WO2022099483A1 - 照明驱动电源电路、装置及灯管 - Google Patents

照明驱动电源电路、装置及灯管 Download PDF

Info

Publication number
WO2022099483A1
WO2022099483A1 PCT/CN2020/127906 CN2020127906W WO2022099483A1 WO 2022099483 A1 WO2022099483 A1 WO 2022099483A1 CN 2020127906 W CN2020127906 W CN 2020127906W WO 2022099483 A1 WO2022099483 A1 WO 2022099483A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
capacitor
signal
power supply
Prior art date
Application number
PCT/CN2020/127906
Other languages
English (en)
French (fr)
Inventor
李胜森
罗杨洋
杨林
杨海涛
Original Assignee
深圳市豪恩智能物联股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市豪恩智能物联股份有限公司 filed Critical 深圳市豪恩智能物联股份有限公司
Priority to CN202080002699.9A priority Critical patent/CN112771997B/zh
Priority to PCT/CN2020/127906 priority patent/WO2022099483A1/zh
Publication of WO2022099483A1 publication Critical patent/WO2022099483A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present application relates to the technical field of lamp driving, in particular to a lighting driving power circuit, a device and a lamp tube.
  • One of the purposes of the embodiments of the present application is to provide a lighting driving power circuit, a device and a lamp tube, aiming at solving the problems of insufficient compatibility of the lamp tube driving circuit and poor safety and stability in the traditional technical solutions.
  • a lighting driving power supply circuit which is connected to an electronic ballast and a light source module, and the lighting driving power supply circuit includes:
  • a first impedance matching circuit connected to the electronic ballast, configured to transmit the power signal provided by the electronic ballast, and to adjust the impedance of the filament between the first end and the second end of the electronic ballast to match;
  • a second impedance matching circuit connected to the electronic ballast, is configured to transmit the power signal provided by the electronic ballast, and to adjust the impedance of the filament between the third end and the fourth end of the electronic ballast to match;
  • a first rectification circuit connected to the first impedance matching circuit, is configured to rectify the power supply signal provided by the electronic ballast to generate a first DC voltage signal, and the first DC voltage signal is used to drive the the light source module emits light;
  • the second rectifier circuit is connected to the second impedance matching circuit and the first impedance matching circuit, and is configured to perform isolation coupling processing on the power supply signal provided by the electronic ballast, and perform isolation coupling processing on the power supply signal after the isolation coupling processing. performing a rectification process to generate a second DC voltage signal;
  • a transformer circuit connected to the first rectifier circuit and the second rectifier circuit, configured to transmit the power supply signal, and to generate a sensing voltage signal according to the power supply signal;
  • an overcurrent detection circuit connected to the transformer circuit, configured to detect the sensing voltage signal to generate a current detection signal
  • an under-voltage detection circuit connected to the first impedance matching circuit and the second rectifier circuit, and configured to detect the power supply signal to generate an under-voltage detection signal
  • a first comparison circuit connected to the overcurrent detection circuit and the undervoltage detection circuit, configured to compare the current detection signal and the undervoltage detection signal with a first reference voltage signal to generate a drive control signal ;
  • a regulated isolation drive circuit connected to the first comparison circuit, the second rectifier circuit, the second impedance matching circuit and the transformer circuit, and configured to be based on the drive control signal and the second DC
  • the voltage signal controls the connection state of the second impedance matching circuit and the transformer circuit, so that the electronic ballast is powered off.
  • a lighting driving device in a second aspect, includes the lighting driving power supply circuit according to any one of the above.
  • a lamp tube in a third aspect, includes: a light source module; and the lighting driving power circuit according to any one of the above.
  • the beneficial effects of the lighting driving power supply circuit, device and lamp tube provided by the embodiments of the present application are that the power supply signal provided by the electronic ballast is transmitted through the first impedance matching circuit, and the first end and the second end of the electronic ballast are connected.
  • the second impedance matching circuit transmits the power signal provided by the electronic ballast, and matches the filament impedance between the third end and the fourth end of the electronic ballast;
  • the power signal is rectified to generate a first DC voltage signal;
  • the second rectifier circuit performs isolation and coupling processing on the power signal, and rectifies the power signal after isolation and coupling processing to generate a second DC voltage signal;
  • the transformer circuit transmits power signal, and generate a sensing voltage signal according to the power supply signal;
  • the overcurrent detection circuit detects the sensing voltage signal to generate a current detection signal;
  • the undervoltage detection circuit detects the power supply signal to generate an undervoltage detection signal;
  • the first comparison circuit will The current detection signal and the under-voltage detection signal are compared
  • FIG. 1 is a schematic structural diagram of a lighting driving power supply circuit provided by an embodiment of the present application
  • FIG. 2 is another schematic structural diagram of a lighting driving power supply circuit provided by an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a lighting driving power supply circuit provided by an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of a lighting driving power supply circuit provided by an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of a lighting driving power supply circuit provided by an embodiment of the present application.
  • FIG. 6 is another schematic structural diagram of a lighting driving power supply circuit provided by an embodiment of the present application.
  • FIG. 7 is an exemplary circuit schematic diagram of a lighting driving power supply circuit provided by an embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a lighting driving power supply circuit provided by the first embodiment of the present application. For the convenience of description, only the parts related to this embodiment are shown, and the details are as follows:
  • a lighting driving power supply circuit is connected with an electronic ballast and a light source module 100.
  • the lighting driving power supply circuit includes: a first impedance matching circuit 01, a second impedance matching circuit 02, a first rectifying circuit 11, and a second rectifying circuit 21 , a transformer circuit 22 , an overcurrent detection circuit 23 , an undervoltage detection circuit 24 , a first comparison circuit 25 , and a voltage-stabilized isolation drive circuit 26 .
  • the first impedance matching circuit 01 connected to the electronic ballast, is configured to transmit the power signal provided by the electronic ballast, and to match the filament impedance between the first end and the second end of the electronic ballast;
  • the second Impedance matching circuit 02 connected to the electronic ballast, configured to transmit the power signal provided by the electronic ballast, and to match the filament impedance between the third end and the fourth end of the electronic ballast;
  • the second rectifier The circuit 21, connected to the second impedance matching circuit 02 and the first impedance matching circuit 01 is configured to perform isolation coupling processing on the power supply signal provided by the electronic ballast, and perform rectification processing on the power supply signal after the isolation coupling processing to generate the first Two DC voltage signals;
  • the light source module 100 is an LED light source module.
  • the first impedance matching circuit 01 is connected to the first end and the second end of the electronic ballast through the first input terminal of the lighting driving power circuit, corresponding to a group of simulated filaments of the lamp; the second impedance matching circuit 02 is driven by lighting
  • the second input terminal of the power supply circuit is connected to the third and fourth terminals of the electronic ballast, and corresponds to another set of simulated filaments of the lamp tube.
  • the impedance matching circuit is also called the filament impedance matching circuit, which realizes the support of the light source module 100.
  • the lighting drive power circuit is for the purpose of double-end feeding.
  • the lighting driving power circuit corresponding to the electronic ballast is double-ended, which meets the certification safety requirements.
  • the power supply signal is the AC power supply voltage signal provided by the electronic ballast, and is input into the lighting driving power supply circuit from the first impedance matching circuit 01 and the second impedance matching circuit 02, and the two input terminals of the lighting driving power supply circuit can be reverse connection.
  • the transformer circuit 22 transmits the power signal provided by the electronic ballast, and at the same time senses and detects the power signal to generate a sensing voltage signal.
  • the magnitude of the sensing voltage signal is proportional to the magnitude of the second power signal.
  • the sensing voltage signal is detected by the overcurrent detection circuit 23 to generate a current detection signal to detect whether the second power supply signal is overcurrent.
  • a current detection signal to detect whether the second power supply signal is overcurrent.
  • the comparison circuit 25 generates a low-level drive control signal according to the current detection signal greater than the first reference voltage signal, so as to control the constant voltage isolation drive circuit 26 to disconnect the second DC voltage signal, thereby disconnecting the second impedance matching circuit 02 from the transformer.
  • the connection between the circuits 22 triggers the electronic ballast to perform output protection and stops outputting the power signal, so that the lighting driving power circuit of the light source module 100 does not work to realize overcurrent protection; when the power supply fails, for example, the key components are open-circuited /short circuit, open circuit/short circuit of the light source module, etc., due to the failure of key components and the light source module, the voltage/current of the power supply signal will be lowered, and the undervoltage detection circuit 24 detects the power supply signal to generate an undervoltage detection signal.
  • the first comparison circuit 25 In response to the small change, the first comparison circuit 25 generates a low-level drive control signal according to the under-voltage detection signal smaller than the first reference voltage signal, so as to control the voltage-stabilizing isolation drive circuit 26 to disconnect the second DC voltage signal, thereby disconnecting the second DC voltage signal.
  • the connection between the impedance matching circuit 02 and the transformer circuit 22 triggers the electronic ballast for output protection and realizes under-voltage protection; effectively avoids burning out the LED light source module, fire, smoke, etc.
  • Safety problems such as deformation of the LED light source module can prevent the driving power supply circuit from working when an abnormality occurs, so as to protect the driving power supply circuit, the electronic ballast and the light source module 100 .
  • the lamp tube usually needs to be matched with a compatible ECG.
  • the similar product shape due to the similar product shape, it is difficult to avoid misuse on the client side.
  • the components in the lamp head Abnormal conditions such as overcurrent will cause damage to the lamp and cause safety hazards.
  • the present application can realize compatibility with different electronic ballasts, and perform overcurrent protection and undervoltage protection in the case of overcurrent and undervoltage caused by mixed use and wrong use of electronic ballasts, and the protection The efficiency is high, and the compatibility and safety and reliability of the lighting driving power circuit are improved.
  • the first impedance matching circuit 01 and the second impedance matching circuit 02 are symmetrically arranged, and the first impedance matching circuit 01 performs impedance matching processing on the power supply signal input by the first input terminal, and the second impedance matching circuit 02 performs impedance matching on the first power supply signal. Impedance matching is performed on the power signal input from the two electrical terminals to ensure impedance balance, and the compatibility of the lighting drive power circuit to the electronic ballast is enhanced and improved.
  • the lighting driving power supply circuit further includes: a first reference voltage generating circuit 27 .
  • the first reference voltage generating circuit 27, connected to the second rectifying circuit 21, is configured to generate a first reference voltage signal according to the second DC voltage signal.
  • the first reference voltage signal may be preset, or obtained by the first reference voltage generating circuit 27 performing voltage division and voltage stabilization processing on the second DC voltage signal.
  • the first comparison circuit 25 generates a low-level drive control signal according to the current detection signal greater than the first reference voltage signal and/or the under-voltage detection signal is smaller than the first reference signal; the first comparison circuit 25 generates a low-level drive control signal according to the current detection signal smaller than the first reference voltage signal and the under-voltage detection signal is smaller than the first reference signal to generate a high-level drive control signal.
  • the voltage-stabilizing isolation driving circuit 26 keeps conducting the second DC voltage signal according to the high-level driving control signal, so that the lighting driving power supply circuit works normally.
  • the lighting driving power supply circuit further includes: a temperature detection circuit 12 , a second comparison circuit 13 and a first switch circuit 14 .
  • the temperature detection circuit 12, connected to the first rectifier circuit 11, is configured to sample the first DC voltage signal to generate a first temperature detection signal;
  • the second comparison circuit 13, connected to the temperature detection circuit 12, is configured to supply power according to the first
  • the voltage signal compares the first temperature detection signal with the second reference voltage signal to generate a switch control signal;
  • the first switch circuit 14, connected to the second comparison circuit 13 and the light source module 100 is configured to control the first switch according to the switch control signal.
  • the temperature detection circuit 12 includes a temperature sensitive component, which can generate a first temperature detection signal correspondingly with the change of temperature.
  • the first temperature detection signal is a voltage signal or a current signal.
  • the temperature sensitive component is a positive temperature coefficient thermistor (PTC).
  • PTC positive temperature coefficient thermistor
  • the second comparison circuit 13 compares the first temperature detection signal with the second reference voltage signal on the basis of the first power supply voltage signal, and generates a low level according to the first temperature detection signal being greater than or equal to the second reference voltage signal to control the first switch circuit 14 to disconnect the connection between the first rectifier circuit 11 and the light source module 100, disconnect the power supply to the light source module 100, and achieve the purpose of over-temperature protection;
