WO2022097652A1 - 合金部材の製造方法、合金部材、および合金部材を用いた製造物 - Google Patents

合金部材の製造方法、合金部材、および合金部材を用いた製造物 Download PDF

Info

Publication number
WO2022097652A1
WO2022097652A1 PCT/JP2021/040431 JP2021040431W WO2022097652A1 WO 2022097652 A1 WO2022097652 A1 WO 2022097652A1 JP 2021040431 W JP2021040431 W JP 2021040431W WO 2022097652 A1 WO2022097652 A1 WO 2022097652A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
atomic
base material
less
alloy member
Prior art date
Application number
PCT/JP2021/040431
Other languages
English (en)
French (fr)
Inventor
小関秀峰
桑原孝介
本多史明
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2022537817A priority Critical patent/JP7248196B2/ja
Priority to CN202180074268.8A priority patent/CN116368250A/zh
Priority to US18/035,104 priority patent/US20240001445A1/en
Priority to EP21889205.7A priority patent/EP4242335A4/en
Publication of WO2022097652A1 publication Critical patent/WO2022097652A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing an alloy member manufactured by a layered manufacturing method, an alloy member obtained by this manufacturing method, and a product using the alloy member.
  • HEA high entropy alloys
  • MPEA Multi-principal element alloy
  • HEA Stabilization of mixed state due to negative increase in mixed entropy term in Gibbs free energy equation
  • the features of HEA include high hardness due to lattice strain, decrease in temperature dependence of mechanical properties, and (d) improvement in corrosion resistance due to the combined effect (also called cocktail effect) due to the coexistence of various elements.
  • Patent Document 1 contains each element of Co, Cr, Fe, Ni, and Ti in the range of 5 atomic% or more and 35 atomic% or less, and Mo in the range of more than 0 atomic% and 8 atomic% or less.
  • an alloy member having a chemical composition in which the balance is composed of unavoidable impurities and in which ultra-small particles having an average particle size of 100 nm or less are dispersed and precipitated in the parent phase crystal grains.
  • Patent Document 1 by subjecting a modeling member produced by the laminated molding method to a predetermined heat treatment, a fine structure in which nanoscale ultra-small particles are dispersed and precipitated in the parent phase crystal grains can be obtained, and as a result, It is said that it is possible to provide an alloy member having improved tensile strength, significantly improved ductility, and improved corrosion resistance.
  • an object of the present invention is a method for manufacturing an alloy member having excellent mechanical properties and corrosion resistance and further abrasion resistance in an alloy member manufactured by a laminated molding method using an alloy powder, an alloy member, and an alloy. It is to provide a product using a member.
  • the method for producing an alloy member of the present invention contains each element of Co, Cr, Fe, Ni, and Ti in the range of 5 atomic% or more and 35 atomic% or less, and Mo in the range of more than 0 atomic% and 8 atomic% or less. It is characterized by having a laminated molding step of forming an alloy base material and a surface treatment step of applying a surface treatment to the alloy base material by a laminated molding method using an alloy powder whose balance is unavoidable impurities. It is a method of manufacturing an alloy member.
  • the surface treatment step it is preferable to perform the surface treatment while holding the alloy base material at a temperature of 450 ° C. or higher and lower than 1000 ° C.
  • the heat source used in the additive manufacturing method is a laser beam or an electron beam.
  • the alloy member of the present invention contains each element of Co, Cr, Fe, Ni, and Ti in the range of 5 atomic% or more and 35 atomic% or less, and Mo in the range of more than 0 atomic% and 8 atomic% or less.
  • An alloy comprising an alloy base material whose balance is an unavoidable impurity and a surface treatment layer formed on the surface of the alloy base material, and the rockwell hardness of the alloy base material is 38 HRC or more. It is a member.
  • the alloy member has a microcell structure having an average diameter of 10 ⁇ m or less in at least the crystal grains of the surface layer portion, and the boundary portion of the microcell structure has a rearrangement having a surface density higher than that inside the structure. It is preferable that ultrafine particles having an average particle size of 50 nm or less are dispersed and precipitated at least inside the microcell structure.
  • Ti is concentrated at the boundary portion of the microcell structure.
  • extremely small particles having an average particle size of 100 nm or less are dispersed and precipitated in the crystal grains of the matrix inside the member inside the surface layer portion.
  • the present invention is a product using the alloy member described above.
  • an alloy member manufactured by a laminated molding method using an alloy powder a method for manufacturing an alloy member having excellent mechanical properties and corrosion resistance and further wear resistance, an alloy member, and an alloy member are used. Can provide the product that was used.
  • the present inventors have diligently researched the alloy composition and the shape control method in order to develop a high entropy alloy member having excellent shape controllability and ductility without sacrificing the characteristics as a high entropy alloy (HEA). Stacked.
  • a laminated molding member alloy base material
  • the shape is controlled more than the conventional HEA member by ordinary forging. It was possible to obtain an alloy member having good properties and excellent tensile strength, ductility and corrosion resistance. That is, it was found that by subjecting the solution heat treatment to 1080 ° C. or higher and 1180 ° C. or lower, a fine structure in which ultra-small particles having an average particle size of 100 nm or less were dispersed and precipitated was formed, whereby both tensile strength and ductility were greatly improved. ..
  • the alloy member is a metal additive manufacturing member manufactured by the additive manufacturing method, and may be simply referred to as an alloy base material below.
  • the present inventors have repeatedly investigated and studied the relationship between the fine structure of the alloy member derived from the manufacturing method and various properties.
  • the solution heat treatment at 1080 ° C. or higher and 1180 ° C. or lower is not essential, and the laminated molding member (hereinafter referred to as alloy base material A) as it is shaped (at least in a state where the surface layer portion has a solidified structure).
  • alloy base material A the laminated molding member as it is shaped (at least in a state where the surface layer portion has a solidified structure).
  • I came up with the composition of applying surface treatment to the surface of. This is the basic idea common to the present invention.
  • the first embodiment of the method for manufacturing an alloy member of the present invention is (I) Each element of Co, Cr, Fe, Ni, and Ti is contained in the range of 5 atomic% or more and 35 atomic% or less, and Mo is contained in the range of more than 0 atomic% and 8 atomic% or less, and the balance is an unavoidable impurity.
  • An alloy base material A is obtained by a laminated molding method using an alloy powder made of the above, and the surface treatment is applied to the alloy base material A. It is characterized by, for example, surface-treating the surface of the alloy base material as it is laminated, without requiring the solution heat treatment step, thereby improving the hardness.
  • This alloy member has higher mechanical properties such as tensile strength and ductility than the conventional alloy member and is excellent in corrosion resistance, but the hardness is further improved, and it is particularly suitable for applications requiring wear resistance. ing. This point is different from Patent Document 1.
  • the first embodiment is as described above, but as another manufacturing method, there is an embodiment in which a new melting / solidifying step is additionally carried out on the preliminarily obtained modeling base material (alloy base material).
