WO2022099795A1 - 一种10kv配网小电流单相接地故障检测方法 - Google Patents

一种10kv配网小电流单相接地故障检测方法 Download PDF

Info

Publication number
WO2022099795A1
WO2022099795A1 PCT/CN2020/131724 CN2020131724W WO2022099795A1 WO 2022099795 A1 WO2022099795 A1 WO 2022099795A1 CN 2020131724 W CN2020131724 W CN 2020131724W WO 2022099795 A1 WO2022099795 A1 WO 2022099795A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
distribution network
loss
fault
phase
Prior art date
Application number
PCT/CN2020/131724
Other languages
English (en)
French (fr)
Inventor
曾晓蕾
周辉
赵世钦
史纯清
关昕
徐懿
袁忠军
刘朝英
杨平安
岑荣佳
刘昌宏
Original Assignee
贵州电网有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州电网有限责任公司 filed Critical 贵州电网有限责任公司
Publication of WO2022099795A1 publication Critical patent/WO2022099795A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Definitions

  • the invention relates to a low-current single-phase grounding fault detection method of a 10KV distribution network, and belongs to the technical field of low-current single-phase grounding fault detection.
  • the operating characteristics of the power point ungrounded system are fully utilized, and various technologies such as distribution automation possessed by the power sector can be used to quickly troubleshoot various faults and ensure the reliable operation of the line, thereby achieving high-level operation and maintenance of the distribution network.
  • 10KV distribution network three-phase neutral point ungrounded system design occurs single-phase grounding fault
  • the mainstream line selection methods based on electrical information include: injection signal line selection, fault steady state signal line selection, fault transient signal line selection, comprehensive Line selection of information fusion, etc. Due to the influence of noise, harmonic interference and other factors, the zero-sequence electrical quantity collected by the line selection device, regardless of the amplitude and phase angle, may not satisfy the above relationship, resulting in misjudgment and missed judgment.
  • the technical problem to be solved by the present invention is to provide a small current single-phase grounding fault detection method for a 10KV distribution network, so as to solve the problems existing in the above-mentioned prior art.
  • the technical scheme adopted by the present invention is: a 10KV distribution network small current single-phase grounding fault detection method, the method comprises the following steps:
  • the analysis method of the correlation in step (2) is: combining the power data of the substation outlet (power supply side) and the data of the load side, summarizing a 10KV distribution network outlet line under normal operating conditions, the boundary range curve of the safe operation.
  • step (2) the normal loss model of each distribution network outgoing line and the ground fault loss model of single-phase grounding are established as follows:
  • ⁇ S n is the sum of the power data collected by all marketing TTU/negative control of the line
  • S loss is the power loss of the line
  • the coefficient K in the formula is a constant, S T is the power transmission loss of the line; ⁇ S leakage is the power loss caused by the line distribution parameters, and this loss is a fixed offset;
  • step (1) The detailed steps of data collection in step (1) are as follows:
  • Each substation busbar is equipped with an open triangle PT secondary side voltage value measurement to realize the identification of the faulty phase line.
  • the real-time acquisition interval is 1-15 minutes.
  • Line parameters include cable structure, material composition, and cable diameter.
  • Routing refers to the direction of the line and the connection of branch lines.
  • step (3) when the line has a ground fault, according to the identified ground fault phase, start the single-phase ground fault line selection process, and perform the fault line selection calculation for all the outgoing lines on this bus;
