above-mentioned driving speed relational formula includes: a relational formula between the first driving speed of the above-mentioned first driving wheel and the second driving speed of the above-mentioned second driving wheel; parameters and the above-mentioned second deviation correction parameter, determine the above-mentioned driving speed relational formula as:
  • v1 is the first traveling speed
  • v2 is the second traveling speed
  • b is the distance between the wheels
  • b1 is the distance between the identifier of the automatic guidance device and the first driving wheel.
  • the above-mentioned driving speed relational expression includes: the relational expression between the first driving speed of the above-mentioned first driving wheel and the current driving speed of the above-mentioned automatic guide device, and the second driving speed of the above-mentioned second driving wheel and the above-mentioned relationship.
  • the relationship between the current driving speed of the automatic guide device; according to the above-mentioned distance value between the wheels, the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter, the above-mentioned driving speed relationship is determined as:
  • v is the current travel speed
  • v 1 is the first travel speed
  • v 2 is the second travel speed
  • b is the distance between the wheels.
  • the above-mentioned driving speed relational expression includes: the relational expression between the first driving speed of the above-mentioned first driving wheel and the current driving speed of the above-mentioned automatic guide device, and the second driving speed of the above-mentioned second driving wheel and the above-mentioned relationship.
  • the relationship between the current driving speed of the automatic guide device; according to the above-mentioned distance value between the wheels, the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter, the above-mentioned driving speed relationship is determined as:
  • v is the current travel speed
  • v 1 is the first travel speed
  • v 2 is the second travel speed
  • b is the distance between the wheels
  • b 1 is the identifier of the automatic guidance device and the first travel speed. The distance value of the drive wheel.
  • a control device for an automatic guide device comprising: a detection module configured to determine, when it is detected that the travel path of the automatic guide device deviates from the target path during the traveling process Offset information of the above-mentioned automatic guiding device, wherein, the above-mentioned automatic guiding device includes a first driving wheel and a second driving wheel; a determination module is configured to determine the above-mentioned first driving wheel according to the distance value between the wheels and the above-mentioned offset information , the traveling speed relationship between at least two of the above-mentioned second driving wheel and the above-mentioned automatic guiding device, wherein, the distance value between the above-mentioned wheels is the distance value between the above-mentioned first driving wheel and the above-mentioned second driving wheel; control module , which is set to control the automatic guidance device to travel according to the travel speed relationship until the travel path of the automatic guidance device is consistent with the target path.
  • a computer storage medium stores a plurality of instructions, and the instructions are suitable for being loaded by a processor and executing any one of the control of the automatic guidance device described above. method.
  • a processor configured as a driving program, wherein the program is configured to execute any one of the above-mentioned control methods for an automatic guidance device during driving.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above automatic A control method of a guide device.
  • the deviation information of the automatic guide device is determined, wherein the automatic guide device includes a first drive wheel and the second driving wheel; determine the travel speed relationship between at least two of the first driving wheel, the second driving wheel and the automatic guide device according to the distance between the wheels and the offset information, wherein the wheel The distance value is the distance value between the above-mentioned first driving wheel and the above-mentioned second driving wheel; according to the above-mentioned driving speed relationship, the above-mentioned automatic guiding device is controlled to travel, until the driving path of the above-mentioned automatic guiding device is consistent with the above-mentioned target path, reaching
  • the technical effect of improving the driving stability of the automatic driving guided vehicle is realized, and the problem of the automatic driving guidance vehicle in the prior art is solved
  • FIG. 1 is a flowchart of a control method of an automatic guidance device according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an optional control method of an automatic guidance device according to an embodiment of the present invention
  • FIG. 3 is a flowchart of an optional control method of an automatic guidance device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a control device of an automatic guidance device according to an embodiment of the present invention.
  • an embodiment of a method for controlling an automatic guidance device is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer-executable instructions, Also, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that herein.
  • FIG. 1 is a flowchart of a control method of an automatic guidance device according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • Step S102 when it is detected that the driving path of the automatic guiding device deviates from the target path during the driving process, the deviation information of the automatic guiding device is determined, wherein the automatic guiding device includes a first driving wheel and a second driving wheel. wheel;
  • Step S104 according to the distance between the wheels and the offset information to determine the speed relationship between at least two of the first driving wheel, the second driving wheel and the automatic guidance device, wherein the distance between the wheels is The distance value between the above-mentioned first driving wheel and the above-mentioned second driving wheel;
  • Step S106 controlling the automatic guidance device to travel according to the travel speed relationship until the travel path of the automatic guidance device is consistent with the target path.
  • the deviation information of the automatic guide device is determined, wherein the automatic guide device includes a first drive wheel and the second driving wheel; determine the travel speed relationship between at least two of the first driving wheel, the second driving wheel and the automatic guide device according to the distance between the wheels and the offset information, wherein the wheel The distance value is the distance value between the above-mentioned first driving wheel and the above-mentioned second driving wheel; according to the above-mentioned driving speed relationship, the above-mentioned automatic guiding device is controlled to travel, until the driving path of the above-mentioned automatic guiding device is consistent with the above-mentioned target path, reaching
  • the technical effect of improving the driving stability of the automatic driving guided vehicle is realized, and the problem of the automatic driving guidance vehicle in the prior art is solved
  • the above-mentioned automatic guided device is an automatic guided vehicle, that is, an unmanned automatic vehicle powered by a battery and equipped with safety protection and various auxiliary mechanisms, also known as an automatic driving guided vehicle and an AGV car.
  • the automatic driving guided vehicle in the embodiment of the present application may adopt an automatic guidance device for navigation by means of identification code inertial navigation (for example, two-dimensional code inertial navigation).
