WO2022099638A1 - 通信方法和通信设备 - Google Patents

通信方法和通信设备 Download PDF

Info

Publication number
WO2022099638A1
WO2022099638A1 PCT/CN2020/128784 CN2020128784W WO2022099638A1 WO 2022099638 A1 WO2022099638 A1 WO 2022099638A1 CN 2020128784 W CN2020128784 W CN 2020128784W WO 2022099638 A1 WO2022099638 A1 WO 2022099638A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
eht
communication method
message frame
spatial streams
Prior art date
Application number
PCT/CN2020/128784
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/036,533 priority Critical patent/US20230412301A1/en
Priority to CN202080003178.5A priority patent/CN114766082A/zh
Priority to PCT/CN2020/128784 priority patent/WO2022099638A1/zh
Publication of WO2022099638A1 publication Critical patent/WO2022099638A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication

Definitions

  • the present disclosure relates to the field of communication, and more particularly, to a communication method and a communication device in wireless communication.
  • IEEE Institute of Electrical and Electronic Engineers, Institute of Electrical and Electronics Engineers
  • TG Task group, working group
  • IEEE802.11be to study the next generation Wi-Fi technology
  • the research scope is: 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc. It is expected to increase the rate and throughput by at least four times compared with the existing IEEE802.11ax standard.
  • Its main application scenarios are video transmission, AR (Augmented Reality, Augmented Reality), VR (Virtual Reality, Virtual Reality), etc.
  • the aggregation and coordination of multiple frequency bands refers to the simultaneous communication between devices in the 2.4GHz, 5.8GHz and 6-7GHz frequency bands.
  • a new MAC Media Access Control, media access control
  • control control
  • the maximum bandwidth that will be supported is 320MHz (160MHz+160MHz), and it may also support 240MHz (160MHz+80MHz) and the bandwidth supported in the IEEE802.11ax standard.
  • 4K QAM quadrature amplitude modulation, quadrature amplitude modulation
  • 8 spatial streams SS: space stream
  • Multiple spatial streams eg, 16 space time streams or spatial streams.
  • existing standards cannot support such modulation and spatial streams.
  • the existing standard cannot identify the physical parameters supported by the IEEE802.11be standard.
  • a communication method includes: determining a first message frame, wherein the first message frame includes information indicating a physical parameter, and the physical parameter includes a modulation and coding strategy (MCS) combination supported by N spatial streams, where N is A positive integer greater than 8; the sender and the receiver communicate based on the first message frame.
  • MCS modulation and coding strategy
  • a communication device is provided according to example embodiments of the present disclosure.
  • the communication device may include: a processing module configured to: determine a first message frame, wherein the first message frame includes information indicating a physical parameter, and the physical parameter includes modulation and coding strategies supported by the N spatial streams ( MCS) combination, wherein, N is a positive integer greater than 8; the communication module performs communication based on the first message frame.
  • a processing module configured to: determine a first message frame, wherein the first message frame includes information indicating a physical parameter, and the physical parameter includes modulation and coding strategies supported by the N spatial streams ( MCS) combination, wherein, N is a positive integer greater than 8; the communication module performs communication based on the first message frame.
  • MCS spatial streams
  • the electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program to implement the method as described above.
  • a computer-readable storage medium is provided according to example embodiments of the present disclosure.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program when executed by a processor, implements the method as described above.
  • the technical solutions provided by the exemplary embodiments of the present disclosure can improve spectrum utilization efficiency and improve throughput.
  • FIG. 1 is an exemplary diagram illustrating a wireless communication scenario.
  • FIG. 2 is a schematic diagram showing the format of the HE Operation element.
  • Figure 3 is a schematic diagram showing the Supported HE-MCS And NSS Set.
  • FIG. 4 is a schematic diagram illustrating the carried information on a modulation and coding strategy.
  • FIG. 5 shows an example of information such as modulation scheme and coding rate corresponding to HE-MCS.
  • FIG. 6 is a flowchart illustrating a communication method according to an example embodiment of the present disclosure.
  • FIG. 7 is a block diagram illustrating a communication device according to an example embodiment of the present disclosure.
  • FIG. 1 is an exemplary diagram illustrating a wireless communication scenario.
  • a basic service set can be composed of stations (STA: station).
  • the STA may include an Access Point (AP) device and one or more non-AP (non-AP) devices that communicate with the AP device.
  • a basic service set can be connected to the distribution system DS (Distribution System) through its AP device, and then connected to another basic service set to form an extended service set ESS (Extended Service Set).
  • DS Distribution System
  • ESS Extended Service Set
  • the AP device is a wireless switch used in a wireless network and is also the core of the wireless network.
  • AP equipment can be used as a wireless base station, mainly used as a bridge for connecting wireless networks and wired networks. Using this AP device, you can integrate wired and wireless networks.
  • an AP device may include software applications and/or circuitry to enable other types of nodes in a wireless network to communicate with the outside and inside of the wireless network through the AP.
  • the AP device may be a terminal device or a network device equipped with a Wi-Fi (Wireless Fidelity, wireless fidelity) chip.
  • Wi-Fi Wireless Fidelity, wireless fidelity
  • non-AP devices may include, but are not limited to: cellular phones, smart phones, wearable devices, computers, personal digital assistants (PDAs), personal communication system (PCS) devices, personal information managers (PIMs), personal navigation Devices (PND), Global Positioning Systems, Multimedia Devices, Internet of Things (IoT) devices, etc.
  • PDAs personal digital assistants
  • PCS personal communication system
  • PIMs personal information managers
  • PND personal navigation Devices
  • IoT Internet of Things
  • AP devices and non-AP devices may be of any number and/or of any type.
  • a high-efficiency (HE: High-Efficiency) operation information element may identify the physical parameters supported by the device as described in the IEEE 802.11ax standard.
  • the format of the HE Operation element may be shown as 200 in FIG. 2 .
  • HE Operation Parameter HE Operation Parameter
  • VHT Very High Throughput
  • VHT Operation Information Present VHT Operation Information Present
  • the supported HE-MCS and NSS (NSS: Number of Spatial Streams) combinations (Supported HE-MCS And NSS Set) are also defined in the IEEE802.11ax standard to indicate the HE-MCS supported by the STA for reception and transmission Combination with spatial stream.
  • Figure 3 shows a diagram of the format of the Supported HE-MCS And NSS Set.
  • the basic HE-MCS and NSS combination field (Basic HE-MCS And NSS Set) in the HE operation information element 200 shown in FIG. 2 or the Supported HE-MCS And NSS Set in FIG. 3 can be used.
  • Each subfield of to carry information about the modulation and coding strategy.
  • Figure 4 shows a schematic diagram of the format of the carried information.
  • 0 indicates HE-MCS 0 to HE-MCS 7 for n spatial streams
  • HE-MCS 0 to HE-MCS 11 may correspond to different modulation schemes and coding rates.
  • FIG. 5 shows the corresponding modulation scheme and coding rate information for 26-tone (subcarrier) HE-MCS.
  • the existing standard mechanism cannot meet the requirements of 4096QAM, more spatial streams (eg, 16 spatial streams), and 320MHz (160MHz+160MHz) bandwidth that the IEEE802.11ax standard will support.
  • FIG. 6 is a flowchart illustrating a communication method according to an example embodiment.
  • the communication method shown in FIG. 6 can be applied to any STA in the BSS, that is, any AP device or non-AP device.
  • a first message frame may be determined.
  • the STA may generate the first message frame according to at least one of the following conditions: network conditions, load conditions, hardware of the sending/receiving device Capability, service type, and related protocol provisions; there is no specific limitation on this embodiment of the present disclosure.
  • the STA may also acquire the first message frame from an external device, which is not specifically limited in this embodiment of the present disclosure.