  • the open circuit detection protection function of the ballast comes with the ballast. When the output of the light source module 100 is open, it will send out two detection signals to test the light source module, and the electronic ballast will output the test result that the light source module flashes twice quickly according to the test signal. The protection starts and automatically shuts down to output the first power supply signal and the second power supply signal.
  • the second comparison circuit 13 generates a high-level switch control signal according to the first temperature detection signal being less than the second reference voltage signal, and controls the first switch circuit 14 to connect the first rectifier circuit 11 and the light source module 100 to ensure that the light source module is normal Power supply, the lighting power drive circuit works normally.
  • the first reference voltage signal and the second reference voltage signal may be the same or different, and may be selected according to actual design.
  • the voltage values of the first reference voltage signal and the second reference voltage signal are both 2.5V.
  • the first power supply voltage signal is generated by performing a voltage conversion process on the first direct current by a voltage conversion circuit.
  • the lighting driving power supply circuit further includes: a first power taking circuit 15 .
  • the first power taking circuit 15 is connected to the first rectifier circuit 11 and the transformer circuit 22, and is configured to generate a first power supply voltage signal according to the power supply signal.
  • the first power taking circuit 15 divides the power supply signal to take power to generate a first power supply voltage signal, and the first power supply voltage signal is used to supply power to the second comparison circuit 13, so that the second comparison circuit 13 is in the
  • the first temperature detection signal and the second reference voltage signal are compared on the basis of the first power supply voltage signal to generate a switch control signal, so as to control the connection state between the first rectifier circuit 11 and the light source module 100 , simplifies the design of the lighting drive power circuit, improves the integration of the lighting drive power circuit, and saves cost and space.
  • the lighting driving power supply circuit further includes: a second reference voltage generating circuit 16 and a voltage-stabilizing filter circuit 17 .
  • the second reference voltage generation circuit 16 is connected to the second comparison circuit 13 and is configured to generate a second reference voltage signal according to the first direct current;
  • the voltage stabilization filter circuit 17 is connected to the first rectifier circuit 11 and the light source module 100 and configured as The first DC voltage signal is stabilized and filtered.
  • the second reference voltage signal can be preset, and the second reference voltage signal can be obtained by dividing and stabilizing the first direct current through the second reference voltage generating circuit 16.
  • the circuit integration is high, and there are It is beneficial to reduce the volume of the lighting driving power circuit.
  • the first DC voltage signal output to the light source module 100 to drive the light source module 100 to work is subjected to filtering, noise reduction and voltage regulation processing by the voltage stabilization filter circuit 17, thereby improving the stability and reliability of the lighting driving power circuit.
  • the first direct current is 15V direct current, which is obtained by performing voltage conversion and voltage stabilization processing on the power supply voltage by the voltage conversion circuit.
  • the voltage-stabilizing isolation driving circuit 26 includes: a first filtering unit 261 , a voltage-stabilizing unit 262 , a second filtering unit 263 , a first switching unit 264 and an isolation driving unit 265 .
  • the first filtering unit 261, connected with the second rectifying circuit 21, is configured to perform filtering and noise reduction processing on the second DC voltage signal;
  • the voltage stabilization unit 262, connected with the first filtering unit 261, is configured to perform filtering and noise reduction processing on the The second DC voltage signal is subjected to voltage division and voltage stabilization processing to generate a voltage stabilization signal;
  • the second filtering unit 263, connected to the voltage stabilization unit 262, is configured to perform filtering and noise reduction processing on the voltage stabilization signal and the drive control signal;
  • the first switch The unit 264, connected with the second filtering unit 263, the voltage-stabilizing unit 262 and the first comparing circuit 25, is configured to be turned on or off according to the voltage-stabilizing signal after filtering and noise reduction and the driving control signal after filtering and noise-reducing, and A third direct current is generated according to the turned on second direct current voltage signal;
  • the isolation driving unit 265 is connected to the second impedance matching circuit 02, the first switching unit 264 and the transformer circuit 22, and is configured to match the second im
  • the first filtering unit 261 performs filtering and noise reduction processing on the second DC voltage signal
  • the voltage stabilization unit 262 performs voltage division and stabilization on the second DC voltage signal after filtering and noise reduction processing by the first filtering unit 261.
  • the second filtering unit 263 performs filtering and noise reduction processing on the voltage stabilization signal and the driving control signal, thereby outputting a stable voltage stabilization signal and driving control signal with low noise interference to the first switching unit 264.
  • the control terminal is used to accurately and stably drive the first switch unit 264 to turn on the second DC voltage signal in a normal state to generate and output a third DC power, and output the third DC power to the isolation driving power unit 265, which isolates the driving power unit 265
  • the third direct current is greater than the preset voltage threshold (for example, 6V)
  • the second impedance matching circuit 02 and the transformer circuit 22 are connected to transmit the power signal to the transformer circuit 22; and under abnormal conditions such as overcurrent and undervoltage, the The potential of the control terminal of the first switch unit 264 is pulled down by a low-level drive control signal, so as to quickly and accurately disconnect the second DC voltage signal, and stop generating the third DC power to supply power to the isolation drive unit 265 , and the isolation drive unit 265
  • the connection between the second impedance matching circuit 02 and the transformer circuit 22 will be disconnected, the electronic ballast will be triggered to perform output protection, and the output of the power signal will be stopped, so that the lighting driving power circuit of the light source
  • the second rectifier circuit 21 includes: an isolation coupling unit and a rectifier unit; wherein the isolation coupling unit is connected to the second impedance matching circuit 02 and the voltage-stabilizing isolation driving circuit 26, and is configured to connect to the electronic ballast The provided power supply signal is subjected to isolation coupling processing; the rectifying unit, connected to the isolation coupling unit and the voltage-stabilizing isolation driving circuit 26, is configured to perform rectification processing on the power supply signal after isolation coupling processing to generate a second DC voltage signal.
  • the first impedance matching resistor 01 includes: a fifth resistor R5, a third capacitor C3, a seventh resistor R7 and a fourth capacitor C4; wherein the fifth resistor R5 The first end and the first end of the third capacitor C3 are connected to the first end of the electronic ballast, and the first end of the seventh resistor R7 is shared with the first end of the fourth capacitor C4. connected to the second end of the electronic ballast, the second end of the fifth resistor R5, the second end of the third capacitor C3, the second end of the seventh resistor R7, the fourth The second end of the capacitor C4, the second end of the fifth resistor R5 and the second end of the third capacitor C3 are commonly connected to the first rectifier circuit.
  • the second impedance matching circuit 02 includes: a first resistor R1, a first capacitor C1, a second capacitor C2, and a third resistor R3;
  • the terminal and the first terminal of the first capacitor C1 are connected to the third terminal of the electronic ballast, and the first terminal of the third resistor R3 is connected to the first terminal of the twenty-second capacitor.
  • the second end of the first resistor R1, the second end of the first capacitor C1, the second end of the third resistor R3 and the second capacitor The second end of C2 is commonly connected to the second rectifier circuit.
  • the first rectifier circuit 11 includes: a first diode D1 , a second diode D2 , a third diode D3 and a fourth diode D4 ; a first diode D1 , a second diode D2 , a third diode D3 and a fourth diode D4 ;
  • the anode of the diode D1 and the cathode of the third diode D3 are connected to the first impedance matching circuit 01 in common.
  • the anode of the third diode D3 and the anode of the fourth diode D4 are connected to the ground in common.
  • the cathode of the pole tube D1 and the cathode of the second diode D2 are connected to the load in common, and the anode of the second diode D2 and the cathode of the fourth diode D4 are connected to the transformer circuit 22 .
  • a first fuse FH1 is further provided between the first rectifier circuit 11 and the first impedance matching circuit 01 .
  • a second fuse FH2 is further provided between the second rectifier circuit 21 and the first impedance matching circuit 02 .
  • the first fuse HF1 and the second fuse HF2 provide over-temperature protection to prevent the input from being disconnected when the internal temperature of the lamp head rises to 125°C when the lamp is over-current, so as to protect the ECG and the LED lamp.
  • the temperature detection circuit 12 includes: a ninth resistor R9, a twenty-fourth resistor R24, a nineteenth capacitor C19, and a first thermistor RV1; One end is connected to the first rectifier circuit, the second end of the ninth resistor R9, the first end of the twenty-fourth resistor R24, the first end of the nineteenth capacitor C19 and the first end of the first thermistor RV1 are in common. Connected to the second comparison circuit 13, the second end of the twenty-fourth resistor R24, the second end of the nineteenth capacitor C19 and the second end of the first thermistor RV1 are connected to the ground in common.
  • the ninth resistor R9, the twenty-fourth resistor R24, the nineteenth capacitor C19, and the first thermistor RV1 form a temperature detection circuit, which is used for voltage sampling according to temperature changes.
  • the thermistor may be a PTC thermistor, and when the temperature reaches a certain value, the resistance of the thermistor increases instantaneously and the voltage division ratio also changes accordingly.
  • the voltage regulator filter circuit 17 includes: a fifth capacitor C5, a second voltage regulator ZD2, a sixth capacitor C6, a seventh capacitor C7, an eighth capacitor C8, a third voltage regulator Voltage tube ZD3, twenty-third capacitor C23, thirty-eighth resistor R38, eleventh resistor R11, twelfth resistor R12; the first end of the fifth resistor R5, the first end of the second voltage regulator tube ZD2, The first end of the sixth resistor, the first end of the seventh capacitor C7, the first end of the eighth capacitor C8, the first end of the eleventh resistor R11 and the first end of the third voltage regulator ZD3 are connected to the rectifier.
  • the second end of the eleventh resistor R11 is connected to the first end of the twelfth resistor R12, the second end of the fifth capacitor C5, the second end of the second voltage regulator ZD2, and the first end of the sixth capacitor C6.
  • the two terminals, the first terminal of the twenty-third capacitor C23 and the first terminal of the thirty-eighth resistor R38 are commonly connected to the first terminal of the first switch circuit, the second terminal of the seventh capacitor C7 and the twenty-third capacitor
  • the second end of C23, the second end of the thirty-eighth resistor R38, the second end of the third voltage regulator ZD3, and the second end of the twelfth resistor R12 are commonly connected to the second end of the first switch circuit.
  • the eleventh resistor R11 and the twelfth resistor R12 form a load discharge circuit, and two resistors are connected in series as a load discharge resistor to prevent damage to the discharge resistor due to excessive ECG open circuit voltage during production testing.
  • the first power taking circuit 15 includes: a ninth capacitor C9, an eighteenth resistor R18, a fifth diode D5 and a sixth diode D6; a ninth capacitor C9
  • the first end of the ninth capacitor C9 is connected to the rectifier circuit, the second end of the ninth capacitor C9 is connected to the first end of the eighteenth resistor R18, the second end of the eighteenth resistor R18, the anode of the fifth diode D5 and the sixth
  • the cathode of the diode D6 is connected in common, the anode of the sixth diode D6 is grounded, and the cathode of the fifth diode D5 is connected to the second comparison circuit 13 .
  • the second reference voltage generating circuit 16 includes: a thirteenth resistor R13 , a fourteenth resistor R14 , a first thyristor chip U1 and a tenth capacitor C10 ;
  • the first end of the resistor R13 is connected to the first power supply end 15V, the second end of the thirteenth resistor R13, the first end of the fourteenth resistor R14, the first end of the first thyristor chip U1, the first end of the first controllable silicon chip U1
  • the control terminal of the silicon chip U1 and the first terminal of the tenth capacitor C10 are connected together, the second terminal of the first thyristor chip U1 and the second terminal of the tenth capacitor C10 are connected to the ground, and the second terminal of the fourteenth resistor R14 is connected to the ground.
  • the two terminals are connected to the second comparison circuit.
  • the second comparison circuit 13 includes: a seventeenth resistor R17 , a second switch transistor Q2 , a twenty-fifth resistor R25 , a tenth resistor R10 , a third switch transistor Q3 , The twenty-third resistor R23, the nineteenth resistor R19, the fifth switch transistor Q5, the twelfth capacitor C12, the twentieth resistor R20, the fourth voltage regulator ZD4, the fifteenth resistor R15, the sixteenth resistor R16, The eleventh capacitor C11, the fourth operational amplifier comparator U4; the first end of the seventeenth resistor R17 and the first end of the second switch tube Q2 are connected to the control end of the first switch circuit 14, and the seventeenth resistor R17
  • the second end of the third switch tube Q3 is connected to the first end of the third switch tube Q3, the second end of the third switch tube Q3, the first end of the twenty-third resistor R23, the first end of the nineteenth resistor R19, the twelfth
  • the terminal is connected to the second power supply terminal 9V, the second terminal of the twentieth resistor R20, the first terminal of the fourth voltage regulator ZD4 and the voltage terminal of the fourth operational amplifier comparator U4 are connected to the third power supply terminal, the fourth The inverting input end of the operational amplifier comparator U4, the first end of the fifteenth resistor R15 and the first end of the eleventh capacitor C11 are connected to the second reference voltage generating circuit, and the second end of the nineteenth resistor R19, The second end of the twelfth capacitor C12, the second end of the fourth voltage regulator ZD4, the second end of the fifteenth resistor R15, and the second end of the eleventh capacitor C11 are connected to the ground, and the fourth operational amplifier compares The non-inverting input terminal of the device U4 is connected to the temperature detection circuit 12 .
  • the isolation coupling unit includes a first safety capacitor CY1 and a sixteenth capacitor C16, and the first end of the first safety capacitor CY1 is connected to the second impedance matching circuit 02. Connection, the second end of the first safety capacitor CY1 and the first end of the sixteenth capacitor C16 are connected to the rectifier unit in common, and the sixteenth capacitor C16 is connected to the transformer circuit 22 .