  • the two-dimensional code inertial navigation is to lay a two-dimensional code sticker or a two-dimensional code card on the driving path of the automatic driving guided vehicle.
  • the code scanner set in the automatic driving guided vehicle is set to identify and read the driving path. Because the two-dimensional codes on different driving paths are different, that is, the two-dimensional code information obtained by the scanner recognition is also different, that is, the automatic driving guided vehicle can be controlled by identifying different two-dimensional codes.
  • the code scanner sends the read two-dimensional code information to the controller by identifying the two-dimensional code on the ground, and the controller processes the information to obtain the two-dimensional offset of the position of the guide vehicle relative to the two-dimensional code.
  • the controller controls the first driving speed of the first driving wheel and the second driving speed of the second driving wheel respectively, so as to realize the automatic control of the linear motion and the curvilinear motion of the whole vehicle.
  • the automatic guided device is controlled to travel according to the traveling speed relationship until the traveling path of the automatic guided device matches the target path.
  • the automatic guiding device includes a first driving wheel and a second driving wheel; the distance between the wheels is the distance between the first driving wheel and the second driving wheel.
  • the driving path of the automatic guidance device during driving may deviate from the target path.
  • the differential speed correction algorithm and method of the code inertial navigation guided vehicle realizes the correction by controlling the two driving wheels of the automatic guidance device to form a speed difference, and at the end of the correction, the driving direction is consistent with the direction of the target path, and a smooth transition is achieved;
  • the realization of the rectification angle as an acute angle can reduce the deflection amplitude of the vehicle body, automatically rectify the deviation in real time, stabilize the operation of the guided vehicle, and improve the operation stability of the automatic driving guided vehicle.
  • FIG. 2 is a flowchart of an optional automatic guidance device control method according to an embodiment of the present invention. As shown in FIG. 2 , whether the above-mentioned driving path deviates from the above-mentioned driving path is detected in the following manner target path, including:
  • Step S202 detecting whether the identifier of the automatic guidance device has acquired identification code information, wherein the identification code information carries the first position information of the identification code in the target path;
  • Step S204 if the above-mentioned identifier obtains the above-mentioned identification code information, then according to the above-mentioned identification code information, judge whether the distance value between the above-mentioned automatic guidance device and the above-mentioned target path is greater than or equal to the deviation threshold, and if so, determine the above-mentioned automatic guidance.
  • the device deviates from the above target path;
  • Step S206 if the identifier does not acquire the identifier information, it is determined that the automatic guidance device deviates from the target path.
  • the above-mentioned automatic guidance device identifies the position of the two-dimensional code through a code scanner, and transmits the identified identification code information to the controller, and the controller analyzes and judges whether the driving path deviates from the above-mentioned target path, that is, judges the automatic guidance device. Whether it is derailed or not, if it is not derailed, the automatic guiding device is controlled to run stably, and if it is determined that the derailment is derailed, the offset information of the above automatic guiding device is determined.
  • the identifier of the automatic guidance device has acquired the identification code information, and if the identification code information has not been acquired, it is determined that the automatic guidance device deviates from the target path, and if the identifier has acquired the identification code information , but the distance value between the automatic guidance device and the target path is greater than or equal to the deviation threshold (eg 100mm), then it is still determined that the automatic guidance device deviates from the target path, otherwise it is determined that the automatic guidance device does not deviate from the target path.
  • the deviation threshold eg 100mm
  • FIG. 3 is a flowchart of an optional control method of an automatic guiding device according to an embodiment of the present invention. As shown in FIG. 3 , the offset of the above-mentioned automatic guiding device is determined. information, including:
  • Step S302 obtaining the above-mentioned first location information carried in the above-mentioned identification code information
  • Step S304 locating the current position of the automatic guidance device to obtain second position information
  • Step S306 based on the first position information and the second position information, calculate and obtain the offset distance value and the offset angle value of the automatic guidance device.
  • the second position information is obtained by locating the current position of the automatic guidance device, and the first position information is determined by judging the first position information.
  • the distance value between the second position information and the second position information, and the angle value between the first position information and the second position information are judged, and the offset distance value and the offset angle value of the automatic guidance device can be obtained.
  • the driving speed relationship between at least two of the first driving wheel, the second driving wheel and the automatic guiding device is determined according to the distance between the wheels and the offset information, including: :
  • Step S402 calculating and obtaining a first deviation correction parameter and a second deviation correction parameter according to the above-mentioned offset distance value and the above-mentioned offset angle value;
  • Step S404 Determine the above-mentioned driving speed relational formula according to the above-mentioned distance value between the wheels, the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter.
  • the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter are obtained by calculating the following formula:
  • z is the above-mentioned offset distance value
  • ⁇ 2 is the above-mentioned offset angle value
  • m is the above-mentioned first deflection correction parameter
  • n is the above-mentioned first deflection correction parameter.
  • the above-mentioned driving speed relational expression includes: a relational expression between the first driving speed of the first driving wheel and the second driving speed of the second driving wheel; value, the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter, the above-mentioned driving speed relational formula is determined as:
  • v 1 is the above-mentioned first travel speed
  • v 2 is the above-mentioned second travel speed
  • b is the above-mentioned distance between wheels.
  • the above-mentioned driving speed relational expression includes: a relational expression between the first driving speed of the first driving wheel and the second driving speed of the second driving wheel; value, the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter, the above-mentioned driving speed relational formula is determined as:
  • v1 is the first traveling speed
  • v2 is the second traveling speed
  • b is the distance between the wheels
  • b1 is the distance between the identifier of the automatic guidance device and the first driving wheel.