  • the increased power loss ⁇ S is related to the line parameters of the bus where the fault outlet of the distribution network is located, as well as the power supply path, routing and grounding current level conditions when single-phase grounding. And the estimated ground current level model of the line, when ⁇ S is greater than the model limit value, it is judged that this outgoing line has a single-phase grounding fault outgoing line.
  • the present invention analyzes the steady state mechanism of the single-phase grounding fault with multiple outgoing lines.
  • the direction of the power frequency zero-sequence current of the faulty line will be opposite to that of the sound line.
  • the power frequency zero-sequence current amplitude of the faulty line is the largest, which is manifested as the dominant condition that the power change of the faulty line is relatively the largest during the fault.
  • Figure 1 is a graph showing the relationship between line power loss and line load.
  • Embodiment 1 As shown in Figure 1, a 10KV distribution network small current single-phase grounding fault detection method, the method includes the following steps:
  • the real-time collection data of the segment location can be obtained (measurement accuracy requirement: the change caused by fault power and fault current when single-phase grounding can be sensed), as the estimation basis for fault location;
  • each distribution network 10KV power supply line mainly based on line parameters, power supply path, routing, weather, etc., to estimate the grounding current level when single-phase grounding occurs, and then estimate the occurrence of single-phase metallic grounding.
  • the power level during ground discharge (the ground capacitance current of the 10KV line is composed of the line part and the ground distributed capacitance current of the 10KV equipment. The more outgoing lines of the substation bus, the higher the ground capacitance current level of the bus)
  • Each substation bus is equipped with open triangle PT secondary side voltage value measurement to realize the identification of faulty phase lines.
  • Data preprocessing (removing bad data, etc.) is required for the collected data.
  • the single-phase fault grounding algorithm system is based on: tracking and accumulating the outgoing line dispatching measurement data under the normal operating state of the distribution network for a long time, line marketing TTU/negative control data, and then calculating the power loss of each distribution network outgoing line under different loads level.
  • ⁇ S n is the sum of the power data collected by all marketing TTU/negative control of the line
  • S loss is the power loss of the line.
  • the slope of the straight line in Figure 1 is the coefficient K in the formula, which is a constant, and S T is the transmission loss of the line.
  • the intersection of the straight line and the Y axis, that is, the ⁇ S leakage , is the power loss caused by the line distribution parameters, and this loss is a fixed offset.
  • the identification of the faulty phase line is realized.
  • the line has a ground fault
  • the single-phase ground fault line selection process is started, and the fault line selection calculation is performed for all the outgoing lines on this bus.
  • the line loss of the outgoing single-phase grounding fault line increases by ⁇ S under the current load condition, so the non-fault line basically remains unchanged.
  • the increased power loss ⁇ S is therefore related to the line parameters of the bus where the fault outlet of the distribution network is located, as well as the power supply path, routing, and grounding current level when single-phase grounding. According to the data model of the line loss data accumulated in the system for a long time, and the model of the estimated ground current level of the line. When ⁇ S is greater than the model limit value, it can be judged that the outgoing line has a single-phase grounding fault.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种10KV配网小电流单相接地故障检测方法,包括以下步骤:(1)数据采集,长时间跟踪累积配网线路正常运行状态下的出线调度量测数据,线路营销TTU/负控数据,进而推算出每条配网出线线路在不同负荷下的功率损耗水平;(2)通过对各种变量之间相关关系的分析,建立起每个配网出线的常态损耗模型以及单相接地时的接地故障损耗模型;(3)根据每条变电站母线所具备的开口三角形PT二次侧电压值量测,实现对故障相线的判别。该检测方法实现了通过对10KV配网线路自动化运行监测的稳态大数据的分析来进行小电流接地故障的选线及故障识别预报。