  • the alloy base material A obtained in advance is subjected to a solution heat treatment for holding at 1080 ° C. or higher and 1180 ° C. or lower. As a result, a structure in which ultra-small particles having an average particle size of 100 nm or less are dispersed and precipitated in the matrix crystal grains is formed, and an alloy base material B having improved mechanical properties is obtained.
  • an alloy base material C (hereinafter, may be referred to as a remelted alloy base material C) is obtained by melting and solidifying the surface layer portion of the alloy base material B again using a laser beam or the like. Then, a surface treatment layer is formed on the alloy base material C with a solidified structure at least on the surface layer portion.
  • the parent phase referred to in the present specification is a phase having an original structure and does not contain a precipitate (precipitated structure).
  • the alloy member in addition to the first embodiment, it is possible to obtain an alloy member having higher mechanical properties and improved hardness of the surface layer portion. Further, when the surface of the alloy base material C is surface-treated, it is preferable to keep the alloy base material C in a temperature range of 450 ° C. or higher and lower than 1000 ° C.
  • the alloy base material B obtained in advance by the method of (ii) is subjected to a layered manufacturing method (re-layered molding step) to obtain a surface layer portion of the alloy base material B.
  • An alloy base material D (hereinafter, may be referred to as a surface layer addition alloy base material D) on which a new molten / solidified layer is formed is obtained.
  • the alloy base material D is surface-treated to form a surface-treated layer. Further, when the surface of the alloy base material D is surface-treated, it is preferable to keep the alloy base material D in a temperature range of more than 100 ° C. and lower than 950 ° C.
  • the alloy base material D is subjected to an aging heat treatment before the surface treatment is performed to form the surface treatment layer, so that the average particle size of the alloy base material D is 50 nm or less, which is smaller than the microparticles in the matrix crystal grains in the microcell structure of the surface layer portion.
  • the ultrafine particles of No. 1 are dispersed and precipitated to impart hardness. Therefore, even with this embodiment, it is possible to obtain an alloy member having higher mechanical properties and improved hardness of the surface layer portion.
  • the above-mentioned manufacturing methods (ii) and (iii) selectively perform additional melting and solidification steps on the alloy base material obtained (manufactured) in advance.
  • the remelted alloy base material C in the second embodiment and the surface layer addition alloy base material D in the third embodiment (iii) have a solidified structure in which at least the surface layer portion has a microcell structure, and are further dissolved. It is common with the alloy base material A in that the treatment (solution heat treatment) is not essential and a surface treatment layer is formed on the surface.
  • a laser beam or an electron beam can be used as a heat source used in the additive manufacturing method in the additive manufacturing process and the re-additive manufacturing process. This makes it possible to perform laminated molding under an inert gas atmosphere or in a vacuum, and it is possible to reduce the mixing of impurities into the alloy member due to the atmosphere such as oxygen and nitrogen.
  • V As the material supply method of the layered manufacturing method in the layered manufacturing process and the re-layered manufacturing process, a supply method using a powder bed (powder bed) and a direct metal deposition method in which powder is directly ejected to a molten portion, for example, a laser beam.
  • the powder overlay method can be used. This makes it possible to support both the powder bed method, which has an excellent degree of freedom in shape, and the direct metal deposition method, which supports local modeling.
  • the alloy base material in the alloy member of the present invention is (Vi) Each element of Co, Cr, Fe, Ni, and Ti is contained in the range of 5 atomic% or more and 35 atomic% or less, and Mo is contained in the range of more than 0 atomic% and 8 atomic% or less, and the balance is an unavoidable impurity.
  • An alloy base material consisting of It is an alloy member having a surface-treated layer formed on the surface of the alloy base material and having a Rockwell hardness of 38 HRC or more of the alloy base material. Such an alloy member is extremely excellent in hardness and wear resistance.
  • a microcell structure having an average diameter of 10 ⁇ m or less is present, and at the boundary portion of the microcell structure, there are rearrangements having a higher surface density than the inside thereof, and at least inside the microcell structure. It is preferable that ultrafine particles having an average particle size of 50 nm or less are dispersed and precipitated. Having such a structure further improves the hardness.
  • Ti is concentrated at the boundary of the microcell structure of the parent phase.
  • dislocations can remain more stable because the lattice strain at the atomic level becomes larger than the surroundings.
  • at least a part of the concentrated Ti is expected to have an effect of further inhibiting the movement of dislocations by transforming into ultrafine particles and other intermetallic compounds by aging heat treatment, which is effective in increasing the hardness.
  • the crystal structure of the parent phase has at least one of a face-centered cubic structure and a simple cubic structure. Such a crystal structure is effective in imparting ductility required as a matrix in that it is excellent in deformability.
  • the alloy member has excellent hardness and can have a Rockwell hardness of 38 HRC or more.
  • the alloy member according to the above-mentioned production methods (ii) and (iii) has a base layer having a tensile strength of 1100 MPa or more and a breaking elongation of 10% or more, and a surface layer portion having a hardness of more than 38 HRC.
  • the manufacturing method (i) also provides a breaking elongation of 5% or more and a tensile strength of 1500 MPa or more. Corrosion resistance is also superior to that of corrosion-resistant stainless steel.
  • the present alloy member has excellent mechanical properties and hardness, and has corrosion resistance in a harsh environment.
  • FIG. 1 is a process diagram showing an example of a method for manufacturing an alloy member according to an embodiment of the present invention.
  • the embodiment of the method for manufacturing an alloy member contains each element of Co, Cr, Fe, Ni, and Ti in the range of 5 atomic% or more and 35 atomic% or less, and Mo in the range of more than 0 atomic% and 8 atomic% or less. It is characterized by having a laminated molding step of forming an alloy base material and a surface treatment step of applying a surface treatment to the alloy base material by a laminated molding method using an alloy powder whose balance is unavoidable impurities. It is one.
  • embodiments of the present invention will be described in more detail for each step.
  • an alloy powder 20 having a desired HEA composition (Co-Cr-Fe-Ni-Ti-Mo) is prepared.
  • the alloy powder 20 to be used can be obtained, for example, by an atomizing method.
  • the atomizing method There are no particular restrictions on the atomizing method, and the conventional method can be used.
  • a gas atomizing method vacuum gas atomizing method, electrode-induced dissolution gas atomizing method, etc.
  • a centrifugal force atomizing method disk atomizing method, plasma rotating electrode atomizing method, etc.
  • a plasma atomizing method or the like can be preferably used.
  • the HEA composition of the present embodiment contains five elements of Co, Cr, Fe, Ni, and Ti as main components in the range of 5 atomic% or more and 35 atomic% or less, respectively, and Mo as an auxiliary component in an amount of more than 0 atomic% and 8 atomic%. It is contained in the following range, and the balance consists of unavoidable impurities.
