WO2022099813A1 - 显示装置及其驱动方法 - Google Patents

显示装置及其驱动方法 Download PDF

Info

Publication number
WO2022099813A1
WO2022099813A1 PCT/CN2020/132613 CN2020132613W WO2022099813A1 WO 2022099813 A1 WO2022099813 A1 WO 2022099813A1 CN 2020132613 W CN2020132613 W CN 2020132613W WO 2022099813 A1 WO2022099813 A1 WO 2022099813A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
unit
driving
display device
voltage
Prior art date
Application number
PCT/CN2020/132613
Other languages
English (en)
French (fr)
Inventor
武卫红
黄泰钧
梁鹏飞
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2022099813A1 publication Critical patent/WO2022099813A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element

Definitions

  • the present application relates to the field of display technology, and in particular, to a display device and a driving method thereof.
  • Each pixel in an organic light emitting display device includes an organic light emitting diode (OLED) element.
  • An OLED device includes a hole transport layer (HTL), an emitting layer (EL), and an electron transport layer (ETL).
  • HTL hole transport layer
  • EL emitting layer
  • ETL electron transport layer
  • red, R red, green (green, G), and blue (blue, B) will be generated, which constitute the basic color.
  • the characteristic of OLED display device is self-luminescence, unlike thin film transistor liquid crystal display device (thin film liquid crystal display device) transistor-liquid display, TFT LCD) requires a backlight. Therefore, the OLED display device has many advantages, such as high visibility, high brightness, low voltage requirement, high power saving efficiency, fast response speed, light weight, thin thickness, simple structure, and low cost.
  • the threshold voltage of the driving TFT is affected by voltage and current
  • excessive external light such as strong light outdoors
  • the threshold value of the driving TFT of the driving unit will be affected. Voltage negative drift and positive drift. This kind of problem will cause the display screen to flicker, the local brightness is too high, and the overall screen is too dark.
  • the detection voltage range of an analog to digital converter (ADC) in a data driving circuit of an OLED display device is 3V.
  • ADC analog to digital converter
  • the purpose of the present application is to provide a display device and a driving method thereof, which can improve the problem of threshold voltage shift of the driving TFT caused by frequent use or excessive illumination of the display device.
  • the present application provides a driving method of a display device.
  • the driving method includes: acquiring the illumination intensity of external light; judging whether the illumination intensity is greater than a preset value; and when the illumination intensity is greater than the preset value, calculating the drift of the threshold voltage of the first transistor of the driving unit and correcting the threshold voltage of the first transistor of the driving circuit according to the drift amount.
  • the calibrating the threshold voltage of the first transistor of the driving unit includes: step A, the power supply unit provides a voltage of 0 volts to the driving unit; step B, the detection control unit controls the second voltage of the driving unit The transistor is turned on, and the reference voltage generating unit provides a voltage of 0 volts to the second transistor, wherein the drain of the first transistor is connected to the drain of the second transistor; and step C, the driver provides preset data a signal to the driving unit to correct the drift amount of the threshold voltage of the first transistor.
  • the preset data signal is white display data
  • the signal input to the driving unit is generated with reference to the maximum gamma voltage
  • the timing controller determines whether the power signal changes from a high level to a low level. Step B, and the step C.
  • the execution time of the step A, the step B, and the step C is at least 12 hours.
  • the present application also provides a driving method of a display device.
  • the driving method includes: acquiring multiple threshold voltages of multiple first transistors of multiple driving units; judging whether the multiple threshold voltages of the multiple first transistors are within a preset range; and when the threshold voltage exceeds the preset range.
  • the threshold voltage of the first transistor of each of the driving units is corrected, wherein the threshold voltage of the first transistor of each of the driving units is corrected
  • the threshold voltage includes: step A, the power supply unit provides a voltage of 0 volts to the driving unit; step B, the detection control unit controls the second transistor of the driving unit to be turned on, and the reference voltage generating unit provides a voltage of 0 volts to the second transistor, wherein the drain of the first transistor is connected to the drain of the second transistor; and step C, the driver provides a preset data signal to the driving unit to correct the first transistor The amount of drift in the threshold voltage.
  • the driving method before the acquiring the plurality of threshold voltages of the plurality of first transistors of the plurality of driving units, the driving method further includes that the driver provides the image data of the first frame signal to the plurality of driving units; and after step C is performed, the driving method further includes, the driver providing an image data signal of a second frame to the plurality of driving units, wherein the first frame and the The second frame is two consecutive frames.
  • the present application also provides a display device, including a power supply unit; a driver connected to the power supply unit, including a timing controller and an illumination sensor, wherein the illumination sensor is connected to the timing controller and is used to sense ambient light intensity , and a preset data signal is stored in the timing controller; and at least one drive unit, the input end of the at least one drive unit is connected to the power supply unit and the driver; at least one light-emitting unit, the light-emitting unit connected with the output end of the at least one driving unit.
  • the power supply unit When the ambient light intensity is greater than a predetermined value, the power supply unit provides a voltage of 0 volts to the at least one driving unit, and the timing controller provides the predetermined data signal to the at least one driving unit to A drift amount of the threshold voltage of the first transistor of the at least one driving unit is corrected.
  • the preset data signal is white display data.
  • the driver further includes a reference voltage generating unit and a detection control unit
  • the at least one driving unit includes the first transistor, the second transistor, the third transistor, the The source is connected to the power supply unit, the drain of the first transistor, the drain of the second transistor, and the anode of the light-emitting unit are connected to a node, and the gate of the first transistor is connected to the first transistor
  • the drains of the three transistors, the gate of the second transistor is connected to the detection control unit, the source of the second transistor is connected to the reference voltage generating unit, the source of the third transistor is connected to the data line, so The gate of the third transistor is connected to the scan line, and the cathode of the light-emitting unit is grounded.
  • the second transistor is turned on, and the reference voltage generating unit provides a voltage of 0 volts to the second transistor.
  • the present application by sending the preset data to the display device for a period of time, the drift of the threshold voltage of the driving unit tends to change to 0, thereby improving the display effect, so that the detected threshold voltage changes.
  • the voltage can be more within the effective measurement range.
  • FIG. 1 shows a schematic diagram of a display device according to a preferred embodiment of the present application.