  • the first message frame may be a management frame, a data frame, or a control frame capable of carrying various information and/or data, which is not specifically limited in this embodiment of the present disclosure.
  • R coding rate
  • MCS modulation rate
  • the first message frame may include information indicating a physical parameter.
  • the physical parameters may include modulation and coding strategy (MCS) combinations supported by N spatial streams, where N is a positive integer greater than 8.
  • MCS modulation and coding strategy
  • N 16 is taken as an example for description, that is, the first message frame according to the embodiment of the present disclosure can satisfy 16 spatial streams that can be supported by the IEEE802.11be standard.
  • a modulation coding strategy (MCS) combination may include an MCS corresponding to a 4096-QAM modulation and coding scheme.
  • the indices of the MCS corresponding to the 4096-QAM modulation and coding scheme may be 12 and 13.
  • a modulation coding strategy (MCS) combination includes MCS corresponding to QPSK, 16-QAM, 64-QAM, 256-QAM, and/or 1024-QAM modulation and coding schemes.
  • MCS corresponding to the QPSK, 16-QAM, 64-QAM, 256-QAM and/or 1024-QAM modulation and coding schemes may be 0-11.
  • indices 0 to 13 in the above embodiments are only exemplary, and the present disclosure is not limited thereto, and other index values suitable for various modulation and coding modes are also feasible.
  • a modulation coding strategy may be referred to as an extremely high-throughput (EHT)-MCS, ie, EHT-MCS.
  • EHT extremely high-throughput
  • the modulation coding strategy (MCS) combination may include at least one of EHT-MCS 0 to EHT-MCS 13.
  • the first message frame may include an extremely high throughput operation information element (EHT Operation element) to identify the physical parameters of the STA.
  • EHT Operation element an extremely high throughput operation information element
  • Table 1 the format of the extremely high throughput operation information element (EHT Operation element) may be as shown in Table 1 below:
  • EHT Operation Element shown in Table 1 are only exemplary, and the embodiments of the present disclosure are not limited thereto.
  • the EHT Operation Element may also include a 6GHz operation information field and the like.
  • the very high throughput operation information element shown in Table 1 may include a Basic EHT-MCS And NSS Set (Basic EHT-MCS And NSS Set), as shown in Table 2 below:
  • each subfield in the plurality of first subfields may include at least three bits, and the encoded value of each subfield may represent any of the following:
  • the first value indicates EHT-MCS 0 to EHT-MCS 7 for n spatial streams
  • the second value indicates EHT-MCS 0 to EHT-MCS 9 for n spatial streams
  • the third value indicates EHT-MCS 0 to EHT-MCS 11 for n spatial streams
  • the fourth value indicates EHT-MCS 0 to EHT-MCS 13 for n spatial streams
  • the fifth value indicates that n spatial streams are not supported.
  • the first value may be 0, the second value may be 1, the third value may be 2, the fourth value may be 3, and the fifth value may be 4, however this is exemplary only and the present disclosure Not limited to this, other values are possible.
  • each element in the table of the present disclosure exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist according to the simultaneous existence shown in the table. .
  • the value of each element is independent of any other element value in Table 1. Therefore, those skilled in the art can understand that the value of each element in the table of the present disclosure is an independent embodiment.
  • physical parameters for more spatial streams can be identified through a newly defined very high throughput operation information element (specifically, the basic EHT-MCS and NSS combined field) , and the identified information includes EHT-MCS 12 and EHT-MCS 13 corresponding to 4096-QAM (ie, supports 4096-QAM), so it can meet the requirements of the EEE802.11be standard.
  • a newly defined very high throughput operation information element specifically, the basic EHT-MCS and NSS combined field
  • the identified information includes EHT-MCS 12 and EHT-MCS 13 corresponding to 4096-QAM (ie, supports 4096-QAM), so it can meet the requirements of the EEE802.11be standard.
  • the extremely high throughput operation information element shown in Table 1 may include an EHT operation parameter field (EHT Operation Parameter), which is used to indicate the existence of operation parameters under the existing standard.
  • EHT Operation Parameter EHT Operation Parameter
  • the EHT Operation Parameter field may include a first identification (eg, HE Operation Parameter Present) for indicating whether there is a High Efficiency (HE) Operation Parameter sub-field.
  • a first identification eg, HE Operation Parameter Present
  • the EHT operation information element shown in Table 1 may include the HE operation parameter subfield (that is, the The number of bytes is not 0); in the case where the first identifier (HE Operation Parameter Present) is set to "0”, the EHT operation information element shown in Table 1 does not include the HE operation parameter subfield (that is, in Table 1 The byte count of the HE Operation Information is 0).
  • the EHT Operation Parameter field may include a second identification (eg, VHT Operation Parameter Present) for indicating whether a very high throughput (VHT) operation parameter sub-field exists.
  • VHT Operation Parameter Present a second identification
  • the EHT operation information element shown in Table 1 contains the VHT operation parameter subfield (that is, the word of the VHT Operation Information in Table 1). The number of sections is not 0); in the case where the second identifier (VHT Operation Parameter Present) is set to "0", the EHT operation information element shown in Table 1 does not contain the VHT operation parameter subfield (that is, the The number of bytes of VHT Operation Information is 0).
  • the first message frame may include a supported EHT-MCS and NSS set (Supported EHT MCS And NSS Set) subfield, which is used to identify the physical parameters of the STA, and its specific format may be as shown in Table 3 below shown.
  • EHT-MCS and NSS set Serial EHT MCS And NSS Set
  • the supported EHT-MCS and NSS combination subdomains may include a second subdomain indicating at least one of the following:
  • the receiving EHT-MCS map corresponding to the bandwidth of 320MHz (Rx EHT-MCS Map 320MHz);
  • the transmission EHT-MCS map corresponding to the bandwidth of 320MHz (Tx EHT-MCS Map 320MHz);
  • the receiving EHT-MCS map corresponding to the bandwidth of 160+160MHz (Rx EHT-MCS Map 160+160MHz);
  • a transmit EHT-MCS map corresponding to a bandwidth of 160+160MHz (Tx EHT-MCS Map 160+160MHz).
  • the supported EHT-MCS and NSS combination subfields may further include physical parameters less than or equal to 80MHz bandwidth, 160MHz bandwidth, and 80+80MHz bandwidth. That is, the supported EHT-MCS and NSS combined subdomain includes a second subdomain indicating at least one of the following:
  • the receiving EHT-MCS map corresponding to the bandwidth of 160MHz (Rx EHT-MCS Map 160MHz);
  • the transmission EHT-MCS map corresponding to the bandwidth of 160MHz (Tx EHT-MCS Map 160MHz);
  • the receiving EHT-MCS map corresponding to the bandwidth of 80+80MHz (Rx EHT-MCS Map 80+80MHz);
  • a transmit EHT-MCS map corresponding to a bandwidth of 80+80MHz (Tx EHT-MCS Map 80+80MHz).
  • each of the second sub-domains in the supported EHT-MCS and NSS combination sub-domains shown in Table 3 may have the format shown in Table 2 above. That is, the plurality of first subfields shown in Table 2 may be included in each of the second subfields shown in Table 3, and repeated descriptions are omitted here for brevity.
  • the supported EHT-MCS and NSS combination subfield of Table 3 may carry the very high throughput operation information element shown in Table 1. In another embodiment of the present disclosure, the supported EHT-MCS and NSS combination subfield of Table 3 may not be carried in the extremely high throughput operation information element shown in Table 1, but carried in the first message frame In another information element (eg, EHT capability information element) of the , or directly carried in the first message frame as a separate information element.
  • EHT capability information element eg, EHT capability information element
  • the first message frame may carry the very high throughput operation information element of Table 1 and at least one of the supported EHT-MCS and NSS combination subfields of Table 3, which may be based on the hardware conditions of the STA. Determine the content carried by the first message frame.
  • each element in the table of the present disclosure exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist according to the simultaneous existence shown in the table. .
  • the value of each element is independent of any other element value in Table 1. Therefore, those skilled in the art can understand that the value of each element in the table of the present disclosure is an independent embodiment.