  • the chemical composition contains 5 elements of Co, Cr, Fe, Ni, and Ti in an amount of 5 atomic% or more and 35 atomic% or less, Mo in an amount of more than 0 atomic% and 8 atomic% or less, and B in an amount of more than 0 atomic%. Is also good.
  • Co is 20 atomic% or more and 35 atomic% or less
  • Cr is 10 atomic% or more and 25 atomic% or less
  • Fe is 10 atomic% or more and 25 atomic% or less
  • Ni is 15 atomic% or more and 30. It may contain Ti in an atomic% or less and in an amount of 5 atomic% or more and 15 atomic% or less.
  • Co is 25 atomic% or more and 33 atomic% or less
  • Cr is 15 atomic% or more and 23 atomic% or less
  • Fe is 15 atomic% or more and 23 atomic% or less
  • Ni is 17 atomic% or more and 28. It may contain Ti in an amount of 5 atomic% or more and 10 atomic% or less, and Mo in an atomic% or more and 7 atomic% or less.
  • Co is 25 atomic% or more and less than 30 atomic%
  • Cr is 15 atomic% or more and less than 20 atomic%
  • Fe is 15 atomic% or more and less than 20 atomic%
  • Ni is 23 atomic% or more and 28. It may contain Ti in an amount of 7 atomic% or more and 10 atomic% or less, and Mo in an atomic% or more and 7 atomic% or less.
  • Co is 30 atomic% or more and 33 atomic% or less
  • Cr is 20 atomic% or more and 23 atomic% or less
  • Fe is 20 atomic% or more and 23 atomic% or less
  • Ni is 17 atomic% or more and 23. It may contain Ti in an amount of less than atomic%, Ti in an amount of 5 atomic% or more and less than 7 atomic%, and Mo in an amount of 1 atomic% or more and 3 atomic% or less.
  • Co is more preferably 25 atomic% or more and less than 30 atomic%
  • Cr is more preferably 15 atomic% or more and less than 20 atomic%
  • Fe is 15 atoms.
  • % Or more and less than 20 atomic% is more preferable
  • Ni is more preferably 23 atomic% or more and 28 atomic% or less
  • Ti is more preferably 7 atomic% or more and 10 atomic% or less
  • Mo is more preferably 1 atomic% or more and 7 atomic% or less. preferable.
  • Co is more preferably 30 atomic% or more and 33 atomic% or less
  • Cr is more preferably 20 atomic% or more and 23 atomic% or less
  • Fe is 20 atoms.
  • % Or more and 23 atomic% or less are more preferable
  • Ni is more preferably 17 atomic% or more and less than 23 atomic%
  • Ti is more preferably 5 atomic% or more and less than 7 atomic%
  • Mo is more preferably 1 atomic% or more and 3 atomic% or less. preferable.
  • the average particle size of the alloy powder 20 in the present embodiment is preferably 10 ⁇ m or more and 200 ⁇ m or less from the viewpoint of handleability and filling property. Furthermore, the suitable average particle size differs depending on the laminating method, and the selective laser melting method (Selective Laser Melting: SLM) is 10 ⁇ m or more and 50 ⁇ m or less, and the electron beam laminating method (Electron Beam Melting: EBM) is 45 ⁇ m or more and 105 ⁇ m. The following are more preferred. Further, in the directed energy deposition (DED) or the laser beam powder overlay method (Laser Metal Deposition: LMD), the thickness is preferably 50 ⁇ m or more and 150 ⁇ m or less.
  • SLM Selective Laser Melting
  • EBM electron beam laminating method
  • the thickness is preferably 50 ⁇ m or more and 150 ⁇ m or less.
  • the alloy powder 20 tends to fly up in the laminated molding step of the next step, which may cause a decrease in the shape accuracy of the alloy laminated model.
  • the average particle size exceeds 200 ⁇ m, the surface roughness of the laminated model may increase in the next step, or the alloy powder 20 may be insufficiently melted.
  • an alloy additive manufacturing body having a desired shape (hereinafter, simply referred to as an alloy base material) is subjected to a metal powder additive manufacturing method (hereinafter, simply referred to as a layered manufacturing method) using the alloy powder 20 prepared above.
  • the additive manufacturing step of forming 101 is performed.
  • the additive manufacturing method that forms near-net-shaped alloy members by melting and solidifying (called melting and solidification) instead of sintering, it has a hardness equal to or higher than that of forged materials and a three-dimensional complex shape.
  • An alloy substrate can be made.
  • a layered manufacturing method using the SLM method, the EBM method, the LMD method, or the like can be preferably used.
  • FIG. 2 is a schematic view showing the configuration of the powder additive manufacturing apparatus 100 of the SLM method.
  • the stage 102 is lowered by the thickness of one layer of the alloy base material 101 to be laminated (for example, about 20 to 50 ⁇ m).
  • the alloy powder 105 is supplied from the powder supply container 104 onto the base plate 103 on the upper surface of the stage 102, and the alloy powder 105 is flattened by the recoater 106 to form the powder bed 107 (layered powder).
  • the laser beam 109 output from the laser oscillator 108 is unmelted on the base plate 103 through the galvanometer mirror 110 based on the 2D slice data converted from the 3D-CAD data of the alloy base material 101 to be modeled.
  • the powder is irradiated to form a micro-melting pond, and the micro-melting pond is moved to sequentially melt and solidify to form a solidification layer 112 in the shape of a 2D slice.
  • the unmelted powder is collected in the unmelted powder recovery container 111.
  • the alloy base material 101 is manufactured by repeating this operation and laminating.
  • the alloy base material 101 is manufactured integrally with the base plate 103 and is covered with unmelted powder. At the time of taking out, after the irradiation of the laser beam is completed and the powder and the alloy base material 101 are sufficiently cooled, the unmelted powder is collected, and the alloy base material 101 and the base plate 103 are taken out from the powder additive manufacturing apparatus 100. After that, the alloy base material 101 is cut from the base plate 103 to obtain the alloy base material 101 (corresponding to the alloy base material A).
  • the matrix of the alloy base material 101 had a structure in which fine columnar crystals (average width 50 ⁇ m or less) stood along the stacking direction of the alloy base material 101 (so-called quenching solidification structure).
  • quenching solidification structure a microcell structure having an average diameter of 10 ⁇ m or less was formed inside the fine columnar crystals.
  • the microcell structure indicates an elliptical or rectangular solidified structure that appears by electrolytic etching with oxalic acid or the like.
  • FIG. 3 is a schematic view showing the configuration of the powder additive manufacturing apparatus 200 of the LMD method.
  • the optical system is focused on the surface layer portion of the alloy base material 211 to be laminated and the alloy powder 105 is ejected and supplied from the powder supply container 201 toward the laser focal portion.
  • a laser beam or an electron beam 203 output from the laser oscillator 202 via the laser head portion 104 is mounted on the base plate 205 based on the irradiation path converted from the 3D-CAD data of the alloy base material 211 to be modeled.