  • FIG. 2 shows a block diagram of a timing controller of the display device of FIG. 1 .
  • FIG. 3 shows a schematic diagram of a driving unit of the display device of FIG. 1 .
  • FIG. 4 shows an operation timing diagram of the display device of FIG. 1 .
  • FIG. 5 shows a flowchart of a method for driving a display device according to the first embodiment of the present application.
  • FIG. 6 shows an operation timing diagram of the driving method of FIG. 5 .
  • FIG. 7 shows a flowchart of a method for driving a display device according to a second embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a display device 1 according to a preferred embodiment of the present application.
  • the display device 1 includes a power supply unit 10, a driver 20, and a plurality of driving units 30 arranged in an array.
  • the power supply unit 10 is used to supply power to the driver 20 and the driving unit 30 .
  • the driver 20 includes a timing controller 21 , a processor 22 , a light sensor 23 , a gamma voltage generator 24 , a data driving circuit 25 , and a gate driving circuit 26 .
  • the timing controller 21 is connected to the power supply unit 10 and the light sensor 23 .
  • the processor 22 is connected to the timing controller 21 , the data driving circuit 25 , and the gate driving circuit 26 .
  • the processor 22 includes a control signal generator 221 and a video data generator 222 .
  • the gamma voltage generator 24 is connected to the data driving circuit 25 and the light sensor 23 .
  • the data driving circuit 25 is correspondingly connected to the plurality of driving units 30 through a plurality of data lines.
  • the gate driving circuit 26 is correspondingly connected to the plurality of driving units 30 through a plurality of scanning lines.
  • the output end of each driving unit 30 is connected to at least one light-emitting unit, and the driving unit 30 and the light-emitting unit together form color pixels, such as red pixels, green pixels, blue pixels, or white pixels, for correspondingly emitting red, green, blue, or white light.
  • FIG. 2 shows a block diagram of the timing controller 21 of the display device 1 of FIG. 1 .
  • the timing controller 21 includes a judgment unit 211 , a data processing unit 212 , a register 213 , and a control signal generator 214 .
  • the determination unit 211 is connected to the power supply unit 10, and is used for determining whether the power supply signal sent by the power supply unit 10 is a high level or a low level.
  • the data processing unit 212 is connected to the judgment unit 211 and the register 213 .
  • the register 213 is used to store preset data signals. In other embodiments, the register 213 can also be used to store the image data signal of at least one frame.
  • the data processing unit 212 determines whether the correction condition of the threshold voltage is reached. If so, the data processing unit 212 selects to read the preset data in the register 213 and sends it to the processor 22. If not, the data processing unit 212 selects to read the data for displaying the screen. A frame of image input data signal is sent to the processor 22.
  • the specific threshold voltage calibration conditions and the corresponding calibration process will be described in detail later.
  • the control signal generator 214 is configured to receive a timing synchronization signal about each driving unit 30 input from an external system, and then generate a corresponding data timing control signal DCS.
  • the timing synchronization signals may include a vertical synchronization signal Hsync, a horizontal synchronization signal Vsync, a data enable signal DE, and a clock signal CLK.
  • the driver 20 generates a scan control signal and a data control signal according to the received timing synchronization signal.
  • the control signal generator 221 of the processor 22 transmits the scanning control signal to the gate driving circuit 26, and the gate driving circuit 26 generates the scanning signal according to the scanning control signal.
  • the gate driving circuit 26 transmits scan signals to the driving unit 30 through a plurality of scan lines.
  • the video data generator 222 of the processor 22 converts the output data (eg, an image data signal of one frame or a preset data signal) into an analog video signal according to the data timing control signal DCS provided by the timing controller 21 .
  • the video data generator 222 of the processor 22 transmits the analog video signal to the data driving circuit 25 .
  • the gamma voltage generator 24 generates a plurality of different reference gamma voltage signals, and supplies the plurality of reference gamma voltage signals to the data driving circuit 25 . Therefore, the data driving circuit 25 receives the analog video signal and the reference gamma voltage signal for each driving unit 30 . According to the analog video signal, the data driving circuit 25 may convert the grayscale signal of each driving unit 30 into a data signal by referring to the gamma voltage signal, and will transmit the data signal to the driving unit 30 through a plurality of data lines.
  • the power supply unit 10 sends a high-level power supply signal ED.
  • the data processing unit 212 reads the image data signal about one frame of picture from the register 213 to control the driving unit 30 to display the picture normally.
  • FIG. 3 shows a schematic diagram of the driving unit 30 of the display device of FIG. 1 .
  • the driver 20 of the display device 1 further includes a light emission control unit 27 , a reference voltage generation unit 281 , a detection control unit 282 , and an initialization unit 29 .
  • the input end of the driving unit 30 is connected to the power supply unit 10 and the driver 20 , and the output end of the driving unit 30 is connected to at least one light-emitting unit D.
  • the driving unit 30 includes a first transistor ST1, a second transistor ST2, a third transistor ST3, a fourth transistor ST4, a fifth transistor ST5, and a capacitor Cst.
  • the source of the first transistor ST1 is connected to the power supply unit 10 to receive the positive power supply voltage Vdd.
  • the drain of the first transistor ST1, the drain of the second transistor ST2, the anode of the light emitting unit D, and one end of the capacitor Cst are connected to the first node A.
  • the gate of the second transistor ST2 is connected to the detection control unit 282 .
  • the source of the second transistor ST2 is connected to the reference voltage generating unit 281 .
  • the source of the third transistor ST3 is connected to the data line.
  • the gate of the third transistor ST3 is connected to the scan line.
  • the gate of the fourth transistor ST4 is connected to the light emission control unit 27 .
  • the drain of the third transistor ST3, the source of the fourth transistor ST4, and the other end of the capacitor Cst are connected to the second node B.
  • the source and gate of the fifth transistor ST5 are connected to the initialization unit 29 .
  • the drain of the fourth transistor ST4, the drain of the fifth transistor ST5, and the gate of the first transistor ST1 are connected to the third node C.
  • the cathode of the light-emitting unit D is grounded at the potential Vss.
  • the driving method of the driving unit 30 of the display device 1 includes an initialization stage, a transistor detection stage, a data writing stage, an emission stage, and a calibration stage.