  • a new EHT Operation information element (EHT Operation element) may be defined, which includes at least the following information:
  • the EHT Operation Parameter field contains the EHT Operation Parameter field.
  • this field at least one bit is used to identify whether it contains the HE (IEEE802.11ax) Operation Parameter.
  • the HE Operation Parameter Present field is set to "1", indicating that the EHT Operation element contains the HE Operation Parameter field; set to "0" ", does not include.
  • a bit can also be used to identify whether the VHT (IEEE802.11ac) Operation Parameter field is included, and the identification method is the same as the above.
  • the Basic MCS And NSS Set fields may also be included.
  • each field shown in Table 2 may also be 3 bits, and in some embodiments, may be:
  • EHT-MCS 0 to EHT-MCS 7 for n spatial streams (0 indicates support for EHT-MCS 0-7 for n spatial streams);
  • EHT-MCS 0 to EHT-MCS 9 for n spatial streams (1 indicates support for EHT-MCS 0-9 for n spatial streams);
  • EHT-MCS 0 to EHT-MCS 13 for n spatial streams (3 indicates support for EHT-MCS 0-13 for n spatial streams);
  • the Supported EHT-MCS And NSS Set may be redesigned.
  • the transmitting end and the receiving end may communicate based on the first message frame.
  • the AP device may determine the first message frame in step 610, and send the determined first message frame to the non-AP device, correspondingly , the non-AP device can receive the first message frame, so as to learn the physical parameters of the AP device based on the first message frame.
  • the communication method shown in FIG. 6 may be applied to the AP device as the sender, the AP device may determine the first message frame in step 610, and send the determined first message frame to the non-AP device, correspondingly , the non-AP device can receive the first message frame, so as to learn the physical parameters of the AP device based on the first message frame.
  • the non-AP device may determine the first message frame in step 610, and send the determined first message frame to the AP device, Correspondingly, the AP device may receive the first message frame, so as to learn the physical parameters of the non-AP device based on the first message frame.
  • the communication method described with reference to FIG. 6 and the first message frame described in Tables 1 to 3 can meet the requirements of the IEEE802.11be standard, improve spectrum utilization efficiency, and improve throughput.
  • Figure 7 shows a block diagram of a communication device according to an embodiment.
  • the communication device 700 shown in FIG. 7 can be applied to any STA in the BSS, ie, any AP device or non-AP device.
  • the communication device 700 may include a processing module 710 and a sending module 720 .
  • the processing module 710 may be configured to determine the first message frame.
  • the first message frame may include information indicating physical parameters including modulation and coding strategy (MCS) combinations supported by N spatial streams, where N is a positive integer greater than 8. In some embodiments, the value of N is 16.
  • MCS modulation and coding strategy
  • the sending module 720 may be configured to communicate based on the first message frame.
  • the Modulation Coding Strategy (MCS) combination includes an MCS corresponding to a 4096-QAM modulation and coding scheme.
  • the indices of the MCS corresponding to the 4096-QAM modulation and coding scheme are 12 and 13.
  • the Modulation Coding Strategy (MCS) combination comprises MCS corresponding to QPSK, 16-QAM, 64-QAM, 256-QAM and/or 1024-QAM modulation and coding schemes.
  • the index of the MCS is 0-11.
  • the MCS is an extremely high throughput-modulation coding strategy (EHT-MCS).
  • each first subfield comprises at least three bits.
  • the encoded value of each first subfield characterizes any of the following:
  • the first value indicates EHT-MCS 0 to EHT-MCS 7 for n spatial streams
  • the second value indicates EHT-MCS 0 to EHT-MCS 9 for n spatial streams
  • the third value indicates EHT-MCS 0 to EHT-MCS 11 for n spatial streams
  • the fourth value indicates EHT-MCS 0 to EHT-MCS 13 for n spatial streams
  • the fifth value indicates that n spatial streams are not supported.
  • the first message frame includes a very high throughput operation information element.
  • the plurality of first subfields are included in the very high throughput operation information element.
  • the very high throughput operation information element comprises a very high throughput operation parameter field.
  • the very high throughput operating parameter field includes a first identification for indicating whether there is a high efficiency (HE) operating parameter subfield.
  • HE high efficiency
  • the very high throughput operating parameter field includes a second identification for indicating whether a very high throughput (VHT) operating parameter subfield exists.
  • VHT very high throughput
  • the first message frame includes a supported EHT-MCS and NSS combination subfield.
  • the supported EHT-MCS and NSS combination subdomains include a second subdomain indicating at least one of:
  • the supported EHT-MCS and NSS combination subdomains include a second subdomain indicating at least one of:
  • Receive EHT-MCS mapping corresponding to a bandwidth less than or equal to 80MHz
  • the EHT-MCS mapping corresponding to a bandwidth of 80+80 MHz is sent.
  • the plurality of first sub-domains are included in each of the second sub-domains.
  • the specific description of the first message frame may be similar to the description with reference to step 610 of FIG. 6 and Table 1 to Table 3, and repeated descriptions are omitted here for brevity.
  • the communication device 700 may perform the communication method described with reference to FIG. 6 , and repeated descriptions are omitted here for brevity.
  • the communication device 700 shown in FIG. 7 is only exemplary, and embodiments of the present disclosure are not limited thereto, for example, the communication device 700 may further include other modules, such as a memory module and the like. Additionally, the various modules in the communication device 700 may be combined into more complex modules, or may be divided into more separate modules to support various functions.
  • the processing module 710 may determine the first message frame, and may control the communication module 720 to send the determined first message frame to the non-AP device, and the corresponding Ground, the non-AP device may receive the first message frame, so as to learn the physical parameters of the AP device based on the first message frame.
  • the communication device shown in FIG. 7 may determine the first message frame, and may control the communication module 720 to send the determined first message frame to the non-AP device, and the corresponding Ground, the non-AP device may receive the first message frame, so as to learn the physical parameters of the AP device based on the first message frame.
  • the processing module 710 may determine the first message frame, and may control the communication module 720 to send the determined first message frame to the AP device, and the corresponding Alternatively, the AP device may receive the first message frame, so as to learn the physical parameters of the non-AP device based on the first message frame.
  • the communication device described with reference to FIG. 7 can meet the requirements of the IEEE802.11be standard, improve the utilization efficiency of the spectrum, and improve the throughput.
  • the embodiments of the present disclosure further provide an electronic device, the electronic device includes a processor and a memory; wherein, the memory stores machine-readable instructions (or may referred to as a "computer program"); a processor for executing machine-readable instructions to implement the method described with reference to FIG. 6 .
  • the memory stores machine-readable instructions (or may referred to as a "computer program”); a processor for executing machine-readable instructions to implement the method described with reference to FIG. 6 .
  • Embodiments of the present disclosure also provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method described with reference to FIG. 6 is implemented.
  • a processor may be used to implement or execute various exemplary logical blocks, modules and circuits described in connection with the present disclosure, for example, a CPU (Central Processing Unit, central processing unit), general processing device, DSP (Digital Signal Processor, data signal processor), ASIC (Application Specific Integrated Circuit, application-specific integrated circuit), FPGA (Field Programmable Gate Array, Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the memory may be, for example, ROM (Read Only Memory), RAM (Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory) Read memory), CD-ROM (Compact Disc Read Only Memory, CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures and that can