  • the solidified layer 210 is formed on the irradiation path by irradiating the alloy base material to form a micro molten pool and moving the micro molten pool to sequentially melt and solidify the alloy powder 209. By advancing this operation along the irradiation path and laminating, the solidified layer is laminated to produce an alloy base material 211 (corresponding to the alloy base material A). It is also possible to form a molten portion on the surface layer portion by scanning the laser beam or the electron beam on the alloy base material 211 without ejecting and supplying the alloy powder 209.
  • the step of applying a surface treatment to the alloy base material is a coating treatment for forming a film on the surface of the alloy base material or a nitriding treatment for diffusing nitrogen or carbon from the viewpoint of improving the hardness of the alloy base material. And methods such as carburizing can be preferably used.
  • the coating refers to a material that is harder than an alloy base material.
  • the composition (constituent component) of the coating film includes, for example, nitrides, carbonitrides, oxynitrides, oxides and the like.
  • the film thickness is preferably 0.5 ⁇ m or more. Further, it is preferably 1.0 ⁇ m or more. Further, it is more preferably 2.0 ⁇ m or more. However, if the film thickness becomes too thick, the possibility of peeling increases, so the film thickness is preferably 100.0 ⁇ m or less.
  • the coating film may be formed at a portion where the coating film and the object come into contact with each other, and may be a part of the surface of the alloy base material or the entire alloy base material.
  • the method for forming the film is not particularly limited, but as a method for forming the film, for example, a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD), or the like can be used. ..
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • PVD is a state in which an alloy base material is heated to 100 ° C. to 600 ° C., a target adjusted to a desired composition is used as a raw material, and a target component is coated on the surface of the alloy base material by an arc ion plating method or a sputtering method.
  • a target composition By setting the target composition to a pure metal or alloy and introducing nitrogen gas, methane gas, or oxygen gas during the film formation, a nitride, carbonitride, oxynitride, oxide, or the like can be coated.
  • the metal component of the target preferably contains any one of Ti, Cr, Al, and Si.
  • the nitride composition of the coating is TiN, CrN, TiAlN, CrAlN, TiAlSiN, CrAlSiN, TiCrAlSiN and the like.
  • DLC Diamond like Carbon
  • a hard film is formed on the surface of an alloy base material by a chemical vapor deposition method using a raw material gas in a state where the alloy base material is heated to 600 ° C. to 1050 ° C.
  • a gas containing a metal component and a raw material gas composed of nitrogen gas, methane gas and residual hydrogen gas By using a gas containing a metal component and a raw material gas composed of nitrogen gas, methane gas and residual hydrogen gas, a film of metal nitride, carbonitride, oxide or the like can be formed.
  • the CVD temperature may be a method of forming a film at a high temperature (High Temperature: HT) of about 1000 ° C. or a method of forming a film at a relatively low temperature (Moderate Temperature: MT) in which the coating temperature is lowered.
  • Each coating may be a single layer or a plurality of layers. It is also possible to combine PVD and CVD. As described above, by forming a film on the surface of
  • Nitriding treatment and carburizing treatment allow nitrogen and carbon to penetrate the surface of the base material to form a diffusion layer.
  • the thickness of the diffusion layer is preferably 0.5 ⁇ m or more. Further, it is preferably 10.0 ⁇ m or more. Further, it is more preferably 50.0 ⁇ m or more.
  • the method for forming the diffusion layer is not particularly limited, but for example, plasma carburizing, gas carburizing, salt bath carburizing, gas carburizing, solid carburizing, gas carburizing, liquid carburizing, vacuum carburizing (vacuum gas carburizing), plasma carburizing (ion carburizing) and the like. Can be used.
  • a compound layer containing nitrogen or carbon may be formed on the diffusion layer. Further, an oxynitride layer or a sulfide layer may be formed by introducing oxygen or sulfur during the surface treatment.
  • the substrate is heated to 450 ° C., the surface is cleaned with a mixed gas of argon and hydrogen, the gas type is a mixed gas of nitrogen and hydrogen, and a bias voltage is applied to the substrate.
  • a bias voltage is applied to the substrate.
  • plasma can be generated around the substrate to diffuse nitrogen.
  • a film formed by PVD and CVD can also be formed on the nitrided layer.
  • a film formed by PVD and CVD is formed on the nitrided layer, it is preferable that the compound layer is not formed on the nitrided layer.
  • aging heat treatment is performed after the laminating molding step or before the surface treatment step, that is, between the laminating molding step and the surface treatment step.
  • An example of the aging heat treatment is shown in FIG.
  • aging heat treatment is performed in which the above alloy base material 101 is heated and heated to maintain it in a temperature range in which ultrafine particles are likely to increase, for example, in a temperature range of 450 ° C. or higher and lower than 1000 ° C. Apply.
  • aging heat treatment at a temperature higher than the temperature at which the alloy base material is used, it is possible to obtain an alloy base material in which the hardness hardly decreases when the alloy base material is used in a temperature range lower than that.
  • the temperature of the aging heat treatment for increasing the hardness of the modeled body (alloy base material) is preferably 600 ° C. or higher and 950 ° C. or lower, and more preferably 650 ° C. or higher and 900 ° C. or lower.
  • the aging heat treatment step also serves as a surface treatment step in which the modeled body (alloy base material) is held at, for example, 450 ° C. or higher and lower than 1000 ° C., preferably more than 500 ° C. and 900 ° C. or lower during the surface treatment step.
  • the surface treatment step may be performed after the aging heat treatment step. That is, the hardness can be increased by the surface treatment step. Since the surface treatment process also serves as an aging heat treatment, the process can be simplified.
  • the aging heat treatment and the solution heat treatment may be combined.
  • the surface treatment may be performed on the alloy base material which has been subjected to the aging heat treatment after the solution heat treatment, or the alloy base which has been subjected to only the solution treatment.
  • the material may be surface-treated.
  • the adhesion of the coating depends on the hardness of the member to be coated. That is, when the hardness of the alloy base material is improved through the above-mentioned aging heat treatment, an alloy member having improved adhesion between the alloy base material and the coating film can be obtained.
  • CVD since the film is coated with the raw material gas, it has a high tendency to adhere to a complicated shape, and the film can be formed on the entire inner and outer surface portions of the complex shape obtained by the laminated molding. Therefore, CVD is used as a film forming method. Is preferable.
  • CVD has a higher film formation temperature than PVD, it is necessary to select a base material having high softening resistance, but the alloy member according to the present invention is maintained in the CVD film formation temperature range. Therefore, CVD is preferable as the film forming method from the viewpoint that an alloy member having a high hardness can be obtained even if the aging heat treatment is not performed.
  • the holding time is preferably 0.5 hours or more and 24 hours or less. It is preferably set to 0.5 hours or more and 8 hours or less, and more preferably 1 hour or more and 8 hours or less. When it is 0.5 hours or more, the effect of improving the strength can be obtained, and when it is 24 hours or less, it is possible to suppress the formation of hexagonal precipitates which cause deterioration of corrosion resistance.