  • FIG. 4 shows an operation timing diagram of the display device of FIG. 1 .
  • FIG. 4 shows the operation timing diagram of the initialization stage, the transistor detection stage, the data writing stage, and the emission stage of the driving method of the driving unit 30 of the display device 1 .
  • the process of the initialization phase is as follows.
  • the light emission control unit 27 transmits the light emission control signal EM of a high potential to turn on the fourth transistor ST4.
  • the initialization unit 29 transmits a high-level initialization control signal S1 to turn on the fifth transistor ST5.
  • the initialization unit 29 delivers the initial signal Vinit to the source stage of the fifth transistor ST5.
  • the initial signal Vinit is transmitted to the third node C through the fifth transistor ST5 to turn on the first transistor ST1.
  • the initial signal Vinit reaches the second node B through the third node C and the fourth transistor ST4 in sequence.
  • the first transistor ST1, the fourth transistor ST4, the fifth transistor ST5 are turned on, the second transistor ST2 and the third transistor ST3 are turned off, and the first node A, the second node B, and the third node C is initialized.
  • the process of the transistor detection phase is as follows. During the time interval of T2, the lighting control unit 27 and the initialization unit 29 stop transmitting signals and detect the threshold voltage of the first transistor ST1.
  • the process of the data writing phase is as follows.
  • the gate driving circuit 26 outputs a high-level scan signal Vscan to the gate of the third transistor ST3 to turn on the third transistor ST3.
  • the data driving circuit 25 outputs a high-level data signal Vdata to the source of the third transistor ST3, and the data signal Vdata is transmitted to the node B through the third transistor ST3 to charge the capacitor Cst.
  • the process of the launch phase is as follows.
  • the gate driving circuit 26 stops outputting the scan signal Vscan to turn off the third transistor ST3.
  • the light-emitting control unit 27 transmits a high-level light-emitting control signal EM to turn on the fourth transistor ST4, so that the data signal Vdata is transmitted to the gate of the first transistor ST1 through the fourth transistor ST4, thereby turning on the first transistor ST1.
  • the positive power supply voltage Vdd provided by the power supply unit 10 passes through the first transistor ST1 and is transmitted to the light-emitting unit D, thereby causing the light-emitting unit D to emit light.
  • FIG. 5 shows a flowchart of a driving method of a display device according to a first embodiment of the present application
  • FIG. 6 shows a working timing diagram of the driving method of FIG. 5 , wherein FIG. Operation timing diagram of the correction phase of the driving method of the driving unit 30 .
  • the ambient illumination brightness around the display device 1 is sensed by the illumination sensor 23 to determine whether the ambient illumination intensity is greater than a preset value.
  • the driver 20 calculates the drift amount of the threshold voltage of the first transistor ST1 of the driving unit 30 and corrects the threshold voltage of the first transistor ST1 of the driving unit 30 according to the drift amount.
  • the external light intensity will affect the positive or negative drift of the threshold voltage of the driving transistor of the driving unit of the display panel (ie, the first transistor ST1 of the present application). Therefore, the fact that the external light intensity is greater than the preset value means that there must be a positive or negative drift of the threshold voltage of the driving unit at a local location on the display panel. After judging that the ambient light intensity is greater than the preset value, the threshold voltage of the driving unit is corrected during the power-off period.
  • step B is performed, the detection control unit 282 outputs the detection signal S2 to control the second transistor ST2 to be turned on, and the reference voltage generation unit 281 provides the reference voltage Vref of 0 volts to the source of the second transistor ST2.
  • step C is performed, the driver 20 controls the third transistor ST3 to be turned on, and the driver 20 provides a predetermined data signal to the driving unit 30 to correct the drift of the threshold voltage of the first transistor ST1 .
  • the data processing unit 212 of the timing controller 21 selects and reads the preset data in the register 213 and sends it to the processor 22 .
  • the video data generator 222 of the processor 22 converts the preset data signal into an analog video signal according to the data timing control signal DCS provided by the timing controller 21 and transmits the analog video signal to the data driving circuit 25 .
  • the gamma voltage generator 24 can be used to adjust the maximum gamma voltage according to the ambient light intensity sensed by the light sensor 23 and transmit the maximum gamma voltage to the data driving circuit 25 .
  • the data driving circuit 25 receives the analog video signal with respect to each driving unit 30 and generates a gamma compensation signal with reference to the maximum gamma voltage.
  • the preset data signal is white display data
  • step C the gamma compensation signal input to the third transistor is generated with reference to the maximum gamma voltage.
  • the execution time of the above steps A, B, and C is maintained for at least 12 hours to ensure that the threshold voltage can be corrected to converge to a certain fixed value.
  • the degree of positive or negative drift of the threshold voltage depends on whether the detected data of the threshold voltage is within a preset range (eg, 3V) and converges to a fixed value. For example, if the starting voltage of ADC detection in the data driving circuit 25 is set to 3V, the effective detection range is, for example, 3 ⁇ 6V, and the detected data is expected to converge to 4.5V. Then, according to the detected data of the threshold voltage and the expected detected data 4.5V, the degree of drift of the threshold voltage is determined.
  • the preset data signal can be adjusted manually.
  • the preset data signal sent to this area is set to a positive high voltage.
  • the preset data signal sent to this area is set to a negative high voltage. The value of the voltage depends on the degree of positive or negative drift.
  • the display apparatus 1 when the display apparatus 1 performs power-off between picture frames, the display apparatus 1 is sequentially turned off according to a predetermined power-off sequence in the power-off state. That is, the timing controller 21 transmits one frame of image data (including the corresponding power supply signal ED, scan signals Vscan(1)-Vscan(n), initialization control signal S1, and detection signal S2) to the plurality of driving units 30 After that, during the power-off period, the gate driving circuit 26 sequentially converts the preset data (including the corresponding power supply signal ED, scan signal Vscan(1)-Vscan(n), initialization control signal S1, The detection signal S2) is written in the plurality of drive units 30. In another embodiment, the user may set the preset data to be automatically provided to the driving unit 30 through the timing controller 21 during the power-off at each power-off.
  • FIG. 7 shows a flowchart of a driving method of a display device according to a second embodiment of the present application.