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种通信方法和通信设备。所述通信方法可以包括:确定第一消息帧,其中,所述第一消息帧包括指示物理参数的信息,所述物理参数包括N个空间流支持的调制编码策略(MCS)组合,其中N为大于8的正整数;发送端和接收端基于所述第一消息帧进行通信。本公开的示例实施例提供的技术方案能够提高吞吐量。

Description

通信方法和通信设备 技术领域
本公开涉及通信领域,更具体地说,涉及无线通信中的通信方法和通信设备。
背景技术
IEEE(Institute of Electrical and Electronic Engineers,电气与电子工程师协会)成立了TG(Task group,工作组)IEEE802.11be来研究下一代(IEEE802.11a/b/g/n/ac)Wi-Fi技术,所研究的范围为:320MHz的带宽传输、多个频段的聚合及协同等,期望能够相对于现有的IEEE802.11ax标准提高至少四倍的速率以及吞吐量,其主要的应用场景为视频传输、AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)等。
多个频段的聚合及协同是指设备间同时在2.4GHz、5.8GHz及6-7GHz的频段下进行通信,对于设备间同时在多个频段下通信需要定义新的MAC(Media Access Control,介质访问控制)机制来进行管理。此外,在IEEE802.11be中还期望能够支持低时延传输。
在IEEE802.11be标准的讨论中,将支持的最大带宽为320MHz(160MHz+160MHz),此外还可能会支持240MHz(160MHz+80MHz)及IEEE802.11ax标准中所支持的带宽。
在IEEE802.11be标准中,将额外支持4K QAM(quadrature amplitude modulation,正交调幅)调制方式(即,4096QAM),并且将额外支持比IEEE802.11ax标准中的8个空间流(SS:space stream)多的空间流(例如,16个空时流(space time stream)或空间流)。然而,现有标准不能够支持这样的调制方式以及空间流。
此外,由于在IEEE802.11be标准中将支持320MHz(160MHz+160MHz)带宽,并且将支持16*16MIMO(多输入多输出),而现有标准不能够标 识IEEE802.11be标准所支持的物理参数。
发明内容
本公开的各方面将至少解决上述问题和/或缺点。本公开的各种实施例提供以下技术方案:
根据本公开的示例实施例提供一种通信方法。所述通信方法包括:确定第一消息帧,其中,所述第一消息帧包括指示物理参数的信息,所述物理参数包括N个空间流支持的调制编码策略(MCS)组合,其中,N为大于8的正整数;发送端和接收端基于所述第一消息帧进行通信。
根据本公开的示例实施例提供一种通信设备。所述通信设备可以包括:处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括指示物理参数的信息,所述物理参数包括N个空间流支持的调制编码策略(MCS)组合,其中,N为大于8的正整数;通信模块,基于所述第一消息帧进行通信。
根据本公开的示例实施例提供了一种电子设备。所述电子设备包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序。所述处理器执行所述计算机程序时实现如上所述的方法。
根据本公开的示例实施例提供了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序。该计算机程序被处理器执行时实现如上所述的方法。
本公开的示例实施例提供的技术方案能够提高频谱的利用效率,并且提高吞吐量。
附图说明
通过参照附图详细描述本公开的示例实施例,本公开实施例的上述以及其他特征将更加明显,其中:
图1是示出无线通信场景的示例性示图。
图2是示出HE Operation element的格式的示意图。
图3是示出Supported HE-MCS And NSS Set的示意图。
图4是示出携带的关于调制编码策略的信息的示意图。
图5示出了HE-MCS对应的调制方式和编码率等信息的示例。
图6是示出根据本公开的示例实施例的通信方法的流程图。
图7是示出根据本公开的示例实施例的通信设备的框图。
具体实施方式
提供以下参照附图的描述,以帮助全面理解由所附权利要求及其等同物限定的本公开的各种实施例。本公开的各种实施例包括各种具体细节,但是这些具体细节仅被认为是示例性的。此外,为了清楚和简洁,可以省略对公知的技术、功能和构造的描述。
在本公开中使用的术语和词语不限于书面含义,而是仅被发明人所使用,以能够清楚和一致的理解本公开。因此,对于本领域技术人员而言,提供本公开的各种实施例的描述仅是为了说明的目的,而不是为了限制的目的。
应当理解,除非上下文另外清楚地指出,否则这里使用的单数形式“一”、“一个”、“所述”和“该”也可以包括复数形式。应该进一步理解的是,本公开中使用的措辞“包括”是指存在所描述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
将理解的是,尽管术语“第一”、“第二”等在本文中可以用于描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于将一个元素与另一个元素区分开。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元素可以被称为第二元素。
应该理解,当元件被称为“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的术语“和/或”或者表述“……中的至少一个/至少一者”包括一个或多个相关列出的项目的任何和所有组合。
除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。
图1是示出无线通信场景的示例性示图。
在无线局域网中,一个基本服务集(BSS)可以由站点(STA:station)构成。STA可以包括接入点(AP:Access Point)设备以及与AP设备通信的一个或多个非AP(non-AP)设备。一个基本服务集可以通过其AP设备连接到分配系统DS(Distribution System),然后再接入到另一个基本服务集,构成扩展的服务集ESS(Extended Service Set)。
AP设备是用于无线网络的无线交换机,也是无线网络的核心。AP设备可以用作无线基站,主要是用来连接无线网络及有线网络的桥接器。利用这种AP设备,可以整合有线及无线网络。
作为示例,AP设备可以包括软件应用和/或电路,以使无线网络中的其他类型节点可以通过AP与无线网络外部及内部进行通信。例如,AP设备可以是配备有Wi-Fi(Wireless Fidelity,无线保真)芯片的终端设备或网络设备。
作为示例,non-AP设备可以包括但不限于:蜂窝电话、智能电话、可穿戴设备、计算机、个人数字助理(PDA)、个人通信系统(PCS)设备、个人信息管理器(PIM)、个人导航设备(PND)、全球定位系统、多媒体设备、物联网(IoT)设备等。