  • the above-mentioned driving speed relational expression includes: a relational expression between the first driving speed of the above-mentioned first driving wheel and the current driving speed of the above-mentioned automatic guide device, and the above-mentioned second driving wheel The relational expression between the second driving speed and the current driving speed of the above-mentioned automatic guidance device; according to the above-mentioned distance value between wheels, the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter, the above-mentioned driving speed relationship is determined as:
  • v is the current travel speed
  • v 1 is the first travel speed
  • v 2 is the second travel speed
  • b is the distance between the wheels.
  • the above-mentioned driving speed relational expression includes: a relational expression between the first driving speed of the above-mentioned first driving wheel and the current driving speed of the above-mentioned automatic guide device, and the above-mentioned second driving wheel The relational expression between the second driving speed and the current driving speed of the above-mentioned automatic guidance device; according to the above-mentioned distance value between wheels, the above-mentioned first deviation correction parameter and the above-mentioned second deviation correction parameter, the above-mentioned driving speed relationship is determined as:
  • v is the current travel speed
  • v 1 is the first travel speed
  • v 2 is the second travel speed
  • b is the distance between the wheels
  • b 1 is the identifier of the automatic guidance device and the first travel speed. The distance value of the drive wheel.
  • the controller may, according to the actual situation, for example, the driving wheel that needs to be corrected, obtain the parameter information of the driving wheel, and then determine the use of different The traveling speed relational expression of the above-mentioned automatic guided device is controlled to travel until the traveling path of the automatic guided device is consistent with the above-mentioned target path.
  • FIG. 4 is a schematic structural diagram of a control device of an automatic guide device according to an embodiment of the present invention.
  • the control device of the above-mentioned automatic guidance device includes: a detection module 400, a determination module 402 and a control module 406, wherein:
  • the detection module 400 is configured to determine the deviation information of the automatic guide device when it is detected that the travel path of the automatic guide device deviates from the target path during the driving process, wherein the automatic guide device includes a first driving wheel and a The second driving wheel; the determining module 402 is configured to determine the driving speed relationship between at least two of the first driving wheel, the second driving wheel and the automatic guiding device according to the distance between the wheels and the offset information, Wherein, the distance between the wheels is the distance between the first driving wheel and the second driving wheel; the control module 406 is configured to control the automatic guiding device to travel according to the driving speed relationship until the automatic guiding device The driving path is consistent with the above target path.
  • the above-mentioned modules can be implemented by software or hardware, for example, the latter can be implemented in the following manner: the above-mentioned modules can be located in the same processor; or, the above-mentioned modules can be arbitrarily combined in different processors.
  • the above-mentioned detection module 400, determination module 402 and control module 406 correspond to steps S102 to S106 in Embodiment 1, and the above-mentioned modules have the same examples and application scenarios as the corresponding steps, but are not limited to The content disclosed in Example 1 above. It should be noted that the above-mentioned modules can be driven in a computer terminal as a part of the device.
  • the above-mentioned acquisition module 10, the judgment module 12 and the control module 14 can be run in a computer terminal as a part of the device, and the functions implemented by the above-mentioned modules can be executed by the processor in the computer terminal, and the computer terminal can also be used.
  • It is a terminal device such as smart phones (such as Android phones, iOS phones, etc.), tablet computers, applause computers, Mobile Internet Devices (MID), and PADs.
  • the control device of the above-mentioned automatic guidance device can also include a processor and a memory, the above-mentioned detection module 400, the determination module 402 and the control module 406 etc. are all stored in the memory as a program unit, and the processor executes the above-mentioned program stored in the memory. unit to achieve the corresponding function.
  • the processor includes a kernel, and the kernel calls the corresponding program unit from the memory, and one or more of the above-mentioned kernels can be set.
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least one memory chip.
  • an embodiment of a computer storage medium is also provided.
  • the above-mentioned computer storage medium includes a stored program, wherein when the above-mentioned program is running, the device where the above-mentioned computer storage medium is located is controlled to execute any one of the above-mentioned control methods for the automatic guidance device.
  • the above-mentioned computer storage medium may be located in any computer terminal in a computer terminal group in a computer network, or in any mobile terminal in a mobile terminal group, and the above-mentioned computer storage medium includes stored program.
  • the equipment where the computer storage medium is located is controlled to perform the following functions: when it is detected that the travel path of the automatic guiding device deviates from the target path during the driving process, the offset information of the above-mentioned automatic guiding device is determined, wherein,
  • the above-mentioned automatic guiding device includes a first driving wheel and a second driving wheel; according to the distance value between the wheels and the above-mentioned offset information, the at least two of the above-mentioned first driving wheel, the above-mentioned second driving wheel and the above-mentioned automatic guiding device are determined.
  • the distance between the wheels is the distance value between the first driving wheel and the second driving wheel; according to the driving speed relationship, the automatic guiding device is controlled to drive until the automatic guiding device
  • the driving path is consistent with the above target path.
  • an embodiment of a processor is also provided.
  • the above-mentioned processor is set as a driving program, wherein any one of the above-mentioned control methods for the automatic guidance device is executed when the above-mentioned program is driving.
  • an embodiment of an electronic device including a memory and a processor, wherein the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above automatic guidance.
  • the control method of the guide device including a memory and a processor, wherein the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above automatic guidance.
  • an embodiment of a computer program product is also provided, which, when executed on a data processing device, is adapted to execute a program initialized with the steps of the control method of any of the above-mentioned automatic guidance devices.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above-mentioned units may be a logical function division.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the above-mentioned integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable computer storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a computer storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the above-mentioned methods of the various embodiments of the present invention.