  • it is first detected whether the threshold voltages of the plurality of first transistors ST1 of the plurality of driving units 30 are shifted. Specifically, it is determined whether the threshold voltages of the first transistors ST1 are within a preset range, for example, 3-6V.
  • the correction of the threshold voltage of the first transistor ST1 of each driving unit 30 is performed.
  • the method for correcting the threshold voltage of the first transistor ST1 of each driving unit 30 is to perform the above-mentioned Step A, Step B, and Step C in sequence.
  • step A, step B, and step C are performed between image frames.
  • the driver 20 first provides the image data signal of the first frame to the driver unit 30, and then The above steps A, B, and C are performed in sequence, and then the driver 20 provides the image data signal of the second frame to the driver unit 30, wherein the first frame and the second frame are two consecutive frames.
  • the specific step is to change the video data provided to the display device to the preset data.
  • the field programmable logic gate array Field Programmable Gate Array of the timing controller 21
  • FPGA Field Programmable Gate Array
  • the drift amount of the threshold voltage of the driving unit is changed to a trend of 0, thereby improving the display effect, so that the detected threshold voltage The voltage can be more within the effective measurement range.
  • a display device and a driving method thereof provided by the embodiments of the present application have been introduced in detail above. Specific embodiments are used herein to illustrate the principles and implementations of the present application. The descriptions of the above embodiments are only used to help understand the technical solutions and core ideas of the present application. Those of ordinary skill in the art should understand that they can still make modifications to the technical solutions described in the foregoing embodiments, or perform equivalent replacements to some of the technical features. However, these modifications or substitutions do not make the essence of the corresponding technical solutions deviate from the scope of the technical solutions of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置(1)及其驱动方法,通过将预设数据信号提供给驱动单元(30),可改善和防止显示装置(1)因频繁使用或承受过大光照而造成阈值电压漂移严重的问题。其中,驱动方法包括:获取外界光的光照强度;判断光照强度是否大于预设值;以及当光照强度大于预设值时,计算驱动单元(30)的第一晶体管(ST1)的阈值电压的漂移量,并根据漂移量校正驱动单元(30)的第一晶体管(ST1)的阈值电压。

Description

显示装置及其驱动方法 技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置及其驱动方法。
背景技术
有机发光显示装置中的每一个像素包含有机发光二极管(organic light emitting diode,OLED)元件。OLED元件包含空穴传输层(hole transport layer,HTL)、发光层(emitting layer,EL)、与电子传输层(electron transport layer,ETL)。当供应适当电压时,正极空穴与阴极电荷会在发光层中结合,产生光亮。依发光层的配方不同会产生红(red,R)、绿(green,G)、和蓝(blue,B)三原色,构成基本色彩。OLED显示装置的特性是自发光,不像薄膜电晶体液晶显示装置(thin film transistor-liquid display,TFT LCD)需要背光。因此,OLED显示装置具有诸多优点,例如高可视度、高亮度、电压需求低、省电效率高、反应速度快、重量轻、厚度薄,构造简单,成本低等。
然而,OLED显示装置在使用次数过于频繁(驱动TFT的阈值电压受电压、电流影响)或承受强度过大的外界光照(例如户外的强光)的情况下,都会造成驱动单元的驱动TFT的阈值电压负漂和正漂。这种问题会造成显示画面闪烁、局部亮度偏大、整体画面偏暗等。
一般来说,OLED显示装置的数据驱动电路中的模拟数字转换器(analog to digital converter,ADC)的侦测电压范围为3V。当显示面板的局部区域出现严重的正漂或负漂现象时,实际侦测到的阈值电压无法在量测范围内,导致不能有效的数据侦测,进而无法进行后续的驱动单元补偿。