虽然在图1中示出了一个AP设备与三个non-AP设备(non-AP 1、non-AP 2、non-AP 3)进行通信,但是这仅是示例性的,本公开的实施例不限于此,例如,AP设备和non-AP设备可以具有任何数量和/或任何类型。
在现有标准(例如,IEEE 802.11ax标准)中,可以通过高效率(HE:High-Efficiency)操作信息元素(HE Operation element)标识设备在IEEE 802.11ax标准中所述支持的物理参数。HE Operation element的格式可以如图2中的200所示。
在图2的HE操作信息元素200中,可以利用HE操作参数(HE Operation Parameter)域201指示是否存在关于IEEE 802.11ax标准之前的标准的操作信息。例如,在HE操作参数域201中指示超高吞吐量(VHT:Very High Throughput)操作信息的存在性(VHT Operation Information Present)。
此外,IEEE802.11ax标准中还定义了所支持的HE-MCS与NSS(NSS:空间流数量)组合(Supported HE-MCS And NSS Set),以指示STA支持 的用于接收和发送的HE-MCS与空间流的组合。图3示出了Supported HE-MCS And NSS Set的格式的示图。
在IEEE802.11ax标准中,可以通过图2所示的HE操作信息元素200中的基本HE-MCS与NSS组合域(Basic HE-MCS And NSS Set)或者图3的Supported HE-MCS And NSS Set中的每个子域,来携带关于调制编码策略的信息。图4示出了所携带的信息的格式的示意图。
在图4中,每个子域Max HE-MCS For n SS(n=1,…,8)可以按照以下方式被编码:
0指示用于n个空间流的HE-MCS 0至HE-MCS 7;
1指示用于n个空间流的HE-MCS 0至HE-MCS 9;
2指示用于n个空间流的HE-MCS 0至HE-MCS 11;
3指示不支持n个空间流。
在不同的资源单元中,HE-MCS 0至HE-MCS 11可以对应于不同的调制方式和编码率。图5示出了针对26-tone(子载波)HE-MCS的相应调制方式和编码率信息。
参照图2至图5可知,现有标准的机制无法满足IEEE802.11ax标准将支持的4096QAM、更多个空间流(例如,16个空间流)、320MHz(160MHz+160MHz)带宽等的需求。
图6是示出根据示例实施例的通信方法的流程图。图6所示的通信方法可以应用于BSS中的任何STA,即,任何的AP设备或non-AP设备。
参照图6,在步骤610中,可以确定第一消息帧。在本公开的实施例中,确定第一消息帧的方式可以有很多种,例如:STA可以根据以下的至少一种情况来生成第一消息帧:网络情况、负载情况、发送/接收设备的硬件能力、业务类型、相关协议规定;对此本公开实施例不作具体限制。在本公开的实施例中,STA还可以从外部设备获取该第一消息帧,对此本公开实施例不作具体限制。
第一消息帧可以是能够携带各种信息和/数据的管理帧、数据帧或控制帧,对此本公开的实施例不做具体限定。
为了满足IEEE802.11be标准将支持的4096 QAM、更多空间流(例如,16个空间流)、320MHz(160MHz+160MHz)带宽和/或16*16 MIMO, 本公开的实施例对第一消息帧中的内容进行了重新定义,以满足IEEE802.11be标准的需求。
在本公开的实施例中,为了便于描述,4096 QAM可以利用R=3/4和R=5/6(R:编码率,coding rate)来定义,4096 QAM对应的调制编码策略(MCS:modulation and coding scheme)索引可以为12和13。然而,这仅是示例性的,本公开的实施例不限于此。
根据本公开的实施例,第一消息帧可以包括指示物理参数的信息。物理参数可以包括N个空间流支持的调制编码策略(MCS)组合,其中,N为大于8的正整数。在下文中,为了便于描述,以N=16为例来进行描述,即,根据本公开的实施例的第一消息帧可以满足IEEE802.11be标准能够支持的16个空间流。
根据本公开的实施例,调制编码策略(MCS)组合可以包括对应于4096-QAM调制及编码方式的MCS。作为一个示例,对应于4096-QAM调制及编码方式的MCS的索引可以为12和13。
根据本公开的实施例,调制编码策略(MCS)组合包括对应于QPSK、16-QAM、64-QAM、256-QAM和/或1024-QAM调制及编码方式的MCS。作为示例,对应于QPSK、16-QAM、64-QAM、256-QAM和/或1024-QAM调制及编码方式的MCS可以为0-11。
将理解的是,上述实施例中的索引0至13仅是示例性的,本公开不限于此,其他适用于各种调制及编码方式的索引取值也是可行的。
在描述本公开的实施例时,可以将调制编码策略(MCS)称为极高吞吐量(EHT:extreme high-throughput)-MCS,即,EHT-MCS。参照上述关于索引取值的描述,调制编码策略(MCS)组合可以包括EHT-MCS 0至EHT-MCS 13中的至少一者。
下面将详细描述第一消息帧中包括的指示物理参数的各种信息。
根据本公开的实施例,第一消息帧可以包括极高吞吐量操作信息元素(EHT Operation element),来标识STA的物理参数。在本公开的一个示例中,极高吞吐量操作信息元素(EHT Operation element)的格式可以如下面的表1所示:
表1.EHT Operation element格式
Figure PCTCN2020128784-appb-000001
表1所示的EHT Operation Element所包含的内容仅是示例性的,本公开的实施例不限于此,例如,EHT Operation Element还可以包括6GHz操作信息域等。
在表1中,元素标识、长度、元素ID扩展等可以与现有标准中的含义相似,为了简明,在此省略不必要的描述。
根据本公开的实施例,表1所示的极高吞吐量操作信息元素可以包括基本EHT-MCS与NSS组合域(Basic EHT-MCS And NSS Set),如下面的表2所示:
表2.Basic EHT-MCS And NSS Set
Figure PCTCN2020128784-appb-000002
参照表2,在极高吞吐量操作信息元素的基本EHT-MCS与NSS组合域中可以包括多个第一子域(如表2中的“Max EHT MCS for 1 SS”至“Max EHT MCS for 16 SS”),以用于标识n个空间流支持的最大(Max)EHT-MCS组合,n=1,…,N(N=16)。在本公开的实施例中,多个第一子域中的每个子域可以包括至少三个比特,并且每个子域的编码值可以表征以下任一项:
第一值指示用于n个空间流的EHT-MCS 0至EHT-MCS 7;
第二值指示用于n个空间流的EHT-MCS 0至EHT-MCS 9;
第三值指示用于n个空间流的EHT-MCS 0至EHT-MCS 11;
第四值指示用于n个空间流的EHT-MCS 0至EHT-MCS 13;
第五值指示不支持n个空间流。
在一个示例中,第一值可以是0,第二值可以是1,第三值可以是2,第四值可以是3,第五值可以是4,然而这仅是示例性的,本公开不限于此,其他值也是可行的。