  • nanoscale ultrafine particles having an average particle size of 50 nm or less can be generated in the microcell structure described later, and the strength can be improved.
  • the cooling step after the aging heat treatment is not particularly limited, but if it is kept in the vicinity of the aging heat treatment temperature for a long time, nanoscale ultrafine particles may be excessively generated. It is good to cool to.
  • FIG. 4 is an example, and the heat treatment pattern can be variously changed.
  • the temperature raising process in the aging heat treatment for example, if the temperature rising rate is 5 ° C./min or more, the residence temperature in the intermediate temperature range where the adjustment of the precipitation amount becomes difficult can be shortened, which is preferable. It is preferably 10 ° C./min or higher.
  • the upper limit is not particularly limited, but it is preferably about 1000 ° C./min or less from the viewpoint of ensuring temperature uniformity in the modeling member (alloy base material), particularly prevention of generation of overheated parts.
  • the surface treatment layer is formed on the surface of the alloy base material, and the hardness is 38 HRC or more, preferably 40 HRC or more, more preferably. Can obtain alloy members of 45 HRC or higher.
  • Such an alloy member can be an alloy member having very excellent hardness and wear resistance.
  • ultrafine particles are generated in the microcell structure having an average diameter of 10 ⁇ m or less. Its average particle size is 50 nm or less, which is smaller than the extremely small particles in the parent phase crystal grains described below.
  • the lower limit of the average particle size is not particularly limited, but is, for example, about 2 nm, preferably 3 nm, and more preferably 5 nm.
  • the preferred upper limit is about 30 nm, more preferably 20 nm, and even more preferably 10 nm.
  • the average particle size of the ultrafine particles is 2 nm or more and 50 nm or less, the hardness can be increased.
  • ductility decreases when the average particle size of the ultrafine particles exceeds 50 nm.
  • the size of the ultrafine particles an image containing the ultrafine particles is acquired by a high-magnification observation means represented by a transmission electron microscope method and a high-resolution scanning electron microscopy, and the inscribed circle diameter of the ultrafine particles is obtained.
  • the average value of the diameters of the circumscribing circles is used as the particle size of the ultrafine particles, and the average value of the particle sizes of 20 ultrafine particles is used as the average particle size.
  • FIG. 5 shows an example of the fine structure of the alloy substrate (aging heat-treated material: M1-AG) which has been subjected to aging heat treatment at 650 ° C. for 8 hours with the nominal composition shown in Table 1, and shows (a) and (b). ) Is a scanning electron microscope image (SEM image), and (c) and (d) are scanning transmission electron microscope images (STEM images).
  • SEM image scanning electron microscope image
  • STEM images scanning transmission electron microscope images
  • the alloy substrate in the present embodiment has a matrix structure 2 mainly composed of columnar crystals having a crystal grain size of 20 ⁇ m or more and 150 ⁇ m or less (average crystal grain size of 100 ⁇ m or less). (Since it is difficult to distinguish in this figure, one tissue is shown by a broken line).
  • the crystal grain size is an average of 10 crystal grains measured by a cutting method using an SEM image having a magnification of 500 times. Further, although not shown in the SEM image of (a), a microcell structure having an average diameter of 10 ⁇ m or less is formed inside the structure.
  • the interval indicated by the arrow in the enlarged image of (b) indicates the diameter of the microcell structure.
  • the concentration of Ti was confirmed at the boundary portion 3 of the microcell structure shown by the white bright part.
  • the high-magnification bright-field image obtained by the STEM image of (c) the brighter region shows the inside of the microstructure, and the boundary portion 3 of the microstructure is shown by a black line having a higher density than the inside.
  • FIG. 6 shows an example of the fine structure of the alloy base material (solution treatment material: M1-ST) which has been subjected to the solution heat treatment at 1120 ° C. for 1 hour with the nominal composition shown in Table 1.
  • a) is a scanning electron microscope image (SEM image)
  • (b) is a scanning transmission electron microscope image (STEM image).
  • the alloy base material M1 (without solution heat treatment and without aging heat treatment) is a matrix crystal mainly composed of columnar crystals having a crystal grain size of 20 ⁇ m to 150 ⁇ m (average crystal grain size of 100 ⁇ m or less) as in FIG. 5 (a). It had a structure, and a microcell structure with an average diameter of 10 ⁇ m or less was formed inside.
  • M1-S (with solution heat treatment and without aging heat treatment) is a matrix mainly composed of equiaxed crystals having a crystal grain size of 50 ⁇ m to 150 ⁇ m (average crystal grain size of 100 ⁇ m or less) as shown in FIG. 6 (a). Had tissue 7.
  • the holding temperature in the solution heat treatment is in the temperature range of 1080 ° C. or higher and 1180 ° C. or lower (1080 ° C. to 1180 ° C.). It is preferably 1100 ° C. or higher and 1140 ° C. or lower, and more preferably 1110 ° C. or higher and 1130 ° C. or lower.
  • the temperature is 1080 ° C. or higher, the precipitation and residue of hexagonal precipitates leading to embrittlement are suppressed. Further, when the temperature is 1180 ° C. or lower, defects such as coarsening of the crystal grain size and partial melting are less likely to occur.
  • the holding time at the maximum temperature is preferably 0.5 hours or more and 24 hours or less, preferably 0.5 hours or more and 8 hours or less, and more preferably 1 hour or more and 4 hours or less.
  • it is 0.5 hours or more, the formation of hexagonal precipitates in the alloy substrate can be suppressed, and when it is 24 hours or less, the coarsening of the crystal grain size can be suppressed.
  • hexagonal precipitation occurs quickly in a temperature range (for example, from 800 ° C. to 1080 ° C.) where hexagonal precipitates are likely to occur, for example, if the temperature rise rate is 5 ° C./min or higher. It is suitable because the physical quantity can be reduced before the heat treatment. It is preferably 10 ° C./min or higher.
  • the upper limit is not particularly limited, but is about 1000 ° C./min from the viewpoint of ensuring temperature uniformity in the alloy base material, particularly prevention of generation of overheated portions.
  • the solid solution limit of the alloy is not clear, and the final product, the alloy member, is dispersed and precipitated with extremely small particles having an average particle size of 100 nm or less. Therefore, the heat treatment as described above is performed. It can also be called a pseudo-solution heat treatment. In the present specification, including these, it is simply referred to as solution heat treatment.
  • the alloy substrate after the heat treatment step is subjected to a cooling step.
  • the cooling step it is preferable to cool at least the temperature range from the holding temperature to 800 ° C. at a cooling rate of 110 ° C./min or more and 2400 ° C./min or less in the heat treatment.
  • the cooling rate is preferably 110 ° C./min or more and less than 600 ° C./min, and more preferably 200 ° C./min or more and less than 600 ° C./min. Cooling in this range can be adjusted by gas cooling using, for example, an inert gas such as nitrogen, argon or helium.