  • the aforementioned computer storage medium includes: U disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other various storage media that can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种自动导引装置的控制方法及装置、处理器、电子设备。该方法包括:在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息(S102),其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系(S104),其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致(S106)。本申请解决了现有技术中在自动驾驶导引车采用二维码惯性导航过程中无法有效实现差速纠偏的技术问题。

Description

自动导引装置的控制方法及装置、处理器、电子设备 技术领域
本发明涉及自动导引装置控制领域,具体而言,涉及一种自动导引装置的控制方法及装置、处理器、电子设备。
背景技术
自动驾驶导引车主要有磁带导航,激光导航和二维码惯性导航等导航方式,其中,二维码惯性导航因其成本低,路径部署灵活,成为目前自动驾驶导引车应用最多的导航方式。
在采用二维码惯性导航过程中,由于导引车的服役地面平整度不足、车体内部传输数据缺失、车轮磨损会导致车体在运行过程中偏离原路线,进而发生脱轨事故,因此在采用二维码惯性导航过程中,需要对自动驾驶导引车进行差速纠偏,以实现控制自动驾驶导引车按照原定路线行驶。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种自动导引装置的控制方法及装置、处理器、电子设备,以至少解决现有技术中在自动驾驶导引车采用二维码惯性导航过程中无法有效实现差速纠偏的技术问题。
根据本发明实施例的一个方面,提供了一种自动导引装置的控制方法,包括:在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致。
可选的,通过如下方式检测上述行驶路径是否偏离上述目标路径,包括:检测上述自动导引装置的识别器是否获取到识别码信息,其中,上述识别码信息中携带有上 述识别码在上述目标路径中的第一位置信息;若上述识别器获取到上述识别码信息,则依据上述识别码信息,判断上述自动导引装置与上述目标路径之间的距离值是否大于或等于偏离阈值,若是则确定上述自动导引装置偏离上述目标路径;若上述识别器未获取到上述识别码信息,则确定上述自动导引装置偏离上述目标路径。
可选的,确定上述自动导引装置的偏移信息,包括:获取上述识别码信息中携带的上述第一位置信息;定位上述自动导引装置的当前所处位置,得到第二位置信息;基于上述第一位置信息和上述第二位置信息,计算得到上述自动导引装置的偏移距离值和偏移角度值。
可选的,依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,包括:依据上述偏移距离值和上述偏移角度值计算得到第一纠偏参数和第二纠偏参数;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式。
可选的,通过如下公式计算得到上述第一纠偏参数和上述第二纠偏参数:z=m 2+n 2
Figure PCTCN2021106980-appb-000001
其中,z为上述偏移距离值,θ 2为上述偏移角度值,m为上述第一纠偏参数,n为上述第一纠偏参数。
可选的,上述行驶速度关系式包括:上述第一驱动轮的第一行驶速度与上述第二驱动轮的第二行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000002
其中,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值。
可选的,上述行驶速度关系式包括:上述第一驱动轮的第一行驶速度与上述第二驱动轮的第二行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000003
其中,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值,b 1为上述自动导引装置的识别器与上述第一驱动轮的距离值。
可选的,上述行驶速度关系式包括:上述第一驱动轮的第一行驶速度与上述自动导引装置的当前行驶速度之间的关系式,以及上述第二驱动轮的第二行驶速度与上述自动导引装置的当前行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000004
Figure PCTCN2021106980-appb-000005
其中,v为上述当前行驶速度,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值。
可选的,上述行驶速度关系式包括:上述第一驱动轮的第一行驶速度与上述自动导引装置的当前行驶速度之间的关系式,以及上述第二驱动轮的第二行驶速度与上述自动导引装置的当前行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000006
Figure PCTCN2021106980-appb-000007
其中,v为上述当前行驶速度,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值,b 1为上述自动导引装置的识别器与上述第一驱动轮的距离值。
根据本发明实施例的另一方面,还提供了一种自动导引装置的控制装置,包括:检测模块,设置为在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;确定模块,设置为依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;控制模块,设置为依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致。
根据本发明实施例的另一方面,还提供了一种计算机存储介质,上述计算机存储介质存储有多条指令,上述指令适于由处理器加载并执行任意一项上述的自动导引装置的控制方法。
根据本发明实施例的另一方面,还提供了一种处理器,上述处理器设置为行驶程序,其中,上述程序被设置为行驶时执行任意一项上述的自动导引装置的控制方法。
根据本发明实施例的另一方面,还提供了一种电子设备,包括存储器和处理器,上述存储器中存储有计算机程序,上述处理器被设置为行驶上述计算机程序以执行任意一项上述的自动导引装置的控制方法。
在本发明实施例中,通过在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致,达到了在自动驾驶导引车采用二维码惯性导航过程中有效实现差速纠偏的目的,从而实现了提高自动驾驶引导车的行驶稳定性的技术效果,进而解决了现有技术中在自动驾驶 导引车采用二维码惯性导航过程中无法有效实现差速纠偏的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明设置为解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种自动导引装置的控制方法的流程图;
图2是根据本发明实施例的一种可选的自动导引装置的控制方法的流程图;