  • the model of the first safety capacitor CY1 is CY1-152/400V
  • the second power signal is coupled through the capacitor CY1, thereby improving the safety of the lighting driving power circuit.
  • the rectifier unit is a rectifier bridge DB1 and a rectifier bridge BD1, and the rectifier bridge BD1 performs rectification processing on the power signal after isolation and coupling processing, so as to generate a stable second DC voltage signal.
  • the transformer circuit 22 includes: a transformer T1; wherein the first end of the primary winding N1 of the transformer T1 is connected to the first rectifier circuit 11, and the primary winding N1 of the transformer T1 has a first end connected to the first rectifier circuit 11. The second end is connected to the second rectifier circuit 21 and the voltage regulator isolation drive circuit 26, the first end of the secondary winding N2 of the transformer T1 is connected to the overcurrent detection circuit 23, and the second end of the secondary winding N2 of the transformer T1 is connected to the power supply ground connection.
  • the primary winding N1 of the transformer T1 couples, samples and transmits the power signal input from the second input terminal
  • the secondary winding N2 of the transformer T1 senses the power signal coupled and sampled by the primary winding N1 to generate a positive correlation Sensing the voltage signal, that is, when the magnitude of the inductance current flowing through the primary winding N1 of the transformer T1 is different, the voltage output by the coupling of the secondary winding N2 of the transformer T1 is also different.
  • the sensing voltage signal is used for overcurrent detection by the overcurrent detection circuit 23 .
  • the voltage-stabilizing isolation driving circuit 26 includes: a twenty-first resistor R21 , a twenty-second resistor R22 , a twenty-ninth resistor R29 , a fifth Zener diode ZD5 , a tenth The three capacitors C13, the fourteenth capacitor C14, the fifteenth capacitor C15, the first field effect transistor Q1 and the relay K1; wherein, the first end of the thirteenth capacitor C13, the first end of the twenty-first resistor R21 and the The first end of the twenty-two resistor R22 is connected to the second rectifier circuit 21, the second end of the twenty-first resistor R21 is connected to the cathode of the fifth Zener diode ZD5, the first end of the fourteenth capacitor C14, and the twentieth The first end of the nine resistors R29 is connected to the gate of the first field effect transistor Q1, the gate of the first field effect transistor Q1 is connected to the first comparison circuit 25, and the source of the first field effect transistor
  • the first field effect transistor Q1 is an N-type MOS transistor.
  • the first contact terminal 3 of the relay K1 and the second contact terminal 10 of the relay K1 together constitute the normally closed switch of the relay K1
  • the three contact terminal 5 of the relay K1 and the fourth contact terminal of the relay K1 8 is the normally open switch of the relay K1
  • the fourth contact terminal 8 of the relay K1 is connected to the second terminal of the primary winding N1 of the transformer T1.
  • the first filter unit 261 includes a thirteenth capacitor C13; the voltage regulator unit 262 includes a twenty-first resistor R21 and a fifth voltage regulator diode ZD5; the second filter unit 263 includes a thirteenth capacitor C13; Twenty-nine resistors R29 and fourteenth capacitors C14; the first switch unit 264 includes a twenty-second resistor R22, a fifteenth capacitor C15 and a first field effect transistor Q1; the isolation drive unit 265 includes a relay K1.
  • the first end of the coil of the relay K1 is connected to the source of the first field effect transistor Q1 in the voltage stabilization isolation driving circuit 26 .
  • the first field effect transistor Q1 is turned on according to the high-level drive control signal, thereby turning on the second DC voltage signal (12V), which is output from the source of the first field effect transistor Q1 and the first end of the fifteenth capacitor C15
  • the third direct current is connected to the coil of the relay K1.
  • the preset voltage threshold for example, the voltage of the third direct current is 9V
  • the drive relay K1 is pulled in and the normally open switch of the relay K1 is closed.
  • the normally closed switch of the relay K1 is disconnected, thereby forming a leakage protection working circuit.
  • the two sets of filaments are isolated by the relay K1, and the lighting drive power circuit works normally.
  • the contact distance of the relay K1 is greater than 1.5mm to meet the leakage protection requirements in the lighting drive power supply and comply with the IEC62776 safety certification standard.
  • the overcurrent detection circuit 23 includes: a thirty-third resistor R33, a thirty-fourth resistor R34, a thirty-fifth resistor R35, a thirty-sixth resistor R36, an eleventh resistor Diode D11, twenty-first capacitor C21 and twenty-second capacitor C22; wherein, the anode of the eleventh diode D11 is connected to the transformer circuit 22, and the cathode of the eleventh diode D11 is connected to the thirtieth
  • the first end of the three resistors R33 is connected, the second end of the thirty-third resistor R33 is connected to the first end of the thirty-fourth resistor R34, the first end of the twenty-first capacitor C21 and the third end of the thirty-fifth resistor R35
  • One end is connected, the second end of the thirty-fourth resistor R34 and the second end of the twenty-first capacitor C21 are connected to the power supply ground, the second end of the thirty-fifth resistor
  • the thirty-third resistor R33, the thirty-fifth resistor R35 and the thirty-sixth resistor R36 perform voltage division sampling on the sensing voltage signal, and output the overcurrent detection from the first end of the thirty-sixth resistor R36
  • the signal is sent to the first comparison circuit 25, and the twenty-second capacitor C22 performs filtering and noise reduction processing on the overcurrent detection signal, so as to output a stable and low-noise overcurrent detection signal to the first comparison circuit 25, thereby improving the first comparison circuit. 25. Compare the overcurrent detection signal with the first reference voltage signal to determine whether there is an overcurrent so as to achieve the accuracy and reliability of the circuit overcurrent protection.
  • the first comparison circuit 25 includes: a fifth operational amplifier comparator U5 , a sixth operational amplifier comparator U6 , a ninth diode D9 , a tenth diode D10 , a Twenty-six resistors R26 and the sixth field effect transistor Q6; wherein, the non-inverting input terminal + of the fifth operational amplifier comparator U5 is connected to the overcurrent detection circuit 23, and the inverting input terminal - and The non-inverting input terminal + of the sixth operational amplifier comparator U6 is the first reference voltage signal input terminal of the first comparison circuit 25, the inverting input terminal - of the sixth operational amplifier comparator U6 is connected to the undervoltage detection circuit 24, and the first The power supply terminal VCC of the fifth operational amplifier comparator U5 and the power supply terminal VCC of the sixth operational amplifier comparator U6 are connected to the first DC terminal, and the ground terminal GND of the fifth operational amplifier comparator U5 and the grounding terminal of the sixth operational amplifier comparator U6 The terminal
  • the sixth field effect transistor Q6 is an N-type MOS transistor.
  • the first direct current terminal provides the first direct current; optionally, the voltage value of the first direct current is 12V.
  • ECG electronic ballast
  • HO high-current that is, high-output high-current
  • HF low-current nominal low-current
  • the transformer T1 overcurrent detection circuit 23 and the fifth op amp comparator U5, the ninth diode D9, the sixth field effect transistor Q6 and the twenty sixth resistor R26 in the first comparison circuit 15 can be compared from the fifth op amp during overcurrent
  • the voltage corresponding to the non-inverting input terminal of the comparator U5 + the input overcurrent detection signal is greater than the first reference voltage signal of the inverting input terminal - of the fifth operational amplifier comparator U5, and the output terminal O of the fifth operational amplifier comparator U5 outputs
  • the high-level driving signal is transmitted to the gate of the sixth field effect transistor Q6 through the ninth diode D9 to drive the sixth field effect transistor Q6 to conduct.
  • the drain of the transistor Q6 outputs a low-level drive control signal, and the low-level drive control signal controls the first field effect transistor Q1 in the voltage stabilization isolation drive circuit 26 to be turned off, thereby disconnecting the second DC voltage signal and stopping the output of the first field effect transistor Q1.
  • Three direct currents supply power to the coil of the relay K1, the coil of the relay K1 is powered off so that the relay K1 does not pull in, the normally open switch of the relay K1 is opened, the normally closed switch of the relay K1 is closed, and the second impedance matching circuit 02 is disconnected through the relay K1.
  • the connection with the transformer circuit 22, at this time, the lighting driving power circuit is used as the load of the electronic ballast.
  • the electronic ballast is triggered for output protection, that is, the electronic ballast is triggered at a preset time. It starts repeatedly inside, outputs the test power signal repeatedly, and drives the light source module 100 (ie LED) to flash multiple times quickly, so that the output of the electronic ballast is turned off, which is equivalent to the no-load protection of the electronic ballast, so that the entire lighting
  • the drive power circuit does not work, so as to realize overcurrent protection and undervoltage protection of the entire circuit.
  • the test power supply signal is a normal power supply voltage signal, which is different from the power supply signal corresponding to overcurrent and undervoltage.
  • the under-voltage detection circuit 24 includes: a seventeenth capacitor C17 , an eighteenth capacitor C18 , a twentieth capacitor C20 , a seventh diode D7 , and an eighth diode D8 , the first Zener diode ZD1, the twenty-seventh resistor R27, the twenty-eighth resistor R28, the thirtieth resistor R30 and the thirty-first resistor R31; wherein, the first end of the seventeenth capacitor C17 and the second rectifier The circuit 21 is connected to the first impedance matching circuit 01, the second end of the seventeenth capacitor C17 is connected to the first end of the twenty-seventh resistor R27, and the second end of the twenty-seventh resistor R27 is connected to the seventh diode D7
  • the anode is connected to the cathode of the eighth diode D8, the anode of the eighth diode D8, the first end of the eighteenth capacitor C18, the first end of
  • the first reference voltage generating circuit 27 includes: a thirty-second resistor R32 , a Zener diode U2 and a thirty-second resistor R32 .
  • the second DC voltage signal is divided by the thirty-second resistor R32 and the voltage is stabilized by the Zener diode U2 to generate a first reference voltage signal of 2.5V, and the first reference voltage signal is filtered by the thirty-second resistor R32 Noise reduction processing to output a second reference voltage signal with stable low noise interference to the fifth operational amplifier comparator U5 and the sixth operational amplifier comparator U6 for comparison and judgment processing of overcurrent and undervoltage.
  • the seventeenth capacitor C17 and the twenty-seventh resistor R27 form a high-frequency coupling current-limiting circuit to perform current-limiting protection on the components in the under-voltage detection circuit 24, and the seventh diode D7 and the eighth-second
  • the pole tube D8 performs high-frequency negative half-wave elimination processing on the second DC voltage signal and the first voltage signal after coupling and current limiting, and the eighteenth capacitor C18, the twenty-eighth resistor R28 and the first Zener diode ZD1 are coupled to each other.
  • the current-limited second DC voltage signal and the first voltage signal are subjected to filtering, noise reduction and voltage regulation processing, so as to obtain a stable voltage to the thirtieth resistor R30 and the thirty-first resistor R31 for voltage division sampling and corresponding generation of undervoltage detection
  • the under-voltage detection signal is filtered and noise-reduced through the twentieth capacitor C20, so that a stable and high-precision under-voltage detection signal is output to the sixth operational amplifier comparator U6.
  • the voltage and current of the light source module 100 will be simultaneously pulled by the characteristics of the components when the power supply fails.
  • the undervoltage detection signal obtained by the voltage division of the thirtieth resistor R30 and the thirty-first resistor R31 also becomes smaller, so that the voltage of the inverting input terminal - of the sixth op amp comparator U6 is lower than the first reference voltage signal
  • the voltage of the sixth operational amplifier comparator U6 is reversed, and the high-level driving signal is output from the output terminal O of the sixth operational amplifier comparator U6 to the gate of the sixth field effect transistor Q6 through the tenth diode D10 , to drive the sixth field effect transistor Q6 to be turned on, after the sixth field effect transistor Q6 is turned on, a low-level driving control signal is output from the drain of the sixth field-effect transistor Q6, and the low-level driving control signal controls the voltage regulation
  • two thermal fuses are used in the lighting driving power circuit, corresponding to each group of filaments and the filament impedance matching circuit respectively, and the specifications of fuse FH1 and fuse FH2 are 125°C , when the temperature reaches 125°C, the fuse will be blown, thereby disconnecting the post-stage circuit where the light source module 100 is located, preventing the bulge and deformation of the lamp tube caused by excessive temperature, and protecting the electronic ballast (ECG) and the lamp tube. , mainly to prevent over-temperature protection when the temperature is too high due to misuse of an incompatible ECG at the customer's end.
  • FIG. 7 two thermal fuses (FH1 and FH2) are used in the lighting driving power circuit, corresponding to each group of filaments and the filament impedance matching circuit respectively, and the specifications of fuse FH1 and fuse FH2 are 125°C , when the temperature reaches 125°C, the fuse will be blown, thereby disconnecting the post-stage circuit where the light source module 100 is located, preventing the bulg
  • the PIN1 terminal and the PIN2 terminal together constitute the first input terminal of the lighting driving power supply circuit, which is connected to the first impedance matching circuit 01; the PIN3 terminal and the PIN4 terminal together constitute the lighting driving power supply circuit.
  • the second input terminal is connected to the second impedance matching circuit 02 .
  • a second aspect of the present application provides a lighting driving device, the lighting driving device includes the lighting driving power supply circuit as described above.
  • the lighting driving device is connected to the electronic ballast, supports double-ended power supply, is compatible with different types of electronic ballasts, and can perform efficient and reliable over-current protection and under-voltage protection, as well as over-temperature protection. Avoid safety problems such as burning the lamp cap, fire, smoke, lamp cap deformation when overcurrent, undervoltage and overtemperature occur during use, and the lighting drive device has high compatibility and reliability.
  • a third aspect of the present application provides a lamp tube, which includes: a light source module; and the above-mentioned lighting driving power supply circuit.
  • the lamp tube is powered at both ends and meets the requirements of the certification safety regulations.
  • the light tube is an LED light tube.
  • the light source module 100 may be composed of a plurality of light emitting diodes connected in series or in parallel.