有鉴于此,有必要提出一种显示装置及其驱动方法,以解决现有技术中存在的问题。
技术问题
为解决上述现有技术的问题,本申请的目的在于提供一种显示装置及其驱动方法,其能改善显示装置因频繁使用或承受过大光照而造成驱动TFT的阈值电压漂移的问题。
技术解决方案
为达成上述目的,本申请提供一种显示装置的驱动方法。所述驱动方法包括:获取外界光的光照强度;判断所述光照强度是否大于预设值;以及当所述光照强度大于所述预设值时,计算驱动单元的第一晶体管的阈值电压的漂移量,并根据所述漂移量校正所述驱动电路的所述第一晶体管的所述阈值电压。所述校正所述驱动单元的所述第一晶体管的所述阈值电压包含:步骤A,电源单元提供0伏特的电压至所述驱动单元;步骤B,检测控制单元控制所述驱动单元的第二晶体管导通,且参考电压产生单元提供0伏特的电压至所述第二晶体管,其中所述第一晶体管的漏极与所述第二晶体管的漏极连接;以及步骤C,驱动器提供预设数据信号至所述驱动单元以校正所述第一晶体管的阈值电压的所述漂移量。
在本申请的实施例中,所述预设数据信号为白显示数据,并且在步骤C中,输入所述驱动单元的信号是参考最大的伽马电压而产生。
在本申请的实施例中,当所述光照强度大于所述预设值时,定时控制器判断电源信号是否从高电平变为低电平,如是,依序执行所述步骤A、所述步骤B、和所述步骤C。
在本申请的实施例中,所述步骤A、所述步骤B、和所述步骤C的执行时间至少12小时。
本申请还提供一种显示装置的驱动方法。所述驱动方法包括:获取多个驱动单元的多个第一晶体管的多个阈值电压;判断所述多个第一晶体管的所述多个阈值电压是否在预设范围;以及当超过所述预设范围的所述阈值电压的数量超过一预设数量时,校正每一所述驱动单元的所述第一晶体管的所述阈值电压,其中校正每一所述驱动单元的所述第一晶体管的所述阈值电压包含:步骤A,电源单元提供0伏特的电压至所述驱动单元;步骤B,检测控制单元控制所述驱动单元的第二晶体管导通,且参考电压产生单元提供0伏特的电压至所述第二晶体管,其中所述第一晶体管的漏极与所述第二晶体管的漏极连接;以及步骤C,驱动器提供预设数据信号至所述驱动单元以校正所述第一晶体管的阈值电压的漂移量。
在本申请的实施例中,在所述获取所述多个驱动单元的所述多个第一晶体管的所述多个阈值电压之前,所述驱动方法还包含,驱动器提供第一帧的图像数据信号至所述多个驱动单元;以及在执行步骤C之后,所述驱动方法还包含,所述驱动器提供第二帧的图像数据信号至所述多个驱动单元,其中所述第一帧和所述第二帧为两连续帧。
本申请还提供一种显示装置,包含电源单元;驱动器,与所述电源单元连接,包含定时控制器和光照传感器,其中所述光照传感器与所述定时控制器连接,用于感测外界光照强度,以及所述定时控制器内存储有预设数据信号;以及至少一驱动单元,所述至少一驱动单元的输入端与所述电源单元和所述驱动器连接;至少一发光单元,所述发光单元与所述至少一驱动单元的输出端连接。当所述外界光照强度大于预设值时,所述电源单元提供0伏特的电压至所述至少一驱动单元,以及所述定时控制器提供所述预设数据信号至所述至少一驱动单元以校正所述至少一驱动单元的第一晶体管的阈值电压的漂移量。
在本申请的实施例中,所述预设数据信号为白显示数据。
在本申请的实施例中,所述驱动器还包含参考电压产生单元和检测控制单元,以及所述至少一驱动单元包含所述第一晶体管、第二晶体管、第三晶体管、所述第一晶体管的源极连接所述电源单元,所述第一晶体管的漏极、所述第二晶体管的漏极、和所述发光单元的阳极连接至一节点,所述第一晶体管的栅极连接所述第三晶体管的漏极,所述第二晶体管的栅极连接所述检测控制单元,所述第二晶体管的源极连接所述参考电压产生单元,所述第三晶体管的源极连接数据线,所述第三晶体管的栅极连接扫描线,以及所述发光单元的阴极接地。当所述外界光照强度大于预设值时,所述第二晶体管导通,且所述参考电压产生单元提供0伏特的电压至所述第二晶体管。
有益效果
相较于先前技术,本申请通过将预设数据发送给显示装置并持续一段时间,使得驱动单元的阈值电压的漂移量都往0的趋势变化,进而改善显示效果的,使得侦测到的阈值电压能够更加地在有效量测范围内。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1显示根据本申请优选实施例的显示装置的示意图。
图2显示图1的显示装置的定时控制器的方块图。
图3显示图1的显示装置的驱动单元的示意图。
图4显示图1的显示装置的工作时序图。
图5显示根据本申请第一实施例的显示装置的驱动方法的流程图。
图6显示图5的驱动方法的工作时序图。
图7显示根据本申请第二实施例的显示装置的驱动方法的流程图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,其显示根据本申请优选实施例的显示装置1的示意图。显示装置1包含电源单元10、驱动器20、和多个以阵列排列的驱动单元30。电源单元10用于提供电力给驱动器20和驱动单元30。驱动器20包含定时控制器21、处理器22、光照传感器23、伽马电压产生器24、数据驱动电路25、和选通驱动电路26。定时控制器21与电源单元10和光照传感器23连接。处理器22与定时控制器21、数据驱动电路25、和选通驱动电路26连接。处理器22包含控制信号发生器221和视频数据产生器222。伽马电压产生器24和数据驱动电路25和光照传感器23连接。数据驱动电路25通过多条数据线与多个驱动单元30对应连接。选通驱动电路26通过多条扫描线与多个驱动单元30对应连接。每一驱动单元30的输出端与至少一发光单元连接,并且驱动单元30与发光单元共同组成彩色像素,如红色像素、绿色像素、蓝色像素、或白色像素,用于对应发出红色、绿色、蓝色、或白色光。
请参照图1和图2,图2显示图1的显示装置1的定时控制器21的方块图。定时控制器21包含判断单元211、数据处理单元212、寄存器213、和控制信号产生器214。判断单元211与电源单元10连接,用于判断电源单元10发出的电源信号为高电平还是低电平。数据处理单元212与判断单元211和寄存器213连接。寄存器213用于存储预设数据信号。在其他实施例中,寄存器213亦可用于存储至少一帧的图像数据信号。数据处理单元212判断是否达到阈值电压的校正条件,如是,数据处理单元212选择读取寄存器213中的预设数据并发送给处理器22,如否,数据处理单元212选择读取用于显示画面的一帧图像输入数据信号并发送给处理器22。具体的阈值电压的校正条件与对应的校正过程将于后详述。控制信号产生器214用于接收从外部系统输入的关于每个驱动单元30时序同步信号,进而产生相应的数据时序控制信号DCS。时序同步信号可包含垂直同步信号Hsync、水平同步信号Vsync、数据使能信号DE、和时钟信号CLK。
如图1和图2所示,驱动器20根据接收的时序同步信号产生扫描控制信号和数据控制信号。处理器22的控制信号发生器221将扫描控制信号传送至选通驱动电路26,并且选通驱动电路26根据扫描控制信号产生扫描信号。选通驱动电路26通过多条扫描线将扫描信号传递至驱动单元30。另一方面,处理器22的视频数据产生器222根据定时控制器21提供的数据时序控制信号DCS将输出数据(例如一帧的图像数据信号或预设数据信号)转换为模拟视频信号。处理器22的视频数据产生器222将模拟视频信号传送至数据驱动电路25。又,伽马电压产生器24产生多个不同的参考伽马电压信号,并且将多个参考伽马电压信号提供至数据驱动电路25。因此,数据驱动电路25接收关于每个驱动单元30的模拟视频信号以及参考伽马电压信号。根据模拟视频信号,数据驱动电路25可通过参考伽马电压信号将每个驱动单元30的灰度信号转换成数据信号,并且将通过多条数据线将数据信号传递至驱动单元30。在显示装置1正常显示时,电源单元10发出高电平的电源信号ED,此时,数据处理单元212从寄存器213读取关于一帧画面的图像数据信号以控制驱动单元30正常地显示画面。