图3是根据本发明实施例的一种可选的自动导引装置的控制方法的流程图;
图4是根据本发明实施例的一种自动导引装置的控制装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是设置为区别类似的对象,而不必设置为描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本发明实施例,提供了一种自动导引装置的控制方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本发明实施例的一种自动导引装置的控制方法的流程图,如图1所示, 该方法包括如下步骤:
步骤S102,在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;
步骤S104,依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;
步骤S106,依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致。
在本发明实施例中,通过在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致,达到了在自动驾驶导引车采用二维码惯性导航过程中有效实现差速纠偏的目的,从而实现了提高自动驾驶引导车的行驶稳定性的技术效果,进而解决了现有技术中在自动驾驶导引车采用二维码惯性导航过程中无法有效实现差速纠偏的技术问题。
可选的,上述自动导引装置为自动导引车,即以电池为动力并且装备安全防护和各种辅助机构的无人驾驶的自动化车辆,也称为自动驾驶导引车、AGV小车。可选的,本申请实施例中的自动驾驶导引车可以采用识别码惯性导航(例如,二维码惯性导航)方式进行导航的自动导引装置。
其中,二维码惯性导航是在自动驾驶导引车的行驶路径上铺设二维码贴纸或二维码卡片,例如,自动驾驶导引车中设置的扫码器设置为识别读取行驶路径上的二维码,因为不同行驶路径上的二维码不同,即扫码器识别获取的二维码信息也不相同,即通过识别不同的二维码实现对自动驾驶导引车控制。
在本申请实施例中,扫码器通过识别地面的二维码,将读取的二维码信息发送至控制器,控制器处理信息获得引导车相对于二维码的位置二维偏移量,控制器分别控制第一驱动轮的第一行驶速度和第二驱动轮的第二行驶速度,实现自动控制驾驶导引车整车的直线运动和曲线运动。
作为一种可选的实施例,可以监测自动导引装置在行驶过程中的行驶路径是否偏 离目标路径,并在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,并通过依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系;再根据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致。
其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值。
需要说明的是,由于地面平整度不足、车体内部传输数据缺失、车轮磨损等均会导致自动导引装置在行驶过程中的行驶路径偏离目标路径,本申请实施例提供一种设置为二维码惯性导航导引车差速纠偏算法及方法,通过控制自动导引装置的两个驱动轮形成速度差实现纠偏,在纠偏结束时行驶方向与目标路径方向一致,实现平稳过渡;并且,在本申请实施了中,实现纠偏转角为锐角可以减小车体偏转幅度,实时自动纠偏,引导车运行稳定,提高自动驾驶引导车的运行稳定性。
在一种可选的实施例,图2是根据本发明实施例的一种可选的自动导引装置的控制方法的流程图,如图2所示,通过如下方式检测上述行驶路径是否偏离上述目标路径,包括:
步骤S202,检测上述自动导引装置的识别器是否获取到识别码信息,其中,上述识别码信息中携带有上述识别码在上述目标路径中的第一位置信息;
步骤S204,若上述识别器获取到上述识别码信息,则依据上述识别码信息,判断上述自动导引装置与上述目标路径之间的距离值是否大于或等于偏离阈值,若是则确定上述自动导引装置偏离上述目标路径;
步骤S206,若上述识别器未获取到上述识别码信息,则确定上述自动导引装置偏离上述目标路径。
可选的,上述自动导引装置通过扫码器识别二维码的位置,将识别到的识别码信息传输给控制器,控制器分析判断行驶路径是否偏离上述目标路径,即判断自动导引装置是否脱轨,若没脱轨,则控制自动导引装置稳定运行,若判定脱轨则确定上述自动导引装置的偏移信息。
例如,可以检测上述自动导引装置的识别器是否获取到识别码信息,如果未获取到上述识别码信息,则确定上述自动导引装置偏离上述目标路径,若上述识别器获取到上述识别码信息,但是自动导引装置与上述目标路径之间的距离值大于或等于偏离阈值(例如100mm),则仍确定上述自动导引装置偏离上述目标路径,否则确定自动导 引装置未偏离目标路径。
在一种可选的实施例中,图3是根据本发明实施例的一种可选的自动导引装置的控制方法的流程图,如图3所示,确定上述自动导引装置的偏移信息,包括:
步骤S302,获取上述识别码信息中携带的上述第一位置信息;
步骤S304,定位上述自动导引装置的当前所处位置,得到第二位置信息;
步骤S306,基于上述第一位置信息和上述第二位置信息,计算得到上述自动导引装置的偏移距离值和偏移角度值。
可选的,由于上述识别码信息中携带有目标路径中的任意一处的第一位置信息,再通过定位自动导引装置的当前所处位置,得到第二位置信息,通过判断第一位置信息和第二位置信息之间的距离值,以及判断第一位置信息和第二位置信息之间的角度值,即可得到自动导引装置的偏移距离值和偏移角度值。
在一种可选的实施例中,依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,包括:
步骤S402,依据上述偏移距离值和上述偏移角度值计算得到第一纠偏参数和第二纠偏参数;
步骤S404,依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式。
在一种可选的实施例中,通过如下公式计算得到上述第一纠偏参数和上述第二纠偏参数:
z=m 2+n 2
Figure PCTCN2021106980-appb-000008
其中,z为上述偏移距离值,θ 2为上述偏移角度值,m为上述第一纠偏参数,n为上述第一纠偏参数。
在一种可选的实施例中,上述行驶速度关系式包括:上述第一驱动轮的第一行驶速度与上述第二驱动轮的第二行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000009
其中,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值。
在一种可选的实施例中,上述行驶速度关系式包括:上述第一驱动轮的第一行驶速度与上述第二驱动轮的第二行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000010
其中,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值,b 1为上述自动导引装置的识别器与上述第一驱动轮的距离值。
在一种可选的实施例中,上述行驶速度关系式包括:上述第一驱动轮的第一行驶速度与上述自动导引装置的当前行驶速度之间的关系式,以及上述第二驱动轮的第二行驶速度与上述自动导引装置的当前行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000011