Abstract

本申请公开了一种照明驱动电源电路、装置及灯管,通过第一整流电路(11)对电子镇流器提供的电源信号进行整流生成第一直流电压信号;第二整流电路(21)对电源信号进行整流处理生成第二直流电压信号;变压电路(22)根据电源信号生成感测电压信号;过流检测电路(23)根据感测电压信号生成电流检测信号;欠压检测电路(24)对电源信号进行检测生成欠压检测信号;第一比较电路(25)将电流检测信号和欠压检测信号与第一参考电压信号进行比较生成驱动控制信号;稳压隔离驱动电路(26)根据驱动控制信号和第二直流电压信号对第二阻抗匹配电路(02)和变压电路(22)之间的连接状态进行控制,从而实现高效率的过流保护与欠压保护,提高了照明驱动电源电路的兼容性及安全可靠性。

Description

照明驱动电源电路、装置及灯管 技术领域
本申请涉及灯具驱动技术领域,具体涉及一种照明驱动电源电路、装置及灯管。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。目前,市面上的灯管(例如LED灯管)的驱动电路主流有几种类型,例如1)兼容北美电子镇流器(ECG)的典型电路,桥式整流电路加上容抗与感抗来匹配直接点亮LED模组,主要应用在北美市场不需要考虑继电器隔离驱动;2)兼容欧洲ECG的典型电路,该电路添加了预热保护电路,ECG启动成功后直接点亮LED模组,主要应用在欧洲市场需要考虑继电器隔离驱动符合IEC62776灯具标准;等等。但是以上主流的LED灯管驱动电路存在兼容北美ECG条件下使用时,电路兼容性受限制导致输出电流无法控制,电流比较大的ECG无法使用,且北美市场不需要考虑继电器隔离驱动,漏电流不能满足小于0.7mA的应用需求;兼容欧洲ECG条件下使用,添加了预热电路能解决了ECG在启动瞬间检测灯丝电流与阻坑正常后才能够顺利启动,使用继电器驱动隔离,符合IEC:62776灯具标准,测试电压500V 50Hz U2(VPK)/500 = I <0.7mA ,但是ECG启动成功后直接点亮LED模组,无过温度保护,无过电流保护,无输出光源模组保护,电路元器件容易受过温、过流等损坏,产品安全性与稳定性差。
因此,传统的技术方案中存在灯管驱动电路兼容性不足,安全性和稳定性差的问题。
技术问题
本申请实施例的目的之一在于:提供一种照明驱动电源电路、装置及灯管,旨在解决传统的技术方案中存在灯管驱动电路兼容性不足,安全性和稳定性差的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种照明驱动电源电路,与电子镇流器和光源模组连接,所述照明驱动电源电路包括:
第一阻抗匹配电路,与所述电子镇流器连接,配置为传输所述电子镇流器提供的电源信号,并对所述电子镇流器的第一端与第二端之间的灯丝阻抗进行匹配;
第二阻抗匹配电路,与所述电子镇流器连接,配置为传输所述电子镇流器提供的电源信号,并对所述电子镇流器的第三端与第四端之间的灯丝阻抗进行匹配;
第一整流电路,与所述第一阻抗匹配电路连接,配置为对所述电子镇流器提供的电源信号进行整流处理以生成第一直流电压信号,所述第一直流电压信号用于驱动所述光源模组发光;
第二整流电路,与第二阻抗匹配电路和所述第一阻抗匹配电路连接,配置为对所述电子镇流器提供的电源信号进行隔离耦合处理,并对隔离耦合处理后的所述电源信号进行整流处理以生成第二直流电压信号;
变压电路,与所述第一整流电路和所述第二整流电路连接,配置为传输所述电源信号,并根据所述电源信号生成感测电压信号;
过流检测电路,与所述变压电路连接,配置为对所述感测电压信号进行检测以生成电流检测信号;
欠压检测电路,与所述第一阻抗匹配电路和所述第二整流电路连接,配置为对所述电源信号进行检测以生成欠压检测信号;
第一比较电路,与所述过流检测电路和所述欠压检测电路连接,配置为将所述电流检测信号和所述欠压检测信号与第一参考电压信号进行比较,以生成驱动控制信号;
稳压隔离驱动电路,与所述第一比较电路、所述第二整流电路、所述第二阻抗匹配电路以及所述变压电路连接,配置为根据所述驱动控制信号和所述第二直流电压信号对所述第二阻抗匹配电路和所述变压电路的连接状态进行控制,以使所述电子镇流器进行断电。
第二方面,提供了一种照明驱动装置,所述照明驱动装置包括如上述任一项所述的照明驱动电源电路。
第三方面,提供了一种灯管,所述灯管包括:光源模组;以及,上述任一项所述的照明驱动电源电路。
有益效果
本申请实施例提供的照明驱动电源电路、装置及灯管的有益效果在于:通过第一阻抗匹配电路传输电子镇流器提供的电源信号,并对电子镇流器的第一端与第二端之间的灯丝阻抗进行匹配;第二阻抗匹配电路传输电子镇流器提供的电源信号,并对电子镇流器的第三端与第四端之间的灯丝阻抗进行匹配;第一整流电路对电源信号进行整流处理以生成第一直流电压信号;第二整流电路对电源信号进行隔离耦合处理,并对隔离耦合处理后的电源信号进行整流处理以生成第二直流电压信号;变压电路传输电源信号,并根据电源信号生成感测电压信号;过流检测电路对感测电压信号进行检测以生成电流检测信号;欠压检测电路对电源信号进行检测以生成欠压检测信号;第一比较电路将电流检测信号和欠压检测信号与第一参考电压信号进行比较,以生成驱动控制信号;稳压隔离驱动电路根据驱动控制信号和第二直流电压信号对第二阻抗匹配电路和变压电路的连接状态进行控制,以使电子镇流器进行断电;能够实现兼容不同的电子镇流器,并且在电子镇流器混用、用错导致出现过流和欠压等的异常情况下进行有效的过流保护和欠压保护,且保护效率高,提高了照明驱动电源电路的兼容性及安全可靠性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的照明驱动电源电路的一种结构示意图;
图2为本申请实施例提供的照明驱动电源电路的另一种结构示意图;
图3为本申请实施例提供的照明驱动电源电路的另一种结构示意图;
图4为本申请实施例提供的照明驱动电源电路的另一种结构示意图;
图5为本申请实施例提供的照明驱动电源电路的另一种结构示意图;
图6为本申请实施例提供的照明驱动电源电路的另一种结构示意图;
图7为本申请实施例提供的照明驱动电源电路的一种示例电路原理图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
图1示出了本申请第一实施例提供的一种照明驱动电源电路的结构示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
一种照明驱动电源电路,与电子镇流器和光源模组100连接,照明驱动电源电路包括:第一阻抗匹配电路01、第二阻抗匹配电路02、第一整流电路11、第二整流电路21、变压电路22、过流检测电路23、欠压检测电路24、第一比较电路25、稳压隔离驱动电路26。
第一阻抗匹配电路01,与电子镇流器连接,配置为传输电子镇流器提供的电源信号,并对电子镇流器的第一端与第二端之间的灯丝阻抗进行匹配;第二阻抗匹配电路02,与电子镇流器连接,配置为传输电子镇流器提供的电源信号,并对电子镇流器的第三端与第四端之间的灯丝阻抗进行匹配;第一整流电路11,与第一阻抗匹配电路01连接,配置为对电子镇流器提供的电源信号进行整流处理以生成第一直流电压信号,第一直流电压信号用于驱动光源模组100发光;第二整流电路21,与第二阻抗匹配电路02和第一阻抗匹配电路01连接,配置为对电子镇流器提供的电源信号进行隔离耦合处理,并对隔离耦合处理后的电源信号进行整流处理以生成第二直流电压信号;变压电路22,与第一整流电路11和第二整流电路21连接,配置为传输电子镇流器提供的电源信号,并根据电源信号生成感测电压信号;过流检测电路23,与变压电路22连接,配置为对感测电压信号进行检测以生成电流检测信号;欠压检测电路24,与第一阻抗匹配电路01和第二整流电路21连接,配置为对电源信号进行检测以生成欠压检测信号;第一比较电路25,与过流检测电路23和欠压检测电路24连接,配置为将电流检测信号和欠压检测信号与第一参考电压信号进行比较,以生成驱动控制信号;稳压隔离驱动电路26,与第一比较电路25、第二整流电路21、第二阻抗匹配电路02以及变压电路22连接,配置为根据驱动控制信号和第二直流电压信号对第二阻抗匹配电路02和变压电路22的连接状态进行驱动,以使电子镇流器进行断电。
具体实施中,可选的,光源模组100为LED光源模组。第一阻抗匹配电路01通过照明驱动电源电路的第一进电端与电子镇流器的第一端和第二端连接,对应灯管的一组模拟灯丝;第二阻抗匹配电路02通过照明驱动电源电路的第二进电端与电子镇流器的第三端和第四端连接,对应灯管的另一组模拟灯丝,阻抗匹配电路也叫灯丝阻抗匹配电路,实现支持光源模组100的照明驱动电源电路为双端进电的目的,当输入电源为交流电AC(50-110V)25KH-80KH 时,电子镇流器对应的照明驱动电源电路双端进电,满足认证安规要求。其中,电源信号为电子镇流器提供的交流电源电压信号,并且从第一阻抗匹配电路01和第二阻抗匹配电路02输入照明驱动电源电路中,且照明驱动电源电路的两个进电端可以反接。变压电路22传输电子镇流器提供的电源信号,同时感应检测电源信号以生成感测电压信号,感测电压信号的大小与第二电源信号的大小成正比。通过过流检测电路23对感测电压信号进行检测生成电流检测信号,以检测第二电源信号是否过流,当接入大电流的电子镇流器或者HO大电流(即高输出大电流)与HF小电流(标称小电流)的电子镇流器混用且用错时,感测电压信号对应的电流值较大,使得过流检测电路23生成的电流检测信号大于第一参考电压信号,第一比较电路25根据电流检测信号大于第一参考电压信号生成低电平的驱动控制信号,以控制稳压隔离驱动电路26断开第二直流电压信号,从而断开第二阻抗匹配电路02与变压电路22之间的连接,触发电子镇流器进行输出保护,停止输出电源信号,使得光源模组100的照明驱动电源电路不工作,实现过流保护;当电源出现故障时,例如关键元器件开路/短路、光源模组开路/短路,等等,由于关键元器件和光源模组的故障情况会拉低电源信号的电压/电流,欠压检测电路24对电源信号进行检测生成的欠压检测信号对应变小,第一比较电路25根据欠压检测信号小于第一参考电压信号生成低电平的驱动控制信号,以控制稳压隔离驱动电路26断开第二直流电压信号,从而断开第二阻抗匹配电路02与变压电路22之间的连接,触发电子镇流器进行输出保护,实现欠压保护;有效避免使用过经中出现异常时导致烧坏LED光源模组、起火、冒烟、LED光源模组变形等安全问题,达到在驱动电源电路出现异常时不工作,以保护驱动电源电路、电子镇流器及光源模组100。
具体实施中,灯管通常需要与兼容的ECG匹配使用,然而,由于产品外形相似,在客户端很难避免误用的情况,若将灯管接入不兼容的ECG中,灯头内的元器件过流等异常情况将会导致灯管的损坏,造成安全隐患。本申请通过以上照明驱动电源电路,能够实现兼容不同的电子镇流器,并且在电子镇流器混用、用错导致出现过流和欠压的情况下进行过流保护和欠压保护,且保护效率高,提高了照明驱动电源电路的兼容性及安全可靠性。
具体实施中,第一阻抗匹配电路01和第二阻抗匹配电路02对称设置,且第一阻抗匹配电路01对第一进电端输入的电源信号进行阻抗匹配处理,第二阻抗匹配电路02对第二进电端输入的电源信号进行阻抗匹配处理,确保阻抗平衡,增强和提高了照明驱动电源电路对电子镇流器的兼容性。
在其中一个实施例中,请参阅图2,照明驱动电源电路还包括:第一参考电压生成电路27。
第一参考电压生成电路27,与第二整流电路21连接,配置为根据第二直流电压信号生成第一参考电压信号。
具体实施中,第一参考电压信号可预先设定,也可由第一参考电压生成电路27对第二直流电压信号进行分压和稳压处理得到。第一比较电路25根据电流检测信号大于第一参考电压信号和/或欠压检测信号小于第一参考信号生成低电平的驱动控制信号;第一比较电路25根据电流检测信号小于第一参考电压信号且欠压检测信号小于第一参考信号生成高电平的驱动控制信号。稳压隔离驱动电路26根据高电平的驱动控制信号保持导通第二直流电压信号,使得照明驱动电源电路正常工作。
在其中一个实施例中,请参阅图3,照明驱动电源电路还包括:温度检测电路12、第二比较电路13以及第一开关电路14。
温度检测电路12,与第一整流电路11连接,配置为对第一直流电压信号进行采样以生成第一温度检测信号;第二比较电路13,与温度检测电路12连接,配置为根据第一供电电压信号将第一温度检测信号与第二参考电压信号进行比较,以生成开关控制信号;第一开关电路14,与第二比较电路13和光源模组100连接,配置为根据开关控制信号控制第一整流电路11与光源模组100之间的连接状态。