请参照图1和图3,图3显示图1的显示装置的驱动单元30的示意图。显示装置1的驱动器20还包含发光控制单元27、参考电压产生单元281、检测控制单元282、和初始化单元29。驱动单元30的输入端与电源单元10和驱动器20连接,以及驱动单元30的输出端与至少一发光单元D连接。驱动单元30包含第一晶体管ST1、第二晶体管ST2、第三晶体管ST3、第四晶体管ST4、第五晶体管ST5、电容Cst。第一晶体管ST1的源极连接电源单元10以接收电源正电压Vdd。第一晶体管ST1的漏极、第二晶体管ST2的漏极、和发光单元D的阳极、电容Cst的一端连接至第一节点A。第二晶体管ST2的栅极连接检测控制单元282。第二晶体管ST2的源极连接参考电压产生单元281。第三晶体管ST3的源极连接数据线。第三晶体管ST3的栅极连接扫描线。第四晶体管ST4的栅极连接发光控制单元27。第三晶体管ST3的漏极、第四晶体管ST4的源极、电容Cst的另一端连接至第二节点B。第五晶体管ST5的源极和栅极连接初始化单元29。第四晶体管ST4的漏极、第五晶体管ST5的漏极、和第一晶体管ST1的栅极连接至第三节点C。发光单元D的阴极接地电位Vss。
在本申请中,显示装置1的驱动单元30的驱动方法包括初始化阶段、晶体管检测阶段、数据写入阶段、发射阶段、以及校正阶段。请参照图4,其显示图1的显示装置的工作时序图。具体来说,图4显示显示装置1的驱动单元30的驱动方法的初始化阶段、晶体管检测阶段、数据写入阶段、发射阶段的工作时序图。
如图3和图4所示,初始化阶段的过程如下。在T1的时间区间中,发光控制单元27传递高电位的发光控制信号EM以导通第四晶体管ST4。初始化单元29传递高电位的初始化控制信号S1以导通第五晶体管ST5。并且,初始化单元29传递初始信号Vinit至第五晶体管ST5的源级。如此,初始信号Vinit通过第五晶体管ST5传递至第三节点C以导通第一晶体管ST1。又,初始信号Vinit依序通过第三节点C和第四晶体管ST4而到达第二节点B。因此,在初始化阶段中,第一晶体管ST1、第四晶体管ST4、第五晶体管ST5导通,第二晶体管ST2和第三晶体管ST3截止,以及第一节点A、第二节点B、和第三节点C被初始化。
如图3和图4所示,晶体管检测阶段的过程如下。在T2的时间区间中,发光控制单元27和初始化单元29停止传送信号,以及侦测第一晶体管ST1的阈值电压。
如图1、图3、和图4所示,数据写入阶段的过程如下。在T3的时间区间中,选通驱动电路26输出高电位的扫描信号Vscan至第三晶体管ST3的栅极以导通第三晶体管ST3。接着,数据驱动电路25输出高电位的数据信号Vdata至第三晶体管ST3的源极,并且数据信号Vdata通过第三晶体管ST3传递至节点B以对电容Cst进行充电。
如图3和图4所示,发射阶段的过程如下。在T4的时间区间中,选通驱动电路26停止输出扫描信号Vscan以关闭第三晶体管ST3。接着,发光控制单元27传递高电位的发光控制信号EM以导通第四晶体管ST4,使得数据信号Vdata通过第四晶体管ST4传递至第一晶体管ST1栅极,进而导通第一晶体管ST1。第一晶体管ST1导通后,电源单元10提供的电源正电压Vdd通过第一晶体管ST1,并且传递至发光单元D,进而使发光单元D发光。
请参照图5和图6,图5显示根据本申请第一实施例的显示装置的驱动方法的流程图,以及图6显示图5的驱动方法的工作时序图,其中图6显示显示装置1的驱动单元30的驱动方法的校正阶段的工作时序图。在第一实施例中,通过光照传感器23感测显示装置1周围的环境光照亮度,以判断外界光照强度是否大于预设值。当光照强度大于所述预设值时,驱动器20计算驱动单元30的第一晶体管ST1的阈值电压的漂移量,并根据漂移量校正驱动单元30的第一晶体管ST1的阈值电压。应当理解是,外界光照强度会引响显示面板的驱动单元的驱动晶体管(即本申请的第一晶体管ST1)的阈值电压正漂或负漂。因此,外界光照强度大于预设值意指显示面板必然存在局部位置的驱动单元的阈值电压正漂或负漂现象严重。在判断外界光照强度大于预设值之后,于断电期间执行驱动单元的阈值电压的校正。
具体来说,在图帧与图帧之间的断电期间(电源信号ED从高电平转变为低电平)执行驱动单元30的阈值电压的校正。具体校正步骤如下。首先,执行步骤A,在判断单元211判断电源单元10发出的电源信号ED从高电平转变为低电平之后,电源单元10提供电源正电压Vdd=0伏特的电压至驱动单元30。接着,执行步骤B,检测控制单元282输出检测信号S2以控制第二晶体管ST2导通,且参考电压产生单元281提供0伏特的参考电压Vref至第二晶体管ST2的源极。最后,执行步骤C,驱动器20控制第三晶体管ST3导通,且驱动器20提供预设数据信号至驱动单元30以校正第一晶体管ST1的阈值电压的漂移量。详言之,根据判断单元211的判断结果,定时控制器21的数据处理单元212选择读取寄存器213中的预设数据并发送给处理器22。处理器22的视频数据产生器222根据定时控制器21提供的数据时序控制信号DCS将预设数据信号转换为模拟视频信号并将模拟视频信号传送至数据驱动电路25。伽马电压产生器24可用以根据光照传感器23感测到的外界光照强度来调整最大伽马电压并将最大伽马电压传送至数据驱动电路25。数据驱动电路25接收关于每个驱动单元30的模拟视频信号并参考最大伽马电压而产生伽马补偿信号。具体的,预设数据信号为白显示数据,并且在步骤C中,输入所述第三晶体管的伽马补偿信号是参考最大的伽马电压而产生。通过上述步骤,将预设数据信号提供给驱动单元30,如此可以改善和防止阈值电压漂移严重的问题。优选地,上述步骤A、步骤B、和步骤C的执行时间至少维持12小时,以确保能将阈值电压校正为收敛于某一固定值。应当理解的是,阈值电压的正漂或负漂程度取决于侦测到的阈值电压的数据是否在预设范围内(例如3V)并收敛于某一固定值。举例来说,若数据驱动电路25中ADC侦测的起点电压设置为3V,其有效侦测范围例如为3~6V,期望侦测到的数据收敛于4.5V。则依据侦测到的阈值电压的数据与期望侦测到的数据4.5V来决定阈值电压的漂移程度。预设数据信号可以通过人为调整,当面板某个区域负漂严重时,发送给此区域的预设数据信号设定为正的高电压。当面板某个区域正漂严重时,发送给此区域的预设数据信号设定为负的高电压。电压大小的取值取决于正漂或负漂程度 。
如图6所示,当显示装置1在图帧与图帧之间执行断电时,在断电状态下显示装置1根据预定断电序列顺序地关闭。也就是说,定时控制器21在将一帧的图像数据(包含对应的电源信号ED、扫描信号Vscan(1)-Vscan(n)、初始化控制信号S1、检测信号S2)传送至多个驱动单元30之后,在断电期间,选通驱动电路26通过定时控制器21的控制依序将预设数据(包含对应的电源信号ED、扫描信号Vscan(1)-Vscan(n)、初始化控制信号S1、检测信号S2)写入多个驱动单元30。在另一实施例中,用户可以设定在每次断电时自动在断电期间通过定时控制器21来将预设数据提供给驱动单元30。