Figure PCTCN2021106980-appb-000012
其中,v为上述当前行驶速度,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值。
在一种可选的实施例中,上述行驶速度关系式包括:上述第一驱动轮的第一行驶 速度与上述自动导引装置的当前行驶速度之间的关系式,以及上述第二驱动轮的第二行驶速度与上述自动导引装置的当前行驶速度之间的关系式;依据上述依据轮间距离值、上述第一纠偏参数和上述第二纠偏参数,确定上述行驶速度关系式为:
Figure PCTCN2021106980-appb-000013
Figure PCTCN2021106980-appb-000014
其中,v为上述当前行驶速度,v 1为上述第一行驶速度,v 2为上述第二行驶速度,b为上述轮间距离值,b 1为上述自动导引装置的识别器与上述第一驱动轮的距离值。
作为一种可选的实施例,控制器在控制自动导引装置进行差速纠偏的过程中,可以根据实际情况,例如需要纠偏的驱动轮,获取到的驱动轮的参数信息,进而确定采用不同的行驶速度关系式控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致。
实施例2
根据本发明实施例,还提供了一种设置为实施上述自动导引装置的控制方法的装置实施例,图4是根据本发明实施例的一种自动导引装置的控制装置的结构示意图,如图4所示,上述自动导引装置的控制装置,包括:检测模块400、确定模块402和控制模块406,其中:
检测模块400,设置为在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;确定模块402,设置为依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;控制模块406,设置为依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引装置的行驶路径和上述目标路径一致。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,例如,对于后者, 可以通过以下方式实现:上述各个模块可以位于同一处理器中;或者,上述各个模块以任意组合的方式位于不同的处理器中。
此处需要说明的是,上述检测模块400、确定模块402和控制模块406对应于实施例1中的步骤S102至步骤S106,上述模块与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为装置的一部分可以行驶在计算机终端中。
此处需要说明的是,上述获取模块10、判断模块12以及控制模块14可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
需要说明的是,本实施例的可选或优选实施方式可以参见实施例1中的相关描述,此处不再赘述。
上述的自动导引装置的控制装置还可以包括处理器和存储器,上述检测模块400、确定模块402和控制模块406等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元,上述内核可以设置一个或以上。存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
根据本申请实施例,还提供了一种计算机存储介质的实施例。可选地,在本实施例中,上述计算机存储介质包括存储的程序,其中,在上述程序行驶时控制上述计算机存储介质所在设备执行上述任意一种自动导引装置的控制方法。
可选地,在本实施例中,上述计算机存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中,上述计算机存储介质包括存储的程序。
可选地,在程序行驶时控制计算机存储介质所在设备执行以下功能:在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定上述自动导引装置的偏移信息,其中,上述自动导引装置中包括第一驱动轮和第二驱动轮;依据轮间距离值和上述偏移信息确定上述第一驱动轮、上述第二驱动轮和上述自动导引装置中至少两个之间的行驶速度关系,其中,上述轮间距离值为上述第一驱动轮和上述第二驱动轮之间的距离值;依据上述行驶速度关系控制上述自动导引装置行驶,直至上述自动导引 装置的行驶路径和上述目标路径一致。
根据本申请实施例,还提供了一种处理器的实施例。可选地,在本实施例中,上述处理器设置为行驶程序,其中,上述程序行驶时执行上述任意一种自动导引装置的控制方法。
根据本申请实施例,还提供了一种电子设备的实施例,包括存储器和处理器,上述存储器中存储有计算机程序,上述处理器被设置为行驶上述计算机程序以执行上述任意一种的自动导引装置的控制方法。
根据本申请实施例,还提供了一种计算机程序产品的实施例,当在数据处理设备上执行时,适于执行初始化有上述任意一种的自动导引装置的控制方法步骤的程序。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取计算机存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个计算机存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明 各个实施例上述方法的全部或部分步骤。而前述的计算机存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (13)

  1. 一种自动导引装置的控制方法,包括:
    在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定所述自动导引装置的偏移信息,其中,所述自动导引装置中包括第一驱动轮和第二驱动轮;
    依据轮间距离值和所述偏移信息确定所述第一驱动轮、所述第二驱动轮和所述自动导引装置中至少两个之间的行驶速度关系,其中,所述轮间距离值为所述第一驱动轮和所述第二驱动轮之间的距离值;
    依据所述行驶速度关系控制所述自动导引装置行驶,直至所述自动导引装置的行驶路径和所述目标路径一致。
  2. 根据权利要求1所述的方法,其中,通过如下方式检测所述行驶路径是否偏离所述目标路径,包括:
    检测所述自动导引装置的识别器是否获取到识别码信息,其中,所述识别码信息中携带有所述识别码在所述目标路径中的第一位置信息;
    若所述识别器获取到所述识别码信息,则依据所述识别码信息,判断所述自动导引装置与所述目标路径之间的距离值是否大于或等于偏离阈值,若是则确定所述自动导引装置偏离所述目标路径;
    若所述识别器未获取到所述识别码信息,则确定所述自动导引装置偏离所述目标路径。
  3. 根据权利要求2所述的方法,其中,确定所述自动导引装置的偏移信息,包括:
    获取所述识别码信息中携带的所述第一位置信息;
    定位所述自动导引装置的当前所处位置,得到第二位置信息;
    基于所述第一位置信息和所述第二位置信息,计算得到所述自动导引装置的偏移距离值和偏移角度值。
  4. 根据权利要求3所述的方法,其中,依据轮间距离值和所述偏移信息确定所述第一驱动轮、所述第二驱动轮和所述自动导引装置中至少两个之间的行驶速度关系,包括:
    依据所述偏移距离值和所述偏移角度值计算得到第一纠偏参数和第二纠偏参数;
    依据所述依据轮间距离值、所述第一纠偏参数和所述第二纠偏参数,确定所述行驶速度关系式。
  5. 根据权利要求4所述的方法,其中,通过如下公式计算得到所述第一纠偏参数和所述第二纠偏参数:
    z=m 2+n 2
    Figure PCTCN2021106980-appb-100001
    其中,z为所述偏移距离值,θ 2为所述偏移角度值,m为所述第一纠偏参数,n为所述第一纠偏参数。
  6. 根据权利要求5所述的方法,其中,所述行驶速度关系式包括:所述第一驱动轮的第一行驶速度与所述第二驱动轮的第二行驶速度之间的关系式;依据所述依据轮间距离值、所述第一纠偏参数和所述第二纠偏参数,确定所述行驶速度关系式为:
    Figure PCTCN2021106980-appb-100002
    其中,v 1为所述第一行驶速度,v 2为所述第二行驶速度,b为所述轮间距离值。
  7. 根据权利要求5所述的方法,其中,所述行驶速度关系式包括:所述第一驱动轮的第一行驶速度与所述第二驱动轮的第二行驶速度之间的关系式;依据所述依据轮间距离值、所述第一纠偏参数和所述第二纠偏参数,确定所述行驶速度关系式为:
    Figure PCTCN2021106980-appb-100003
    其中,v 1为所述第一行驶速度,v 2为所述第二行驶速度,b为所述轮间距离值,b 1为所述自动导引装置的识别器与所述第一驱动轮的距离值。
  8. 根据权利要求5所述的方法,其中,所述行驶速度关系式包括:所述第一驱动轮的第一行驶速度与所述自动导引装置的当前行驶速度之间的关系式,以及所述第二驱动轮的第二行驶速度与所述自动导引装置的当前行驶速度之间的关系式;依据所述依据轮间距离值、所述第一纠偏参数和所述第二纠偏参数,确定所述行驶速度关系式为:
    Figure PCTCN2021106980-appb-100004
    Figure PCTCN2021106980-appb-100005
    其中,v为所述当前行驶速度,v 1为所述第一行驶速度,v 2为所述第二行驶速度,b为所述轮间距离值。
  9. 根据权利要求5所述的方法,其中,所述行驶速度关系式包括:所述第一驱动轮的第一行驶速度与所述自动导引装置的当前行驶速度之间的关系式,以及所述第二驱动轮的第二行驶速度与所述自动导引装置的当前行驶速度之间的关系式;依据所述依据轮间距离值、所述第一纠偏参数和所述第二纠偏参数,确定所述行驶速度关系式为:
    Figure PCTCN2021106980-appb-100006
    Figure PCTCN2021106980-appb-100007
    其中,v为所述当前行驶速度,v 1为所述第一行驶速度,v 2为所述第二行驶速度,b为所述轮间距离值,b 1为所述自动导引装置的识别器与所述第一驱动轮的距离值。
  10. 一种自动导引装置的控制装置,包括:
    检测模块,设置为在检测到自动导引装置在行驶过程中的行驶路径偏离目标路径时,确定所述自动导引装置的偏移信息,其中,所述自动导引装置中包括第一驱动轮和第二驱动轮;
    确定模块,设置为依据轮间距离值和所述偏移信息确定所述第一驱动轮、所述第二驱动轮和所述自动导引装置中至少两个之间的行驶速度关系,其中,所述轮间距离值为所述第一驱动轮和所述第二驱动轮之间的距离值;
    控制模块,设置为依据所述行驶速度关系控制所述自动导引装置行驶,直至所述自动导引装置的行驶路径和所述目标路径一致。
  11. 一种计算机存储介质,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行权利要求1至9中任意一项所述的自动导引装置的控制方法。
  12. 一种处理器,所述处理器设置为行驶程序,其中,所述程序被设置为行驶时执行权利要求1至9中任意一项所述的自动导引装置的控制方法。
  13. 一种电子设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为行驶所述计算机程序以执行权利要求1至9中任意一项所述的自动导引装置的控制方法。
PCT/CN2021/106980 2020-11-11 2021-07-19 自动导引装置的控制方法及装置、处理器、电子设备 WO2022100134A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011257851.6 2020-11-11
CN202011257851.6A CN112286204A (zh) 2020-11-11 2020-11-11 自动导引装置的控制方法及装置、处理器、电子设备

Publications (1)

Publication Number Publication Date
WO2022100134A1 true WO2022100134A1 (zh) 2022-05-19

Family

ID=74398951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106980 WO2022100134A1 (zh) 2020-11-11 2021-07-19 自动导引装置的控制方法及装置、处理器、电子设备

Country Status (2)

Country Link
CN (1) CN112286204A (zh)
WO (1) WO2022100134A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117884815A (zh) * 2024-03-15 2024-04-16 宁波舜宇贝尔机器人有限公司 一种焊接用agv操作方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112286204A (zh) * 2020-11-11 2021-01-29 珠海格力智能装备有限公司 自动导引装置的控制方法及装置、处理器、电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896811A (zh) * 2016-12-22 2017-06-27 北京京东尚科信息技术有限公司 可移动装置的控制方法及系统
CN109324607A (zh) * 2018-08-13 2019-02-12 济南大学 二维码识别方法及基于其的机器人视觉导航自定位方法
CN109947089A (zh) * 2017-12-20 2019-06-28 北京京东尚科信息技术有限公司 自动引导车姿态控制方法和装置、自动引导车
CN110018688A (zh) * 2019-04-11 2019-07-16 清华大学深圳研究生院 基于视觉的自动引导车定位方法
CN110347160A (zh) * 2019-07-17 2019-10-18 武汉工程大学 一种基于双摄像头扫码的自动引导车及其导航方法
CN110427033A (zh) * 2019-08-12 2019-11-08 苏州寻迹智行机器人技术有限公司 一种基于二维码的激光导航agv高精度定位方法
CN110673612A (zh) * 2019-10-21 2020-01-10 重庆邮电大学 一种自主移动机器人二维码引导控制方法
US20200050205A1 (en) * 2018-08-07 2020-02-13 Cnh Industrial America Llc System and method for updating a mapped area
US20200103912A1 (en) * 2018-09-30 2020-04-02 Baidu Usa Llc Method for determining a vehicle control parameter, apparatus for the same, vehicle on-board controller, and autonomous vehicle