具体实施中,温度检测电路12包括温敏组件,能够跟随温度的变化对应生成第一温度检测信号。可选的,第一温度检测信号为电压信号或电流信号。可选的,温敏组件为正温度系数热敏电阻(PTC),当热敏电阻检测电路温度高达120℃时,热敏电阻的阻值瞬间上升,分压比也随着上升,对应的第一温度检测信号的电压值上升;反之则分压比减小,第一温度检测信号对应的电压值减小。第二比较电路13在第一供电电压信号进行供电的基础上将第一温度检测信号与第二参考电压信号进行比较,并根据第一温度检测信号大于或等于第二参考电压信号生成低电平的开关控制信号,以控制第一开关电路14断开第一整流电路11与光源模组100之间的连接,断开对光源模组100的供电,达到过温保护的目的;并通过电子镇流器自带的开路检测保护功能,在光源模组100输出开路时,会发出两次检测信号测试光源模组,通过光源模组根据测试信号快速闪烁两次的测试结果,电子镇流器输出保护启动而自动关闭输出第一电源信号和第二电源信号,需要重新上电才能开机,整个保护过程不损坏灯管,并在热敏电阻恢复正常后,灯管可以正常点亮,提高了照明驱动电源电路的安全可靠性。第二比较电路13根据第一温度检测信号小于第二参考电压信号生成高电平的开关控制信号,控制第一开关电路14连通第一整流电路11和光源模组100,以对光源模组正常供电,照明电源驱动电路正常工作。
具体实施中,第一参考电压信号和第二参考电压信号可相同,也可不同,具体可根据实际设计进行选定。可选的,第一参考电压信号和第二参考电压信号的电压值均为2.5V。
可选的,在其中一个实施例中,第一供电电压信号由电压转换电路对第一直流电进行电压转换处理生成。
在其中一个实施例中,请参阅图4,照明驱动电源电路还包括:第一取电电路15。
第一取电电路15,与第一整流电路11和变压电路22连接,配置为根据电源信号生成第一供电电压信号。
具体实施中,第一取电电路15对电源信号进行分压取电,以生成第一供电电压信号,第一供电电压信号用于对第二比较电路13供电,以使第二比较电路13在第一供电电压信号进行供电的基础上将第一温度检测信号与第二参考电压信号进行比较,以生成开关控制信号,从而对第一整流电路11与光源模组100之间的连接状态进行控制,简化了照明驱动电源电路的设计,提高了照明驱动电源电路集成化,节约了成本和空间。
在其中一个实施例中,请参阅图5,照明驱动电源电路还包括:第二参考电压生成电路16和稳压滤波电路17。
第二参考电压生成电路16,与第二比较电路13连接,配置为根据第一直流电生成第二参考电压信号;稳压滤波电路17,与第一整流电路11和光源模组100连接,配置为对第一直流电压信号进行稳压和滤波处理。
具体实施中,第二参考电压信号可预先设定,还可以通过第二参考电压生成电路16对第一直流电进行分压及稳压处理等以得到第二参考电压信号,电路集成度高,有利于减小照明驱动电源电路的体积。同时通过稳压滤波电路17对输出至光源模组100以驱动光源模组100进行工作的第一直流电压信号进行滤波降噪及稳压处理,提高了照明驱动电源电路的稳定可靠性。
可选的,第一直流电为15V直流电,为电压转换电路对电源电压进行电压转换及稳压处理等得到。
在其中一个实施例中,请参阅图6,稳压隔离驱动电路26包括:第一滤波单元261、稳压单元262、第二滤波单元263、第一开关单元264以及隔离驱动单元265。
第一滤波单元261,与第二整流电路21连接,配置为对第二直流电压信号进行滤波降噪处理;稳压单元262,与第一滤波单元261连接,配置为对滤波降噪处理后的第二直流电压信号进行分压和稳压处理以生成稳压信号;第二滤波单元263,与稳压单元262连接,配置为对稳压信号和驱动控制信号进行滤波降噪处理;第一开关单元264,与第二滤波单元263、稳压单元262以及第一比较电路25连接,配置为根据滤波降噪后的稳压信号和滤波降噪后的驱动控制信号进行导通或关断,并根据导通的第二直流电压信号生成第三直流电;隔离驱动单元265,与第二阻抗匹配电路02和第一开关单元264以及变压电路22连接,配置为根据第三直流电对第二阻抗匹配电路和变压电路之间的连接状态进行控制。
具体实施中,通过第一滤波单元261对第二直流电压信号进行滤波降噪处理,稳压单元262对经过第一滤波单元261进行滤波降噪处理后的第二直流电压信号进行分压和稳压处理以生成稳压信号,第二滤波单元263对稳压信号和驱动控制信号进行滤波降噪处理,从而输出低噪声干扰的、稳定的稳压信号和驱动控制信号至第一开关单元264的控制端,以在正常状态下精准、稳定的驱动第一开关单元264导通第二直流电压信号以生成并输出第三直流电,并输出第三直流电至隔离驱动电单元265,隔离驱动电单元265根据第三直流电大于预设电压阈值(例如6V),连通第二阻抗匹配电路02和变压电路22,从而将电源信号传输至变压电路22;并在过流、欠压等异常状态下,通过低电平的驱动控制信号拉低第一开关单元264的控制端的电位,以快速、准确的断开第二直流电压信号,停止生成第三直流电对隔离驱动单元265的供电,隔离驱动单元265不得电时将断开第二阻抗匹配电路02与变压电路22之间的连接,触发电子镇流器进行输出保护,停止输出电源信号,使得光源模组100的照明驱动电源电路不工作,实现过流和欠压保护,且过流和欠压保护的精度和稳定性高,进一步提高了照明驱动电源电路的安全可靠性。
在其中一个实施例中,第二整流电路21包括:隔离耦合单元和整流单元;其中,隔离耦合单元,与第二阻抗匹配电路02和稳压隔离驱动电路26连接,配置为对电子镇流器提供的电源信号进行隔离耦合处理;整流单元,与隔离耦合单元和稳压隔离驱动电路26连接,配置为对隔离耦合处理后的电源信号进行整流处理以生成第二直流电压信号。
在其中一个实施例中,参见图7所示,第一阻抗匹配电阻01包括:第五电阻R5、第三电容C3、第七电阻R7以及第四电容C4;其中,所述第五电阻R5的第一端与所述第三电容C3的第一端共接于所述电子镇流器的第一端,所述第七电阻R7的第一端与所述第四电容C4的第一端共接于所述电子镇流器的第二端,所述第五电阻R5的第二端、所述第三电容C3的第二端、所述第七电阻R7的第二端、所述第四电容C4的第二端、所述第五电阻R5的第二端以及所述第三电容C3的第二端共接于所述第一整流电路。
在其中一个实施例中,参见图7所示,第二阻抗匹配电路02包括:第一电阻R1、第一电容C1、第二电容C2、第三电阻R3;所述第一电阻R1的第一端与所述第一电容C1的第一端共接于所述电子镇流器的第三端,所述第三电阻R3的第一端与所述第二十二电容的第一端共接于所述电子镇流器的第四端,所述第一电阻R1的第二端、所述第一电容C1的第二端、所述第三电阻R3的第二端以及所述第二电容C2的第二端共接于所述第二整流电路。
在其中一个实施例中,参见图7所示,第一整流电路11包括:第一二极管D1、第二二极管D2、第三二极管D3以及第四二极管D4;第一二极管D1的阳极与第三二极管D3的阴极共接于第一阻抗匹配电路01,第三二极管D3的阳极与第四二极管D4的阳极共接于地,第一二极管D1的阴极与第二二极管D2的阴极共接于负载,第二二极管D2的阳极与第四二极管D4的阴极与变压电路22连接。
在其中一个实施例中,参见图7所示,第一整流电路11与第一阻抗匹配电路01之间还设有第一保险丝FH1。
在其中一个实施例中,参见图7所示,第二整流电路21与第一阻抗匹配电路02之间还设有第二保险丝FH2。
在本实施例中,第一保险丝HF1和第二保险丝HF2提供过温保护,防止灯管过流时灯头内部温度上升到125℃时断开输入,起到保护ECG与LED灯管的作用。
在其中一个实施例中,参见图7所示,温度检测电路12包括:第九电阻R9、第二十四电阻R24、第十九电容C19、第一热敏电阻RV1;第九电阻R9的第一端与第一整流电路连接,第九电阻R9的第二端、第二十四电阻R24的第一端、第十九电容C19的第一端以及第一热敏电阻RV1的第一端共接于第二比较电路13,第二十四电阻R24的第二端、第十九电容C19的第二端以及第一热敏电阻RV1的第二端共接于地。
在本实施例中,第九电阻R9、第二十四电阻R24、第十九电容C19、第一热敏电阻RV1组成温度检测电路,用于根据温度变化进行电压采样,由于热敏电阻的阻值在一定的阻值范围内随着温度的变化而进行突变,因此,可以通过温度检测电路进行电压采样从而达到对温度进行采样的目的。
在一个实施例中,热敏电阻可以为PTC热敏电阻,温度到达一定值时,热敏电阻的阻值瞬间上升分压比也随着改变。
在其中一个实施例中,参见图7所示,稳压滤波电路17包括:第五电容C5、第二稳压管ZD2、第六电容C6、第七电容C7、第八电容C8、第三稳压管ZD3、第二十三电容C23、第三十八电阻R38、第十一电阻R11、第十二电阻R12;第五电阻R5的第一端、第二稳压管ZD2的第一端、第六电阻的第一端、第七电容C7的第一端、第八电容C8的第一端、第十一电阻R11的第一端以及第三稳压管ZD3的第一端共接于整流电路11,第十一电阻R11的第二端与第十二电阻R12的第一端连接,第五电容C5的第二端、第二稳压管ZD2的第二端、第六电容C6的第二端、第二十三电容C23的第一端以及第三十八电阻R38的第一端共接于第一开关电路的第一端,第七电容C7的第二端、第二十三电容C23的第二端、第三十八电阻R38的第二端、第三稳压管ZD3的第二端以及第十二电阻R12的第二端共接于第一开关电路的第二端。
在本实施例中,第十一电阻R11、第十二电阻R12组成负载放电电路,通过两个电阻串联作为负载放电电阻,防止生产测试使用时,ECG开路电压过高导致放电电阻损坏。
在其中一个实施例中,参见图7所示,第一取电电路15包括:第九电容C9、第十八电阻R18、第五二极管D5以及第六二极管D6;第九电容C9的第一端与整流电路连接,第九电容C9的第二端与第十八电阻R18的第一端连接,第十八电阻R18的第二端、第五二极管D5的阳极以及第六二极管D6的阴极共接,第六二极管D6的阳极接地,第五二极管D5的阴极与第二比较电路13连接。
在其中一个实施例中,参见图7所示,第二参考电压生成电路16包括:第十三电阻R13、第十四电阻R14、第一可控硅芯片U1以及第十电容C10;第十三电阻R13的第一端与第一供电端15V连接,第十三电阻R13的第二端、第十四电阻R14的第一端、第一可控硅芯片U1的第一端、第一可控硅芯片U1的控制端以及第十电容C10的第一端共接,第一可控硅芯片U1的第二端与第十电容C10的第二端共接于地,第十四电阻R14的第二端与第二比较电路连接。
在其中一个实施例中,参见图7所示,第二比较电路13包括:第十七电阻R17、第二开关管Q2、第二十五电阻R25、第十电阻R10、第三开关管Q3、第二十三电阻R23、第十九电阻R19、第五开关管Q5、第十二电容C12、第二十电阻R20、第四稳压管ZD4、第十五电阻R15、第十六电阻R16、第十一电容C11、第四运放比较器U4;第十七电阻R17的第一端、第二开关管Q2的第一端共接于第一开关电路14的控制端,第十七电阻R17的第二端与第三开关管Q3的第一端连接,第三开关管Q3的第二端、第二十三电阻R23的第一端、第十九电阻R19的第一端、第十二电容C12的第一端以及第二十电阻R20的第一端共接于第一取电电路,第三开关管Q3的控制端、第二十三电阻R23的第二端以及第五开关管Q5的第一端共接,第五开关管Q5的第二端接地,第五开关管Q5的控制端与第十六电阻R16的第一端连接,第十六电阻R16的第二端与第四运放比较器U4的输出端连接,第二开关管Q2的控制端、第十电阻R10的第一端以及第二十五电阻R25的第一端共接,第二十五电阻R25的第二端与第二供电端9V连接,第二十电阻R20的第二端、第四稳压管ZD4的第一端以及第四运放比较器U4的电压端共接于第三供电端,第四运放比较器U4的反相输入端、第十五电阻R15的第一端以及第十一电容C11的第一端共接于第二参考电压生成电路,第十九电阻R19的第二端、第十二电容C12的第二端、第四稳压管ZD4的第二端、第十五电阻R15的第二端以及第十一电容C11的第二端共接于地,第四运放比较器U4的正相输入端与温度检测电路12连接。
可选的,请参阅图7,在其中一个实施例中,隔离耦合单元包括第一安规电容CY1和第十六电容C16,第一安规电容CY1的第一端与第二阻抗匹配电路02连接,第一安规电容CY1的第二端与第十六电容C16的第一端共接于整流单元,第十六电容C16与变压电路22连接。
在其中一个实施例中,第一安规电容CY1的型号为CY1-152/400V,通过电容CY1对第二电源信号进行耦合处理,提高了照明驱动电源电路的安全性。整流单元为整流桥DB1,整流桥BD1,通过整流桥BD1对隔离耦合处理后的电源信号进行整流处理,以生成稳定的第二直流电压信号。