请参照图7,其显示根据本申请第二实施例的显示装置的驱动方法的流程图。在第二实施例中,先侦测多个驱动单元30的多个第一晶体管ST1的多个阈值电压是否有漂移。具体来说,判断多个第一晶体管ST1的多个阈值电压是否在预设范围,例如为3~6V。当超过所述预设范围的阈值电压的数量超过一预设数量时,执行校正每一驱动单元30的第一晶体管ST1的阈值电压。校正每一驱动单元30的第一晶体管ST1的阈值电压的方法具体为依序执行上述步骤A、步骤B、和步骤C。为了不影响显示装置的正常显示功能,步骤A、步骤B、和步骤C是在图帧与图帧之间执行,具体的,驱动器20先提供第一帧的图像数据信号至驱动单元30,接着依序执行上述步骤A、步骤B、和步骤C,然后驱动器20再提供第二帧的图像数据信号至驱动单元30,其中所述第一帧和所述第二帧为两连续帧。
在第二实施例中,当发现侦测回来的阈值电压存在大批数据不在范围内(即,多个第一晶体管ST1的多个阈值电压不在预设范围),表示阈值电压的正漂和负漂越来越明显,且已经影响到显示效果,用户也可以手动改善。具体步骤是将提供给显示装置的视频数据改为预设数据,此时定时控制器21的现场可程式化逻辑闸阵列(Field Programmable Gate Array,FPGA) 持续供电给驱动单元30和驱动器20。相较于第一实施例,第二实施例的驱动方法可更为及时地校正阈值电压的漂移。
综上所述,本申请通过将预设数据信号发送给显示装置并持续一段时间,使得驱动单元的阈值电压的漂移量都往0的趋势变化,进而改善显示效果的,使得侦测到的阈值电压能够更加地在有效量测范围内。
以上对本申请实施例所提供的一种显示装置及其驱动方法进行了详细介绍。本文中应用了具体实施例对本申请的原理及实施方式进行了阐述。以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想。本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (9)

  1. 一种显示装置的驱动方法,其特征在于,所述驱动方法包括:
    获取外界光的光照强度;
    判断所述光照强度是否大于预设值;以及
    当所述光照强度大于所述预设值时,计算驱动单元的第一晶体管的阈值电压的漂移量,并根据所述漂移量校正所述驱动电路的所述第一晶体管的所述阈值电压,其中所述校正所述驱动单元的所述第一晶体管的所述阈值电压包含:
    步骤A,电源单元提供0伏特的电压至所述驱动单元;
    步骤B,检测控制单元控制所述驱动单元的第二晶体管导通,且参考电压产生单元提供0伏特的电压至所述第二晶体管,其中所述第一晶体管的漏极与所述第二晶体管的漏极连接;以及
    步骤C,驱动器提供预设数据信号至所述驱动单元以校正所述第一晶体管的阈值电压的所述漂移量。
  2. 如权利要求1所述的显示装置的驱动方法,其特征在于,所述预设数据信号为白显示数据,并且在步骤C中,输入所述驱动单元的信号是参考最大的伽马电压而产生。
  3. 如权利要求1所述的显示装置的驱动方法,其特征在于,当所述光照强度大于所述预设值时,定时控制器判断电源信号是否从高电平变为低电平,如是,依序执行所述步骤A、所述步骤B、和所述步骤C。
  4. 如权利要求1所述的显示装置的驱动方法,其特征在于,所述步骤A、所述步骤B、和所述步骤C的执行时间至少12小时。
  5. 一种显示装置的驱动方法,其特征在于,所述驱动方法包括:
    获取多个驱动单元的多个第一晶体管的多个阈值电压;
    判断所述多个第一晶体管的所述多个阈值电压是否在预设范围;以及
    当超过所述预设范围的所述阈值电压的数量超过一预设数量时,校正每一所述驱动单元的所述第一晶体管的所述阈值电压,其中校正每一所述驱动单元的所述第一晶体管的所述阈值电压包含:
    步骤A,电源单元提供0伏特的电压至所述驱动单元;
    步骤B,检测控制单元控制所述驱动单元的第二晶体管导通,且参考电压产生单元提供0伏特的电压至所述第二晶体管,其中所述第一晶体管的漏极与所述第二晶体管的漏极连接;以及
    步骤C,驱动器提供预设数据信号至所述驱动单元以校正所述第一晶体管的阈值电压的漂移量。
  6. 如权利要求5所述的显示装置的驱动方法,其特征在于,在所述获取所述多个驱动单元的所述多个第一晶体管的所述多个阈值电压之前,所述驱动方法还包含,驱动器提供第一帧的图像数据信号至所述多个驱动单元;以及
    在执行步骤C之后,所述驱动方法还包含,所述驱动器提供第二帧的图像数据信号至所述多个驱动单元,其中所述第一帧和所述第二帧为两连续帧。
  7. 一种显示装置,其特征在于,包含
    电源单元;
    驱动器,与所述电源单元连接,包含定时控制器和光照传感器,其中所述光照传感器与所述定时控制器连接,用于感测外界光照强度,以及所述定时控制器内存储有预设数据信号;以及
    至少一驱动单元,所述至少一驱动单元的输入端与所述电源单元和所述驱动器连接;
    至少一发光单元,所述发光单元与所述至少一驱动单元的输出端连接;
    其中当所述外界光照强度大于预设值时,所述电源单元提供0伏特的电压至所述至少一驱动单元,以及所述定时控制器提供所述预设数据信号至所述至少一驱动单元以校正所述至少一驱动单元的第一晶体管的阈值电压的漂移量。
  8. 如权利要求7所述的显示装置,其特征在于,所述预设数据信号为白显示数据。
  9. 如权利要求7所述的显示装置,其特征在于,所述驱动器还包含参考电压产生单元和检测控制单元,以及所述至少一驱动单元包含所述第一晶体管、第二晶体管、第三晶体管、所述第一晶体管的源极连接所述电源单元,所述第一晶体管的漏极、所述第二晶体管的漏极、和所述发光单元的阳极连接至一节点,所述第一晶体管的栅极连接所述第三晶体管的漏极,所述第二晶体管的栅极连接所述检测控制单元,所述第二晶体管的源极连接所述参考电压产生单元,所述第三晶体管的源极连接数据线,所述第三晶体管的栅极连接扫描线,以及所述发光单元的阴极接地;以及
    其中当所述外界光照强度大于预设值时,所述第二晶体管导通,且所述参考电压产生单元提供0伏特的电压至所述第二晶体管。
PCT/CN2020/132613 2020-11-12 2020-11-30 显示装置及其驱动方法 WO2022099813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011260945.9A CN112365850B (zh) 2020-11-12 2020-11-12 显示装置及其驱动方法
CN202011260945.9 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022099813A1 true WO2022099813A1 (zh) 2022-05-19

Family

ID=74516105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132613 WO2022099813A1 (zh) 2020-11-12 2020-11-30 显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN112365850B (zh)