CN112286204A (zh) * 2020-11-11 2021-01-29 珠海格力智能装备有限公司 自动导引装置的控制方法及装置、处理器、电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181926B (zh) * 2014-09-17 2017-06-13 上海畔慧信息技术有限公司 机器人的导航控制方法
CN104407615B (zh) * 2014-11-03 2017-01-25 上海电器科学研究所(集团)有限公司 一种agv机器人导引偏差校正方法
CN110220524A (zh) * 2019-04-23 2019-09-10 炬星科技(深圳)有限公司 路径规划方法、电子设备、机器人及计算机可读存储介质
CN110789606A (zh) * 2019-10-16 2020-02-14 合肥搬易通科技发展有限公司 基于全轮速度检测控制行驶方向及位置的自动导向方法及其叉车系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896811A (zh) * 2016-12-22 2017-06-27 北京京东尚科信息技术有限公司 可移动装置的控制方法及系统
CN109947089A (zh) * 2017-12-20 2019-06-28 北京京东尚科信息技术有限公司 自动引导车姿态控制方法和装置、自动引导车
US20200050205A1 (en) * 2018-08-07 2020-02-13 Cnh Industrial America Llc System and method for updating a mapped area
CN109324607A (zh) * 2018-08-13 2019-02-12 济南大学 二维码识别方法及基于其的机器人视觉导航自定位方法
US20200103912A1 (en) * 2018-09-30 2020-04-02 Baidu Usa Llc Method for determining a vehicle control parameter, apparatus for the same, vehicle on-board controller, and autonomous vehicle
CN110018688A (zh) * 2019-04-11 2019-07-16 清华大学深圳研究生院 基于视觉的自动引导车定位方法
CN110347160A (zh) * 2019-07-17 2019-10-18 武汉工程大学 一种基于双摄像头扫码的自动引导车及其导航方法
CN110427033A (zh) * 2019-08-12 2019-11-08 苏州寻迹智行机器人技术有限公司 一种基于二维码的激光导航agv高精度定位方法
CN110673612A (zh) * 2019-10-21 2020-01-10 重庆邮电大学 一种自主移动机器人二维码引导控制方法
CN112286204A (zh) * 2020-11-11 2021-01-29 珠海格力智能装备有限公司 自动导引装置的控制方法及装置、处理器、电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117884815A (zh) * 2024-03-15 2024-04-16 宁波舜宇贝尔机器人有限公司 一种焊接用agv操作方法及系统

Also Published As

Publication number Publication date
CN112286204A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022100134A1 (zh) 自动导引装置的控制方法及装置、处理器、电子设备
CN108367722B (zh) 停车辅助方法及装置
US8380382B2 (en) Unmanned transport apparatus and operating method thereof
US20210207977A1 (en) Vehicle position estimation device, vehicle position estimation method, and computer-readable recording medium for storing computer program programmed to perform said method
US11417018B2 (en) Device and method for calibrating camera for vehicle
CN111231942B (zh) 停车辅助装置
US11714411B2 (en) Autonomous traveling work machine
US11623641B2 (en) Following target identification system and following target identification method
US10386849B2 (en) ECU, autonomous vehicle including ECU, and method of recognizing nearby vehicle for the same
CN111907521A (zh) 一种自动驾驶车辆的横向控制方法、装置及存储介质
US20220327329A1 (en) Obstacle recognition assistance device, obstacle recognition assistance method, and storage medium
CN111409632A (zh) 车辆控制方法及装置、计算机设备和存储介质
CN113296119A (zh) 一种基于激光雷达和uwb阵列的无人避障驾驶方法与终端
KR102119161B1 (ko) 운송 로봇의 실내 위치 인식 시스템
KR101848198B1 (ko) 차선 추정 방법 및 장치
KR102275083B1 (ko) 이동 로봇 시스템 및 자동 충전을 위한 이동 로봇의 귀소 방법
WO2024007972A1 (zh) 物体关联方法、计算机设备、计算机可读存储介质及车辆
US11125573B2 (en) Pickup system and method for controlling pickup system
KR101826628B1 (ko) 선행 차량 인식 방법과 장치
CN116481541A (zh) 一种无需卫星导航的车辆自主返航控制方法、装置及介质
KR20210001578A (ko) 이동체, 관리 서버 및 그 동작 방법
US20220108104A1 (en) Method for recognizing recognition target person
CN112526998B (zh) 轨迹纠偏方法及装置、自动驾驶引导车
CN112400094B (zh) 物体探测装置
JP2019132762A (ja) 自車位置推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890665

Country of ref document: EP

Kind code of ref document: A1