在其中一个实施例中,请参阅图6,变压电路22包括:变压器T1;其中,变压器T1的原边绕组N1的第一端与第一整流电路11连接,变压器T1的原边绕组N1的第二端与第二整流电路21和稳压隔离驱动电路26连接,变压器T1的副边绕组N2的第一端与过流检测电路23连接,变压器T1的副边绕组N2的第二端与电源地连接。
具体实施中,变压器T1的原边绕组N1对第二进电端输入的电源信号进行耦合采样并传输,变压器T1的副边绕组N2感测原边绕组N1耦合采样的电源信号以生成正相关的感测电压信号,也即当流过变压器T1的原边绕组N1电感电流的大小不一样时,变压器T1的副边绕组N2耦后出来的电压也跟随着不一样。感测电压信号用于供过流检测电路23进行过流检测。
在其中一个实施例中,请参阅图7,稳压隔离驱动电路26包括:第二十一电阻R21、第二十二电阻R22、第二十九电阻R29、第五稳压二极管ZD5、第十三电容C13、第十四电容C14、第十五电容C15、第一场效应管Q1以及继电器    K1;其中,第十三电容C13的第一端、第二十一电阻R21的第一端以及第二十二电阻R22的第一端与第二整流电路21连接,第二十一电阻R21的第二端与第五稳压二极管ZD5的阴极、第十四电容C14的第一端、第二十九电阻R29的第一端以及第一场效应管Q1的栅极连接,第一场效应管Q1的栅极与第一比较电路25连接,第一场效应管Q1的源极和第十五电容C15的第一端与继电器K1的线圈的第一端1连接,第一场效应管Q1的漏极与第二十二电阻R22的第二端连接,第五稳压二极管ZD5的阳极、第十四电容C14的第二端、第二十九电阻R29的第二端以及第十五电容C15的第二端与电源地连接,继电器K1的线圈的第二端12与电源地连接,继电器K1的第一公共端4与继电器K1的第一触点端3连接,继电器K1的第二公共端9与继电器K1的第二触点端10和继电器K1的第三触点端5连接,继电器K1的第四触点端8与变压电路22连接。
可选的,第一场效应管Q1为N型MOS管。
具体实施中,继电器K1的第一触点端3和继电器K1的第二触点端10共同构成为继电器K1的常闭开关,继电器K1的三触点端5和继电器K1的第四触点端8为继电器K1的常开开关,且继电器K1的第四触点端8与变压器T1的原边绕组N1的第二端连接。
在其中一个实施例中,请参阅图7,第一滤波单元261包括第十三电容C13;稳压单元262包括第二十一电阻R21和第五稳压二极管ZD5;第二滤波单元263包括第二十九电阻R29和第十四电容C14;第一开关单元264包括第二十二电阻R22、第十五电容C15以及第一场效应管Q1;隔离驱动单元265包括继电器  K1。具体实施中,继电器K1的线圈的第一端与稳压隔离驱动电路26中的第一场效应管Q1的源极连接。第一场效应管Q1根据高电平的驱动控制信号导通,从而导通第二直流电压信号(12V),从第一场效应管Q1的源极和第十五电容C15的第一端输出第三直流电至继电器K1的线圈,当继电器K1的线圈接入的第三直流电达到预设电压阈值,例如第三直流电的电压为9V,则驱动继电器K1吸合,继电器K1的常开开关闭合,继电器K1的常闭开关断开,从而形成一个漏电保护工作电路,此时两组灯丝之间通过继电器K1进行隔离,照明驱动电源电路进行正常工作。其中,继电器K1的触点间距大于1.5mm,以满足照明驱动电源中的漏电保护要求,符合IEC62776安规认证标准。
在其中一个实施例中,请参阅图7,过流检测电路23包括:第三十三电阻R33、第三十四电阻R34、第三十五电阻R35、第三十六电阻R36、第十一二极管D11、第二十一电容C21以及第二十二电容C22;其中,第十一二极管D11的阳极与变压电路22连接,第十一二极管D11的阴极与第三十三电阻R33的第一端连接,第三十三电阻R33的第二端与第三十四电阻R34的第一端、第二十一电容C21的第一端以及第三十五电阻R35的第一端连接,第三十四电阻R34的第二端和第二十一电容C21的第二端与电源地连接,第三十五电阻R35的第二端、第三十六电阻R36的第一端以及第二十二电容C22的第一端共接于第一比较电路25,第三十六电阻R36的第二端和第二十二电容C22的第一端与电源地连接。
具体实施中,第三十三电阻R33、第三十五电阻R35以及第三十六电阻R36对感测电压信号进行分压采样,并从第三十六电阻R36的第一端输出过流检测信号至第一比较电路25,且第二十二电容C22对过流检测信号进行滤波降噪处理,使得输出稳定低噪声干扰的过流检测信号至第一比较电路25,从而提高第一比较电路25将过流检测信号与第一参考电压信号进行比较以判断是否过流从而实现电路过流保护的精度和可靠性。
在其中一个实施例中,请参阅图7,第一比较电路25包括:第五运放比较器U5、第六运放比较器U6、第九二极管D9、第十二极管D10、第二十六电阻R26以及第六场效应管Q6;其中,第五运放比较器U5的正相输入端+与过流检测电路23连接,第五运放比较器U5的反相输入端-和第六运放比较器U6的正相输入端+为第一比较电路25的第一参考电压信号输入端,第六运放比较器U6的反相输入端-与欠压检测电路24连接,第五运放比较器U5的电源端VCC和第六运放比较器U6的电源端VCC与第一直流电端连接,第五运放比较器U5的接地端GND和第六运放比较器U6的接地端GND与电源地连接,第五运放比较器U5的输出端O与第九二极管D9的阳极连接,第六运放比较器U6的输出端O与第十二极管D10的阳极连接,第九二极管D9的阴极和第十二极管D10的阴极与第六场效应管Q6的栅极连接,第六场效应管Q6的源极与电源地连接,第六场效应管Q6的漏极与第二十六电阻R26的第一端连接,第二十六电阻R26的第二端与稳压隔离驱动电路26连接。
可选的,第六场效应管Q6为N型MOS管。
具体实施中,第一直流电端提供第一直流电;可选的,第一直流电的电压值为12V。接入大电流电子镇流器(ECG)或者HO大电流(即高输出大电流)与HF小电流(标称小电流)的ECG混用时,如果用错ECG,由于输出至光源模组100的驱动直流电大小差别较大,用错HO大电流ECG至HF小电流镇流器的照明驱动电源电路中,将会导致超过灯管所需额定功率和过流,而通过变压器T1、过流检测电路23以及第一比较电路15中的第五运放比较器U5、第九二极管D9、第六场效应管Q6以及第二十六电阻R26则能够在过流时,从第五运放比较器U5的正相输入端+输入的过流检测信号对应的电压大于第五运放比较器U5的反相输入端-的第一参考电压信号,第五运放比较器U5的输出端O输出高电平的驱动信号经第九二极管D9传输至第六场效应管Q6的栅极,以驱动第六场效应管Q6导通,第六场效应管Q6导通后从第六场效应管Q6的漏极输出低电平的驱动控制信号,低电平的驱动控制信号控制稳压隔离驱动电路26中的第一场效应管Q1截止,从而断开第二直流电压信号,停止输出第三直流电对继电器K1的线圈供电,继电器K1的线圈掉电使得继电器K1不吸合,继电器K1的常开开关断开,继电器K1的常闭开关闭合,通过继电器K1断开第二阻抗匹配电路02与变压电路22之间的连接,此时照明驱动电源电路作为电子镇流器的负载,为负载异常情况,触发电子镇流器进行输出保护,也即触发电子镇流器在预设的时间内反复启动,反复输出测试电源信号,驱动光源模组100(即LED)出现多次快速的闪烁,从而使得电子镇流器关闭输出,相当于电子镇流器进行空载保护,以使得整个照明驱动电源电路不工作,从而实现对整个电路的过流保护和欠压保护。可选的,测试电源信号为正常的电源电压信号,不同于过流、欠压对应的电源信号。
在其中一个实施例中,请参阅图7,欠压检测电路24包括:第十七电容C17、第十八电容C18、第二十电容C20、第七二极管D7、第八二极管D8、第一稳压二极管ZD1、第二十七电阻R27、第二十八电阻R28、第三十电阻R30以及第三十一电阻R31;其中,第十七电容C17的第一端与第二整流电路21和第一阻抗匹配电路01连接,第十七电容C17的第二端与第二十七电阻R27的第一端连接,第二十七电阻R27的第二端与第七二极管D7的阳极和第八二极管D8的阴极连接,第八二极管D8的阳极、第十八电容C18的第一端、第二十八电阻R28的第一端以及第一稳压二极管ZD1的阳极与电源地连接,第七二极管D7的阴极与第十八电容C18的第二端、第二十八电阻R28的第二端、第一稳压二极管ZD1的阴极以及第三十电阻R30的第一端连接,第三十电阻R30的第二端、第三十一电阻R31的第一端以及第二十电容C20的第一端共接于第一比较电路25,第三十一电阻R31的第二端和第二十电容C20的第二端与电源地连接。
在其中一个实施例中,请参阅图7,第一参考电压生成电路27包括:第三十二电阻R32、稳压二极管U2以及第三十二电阻R32。通过第三十二电阻R32对第二直流电压信号进行分压以及稳压二极管U2进行稳压生成2.5V的第一参考电压信号,且通过第三十二电阻R32对第一参考电压信号进行滤波降噪处理,以输出稳定低噪声干扰的第二参考电压信号至第五运放比较器U5和第六运放比较器U6进行过流和欠压的比较判断处理。
具体实施中,第十七电容C17和第二十七电阻R27组成高频耦合限流电路,以对欠压检测电路24中的元器件进行限流保护,第七二极管D7和第八二极管D8对经过耦合限流后的第二直流电压信号和第一电压信号进行高频负半波消除处理,第十八电容C18、第二十八电阻R28以及第一稳压二极管ZD1对耦合限流后的第二直流电压信号和第一电压信号进行滤波降噪和稳压处理,从而得到稳定的电压至第三十电阻R30以及第三十一电阻R31进行分压采样对应生成欠压检测信号,并通过第二十电容C20对欠压检测信号进行滤波降噪处理,使得输出稳定、高精度的欠压检测信号至第六运放比较器U6。
当照明驱动电源电路出现故障时,例如关键元器件开路或短路、光源模组100开路或短路,等等,导致光源模组100的电压、电流同时会被电源出现故障时的元器件的特性拉低,第三十电阻R30以及第三十一电阻R31的分压得到的欠压检测信号也变小,使得第六运放比较器U6的反相输入端-的电压低于第一参考电压信号的电压,第六运放比较器U6反转,从第六运放比较器U6的输出端O输出高电平的驱动信号经过第十二极管D10输出至第六场效应管Q6的栅极,以驱动第六场效应管Q6导通,第六场效应管Q6导通后从第六场效应管Q6的漏极输出低电平的驱动控制信号,低电平的驱动控制信号控制稳压隔离驱动电路26中的第一场效应管Q1截止,从而断开第二直流电压信号(12V),停止生成第三直流电(例如9V)对继电器K1的线圈供电,继电器K1的线圈掉电使得继电器K1不吸合,继电器K1的常开开关断开,继电器K1的常闭开关闭合,从而断开第二阻抗匹配电路02与变压电路22的连接,触发电子镇流器进行输出保护,也即触发电子镇流器在预设的时间内反复启动,反复输出测试电源信号,驱动光源模组100(即LED)出现多次快速的闪烁,从而使得电子镇流器关闭输出,相当于电子镇流器进行空载保护,以使整个照明驱动电源电路不工作,有效避免使用过经中出现欠压等异常情况时出现照明光源模组烧毁、起火、冒烟等安全问题,在照明驱动电源电路不出现欠压、过流等异常时电子镇流器的不进行输出保护,照明驱动电源电路正常工作。
在其中一个实施例中,请参阅图7,照明驱动电源电路中采用两个温度保险丝(FH1和FH2),分别对应每一组灯丝及灯丝阻抗匹配电路,保险丝FH1和保险丝FH2的规格为125℃,温度达到125℃时,保险丝会熔断,从而断开光源模组100所在的后级电路,防止温度过高引起灯管鼓包、变形,起到保护电子镇流器(ECG)与灯管的作用,主要防止在客户使用端误用不兼容的ECG导致温度过高时的过温保护。具体实施中,请参阅图7,PIN1端和PIN2端共同构成为照明驱动电源电路的第一进电端,与第一阻抗匹配电路01连接;PIN3端和PIN4端共同构成为照明驱动电源电路的第二进电端,与第二阻抗匹配电路02连接。
本申请的第二方面提供了一种照明驱动装置,照明驱动装置包括如权上述所述的照明驱动电源电路。具体实施中,照明驱动装置与电子镇流器连接,支持双端进电,能够兼容不同类型的电子镇流器,并能够进行高效可靠的过流保护和欠压保护,以及过温保护,有效避免使用过经中出现过流、欠压以及过温等异常时出现烧灯头、起火、冒烟、灯头变形等安全问题,照明驱动装置的兼容性和可靠性高。
本申请的第三方面提供了一种灯管,灯管包括:光源模组;以及上述所述的照明驱动电源电路。
具体实施中,灯管为双端进电且符合认证安规要求。可选的,灯管为LED灯管。光源模组100可以由多个发光二极管串联或者并联组成。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (16)