可以理解的是,本公开表格中的每一个元素都是独立存在的,这些元素 被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,本公开表格中的每一个元素的取值都是一个独立的实施例。
根据本公开的实施例,可以通过新定义的极高吞吐量操作信息元素(具体地,基本EHT-MCS与NSS组合域),标识关于更多空间流(N=16个空间流)的物理参数,并且标识的信息包含对应于4096-QAM的EHT-MCS 12和EHT-MCS 13(即,支持4096-QAM),因此,能够满足EEE802.11be标准的需求。
可选地,表1所示的极高吞吐量操作信息元素可以包括EHT操作参数域(EHT Operation Parameter),用于指示现有标准下的操作参数的存在性。
在一个实施例中,EHT操作参数域(EHT Operation Parameter)可以包括用于指示是否存在高效(HE)操作参数子域的第一标识(例如,HE Operation Parameter Present)。作为一个示例,在第一标识(HE Operation Parameter Present)设置为“1”的情况下,表1所示的EHT操作信息元素可以包含HE操作参数子域(即,表1中的HE Operation Information的字节数不为0);在第一标识(HE Operation Parameter Present)设置为“0”的情况下,则表1所示的EHT操作信息元素不包含HE操作参数子域(即,表1中的HE Operation Information的字节数为0)。
可选择地,EHT操作参数域(EHT Operation Parameter)可以包括用于指示是否存在超高吞吐量(VHT)操作参数子域的第二标识(例如,VHT Operation Parameter Present)。作为一个示例,在第二标识(VHT Operation Parameter Present)设置为“1”的情况下,表1所示的EHT操作信息元素包含VHT操作参数子域(即,表1中的VHT Operation Information的字节数不为0);在第二标识(VHT Operation Parameter Present)设置为“0”的情况下,则表1所示的EHT操作信息元素不包含VHT操作参数子域(即,表1中的VHT Operation Information的字节数为0)。
根据本公开的实施例,第一消息帧可以包括所支持的EHT-MCS与NSS组合(Supported EHT MCS And NSS Set)子域,用于标识STA的物理参数, 其具体格式可以如下面的表3所示。
表3.Supported EHT-MCS And NSS Set
Figure PCTCN2020128784-appb-000003
参照表3,在根据本公开的实施例的所支持的EHT-MCS与NSS组合子域中可以包括320MHz/160+160MHz带宽的物理参数。即,所支持的EHT-MCS与NSS组合子域可以包括指示以下至少一项的第二子域:
与320MHz的带宽对应的接收EHT-MCS映射(Rx EHT-MCS Map 320MHz);
与320MHz的带宽对应的发送EHT-MCS映射(Tx EHT-MCS Map 320MHz);
与160+160MHz的带宽对应的接收EHT-MCS映射(Rx EHT-MCS Map 160+160MHz);
与160+160MHz的带宽对应的发送EHT-MCS映射(Tx EHT-MCS Map 160+160MHz)。
此外,参照表3,在根据本公开的实施例的所支持的EHT-MCS与NSS组合子域中还可以包括小于等于80MHz带宽、160MHz带宽、80+80MHz带宽的物理参数。即,所支持的EHT-MCS与NSS组合子域包括指示以下至少一项的第二子域:
与小于等于80MHz的带宽对应的接收EHT-MCS映射(Rx EHT-MCS Map≤80MHz);
与小于等于80MHz的带宽对应的发送EHT-MCS映射(Tx EHT-MCS Map≤80MHz);
与160MHz的带宽对应的接收EHT-MCS映射(Rx EHT-MCS Map 160MHz);
与160MHz的带宽对应的发送EHT-MCS映射(Tx EHT-MCS Map 160MHz);
与80+80MHz的带宽对应的接收EHT-MCS映射(Rx EHT-MCS Map 80+80MHz);
与80+80MHz的带宽对应的发送EHT-MCS映射(Tx EHT-MCS Map 80+80MHz)。
作为一个示例,表3所示的所支持的EHT-MCS与NSS组合子域中的每个第二子域可以具有如上面的表2所示的格式。也就是说,表2所示的多个第一子域可以包括在表3所示的每个第二子域中,为了简明,在此省略重复的描述。
在本公开的一个实施例中,表3的所支持的EHT-MCS与NSS组合子域可以携带在表1所示的极高吞吐量操作信息元素。在本公开的另一实施例中,表3的所支持的EHT-MCS与NSS组合子域可以不携带在表1所示的极高吞吐量操作信息元素中,而是携带在第一消息帧的另一信息元素(例如,EHT能力信息元素)中,或者直接作为一个单独的信息元素携带在第一消息帧中。
将理解的是,第一消息帧可以携带表1的极高吞吐量操作信息元素以及表3的所支持的EHT-MCS与NSS组合子域中的至少一者,这可以基于STA的硬件条件来确定第一消息帧携带的内容。
可以理解的是,本公开表格中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,本公开表格中的每一个元素的取值都是一个独立的实施例。
在一些实施例中,可以定义新的极高吞吐量操作信息元素(EHT Operation element),其至少包括下面的信息:
需要与IEEE802.11ax标准兼容,则其包含EHT Operation Parameter域。在这个域中至少用一个比特位来标识其是否包含HE(IEEE802.11ax)Operation Parameter,例如,HE Operation Parameter Present域设置为“1”,标识EHT Operation element包含HE Operation Parameter域;设置为“0”,则不包含。
可选地,也可用一个比特位来标识是否包含VHT(IEEE802.11ac) Operation Parameter域,标识方法与上述一致。
在一些实施例中,还可以包含Basic MCS And NSS Set域。
由于在IEEE802.11be标准中支持了MCS12及MCS13,而且支持16STS,所以需对这个域作出新的定义,具体格式可以如上文的表2所示。作为一个示例,表2所示的每个域还可以为3个比特为,在一些实施例中,可以为:
—0指示用于n个空间流的EHT-MCS 0至EHT-MCS 7(0 indicates support for EHT-MCS 0-7 for n spatial streams);
—1指示用于n个空间流的EHT-MCS 0至EHT-MCS 9(1 indicates support for EHT-MCS 0-9 for n spatial streams);