WO (1) WO2022099813A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116343696B (zh) * 2021-12-22 2024-10-18 广州视源电子科技股份有限公司 显示屏控制方法、装置、存储介质以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996582A (zh) * 2010-11-23 2011-03-30 友达光电股份有限公司 有机发光二极管的像素驱动电路
US20130320848A1 (en) * 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
CN103871359A (zh) * 2012-12-13 2014-06-18 乐金显示有限公司 有机发光显示器
CN104658476A (zh) * 2013-11-25 2015-05-27 乐金显示有限公司 有机发光显示装置及其显示面板
CN105513541A (zh) * 2016-02-25 2016-04-20 深圳市华星光电技术有限公司 Oled的数据补偿电路和方法以及oled显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101201722B1 (ko) * 2010-02-23 2012-11-15 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그의 구동 방법
JP5891492B2 (ja) * 2011-06-22 2016-03-23 株式会社Joled 表示素子、表示装置、及び、電子機器
KR101990111B1 (ko) * 2012-10-29 2019-06-19 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
CN103383835B (zh) * 2013-07-02 2015-09-09 京东方科技集团股份有限公司 一种像素电路、显示面板及显示装置
CN105679245B (zh) * 2016-03-31 2018-06-08 上海天马有机发光显示技术有限公司 一种像素补偿电路及像素结构
CN106935190B (zh) * 2017-02-22 2019-02-05 上海天马有机发光显示技术有限公司 一种有机发光显示面板、有机发光显示装置、有机发光显示面板的驱动方法
CN107039004B (zh) * 2017-06-08 2019-04-30 深圳市华星光电半导体显示技术有限公司 Amoled显示面板的老化补偿方法
CN107785406B (zh) * 2017-11-03 2020-04-14 京东方科技集团股份有限公司 一种有机电致发光显示面板及其驱动方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996582A (zh) * 2010-11-23 2011-03-30 友达光电股份有限公司 有机发光二极管的像素驱动电路
US20130320848A1 (en) * 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
CN103871359A (zh) * 2012-12-13 2014-06-18 乐金显示有限公司 有机发光显示器
CN104658476A (zh) * 2013-11-25 2015-05-27 乐金显示有限公司 有机发光显示装置及其显示面板
CN105513541A (zh) * 2016-02-25 2016-04-20 深圳市华星光电技术有限公司 Oled的数据补偿电路和方法以及oled显示装置

Also Published As

Publication number Publication date
CN112365850A (zh) 2021-02-12
CN112365850B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
US10665165B2 (en) Organic light-emitting display panel, organic light-emitting display apparatus, and driving method of organic light-emitting display panel
TWI635476B (zh) 有機發光顯示器及其驅動方法
WO2020143666A1 (zh) 像素补偿方法、像素补偿装置及显示装置
TWI444974B (zh) 有機發光二極體顯示裝置及其低功率驅動方法
US9607553B2 (en) Organic light emitting diode display and method for sensing driving characteristics thereof
US8330754B2 (en) Organic light emitting diode display and driving method thereof
US8077126B2 (en) Display device and driving method thereof
KR101751998B1 (ko) 유기 발광다이오드 표시장치 및 그 구동방법
US8482555B2 (en) Organic light emitting diode display
KR101651291B1 (ko) 유기발광다이오드 표시장치
US11094242B2 (en) Multi-vision system
KR20160030597A (ko) 유기전계발광표시장치
US11705056B2 (en) Electroluminescence display apparatus
KR20170122432A (ko) Oled 표시 장치 및 그의 구동 방법
KR102595505B1 (ko) 유기발광 표시장치와 그의 전기적 특성 센싱 방법
KR20170021678A (ko) 표시장치 및 그의 데이터 보상방법
KR101256025B1 (ko) 표시 장치 및 그 구동 방법
US8947467B2 (en) Display device and gamma setting method for the same
CN112365850B (zh) 显示装置及其驱动方法
KR100570778B1 (ko) 발광표시 장치 및 그 감마보정 방법
KR102675755B1 (ko) 표시 장치 및 이를 이용한 표시 패널의 구동 방법
KR102641997B1 (ko) 표시 장치 및 이의 구동 방법
KR20150078753A (ko) 유기 발광 다이오드 표시 장치 및 그의 보상 방법
KR101621329B1 (ko) 유기전계발광소자 및 그 구동방법
KR102281009B1 (ko) 유기 발광 다이오드 표시 장치 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961367

Country of ref document: EP

Kind code of ref document: A1