Description

一种10KV配网小电流单相接地故障检测方法 技术领域
本发明涉及一种10KV配网小电流单相接地故障检测方法,属于小电流单相接地故障检测技术领域。
背景技术
目前我国10KV电力系统大部分采用三相中性点不接地系统设计:即除了10KV配电网电力设备本身的分布电容可以接地外,其它都不接地。这种配电网系统设计,其优点是发生接地故障时,故障电流小,对电力设备的破坏不致严重,因此可在发生单相接地不形成短路回路的情况下,按照电力运行规程规定可继续运行1-2小时。缺点是:在发生单相接地故障时可能产生瞬间过电压,对设备及人身安全构成威胁,这就要求,配电网运行管理人员,要求迅速查找到故障线路并将其切除,否则会造成故障扩大危及电力系统及设备的安全。
10KV配电网的安全运行维护以及发生故障时迅速查找到故障线路并恢复正常运行,对供电部门的运维人员就提出了很高的要求:配电网运维人员必须深入掌握10KV三相中性点不接地系统的运行特性,充分利用电力部门拥有的配电自动化等各种技术,做到能迅速排查各类故障,保障线路可靠运行,从而实现对配电网的高水平运维。
10KV配网三相中性点不接地系统设计发生单相接地故障基于电学信息的主流选线方法有:注入信号的选线、故障稳态信号的选线、故障暂态信号的选线、综合信息融合的选线等。由于存在噪声,谐波干扰等因素影响,选 线装置所采集的零序电气量,无论幅值、相角可能均不满足上述关系而出现误判,漏判。
发明内容
本发明要解决的技术问题是:提供一种10KV配网小电流单相接地故障检测方法,以解决上述现有技术中存在的问题。
本发明采取的技术方案为:一种10KV配网小电流单相接地故障检测方法,该方法包括以下步骤:
(1)数据采集,长时间跟踪累积配网线路正常运行状态下的出线调度量测数据,线路营销TTU/负控数据,进而推算出每条配网出线线路在不同负荷下的功率损耗水平;
(2)通过对各种变量之间相关关系的分析,建立起每个配网出线的常态损耗模型以及单相接地时的接地故障损耗模型;
(3)根据每条变电站母线所具备的开口三角形PT二次侧电压值量测,实现对故障相线的判别。
步骤(2)中相关关系的分析方法为:结合变电站出线(供电侧)功率数据与负荷侧的数据对比,归纳总结出一条10KV配网出线在常态运行条件下,安全运行情况的边界范围曲线。
步骤(2)中每个配网出线的常态损耗模型以及单相接地时的接地故障损耗模型建立方法如下:
每条配网10kv出线的所有负载功率之和与变电站出线监测点注入功率为线性关系,表示为如下公式:
S =∑Sn+S
∑S n为线路的所有营销TTU/负控采集的功率数据之和
S 为线路的功率损耗;
在正常运行状态下,当配网线路的拓扑确定后,则相应的线路参数以及供电路径、路由也就确定,则此条线路的功率损耗有下面的公式:
S =△S +K×S t
公式中的系数K为常数,S T为线路输电电损耗;△S 即线路分布参数造成的功率损耗,此损耗为固定偏移量;
线路功率损耗和线路负荷之间的关系为一元线性关系。
步骤(1)中数据采集详细步骤如下:
(1)获取长时间配网10KV供电线路所有配变变压器TTU功率数据的实时采集(采集时间间隔越小越好)数据,根据每条配网线路的所有TTU/负控的实时数据,估算出当前线路负荷功率;
(2)获取变电站供电线路出线的实时量测数据,作为线路进行单相接地故障及故障定位的基础数据(10KV配电出线处的量测精度要求:能感知单相接地时的故障功率和故障电流引起的变化);
(3)每条配网10KV供电线路的拓扑路由:依据线路参数以及供电路径、路由和气象,用于估算发生单相接地时的接地电流水平,进而估算出发生单相金属性接地时,接地放电时的功率水平(10KV线路的对地电容电流由线路部分和10KV设备的对地分布电容电流组成。变电站母线出线线路越多,则本母线的接地电容电流水平越高);
(4)每条变电站母线,具备开口三角形PT二次侧电压值量测,实现对故障相线的判别。
实时采集时间间隔为1-15分钟。
线路参数包括线缆结构、材料构成和线缆线径。
路由为线路走向及分支线的连接方式。
步骤(3)中当线路出现接地故障时,依据判别的接地故障相,启动单相接地故障选线流程,对此母线上的所有出线,进行故障选线计算;
由于出线接地故障的配网10KV出线,其线路的功率损耗有下面的公式:
S =△S +△S +K×S t
由上面公式知,出线单相接地故障线路的线路损耗,在当前负荷条件下,其功率损耗增加△S ,非故障线路基本保持不变;