—2指示用于n个空间流的EHT-MCS 0至EHT-MCS 11(2 indicates support for EHT-MCS 0-11 for n spatial streams);
—3指示用于n个空间流的EHT-MCS 0至EHT-MCS 13(3 indicates support for EHT-MCS 0-13 for n spatial stream);
—4指示不支持n个空间流(4 indicates that n spatial streams is not supported for EHT PPDUs)。
在一些实施例中,可以对Supported EHT-MCS And NSS Set进行重设计。
由于在IEEE802.11be中最大带宽为320MHz,所以需对这个域重新设计,作为示例其格式可以如上文的表3所示。将理解的是,在表3中针对320MHz信息的域,其可能不是一直出现的(AP和non-AP支持的物理参数不同)。
返回参照图6,在步骤620中,发送端和接收端可以基于第一消息帧进行通信。例如,在图6所示的通信方法应用于AP设备为发送端的情况下,AP设备可以在步骤610中确定第一消息帧,并且向non-AP设备发送所确定的第一消息帧,相应地,non-AP设备可以接收第一消息帧,从而基于第一消息帧获知AP设备的物理参数。例如,在图6所示的通信方法应用于non-AP设备为发送端的情况下,non-AP设备可以在步骤610中确定第一消息帧,并且向AP设备发送所确定的第一消息帧,相应地,AP设备可以接收第一消息帧,从而基于第一消息帧获知non-AP设备的物理参数。
参照图6描述的通信方法以及表1至表3所描述的第一消息帧可以满足IEEE802.11be标准的需求,提高频谱的利用效率,并且提高吞吐量。
图7示出了根据实施例的通信设备的框图。图7所示的通信设备700可以应用于BSS中的任何STA,即,任何的AP设备或non-AP设备。
参照图7,通信设备700可以包括处理模块710和发送模块720。处理模块710可以被配置为确定第一消息帧。第一消息帧可以包括指示物理参数的信息,所述物理参数包括N个空间流支持的调制编码策略(MCS)组合,其中,N为大于8的正整数。在一些实施例中,N的值为16。发送模块720可以被配置为基于第一消息帧进行通信。
根据实施例,所述调制编码策略(MCS)组合包括对应于4096-QAM调制及编码方式的MCS。
根据实施例,所述对应于4096-QAM调制及编码方式的MCS的索引为12和13。
根据实施例,所述调制编码策略(MCS)组合包括对应于QPSK、16-QAM、64-QAM、256-QAM和/或1024-QAM调制及编码方式的MCS。
根据实施例,所述MCS的索引为0至11。所述MCS为极高吞吐量-调制编码策略(EHT-MCS)。
根据实施例,第一消息帧包括:多个第一子域,其中,所述多个第一子域标识n个空间流支持的最大(Max)EHT-MCS组合,n=1,…,N。
根据实施例,每个第一子域包括至少三个比特。
根据实施例,每个第一子域的编码值表征以下任一项:
第一值指示用于n个空间流的EHT-MCS 0至EHT-MCS 7;
第二值指示用于n个空间流的EHT-MCS 0至EHT-MCS 9;
第三值指示用于n个空间流的EHT-MCS 0至EHT-MCS 11;
第四值指示用于n个空间流的EHT-MCS 0至EHT-MCS 13;
第五值指示不支持n个空间流。
根据实施例,所述第一消息帧包括:极高吞吐量操作信息元素。
根据实施例,所述多个第一子域包括在所述极高吞吐量操作信息元素中。
根据实施例,所述极高吞吐量操作信息元素包括极高吞吐量操作参数域。
根据实施例,所述极高吞吐量操作参数域包括用于指示是否存在高效(HE)操作参数子域的第一标识。
根据实施例,所述极高吞吐量操作参数域包括用于指示是否存在超高吞吐量(VHT)操作参数子域的第二标识。
根据实施例,所述第一消息帧包括:所支持的EHT-MCS与NSS组合子域。
根据实施例,所支持的EHT-MCS与NSS组合子域包括指示以下至少一项的第二子域:
与320MHz的带宽对应的接收EHT-MCS映射;
与320MHz的带宽对应的发送EHT-MCS映射;
与160+160MHz的带宽对应的接收EHT-MCS映射;
与160+160MHz的带宽对应的发送EHT-MCS映射。
根据实施例,所支持的EHT-MCS与NSS组合子域包括指示以下至少一项的第二子域:
与小于等于80MHz的带宽对应的接收EHT-MCS映射;
与小于等于80MHz的带宽对应的发送EHT-MCS映射;
与160MHz的带宽对应的接收EHT-MCS映射;
与160MHz的带宽对应的发送EHT-MCS映射;
与80+80MHz的带宽对应的接收EHT-MCS映射;
根据实施例,与80+80MHz的带宽对应的发送EHT-MCS映射。
根据实施例,所述多个第一子域包括在每个第二子域中。
第一消息帧的具体描述可以类似于参照图6的步骤610以及表1至表3的描述,为了简明,在此省略重复的描述。
通信设备700可以执行参照图6描述的通信方法,为了简明,在此省略重复的描述。此外,图7所示的通信设备700仅是示例性的,本公开的实施例不限于此,例如,通信设备700还可以包括其他模块,例如,存储器模块等。此外,通信设备700中的各个模块可以组合成更复杂的模块,或 者可以划分为更多单独的模块,以支持各种功能。
在图7所示的通信设备应用于AP设备为发送端的情况下,处理模块710可以确定第一消息帧,并且可以通过控制通信模块720向non-AP设备发送所确定的第一消息帧,相应地,non-AP设备可以接收第一消息帧,从而基于第一消息帧获知AP设备的物理参数。在图7所示的通信设备应用于non-AP设备为发送端的情况下,处理模块710可以确定第一消息帧,并且可以通过控制通信模块720向AP设备发送所确定的第一消息帧,相应地,AP设备可以接收第一消息帧,从而基于第一消息帧获知non-AP设备的物理参数。
参照图7描述的通信设备可以满足IEEE802.11be标准的需求,提高频谱的利用效率,并且提高吞吐量。
基于与本公开的实施例所提供的方法相同的原理,本公开的实施例还提供了一种电子设备,该电子设备包括处理器和存储器;其中,存储器中存储有机器可读指令(也可以称为“计算机程序”);处理器,用于执行机器可读指令以实现参照图6述的方法。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现参照图6描述的方法。
在示例实施例中,处理器可以是用于实现或执行结合本公开内容所描述的各种示例性的逻辑方框、模块和电路,例如,CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在示例实施例中,存储器可以是,例如,ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只 读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。此外,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
虽然已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为受限于实施例,而是应由所附权利要求及其等同物限定。