  1. 一种照明驱动电源电路,与电子镇流器和光源模组连接,其特征在于,所述照明驱动电源电路包括:
    第一阻抗匹配电路,与所述电子镇流器连接,配置为传输所述电子镇流器提供的电源信号,并对所述电子镇流器的第一端与第二端之间的灯丝阻抗进行匹配;
    第二阻抗匹配电路,与所述电子镇流器连接,配置为传输所述电子镇流器提供的电源信号,并对所述电子镇流器的第三端与第四端之间的灯丝阻抗进行匹配;
    第一整流电路,与所述第一阻抗匹配电路连接,配置为对所述电子镇流器提供的电源信号进行整流处理以生成第一直流电压信号,所述第一直流电压信号用于驱动所述光源模组发光;
    第二整流电路,与第二阻抗匹配电路和所述第一阻抗匹配电路连接,配置为对所述电子镇流器提供的电源信号进行隔离耦合处理,并对隔离耦合处理后的所述电源信号进行整流处理以生成第二直流电压信号;
    变压电路,与所述第一整流电路和所述第二整流电路连接,配置为传输所述电源信号,并根据所述电源信号生成感测电压信号;
    过流检测电路,与所述变压电路连接,配置为对所述感测电压信号进行检测以生成电流检测信号;
    欠压检测电路,与所述第一阻抗匹配电路和所述第二整流电路连接,配置为对所述电源信号进行检测以生成欠压检测信号;
    第一比较电路,与所述过流检测电路和所述欠压检测电路连接,配置为将所述电流检测信号和所述欠压检测信号与第一参考电压信号进行比较,以生成驱动控制信号;
    稳压隔离驱动电路,与所述第一比较电路、所述第二整流电路、所述第二阻抗匹配电路以及所述变压电路连接,配置为根据所述驱动控制信号和所述第二直流电压信号对所述第二阻抗匹配电路和所述变压电路的连接状态进行控制,以使所述电子镇流器进行断电。
  2. 如权利要求1所述的照明驱动电源电路,其特征在于,所述照明驱动电源电路还包括:
    第一参考电压生成电路,与所述第二整流电路连接,配置为根据所述第二直流电压信号生成所述第一参考电压信号。
  3. 如权利要求1所述的照明驱动电源电路,其特征在于,所述照明驱动电源电路还包括:
    温度检测电路,与所述第一整流电路连接,配置为对所述第一直流电压信号进行采样以生成第一温度检测信号;
    第二比较电路,与所述温度检测电路连接,配置为根据第一供电电压信号将所述第一温度检测信号与第二参考电压信号进行比较,以生成开关控制信号;
    第一开关电路,与所述第二比较电路和所述光源模组连接,配置为根据所述开关控制信号控制所述第一整流电路与所述光源模组之间的连接状态。
  4. 如权利要求3所述的照明驱动电源电路,其特征在于,所述照明驱动电源电路还包括:
    第二参考电压生成电路,与所述第二比较电路连接,配置为根据第一直流电生成所述第二参考电压信号;
    稳压滤波电路,与所述第一整流电路和所述光源模组连接,配置为对所述第一直流电压信号进行稳压和滤波处理。
  5. 如权利要求1所述的照明驱动电源电路,其特征在于,所述稳压隔离驱动电路包括:
    第一滤波单元,与所述第二整流电路连接,配置为对所述第二直流电压信号进行滤波降噪处理;
    稳压单元,与所述第一滤波单元连接,配置为对滤波降噪处理后的所述第二直流电压信号进行分压和稳压处理以生成稳压信号;
    第二滤波单元,与所述稳压单元连接,配置为对所述稳压信号和所述驱动控制信号进行滤波降噪处理;
    第一开关单元,与所述第二滤波单元、所述稳压单元以及所述第一比较电路连接,配置为根据滤波降噪后的所述稳压信号和滤波降噪后的所述驱动控制信号进行导通或关断,并根据导通的所述第二直流电压信号生成第三直流电;
    隔离驱动单元,与所述第二阻抗匹配电路和所述第一开关单元以及所述变压电路连接,配置为根据所述第三直流电对所述第二阻抗匹配电路和所述变压电路之间的连接状态进行控制。
  6. 如权利要求1所述的照明驱动电源电路,其特征在于,所述变压电路包括:变压器;其中,所述变压器的原边绕组的第一端与所述第一整流电路连接,所述变压器的原边绕组的第二端与所述第二整流电路和所述稳压隔离驱动电路连接,所述变压器的副边绕组的第一端与所述过流检测电路连接,所述变压器的副边绕组的第二端与电源地连接。
  7. 如权利要求1所述的照明驱动电源电路,其特征在于,所述第一阻抗匹配电阻包括:第五电阻、第三电容、第七电阻以及第四电容;其中,所述第五电阻的第一端与所述第三电容的第一端共接于所述电子镇流器的第一端,所述第七电阻的第一端与所述第四电容的第一端共接于所述电子镇流器的第二端,所述第五电阻的第二端、所述第三电容的第二端、所述第七电阻的第二端、所述第四电容的第二端、所述第五电阻的第二端以及所述第三电容的第二端共接于所述第一整流电路。
  8. 如权利要求1所述的照明驱动电源电路,其特征在于,所述第二阻抗匹配电阻包括:第一电阻、第一电容、第二电容、第三电阻;所述第一电阻的第一端与所述第一电容的第一端共接于所述电子镇流器的第三端,所述第三电阻的第一端与所述第二十二电容的第一端共接于所述电子镇流器的第四端,所述第一电阻的第二端、所述第一电容的第二端、所述第三电阻的第二端以及所述第二电容的第二端共接于所述第二整流电路。
  9. 如权利要求1所述的照明驱动电源电路,其特征在于,所述欠压检测电路包括:第十七电容、第十八电容、第二十电容、第七二极管、第八二极管、第一稳压二极管、第二十七电阻、第二十八电阻、第三十电阻以及第三十一电阻;其中,所述第十七电容的第一端与所述第二整流电路和所述第一阻抗匹配电路连接,所述第十七电容的第二端与所述第二十七电阻的第一端连接,所述第二十七电阻的第二端与所述第七二极管的阳极和所述第八二极管的阴极连接,所述第八二极管的阳极、所述第十八电容的第一端、所述第二十八电阻的第一端以及所述第一稳压二极管的阳极与电源地连接,所述第七二极管的阴极与所述第十八电容的第二端、所述第二十八电阻的第二端、所述第一稳压二极管的阴极以及所述第三十电阻的第一端连接,所述第三十电阻的第二端、所述第三十一电阻的第一端以及所述第二十电容的第一端共接于所述第一比较电路,所述第三十一电阻的第二端和所述第二十电容的第二端与电源地连接。
  10. 如权利要求1所述的照明驱动电源电路,其特征在于,所述第一比较电路包括:第五运放比较器、第六运放比较器、第九二极管、第十二极管、第二十六电阻以及第六场效应管;其中,所述第五运放比较器的正相输入端与所述过流检测电路连接,所述第五运放比较器的反相输入端和所述第六运放比较器的正相输入端为所述第一比较电路的第一参考电压信号输入端,所述第六运放比较器的反相输入端与所述欠压检测电路连接,所述第五运放比较器的电源端和所述第六运放比较器的电源端与第一直流电端连接,所述第五运放比较器的接地端和所述第六运放比较器的接地端与电源地连接,所述第五运放比较器的输出端与所述第九二极管的阳极连接,所述第六运放比较器的输出端与所述第十二极管的阳极连接,所述第九二极管的阴极和所述第十二极管的阴极与所述第六场效应管的栅极连接,所述第六场效应管的源极与电源地连接,所述第六场效应管的漏极与所述第二十五电阻的第一端连接,所述第二十五电阻的第二端与所述稳压隔离驱动电路连接。
  11. 如权利要求1所述的照明驱动电源电路,其特征在于,所述稳压隔离驱动电路包括:第二十一电阻、第二十二电阻、第二十九电阻、第五稳压二极管、第十三电容、第十四电容、第十五电容、第一场效应管以及继电器;其中,所述第十三电容的第一端、所述第二十一电阻的第一端以及所述第二十二电阻的第一端与所述第二整流电路连接,所述第二十一电阻的第二端与所述第五稳压二极管的阴极、所述第十四电容的第一端、所述第二十九电阻的第一端以及所述第一场效应管的栅极连接,所述第一场效应管的栅极与所述第一比较电路连接,所述第一场效应管的源极和所述第十五电容的第一端与所述继电器的线圈的第一端1连接,所述第一场效应管的漏极与所述第二十二电阻的第二端连接,所述第五稳压二极管的阳极、所述第十四电容的第二端、所述第二十九电阻的第二端以及所述第十五电容的第二端与电源地连接,所述继电器的线圈的第二端与电源地连接,所述继电器的第一公共端与所述继电器的第一触点端连接,所述继电器的第二公共端与所述继电器的第二触点端和所述继电器的第三触点端连接,所述继电器的第四触点端与变压电路连接。
  12. 如权利要求1所述的照明驱动电源电路,其特征在于,所述过流检测电路包括:第三十三电阻、第三十四电阻、第三十五电阻、第三十六电阻、第十一二极管、第二十一电容以及第二十二电容;其中,所述第十一二极管的阳极与所述变压电路连接,所述第十一二极管的阴极与所述第三十三电阻的第一端连接,所述第三十三电阻的第二端与所述第三十四电阻的第一端、所述第二十一电容的第一端以及所述第三十五电阻的第一端连接,所述第三十四电阻的第二端和所述第二十一电容的第二端与电源地连接,所述第三十五电阻的第二端、所述第三十六电阻的第一端以及所述第二十二电容的第一端共接于所述第一比较电路,所述第三十六电阻的第二端和所述第二十二电容的第一端与电源地连接。
  13. 如权利要求3所述的照明驱动电源电路,其特征在于,所述温度检测电路包括:所述第九电阻、所述第二十四电阻、所述第十九电容、所述第一热敏电阻;所述第九电阻的第一端与第一整流电路连接,所述第九电阻的第二端、所述第二十四电阻的第一端、所述第十九电容的第一端以及所述第一热敏电阻的第一端共接于第二比较电路13,所述第二十四电阻的第二端、所述第十九电容的第二端以及所述第一热敏电阻的第二端共接于地。
  14. 如权利要求3所述的照明驱动电源电路,其特征在于,所述第二比较电路包括:第十七电阻、第二开关管、第二十五电阻、第十电阻、第三开关管、第二十三电阻、第十九电阻、第五开关管、第十二电容、第二十电阻、第四稳压管、第十五电阻、第十六电阻、第十一电容、第四运放比较器;所述第十七电阻的第一端、所述第二开关管的第一端共接于第一开关电路的控制端,所述第十七电阻的第二端与所述第三开关管的第一端连接,所述第三开关管的第二端、所述第二十三电阻的第一端、所述第十九电阻的第一端、所述第十二电容的第一端以及所述第二十电阻的第一端共接于第一取电电路,所述第三开关管的控制端、所述第二十三电阻的第二端以及所述第五开关管的第一端共接,所述第五开关管的第二端接地,所述第五开关管的控制端与所述第十六电阻的第一端连接,所述第十六电阻的第二端与所述第四运放比较器的输出端连接,所述第二开关管的控制端、所述第十电阻的第一端以及所述第二十五电阻的第一端共接,所述第二十五电阻的第二端与第二供电端9V连接,所述第二十电阻的第二端、所述第四稳压管的第一端以及所述第四运放比较器的电压端共接于第三供电端,所述第四运放比较器的反相输入端、所述第十五电阻的第一端以及所述第十一电容的第一端共接于第二参考电压生成电路,所述第十九电阻的第二端、所述第十二电容的第二端、所述第四稳压管的第二端、所述第十五电阻的第二端以及所述第十一电容的第二端共接于地,所述第四运放比较器的正相输入端与电压采样电路连接。
  15. 一种照明驱动装置,其特征在于,所述照明驱动装置包括如权利要求1-14任一项所述的照明驱动电源电路。
  16. 一种灯管,其特征在于,所述灯管包括:光源模组;以及如权利要求1至14任一项所述的照明驱动电源电路,所述照明驱动电源电路与所述光源模组连接。
PCT/CN2020/127906 2020-11-10 2020-11-10 照明驱动电源电路、装置及灯管 WO2022099483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080002699.9A CN112771997B (zh) 2020-11-10 2020-11-10 照明驱动电源电路、装置及灯管
PCT/CN2020/127906 WO2022099483A1 (zh) 2020-11-10 2020-11-10 照明驱动电源电路、装置及灯管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127906 WO2022099483A1 (zh) 2020-11-10 2020-11-10 照明驱动电源电路、装置及灯管