  • cooling rate for example, furnace cooling or air cooling treatment
  • hexagonal precipitates are likely to be generated from grain boundaries, which may cause a problem of deterioration in corrosion resistance.
  • the cooling rate is 600 ° C./min or more and 2400 ° C./min or less, more preferably 1000 ° C./min or more and 2000 ° C./min or less. Cooling in this range can be adjusted by, for example, liquid cooling using a salt bath, hardened oil, an aqueous polymer solution, or the like.
  • a cooling rate exceeding 2400 ° C./min for example, immersion cooling in a water tank
  • deformation of the alloy base material due to temperature unevenness occurring during rapid cooling may become a problem.
  • a microcell structure having an average diameter of 10 ⁇ m or less is present, and at the boundary portion of the microcell structure, a rearrangement having a surface density higher than that inside the structure is present, and at least the inside of the microcell structure. It is preferable that ultrafine particles having an average particle size of 50 nm or less are dispersed and precipitated. Furthermore, Ti is concentrated at the boundary of the microcell structure of the parent phase. Very small particles having an average particle size of 100 nm or less are dispersed and precipitated in the crystal grains of the matrix inside the member inside the surface layer portion.
  • another embodiment of the method for manufacturing the alloy member can be started from preparing the alloy base material A obtained in advance.
  • the alloy base material A those obtained after the above-mentioned extraction step may be used, or those obtained separately in advance may be used.
  • the alloy base material A is subjected to the following solution heat treatment to obtain an alloy base material B having a matrix structure mainly composed of equiaxed crystals.
  • the surface layer of the alloy base material B is melted and solidified by a laser beam or an electron beam to form a new solidified layer.
  • the solidified layer can be formed by scanning the laser beam or the electron beam on the alloy base material B without ejecting and supplying the alloy powder.
  • the remelting alloy base material C is obtained by carrying out such a remelting / solidification step.
  • This remelted alloy base material C forms a solidified structure containing a microcell structure having a diameter of 10 ⁇ m or less on the surface layer on a mother body having excellent corrosion resistance and mechanical properties.
  • the surface treatment may be applied to the alloy member.
  • the surface-added alloy base material D By directly subjecting the surface-added alloy base material D to aging heat treatment, the mechanical properties of the tensile strength and ductility of the alloy base material are more excellent, and the hardness of the alloy member is further improved (second alloy member). ) Can be obtained. Then, the surface treatment may be applied to the alloy member.
  • the hardness of the surface layer portion of the second alloy member manufactured by the above remelting / solidification step or the manufacturing method using the surface layer addition manufacturing step is improved. That is, as shown in FIGS. 9 and 10, equiaxed crystal structures having excellent toughness and ductility are arranged inside 401 and 501 of the alloy member, and are smaller than the extremely small particles contained in the inside 401 and 501 of the alloy member. It has a structure in which ultrafine particles coexist, and a surface treatment layer can be provided on the outermost layer portions 402 and 503. As a result, as described above, the mechanical properties of tensile strength and ductility are more excellent, and in addition, the hardness of the alloy member is improved.
  • Applications and products using the alloy member of the present invention are arbitrary. It is possible to obtain mechanical properties and wear resistance according to the application by appropriately selecting a manufacturing method, such as one in which the modeled body is subjected to aging heat treatment, or one in which the modeled body is subjected to solution heat treatment and aging heat treatment. can.
  • Examples of applications include oil well drilling equipment, screws and cylinders for injection molding, turbine wheels such as generators, compressor impellers, chemical plant valves and joints, heat exchangers, pumps, semiconductor manufacturing equipment and components, and casting dies. It is applied to dies, forging dies, extrusion dies, press dies, plastic molding dies, etc. In the present invention, these machines, devices, members, molds, parts, etc. are collectively referred to as manufactured products.
  • Example 1 Preparation of HEA powder P1
  • the raw materials were mixed according to the nominal composition shown in Table 1, and an alloy powder was produced from the molten metal by the vacuum gas atomizing method. Next, the obtained alloy powder was classified by sieving and sorted so that the particle size was 10 ⁇ m or more and 53 ⁇ m or less and the average particle size (d50) was about 35 ⁇ m, and HEA powder P1 was prepared. Further, the HEA powder P2 was prepared by sorting by sieving so that the particle size was 53 ⁇ m or more and 106 ⁇ m or less and the average particle size (d50) was about 80 ⁇ m.
  • composition of P1 was selected is that it was particularly excellent in mechanical properties related to strength and ductility in the preliminary study by the inventor.
  • powder having the composition disclosed in the above-mentioned International Publication No. 2019/031577 can also be used.
  • Example 2 [Preparation of alloy base material (M1) and hardness improvement by aging heat treatment]
  • EOS M290 powder layered manufacturing device
  • FIG. M1 additive manufacturing body: a cylindrical material having a diameter of 20 mm and a height of 5 mm, the height direction is the layering direction
  • the laser output during laminated molding was set to 300 W based on prior studies by the inventor, the laser scanning speed was set to 1000 mm / sec, and the scanning interval was set to 0.11 mm.
  • the hardness of the alloy base material M1 as formed by the SLM method was 40.9 HRC. Further, the laminated thickness for each layer was set to about 0.04 mm. Further, using a laser beam powder overlay device (Lasertec65 3D manufactured by DMG Mori Seiki Co., Ltd.), HEA powder P2 was laminated and molded on the maraging steel. The laser output at the time of laminated molding was set to 1800 W based on the prior examination by the inventor, the laser scanning speed was 1000 mm / sec, the powder supply amount was 14 g / min, and about 8 mm was deposited. The hardness of the alloy base material M1 as formed by the LMD method was 38.1 HRC. The hardness of the product manufactured by LMD tended to be relatively lower than that manufactured by the SLM method.
  • FIG. 11 shows the Vickers hardness when the alloy base material M1 is held at 450 ° C. or higher and lower than 1000 ° C. (aging heat treatment). As shown in FIG. 11, by holding the alloy base material M1 at 450 ° C. or higher and lower than 1000 ° C., an alloy base material having a suitable Vickers hardness could be produced.
  • the mechanism for improving the hardness was examined, a microcell structure was generated by the laminated molding method, and the microcell structure was smaller than the extremely small particles in the crystal grains of the matrix as shown in FIG. 5 by the aging heat treatment. It was confirmed that ultrafine particles having an average particle size of 50 nm or less were generated.
  • the dislocation is a linear crystal defect contained in the crystal, and is a site where the atomic arrangement is locally changed. It is considered that the hardness was increased by the generation of nanoscale ultrafine particles with high-density dislocations.
  • Example 3 [Hardness of PVD-deposited alloy substrate (M1) after various heat treatments]
  • An arc ion plating type film forming apparatus was used for the coating process.
  • the device includes an arc evaporation source, a vacuum vessel and a substrate rotation mechanism.