Claims (22)

  1. 一种通信方法,包括:
    确定第一消息帧,其中,所述第一消息帧包括指示物理参数的信息,所述物理参数包括N个空间流支持的调制编码策略(MCS)组合,其中,N为大于8的正整数;
    发送端和接收端基于所述第一消息帧进行通信。
  2. 根据权利要求1所述的通信方法,其中,所述调制编码策略(MCS)组合包括对应于4096-QAM调制及编码方式的MCS。
  3. 根据权利要求2所述的通信方法,其中,所述对应于4096-QAM调制及编码方式的MCS的索引为12和13。
  4. 根据权利要求1所述的通信方法,其中,所述调制编码策略(MCS)组合包括对应于QPSK、16-QAM、64-QAM、256-QAM和/或1024-QAM调制及编码方式的MCS。
  5. 根据权利要4所述的通信方法,其中,所述MCS的索引为0至11。
  6. 根据权利要求1至5中的任一项所述的通信方法,其中,N的值为16。
  7. 根据权利要求1至6中的任一项所述的通信方法,其中,所述MCS为极高吞吐量-调制编码策略(EHT-MCS)。
  8. 根据权利要求7所述的通信方法,其中,第一消息帧包括:多个第一子域,其中,所述多个第一子域标识n个空间流支持的最大(Max)EHT-MCS组合,n=1,…,N。
  9. 根据权利要求8所述的通信方法,其中,每个第一子域包括至少三个比特。
  10. 根据权利要求8或9所述的通信方法,其中,每个第一子域的编码值表征以下任一项:
    第一值指示用于n个空间流的EHT-MCS 0至EHT-MCS 7;
    第二值指示用于n个空间流的EHT-MCS 0至EHT-MCS 9;
    第三值指示用于n个空间流的EHT-MCS 0至EHT-MCS 11;
    第四值指示用于n个空间流的EHT-MCS 0至EHT-MCS 13;
    第五值指示不支持n个空间流。
  11. 根据权利要求8至10中的任一项所述的通信方法,其中,所述第一消息帧包括:极高吞吐量操作信息元素。
  12. 根据权利要求11所述的通信方法,其中,所述多个第一子域包括在所述极高吞吐量操作信息元素中。
  13. 根据权利要求11或12所述的通信方法,其中,所述极高吞吐量操作信息元素包括极高吞吐量操作参数域。
  14. 根据权利要求12所述的通信方法,其中,所述极高吞吐量操作参数域包括用于指示是否存在高效(HE)操作参数子域的第一标识。
  15. 根据权利要求13或14所述的通信方法,其中,所述极高吞吐量操作参数域包括用于指示是否存在超高吞吐量(VHT)操作参数子域的第二标识。
  16. 根据权利要求8至10中的任一项中的任一项所述的通信方法, 其中,所述第一消息帧包括:所支持的EHT-MCS与空间流数量(NSS)组合子域。
  17. 根据权利要求16所述的通信方法,其中,所支持的EHT-MCS与NSS组合子域包括指示以下至少一项的第二子域:
    与320MHz的带宽对应的接收EHT-MCS映射;
    与320MHz的带宽对应的发送EHT-MCS映射;
    与160+160MHz的带宽对应的接收EHT-MCS映射;
    与160+160MHz的带宽对应的发送EHT-MCS映射。
  18. 根据权利要求16或17所述的通信方法,其中,所支持的EHT-MCS与NSS组合子域包括指示以下至少一项的第二子域:
    与小于等于80MHz的带宽对应的接收EHT-MCS映射;
    与小于等于80MHz的带宽对应的发送EHT-MCS映射;
    与160MHz的带宽对应的接收EHT-MCS映射;
    与160MHz的带宽对应的发送EHT-MCS映射;
    与80+80MHz的带宽对应的接收EHT-MCS映射;
    与80+80MHz的带宽对应的发送EHT-MCS映射。
  19. 根据权利要求17或18所述的通信方法,其中,所述多个第一子域包括在每个第二子域中。
  20. 一种通信设备,包括:
    处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括指示物理参数的信息,所述物理参数包括N个空间流支持的调制编码策略(MCS)组合,其中,N为大于8的正整数;
    通信模块,基于所述第一消息帧进行通信。
  21. 一种电子设备,包括存储器、处理器及存储在所述存储器上并在 所述处理器上可运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1-19中的任一项所述的方法。
  22. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1-19中的任一项所述的方法。
PCT/CN2020/128784 2020-11-13 2020-11-13 通信方法和通信设备 WO2022099638A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/036,533 US20230412301A1 (en) 2020-11-13 2020-11-13 Communication method and communication device
CN202080003178.5A CN114766082A (zh) 2020-11-13 2020-11-13 通信方法和通信设备
PCT/CN2020/128784 WO2022099638A1 (zh) 2020-11-13 2020-11-13 通信方法和通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128784 WO2022099638A1 (zh) 2020-11-13 2020-11-13 通信方法和通信设备

Publications (1)

Publication Number Publication Date
WO2022099638A1 true WO2022099638A1 (zh) 2022-05-19

Family

ID=81602058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128784 WO2022099638A1 (zh) 2020-11-13 2020-11-13 通信方法和通信设备

Country Status (3)

Country Link
US (1) US20230412301A1 (zh)
CN (1) CN114766082A (zh)
WO (1) WO2022099638A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971167B1 (en) * 2011-04-06 2015-03-03 Marvell International Ltd. Data encoding methods in a communication system
WO2019032216A1 (en) * 2017-08-11 2019-02-14 Intel Corporation DETERMINING A NUMBER OF SPACE FLUXES AND A BANDWIDTH
CN109716687A (zh) * 2016-09-12 2019-05-03 Lg 电子株式会社 在无线lan系统中发送或接收信号的方法及其设备
CN111726193A (zh) * 2019-03-18 2020-09-29 华为技术有限公司 信息指示方法及装置、数据传输系统
CN111901280A (zh) * 2020-02-20 2020-11-06 中兴通讯股份有限公司 调制编码策略、功率配置方法、装置、设备和存储介质
CN111901273A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 一种调制编码方法、装置、设备和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180124866A1 (en) * 2016-11-03 2018-05-03 Qualcomm Incorporated Techniques for high efficiency basic service set operation
CN116405161B (zh) * 2018-07-17 2024-01-16 华为技术有限公司 一种通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971167B1 (en) * 2011-04-06 2015-03-03 Marvell International Ltd. Data encoding methods in a communication system
CN109716687A (zh) * 2016-09-12 2019-05-03 Lg 电子株式会社 在无线lan系统中发送或接收信号的方法及其设备
WO2019032216A1 (en) * 2017-08-11 2019-02-14 Intel Corporation DETERMINING A NUMBER OF SPACE FLUXES AND A BANDWIDTH
CN111726193A (zh) * 2019-03-18 2020-09-29 华为技术有限公司 信息指示方法及装置、数据传输系统
CN111901273A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 一种调制编码方法、装置、设备和存储介质
CN111901280A (zh) * 2020-02-20 2020-11-06 中兴通讯股份有限公司 调制编码策略、功率配置方法、装置、设备和存储介质

Also Published As

Publication number Publication date
US20230412301A1 (en) 2023-12-21
CN114766082A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2020187208A1 (zh) 信息指示方法及装置、数据传输系统
WO2022147691A1 (zh) 通信方法和通信设备
WO2021253300A1 (zh) 通信方法及设备、电子设备以及计算机可读存储介质
WO2022099638A1 (zh) 通信方法和通信设备
WO2023000151A1 (zh) 多连接下的通信方法和通信装置
WO2022087913A1 (zh) 通信方法和通信设备
WO2022094861A1 (zh) 通信方法和通信设备
WO2022178854A1 (zh) 通信方法和通信设备
WO2022213387A1 (zh) 通信方法和通信装置
WO2022056846A1 (zh) 多连接下的通信方法和通信设备
WO2022160185A1 (zh) 通信方法和通信设备
WO2022205320A1 (zh) 通信方法和通信装置
EP4391701A1 (en) Communication method and communication apparatus
WO2022188106A1 (zh) 通信方法和通信装置
WO2022087912A1 (zh) 通信方法和通信设备
WO2022256985A1 (zh) 通信方法和通信装置
WO2022241641A1 (zh) 通信方法和通信装置
WO2022133654A1 (zh) 多连接下的通信方法和通信设备
EP4156771A1 (en) Method and device for identifying bandwidth, electronic device, and storage medium
WO2022170448A1 (zh) 多连接下的通信方法和通信装置
RU2819349C1 (ru) Способ связи и устройство связи
WO2022217586A1 (zh) 多连接下的通信方法和通信装置
WO2023071901A1 (zh) 通信方法和通信装置
WO2023056608A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18036533

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961194

Country of ref document: EP

Kind code of ref document: A1