其中增加的功率损耗△S 与本配电网故障出线所在母线的线路参数以及供电路径、路由以及单相接地时的接地电流水平条件相关,根据系统长时间大数据累积的线路损耗数据模型,以及线路估算接地电流水平模型,当△S 大于模型限定值时,判断此条出线为有单相接地故障出线。
本发明的有益效果:与现有技术相比,本发明根据多出线单相接地故障稳态机理分析,当发生单相接地故障时,故障线路的工频零序电流方向会与健全线路的相反且故障线路的工频零序电流幅值最大,表现为故障时故障线路的功率变化相对最大这一显性条件,进行单相接地故障识别及定位,依靠配电网数据获取、数据预处理(剔除不良数据等)、数据分析的大数据运用,实现对10KV配网线路自动化运行监测的稳态大数据分析方法来进行小电流接地故障的选线及故障识别预报。
附图说明
图1是线路功率损耗和线路负荷之间的关系图。
具体实施方式
下面结合附图及具体的实施例对本发明进行进一步介绍。
实施例1:如图1所示,一种10KV配网小电流单相接地故障检测方法,该方法包括以下步骤:
1、数据采集:
1)获取长时间配网10KV供电线路所有配变变压器TTU功率数据的实时采集(采集时间间隔越小越好)数据,根据每条配网线路的所有TTU/负控的实时数据,估算出当前线路负荷功率;
2、获取变电站供电线路出线的实时量测数据,作为线路进行单相接地故障及故障定位的基础数据(10KV配电出线处的量测精度要求:能感知单相接地时的故障功率和故障电流引起的变化);
如果10KV配网线路有分段,能获得分段位置的实时采集数据(量测精度要求:能感知单相接地时的故障功率和故障电流引起的变化),以作为故障定位的估算依据;
结合1、2的长时间大采集数据累积,可估算出不同线路运行负荷功率条件下的线路损耗水平;
3)每条配网10KV供电线路的拓扑路由:主要是依据线路参数以及供电路径、路由、气象等,用于估算发生单相接地时的接地电流水平,进而估算出发生单相金属性接地时,接地放电时的功率水平(10KV线路的对地电容电流由线路部分和10KV设备的对地分布电容电流组成。变电站母线出线线路越多,则本母线的接地电容电流水平越高)
4)每条变电站母线,具备开口三角形PT二次侧电压值量测,实现对故障相线的判别。
对采集后的数据需要做数据预处理(剔除不良数据等)。
2、单相接地故障检测算法:
单相故障接地算法系统根据:长时间跟踪累积配网线路正常运行状态下的出线调度量测数据,线路营销TTU/负控数据,进而推算出每条配网出线线路在不同负荷下的功率损耗水平。通过对各种变量之间相关关系的分析
(即相关性分析),建立起每个配网出线的常态损耗模型以及单相接地时的接地故障损耗模型。
每条配网10kv出线的所有负载功率之和(此线路的所有营销TTU/负控采集的功率数据和)与变电站出线监测点注入功率为线性关系,可表示为如下公式:
S =∑Sn+S
∑S n为线路的所有营销TTU/负控采集的功率数据之和
S 为线路的功率损耗。
在正常运行状态下,当配网线路的拓扑确定后,则相应的线路参数以及供电路径、路由等也就确定,则此条线路的功率损耗可有下面的公式表示:
S =△S +K×S t
线路功率损耗和线路负荷之间的关系为一元线性关系,如图1所示。
图1中直线的斜率即公式中的系数K,为常数,S T为线路输电电损耗。
直线与Y轴的交点,即△S 即线路分布参数造成的功率损耗,此损耗为固定偏移量。
根据每条变电站母线所具备的开口三角形PT二次侧电压值量测,实现对故障相线的判别。当线路出现接地故障时,依据判别的接地故障相,启动单相接地故障选线流程,对此母线上的所有出线,进行故障选线计算。
由于出线接地故障的配网10KV出线,其线路的功率损耗可有下面的公式表示:
S =△S +△S +K×S t
有上面公式知,出线单相接地故障线路的线路损耗,在当前负荷条件下,其功率损耗增加△S ,非故障线路基本保持不变。
其中增加的功率损耗△S 与本配电网故障出线所在母线的线路参数以及供电路径、路由以及单相接地时的接地电流水平等条件相关。根据系统长时间大数据累积的线路损耗数据模型,以及线路估算接地电流水平模型。当△S 大于模型限定值时,可判断此条出线为有单相接地故障出线。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内,因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种10KV配网小电流单相接地故障检测方法,其特征在于:该方法包括以下步骤:
    (1)数据采集,长时间跟踪累积配网线路正常运行状态下的出线调度量测数据、线路营销TTU/负控数据,进而推算出每条配网出线线路在不同负荷下的功率损耗水平;
    (2)通过对各种变量之间相关关系的分析,从而建立起每个配网出线的常态损耗模型以及单相接地时的接地故障损耗模型;
    (3)根据每条变电站母线所具备的开口三角形PT二次侧电压值量测,采用每个配网出线的常态损耗模型以及单相接地时的接地故障损耗模型实现对故障相线的判别。
  2. 根据权利要求1所述的一种10KV配网小电流单相接地故障检测方法,其特征在于:步骤(2)中相关关系的分析方法为:结合变电站出线功率数据与负荷侧的数据对比归纳总结出一条10KV配网出线在常态运行条件下,安全运行情况的边界范围曲线。
  3. 根据权利要求1所述的一种10KV配网小电流单相接地故障检测方法,其特征在于:步骤(2)中每个配网出线的常态损耗模型以及单相接地时的接地故障损耗模型建立方法如下:
    每条配网10kv出线的所有负载功率之和与变电站出线监测点注入功率为线性关系,表示为如下公式:
    S =∑Sn+S
    ∑S n为线路的所有营销TTU/负控采集的功率数据之和
    S 为线路的功率损耗;
    在正常运行状态下,当配网线路的拓扑确定后,则相应的线路参数以及供电路径、路由也就确定,则此条线路的功率损耗有下面的公式:
    S =△S +K×S t
    公式中的系数K为常数,S T为线路输电电损耗;△S 即线路分布参数造成的功率损耗,此损耗为固定偏移量;
    线路功率损耗和线路负荷之间的关系为一元线性关系。
  4. 根据权利要求1所述的一种10KV配网小电流单相接地故障检测方法,其特征在于:步骤(1)中数据采集详细步骤如下:
    (1)获取长时间配网10KV供电线路所有配变变压器TTU功率数据的实时采集数据,根据每条配网线路的所有TTU/负控的实时数据,估算出当前线路负荷功率;
    (2)获取变电站供电线路出线的实时量测数据,作为线路进行单相接地故障及故障定位的基础数据;
    (3)每条配网10KV供电线路的拓扑路由:依据线路参数以及供电路径、路由和气象,用于估算发生单相接地时的接地电流水平,进而估算出发生单相金属性接地时,接地放电时的功率水平;
    (4)每条变电站母线,具备开口三角形PT二次侧电压值量测,实现对故障相线的判别。
  5. 根据权利要求4所述的一种10KV配网小电流单相接地故障检测方法,其特征在于:实时采集时间间隔为1-15分钟。
  6. 根据权利要求4所述的一种10KV配网小电流单相接地故障检测方法,其特征在于:线路参数包括线缆结构、材料构成和线缆线径。
  7. 根据权利要求4所述的一种10KV配网小电流单相接地故障检测方法,其 特征在于:路由为线路走向及分支线的连接方式。
  8. 根据权利要求1所述的一种10KV配网小电流单相接地故障检测方法,其特征在于:步骤(3)中当线路出现接地故障时,依据判别的接地故障相,启动单相接地故障选线流程,对此母线上的所有出线,进行故障选线计算;
    由于出线接地故障的配网10KV出线,其线路的功率损耗有下面的公式:
    S =△S +△S +K×S t
    由上面公式知,出线单相接地故障线路的线路损耗,在当前负荷条件下,其功率损耗增加△S ,非故障线路基本保持不变;
    其中增加的功率损耗△S 与本配电网故障出线所在母线的线路参数以及供电路径、路由以及单相接地时的接地电流水平条件相关,根据系统长时间大数据累积的线路损耗数据模型,以及线路估算接地电流水平模型,当△S 大于模型限定值时,判断此条出线为有单相接地故障出线。
PCT/CN2020/131724 2020-11-16 2020-11-26 一种10kv配网小电流单相接地故障检测方法 WO2022099795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011275634.X 2020-11-16
CN202011275634.XA CN112415425B (zh) 2020-11-16 2020-11-16 一种10kv配网小电流单相接地故障检测方法