Publications (1)

Publication Number Publication Date
WO2022099483A1 true WO2022099483A1 (zh) 2022-05-19

Family

ID=75699335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127906 WO2022099483A1 (zh) 2020-11-10 2020-11-10 照明驱动电源电路、装置及灯管

Country Status (2)

Country Link
CN (1) CN112771997B (zh)
WO (1) WO2022099483A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884467A (zh) * 2022-07-01 2022-08-09 浙江地芯引力科技有限公司 一种信号解调装置及无线充电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841959A (zh) * 2010-05-06 2010-09-22 宁波市鄞州龙源照明电器有限公司 一种大功率可控led负载电流的驱动电路
US20180294638A1 (en) * 2017-04-05 2018-10-11 Boe Technology Group Co., Ltd. Over-temperature protection circuitry and driving method
CN109709440A (zh) * 2018-12-27 2019-05-03 泉芯电子技术(深圳)有限公司 漏电保护检测电路及其控制方法
CN111556636A (zh) * 2020-05-19 2020-08-18 深圳市豪恩智能物联股份有限公司 一种灯管驱动电路、灯管驱动装置及灯管
CN111565290A (zh) * 2020-05-29 2020-08-21 深圳市鼎盛光电有限公司 一种led电源过压保护电路、led驱动电源电路及电视机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977905B (zh) * 2016-07-04 2019-01-08 西安电子科技大学 基于SiC MOSFET的过流及过欠压驱动保护系统
CN207665264U (zh) * 2018-01-19 2018-07-27 深圳市火龙果环保科技有限公司 一种电子镇流器和无极灯
CN108347809A (zh) * 2018-04-13 2018-07-31 深圳市豪恩智能物联股份有限公司 一种兼容电子镇流器的led驱动电路
CN208424841U (zh) * 2018-04-13 2019-01-22 深圳市豪恩智能物联股份有限公司 一种兼容电子镇流器的led驱动电路
CN213880350U (zh) * 2020-11-10 2021-08-03 深圳市豪恩智能物联股份有限公司 一种照明驱动电源电路、装置及灯管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841959A (zh) * 2010-05-06 2010-09-22 宁波市鄞州龙源照明电器有限公司 一种大功率可控led负载电流的驱动电路
US20180294638A1 (en) * 2017-04-05 2018-10-11 Boe Technology Group Co., Ltd. Over-temperature protection circuitry and driving method
CN109709440A (zh) * 2018-12-27 2019-05-03 泉芯电子技术(深圳)有限公司 漏电保护检测电路及其控制方法
CN111556636A (zh) * 2020-05-19 2020-08-18 深圳市豪恩智能物联股份有限公司 一种灯管驱动电路、灯管驱动装置及灯管
CN111565290A (zh) * 2020-05-29 2020-08-21 深圳市鼎盛光电有限公司 一种led电源过压保护电路、led驱动电源电路及电视机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884467A (zh) * 2022-07-01 2022-08-09 浙江地芯引力科技有限公司 一种信号解调装置及无线充电设备

Also Published As

Publication number Publication date
CN112771997B (zh) 2023-05-05
CN112771997A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN109068442B (zh) 一种兼容电子镇流器和市电的led驱动电路及led灯具
JP2004088857A (ja) 入力過電圧保護回路およびそれを備えた電気装置
CN110753421B (zh) 一种led驱动电路和灯管
CN109709440B (zh) 漏电保护检测电路及其控制方法
CN209627761U (zh) Led驱动保护电路
WO2022099483A1 (zh) 照明驱动电源电路、装置及灯管
CN213880350U (zh) 一种照明驱动电源电路、装置及灯管
US11770886B2 (en) LED driving circuit, light tube and illumination device
CN109755923B (zh) 一种电源装置的保护电路、方法及设备
CN209930557U (zh) 一种led灯的驱动器电路
CA2947837A1 (en) A non-isolated switching mode power supply for a high-voltage light strip
CN214960209U (zh) 驱动电路、驱动装置以及灯具
CN211267181U (zh) 一种具有应急照明功能的led灯电路
CN106507531A (zh) 一种led照明电源驱动芯片与驱动电路
CN218352162U (zh) 一种供电保护电路、供电保护装置及灯具
KR100716564B1 (ko) 고압 방전등용 전자식 안정기의 보호회로
CN214381506U (zh) 一种电流源波纹抑制电路的保护电路
CN217643779U (zh) 一种主照明搭配电路阻抗检测的应急照明连接电路
CN111031643A (zh) 光感控制电路及控制方法
CN211429585U (zh) 一种led灯的保护驱动电路
CN113194573B (zh) 光源驱动电路、光源驱动装置以及灯具
CN210328070U (zh) 一种支持开关切换调光的led控制器
CN216390486U (zh) 一种交流输电电路及插排
CN214544864U (zh) 一种led延时断开电路
CN208285232U (zh) 恒流保护稳压电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20961042

Country of ref document: EP

Kind code of ref document: A1