  • the AlCrSiN film the AlCrSi target was set as the arc evaporation source metal.
  • TiN a Ti target was set as the arc evaporation source metal.
  • the inside of the vacuum vessel is exhausted by a vacuum pump, and gas is introduced from the supply port.
  • a bias power supply is connected to the alloy member installed in the vacuum vessel, and a negative DC bias voltage is applied to the alloy member.
  • the film formation process was carried out as follows. First, the inside of the vacuum container was evacuated to 8 ⁇ 10-3 Pa or less. Then, the substrate temperature was heated to a set temperature (450 ° C., 500 ° C., 580 ° C.) by a heater installed in the vacuum vessel, and vacuum exhaust was performed. Then, Ar gas was introduced into the vacuum vessel to make 0.67 Pa. Then, a current of 20 A was supplied to the filament electrode, a bias voltage of ⁇ 200 V was applied to the alloy substrate, and Ar bombard was carried out for 4 minutes. Then, the gas in the vacuum vessel was replaced with nitrogen.
  • the negative bias voltage, cathode voltage, and furnace pressure applied to the substrate were adjusted for each sample, and an arc current of 150 A was supplied to the cathode to coat a coating film having an AlCrSiN composition by 15 ⁇ m. Further, a coating film having a TiN composition was coated by 3.0 ⁇ m.
  • the set temperature of the substrate at the time of film formation was changed depending on the film composition, and the CrAlSiN composition was 450 ° C. and the TiN composition was 500 ° C. and 580 ° C. Then, the substrate was cooled to about 200 ° C. or lower and taken out from the vacuum vessel to prepare a sample.
  • the heat treatment applied to the alloy base material M1 was solution heat treatment, aging heat treatment, solution heat treatment, and then aging heat treatment.
  • a vacuum furnace was used, the temperature was raised at a heating rate of 10 ° C./min, the temperature was maintained at 1120 ° C. for 1 hour, and then the mixture was cooled using high-pressure nitrogen gas having a set pressure of 0.5 MPa.
  • the aging heat treatment conditions the mixture was kept in an air atmosphere at 800 ° C. for 1 hour in a muffle furnace and cooled to room temperature by furnace cooling.
  • the conditions for the aging heat treatment after the solution heat treatment the conditions of the previous period were used for the solution treatment.
  • a vacuum furnace was used, the temperature was raised at a heating rate of 10 ° C./min, the temperature was maintained at 700 ° C. for 8 hours, and then high-pressure nitrogen gas having a set pressure of 0.5 MPa was used.
  • high-pressure nitrogen gas having a set pressure of 0.5 MPa was used.
  • the product prepared by the LMD method a vacuum furnace was used, the temperature was raised at a heating rate of 10 ° C./min, the temperature was maintained at 700 ° C. for 5 hours, and then the mixture was cooled using high-pressure nitrogen gas having a set pressure of 0.5 MPa.
  • the as-formed alloy member (M1-As Bilt) produced by the SLM method was produced by the SLM method in Examples 2, 3, 4 of the present invention and subjected to solution heat treatment.
  • the product (M1-ST) was prepared by the SLM method of Examples 7, 8, 9 of the present invention, and the product (M1-ST-AG) was prepared by the SLM method after the solution heat treatment.
  • the aging heat-treated product (M1-AG) is referred to as Examples 17, 18, 19 of the present invention, and the aging heat-treated product (M1-AG) prepared by the LMD method is referred to as Invention Examples 22, 23, 24.
  • the tempered material of the forging material SKD61 which was formed under the same conditions as the PVD film forming conditions, was designated as Conventional Examples 2 to 4. Then, the hardness of each alloy member was evaluated.
  • Hardness measurement The hardness was measured by a Rockwell hardness tester at room temperature with a load of 150 kgf and a holding time of 15 seconds. The measurement was performed 3 times, and the average value of 3 times was recorded. The results are shown in Tables 2-5.
  • the hardness was improved to the same level or higher as compared with that before the surface treatment, regardless of which surface treatment was performed, except for Examples 12, 13, 14, 17, and 22 of the present invention. I understood. This is because the surface treatment process exerted the same effect as the aging treatment.
  • the film formation process was carried out as follows. First, the alloy base material M1 was placed in the furnace, Ar gas was introduced, the temperature was raised to 900 ° C. in 2 hours, and then H2 gas was introduced and held for 30 minutes to clean the surface of the M1 alloy. Next, H2, TiCl4, and N2 gas were introduced and held for about 1 hour to coat a coating film having a TiN composition by 3.0 ⁇ m. Finally, Ar gas was introduced, the substrate was cooled, and the sample was taken out from the vacuum vessel to prepare a sample.
  • the heat treatment applied to the alloy base material M1 was the same as described in the above "(heat treatment conditions)".
  • the alloy member as-formed (M1-As Bilt) produced by the SLM method is produced by the SLM method in Example 5 of the present invention and subjected to solution heat treatment (M1-ST).
  • M1-ST solution heat treatment
  • Example 15 of the present invention was prepared by the SLM method and heat-treated by aging (M1-AG).
  • Example 20 a product prepared by the LMD method and heat-treated by aging (M1-AG) is referred to as Example 25 of the present invention.
  • the SKD61 of the forging material the case where the film was formed under the same conditions as the CVD film forming conditions was referred to as Conventional Example 5. In addition, the hardness of each alloy member was evaluated.
  • Hardness measurement The hardness was measured by a Rockwell hardness tester at room temperature with a load of 150 kgf and a holding time of 15 seconds. The measurement was performed 3 times, and the average value of 3 times was recorded. The results are shown in Tables 2-5.
  • the nitriding treatment step includes a temperature raising step, a surface cleaning step, a film forming step, and a temperature lowering step.
  • Plasma nitriding was used as the nitriding method.
  • the alloy base material M1 was placed in the furnace and filled with argon gas.
  • the substrate was heated to 450 ° C.
  • the gas type was a mixture of argon and hydrogen, and the surface was cleaned by sputtering with argon for 45 minutes.
  • the gas type was a mixed gas of nitrogen and hydrogen, and a bias voltage was applied to the base material to generate plasma around the base material, and nitrogen diffusion treatment was performed over 10 hours. Then, it was cooled in a furnace to prepare a test piece.
  • the heat treatment applied to the alloy base material M1 was the same as described in the above "(heat treatment conditions)".
  • the alloy member as-formed (M1-As Bilt) produced by the SLM method is produced by the SLM method in Example 1 of the present invention and subjected to solution heat treatment (M1-ST).
  • M1-ST solution heat treatment
  • Example 11 of the present invention was prepared by the SLM method and heat-treated by aging (M1-AG).
  • Example 16 the product prepared by the LMD method and heat-treated by aging (M1-AG) is referred to as Example 21 of the present invention.
  • the nitriding treatment of the forging material SKD61 under the same conditions as the above-mentioned nitriding treatment conditions was defined as Conventional Example 1.