Publications (1)

Publication Number Publication Date
WO2022099795A1 true WO2022099795A1 (zh) 2022-05-19

Family

ID=74831707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131724 WO2022099795A1 (zh) 2020-11-16 2020-11-26 一种10kv配网小电流单相接地故障检测方法

Country Status (2)

Country Link
CN (1) CN112415425B (zh)
WO (1) WO2022099795A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366815A (zh) * 2020-04-24 2020-07-03 北京东土科技股份有限公司 基于配电站服务器的小电流接地选线方法、装置及介质
CN115764837A (zh) * 2022-10-21 2023-03-07 国网四川省电力公司电力科学研究院 一种基于子网分割的故障选线分析方法及装置
CN115825655A (zh) * 2023-02-20 2023-03-21 国网山东省电力公司乳山市供电公司 配网单相接地故障快速监测定位系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092935B (zh) * 2021-04-02 2022-11-29 安徽腾河电力技术有限公司 一种识别小负荷线路拓扑的方法及系统、设备、存储介质
CN113595044B (zh) * 2021-07-30 2022-03-22 四川大学 一种直流电网拓扑对故障电流影响的评估方法
CN113922326B (zh) * 2021-10-15 2022-09-09 贵州电网有限责任公司 基于scada数据的母线/线路接地选线轮切方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093137A1 (de) * 2006-02-14 2007-08-23 Siemens Aktiengesellschaft Verfahren zum erkennen eines erdschlusses in einem gelöschten oder gegenüber erdpotential isolierten dreiphasigen energieübertragungsnetz
CN103235234A (zh) * 2013-03-28 2013-08-07 国家电网公司 一种有消孤线圈系统的接地检测方法
CN103852693A (zh) * 2014-03-26 2014-06-11 马善娟 一种小电流接地选线系统的判断方法
CN105259480A (zh) * 2015-11-27 2016-01-20 国家电网公司 一种调度端小电流单相接地选线方法和系统
CN107179466A (zh) * 2017-04-21 2017-09-19 国网江苏省电力公司镇江供电公司 小电流接地系统的单相接地故障选线方法
CN109387742A (zh) * 2018-11-06 2019-02-26 华中科技大学 一种基于多点有功功率监测和差分的线路故障识别方法
RU2695278C1 (ru) * 2018-10-04 2019-07-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ определения места однофазного замыкания фидера на землю в кабельных сетях среднего напряжения
CN110286297A (zh) * 2019-06-12 2019-09-27 北京中电泰瑞科技有限公司 一种小电流接地系统单相接地故障选线装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093137A1 (de) * 2006-02-14 2007-08-23 Siemens Aktiengesellschaft Verfahren zum erkennen eines erdschlusses in einem gelöschten oder gegenüber erdpotential isolierten dreiphasigen energieübertragungsnetz
CN103235234A (zh) * 2013-03-28 2013-08-07 国家电网公司 一种有消孤线圈系统的接地检测方法
CN103852693A (zh) * 2014-03-26 2014-06-11 马善娟 一种小电流接地选线系统的判断方法
CN105259480A (zh) * 2015-11-27 2016-01-20 国家电网公司 一种调度端小电流单相接地选线方法和系统
CN107179466A (zh) * 2017-04-21 2017-09-19 国网江苏省电力公司镇江供电公司 小电流接地系统的单相接地故障选线方法
RU2695278C1 (ru) * 2018-10-04 2019-07-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ определения места однофазного замыкания фидера на землю в кабельных сетях среднего напряжения
CN109387742A (zh) * 2018-11-06 2019-02-26 华中科技大学 一种基于多点有功功率监测和差分的线路故障识别方法
CN110286297A (zh) * 2019-06-12 2019-09-27 北京中电泰瑞科技有限公司 一种小电流接地系统单相接地故障选线装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONG, XIAOHUI: " Tabular Method for Power Flow Calculation in Distribution Network Planning and Design", DISTRIBUTION & UTILIZATION, vol. 24, no. 1, 1 February 2007 (2007-02-01), pages 20 - 23, XP055930643 *
ZHANG, WEI: "Uses of Low-Current Grounding Line Selection Device in 10kV Factory Power System", ELECTROTECHNICS ELECTRIC, 1 January 2014 (2014-01-01), pages 1 - 2, XP055930649, [retrieved on 20220613] *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366815A (zh) * 2020-04-24 2020-07-03 北京东土科技股份有限公司 基于配电站服务器的小电流接地选线方法、装置及介质
CN111366815B (zh) * 2020-04-24 2022-09-20 北京东土科技股份有限公司 基于配电站服务器的小电流接地选线方法、装置及介质
CN115764837A (zh) * 2022-10-21 2023-03-07 国网四川省电力公司电力科学研究院 一种基于子网分割的故障选线分析方法及装置
CN115764837B (zh) * 2022-10-21 2023-12-26 国网四川省电力公司电力科学研究院 一种基于子网分割的故障选线分析方法及装置
CN115825655A (zh) * 2023-02-20 2023-03-21 国网山东省电力公司乳山市供电公司 配网单相接地故障快速监测定位系统及方法
CN115825655B (zh) * 2023-02-20 2023-06-16 国网山东省电力公司乳山市供电公司 配网单相接地故障快速监测定位系统及方法

Also Published As

Publication number Publication date
CN112415425A (zh) 2021-02-26
CN112415425B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2022099795A1 (zh) 一种10kv配网小电流单相接地故障检测方法
CN109655713B (zh) 一种单相接地故障定位方法和系统
CN111596170A (zh) 一种用于智能配网的故障诊断综合定位方法
CN101699306B (zh) 电力二次系统电流采集回路监测方法
CN105891680A (zh) 基于三相电压电流的10kV配电线路多相断线故障判定方法
CN109765459B (zh) 一种基于就地研判的单相接地故障定位方法和系统
CN103454517A (zh) 电容式电压互感器在线监测方法
CN108614180B (zh) 单相接地故障线路查找方法
CN110120666B (zh) 一种电压暂降状态估计方法
CN107271845A (zh) 一种保护故障信息管理系统的在线测距方法
CN101718813B (zh) 电力二次系统电压采集回路监测方法
Sarathkumar et al. A technical review on self-healing control strategy for smart grid power systems
CN116754901B (zh) 一种基于快速定位的配电网故障分析管理平台
CN1349103A (zh) 一种配电网单相接地故障的判断方法
CN111257690A (zh) 一种交叉互联高压电缆护层保护器故障诊断及定位方法
CN104090211B (zh) 一种配电线路高阻接地故障的在线检测方法
CN105652157B (zh) 基于行波电气量的配电网健康状态分析方法
CN116840614A (zh) 基于谐波异动特征的电缆线路缺陷感知预警方法
CN113917276B (zh) 中压侧小电流系统单相接地短路故障定位方法及系统
CN104931848A (zh) 一种基于广域测量信息的电力系统线路故障判别方法
Olechiw et al. Power quality monitoring systems more information than just waveforms and events
Russell et al. Preventing certain powerline caused wildfires by early detection and repair of failing devices
CN110018401A (zh) 一种配电线路单相接地故障定位方法
Mawle et al. Transmission line maintenance management using early fault detection technique
Yan et al. A hidden fault diagnosis method of relay protection considering the lack of sample synchronization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961349

Country of ref document: EP

Kind code of ref document: A1