  • the hardness of each alloy member was evaluated.
  • Hardness measurement The hardness was measured by a Rockwell hardness tester at room temperature with a load of 150 kgf and a holding time of 15 seconds. The measurement was performed 3 times, and the average value of 3 times was recorded. The results are shown in Tables 2-5.
  • the Rockwell hardness was improved to the same level or higher as compared with that before the surface treatment, regardless of which heat treatment was performed. From this, it was found that the hardness of the alloy member can be improved not only by the coating treatment of forming a coating on the surface layer portion but also by the nitriding treatment of diffusing nitrogen in the surface layer portion.
  • the present invention is not limited to the specific configuration described.
  • the alloy member disclosed in the present invention can be applied to corrosion-resistant and wear-resistant parts widely used in industrial fields, resource fields, chemical plants, mold members, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

合金粉末を用いて積層造形法により作製した合金部材において、機械的特性と耐食性に優れ、更に耐摩耗性を備えた合金部材の製造方法、および合金部材を提供すること。 Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、合金基材を形成する積層造形工程と、前記合金基材に表面処理を施す表面処理工程と、を有することを特徴とする合金部材の製造方法である。

Description

合金部材の製造方法、合金部材、および合金部材を用いた製造物
 本発明は、積層造形法により作製する合金部材の製造方法、この製造方法により得られた合金部材、および合金部材を用いた製造物に関するものである。
 近年、従来の合金(例えば、1~3種類の主要成分元素に複数種の副成分元素を微量添加した合金)の技術思想とは一線を画した新しい技術思想の合金として、ハイエントロピー合金(High Entropy Alloy:HEA)が提唱されている。HEAとは、5種類以上の主要金属元素(それぞれ5~35原子%)から構成された合金と定義されており、下記するような特徴が発現することが知られている。また、複数の主要元素を有するが多相の存在を許容する多主要元素合金(Multi-principal element alloy: MPEA)の合金概念も提案されているが、本願ではHEAとMPEAを同一の概念として扱い、両者を合わせてHEAと呼称する。
 (a)ギブスの自由エネルギー式における混合エントロピー項が負に増大することに起因する混合状態の安定化、(b)複雑な微細構造による拡散遅延、(c)構成原子のサイズ差に起因する高格子歪みによる高硬度化や機械的特性の温度依存性低下、(d)多種元素共存による複合影響(カクテル効果とも言う)による耐食性の向上などをHEAの特長として挙げることができる。
 ここで特許文献1には、Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる化学組成を有し、母相結晶粒中に、平均粒径100nm以下の極小粒子が分散析出している合金部材が開示されている。
 特許文献1によると、積層造形法により作製した造形部材に対して所定の熱処理を施すことにより、母相結晶粒中にナノスケールの極小粒子が分散析出した微細組織が得られること、その結果、引張強さの向上と延性の大幅な向上および耐食性の向上とが図られた合金部材を提供できるとされている。
国際公開2019/031577号公報
 特許文献1に係わる技術によれば、引張強さや延性等の機械的特性と耐食性に優れた合金部材を得ることができる。しかしながら、この合金部材を耐摩耗性が必要な過酷環境に適用するためには更なる耐摩耗性の向上が求められていた。
 以上から、本発明の目的は、合金粉末を用いて積層造形法により作製した合金部材において、機械的特性と耐食性に優れ、更に耐摩耗性を備えた合金部材の製造方法、合金部材、および合金部材を用いた製造物を提供することである。
 本発明の合金部材の製造方法は、Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、合金基材を形成する積層造形工程と、前記合金基材に表面処理を施す表面処理工程と、を有することを特徴とする合金部材の製造方法である。
 また、前記積層造形工程と前記表面処理工程との間に、前記合金基材を450℃以上1000℃未満の温度範囲で保持する時効熱処理工程とを有することが好ましい。
 また、前記表面処理工程において、前記合金基材を450℃以上1000℃未満の温度で保持しながら表面処理を行うことが好ましい。
 また、前記積層造形工程において、積層造形法に使用する熱源がレーザビームあるいは電子ビームであることが好ましい。
 本発明の合金部材は、Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金基材と、前記合金基材表面に形成された表面処理層と、を有し、前記合金基材のロックウェル硬さが、38HRC以上であることを特徴とする合金部材である。
 また、前記合金部材は、少なくとも表層部の結晶粒中に、平均直径10μm以下のミクロセル組織を有し、ミクロセル組織の境界部には、その組織内部よりも高い面密度の転位を有し、前記ミクロセル組織の少なくとも内部には平均粒径50nm以下の極微細粒子が分散析出していることが好ましい。
 また、前記ミクロセル組織の境界部にはTiが濃縮していることが好ましい。
 また、前記表層部よりも内側の部材内部の母相の結晶粒中に、平均粒径100nm以下の極小粒子が分散析出していることが好ましい。
 また、本発明は、上記に記載した合金部材を用いた製造物である。
 本発明によれば、合金粉末を用いて積層造形法により作製した合金部材において、機械的特性と耐食性に優れ、更に耐摩耗性を備えた合金部材の製造方法、合金部材、および合金部材を用いた製造物を提供できる。
本発明に係る合金部材の製造方法の一例を示す工程図である。 選択的レーザ溶融法の積層造形装置の構成および積層造形方法の例を示す断面模式図である。 レーザビーム粉末肉盛法の積層造形装置の構成および積層造形方法の例を示す断面模式図である。 積層造形工程後の時効熱処理工程の一例を示す図である。 本発明に係る第一の合金部材の微細組織の一例を示す、(a)(b)走査電子顕微鏡像(SEM像)と、(c)(d)走査型透過電子顕微鏡像(STEM像)である。 比較例に係る合金部材の微細組織の一例を示す、(a)走査電子顕微鏡像(SEM像)と、(b)走査型透過電子顕微鏡像(STEM像)である。 本発明に関わる合金部材の製造方法の別の一例を示す工程図である。 本発明に関わる合金部材の製造方法のさらに別の一例を示す工程図である。 本発明に関わる合金部材の断面図の一例を示す模式図である。 本発明に係る第二の合金部材(合金基材Cまたは合金基材D)の微細組織の断面図の一例を示す模式図である。 合金部材を時効熱処理した際の硬度を示す図である。
 まず、本発明者等は、ハイエントロピー合金(HEA)としての特徴を犠牲にすることなく、形状制御性や延性に優れるハイエントロピー合金部材を開発すべく、合金組成と形状制御方法について鋭意研究を重ねた。その結果、Co-Cr-Fe-Ni-Ti-Mo系合金の粉末を用いた積層造形法により積層造形部材(合金基材)を形成することで、従来の普通鍛造によるHEA部材よりも形状制御性が良く、引張強さと延性並びに耐食性に優れる合金部材を得ることができた。即ち、1080℃以上1180℃以下の溶体化熱処理を施すことで平均粒径100nm以下の極小粒子が分散析出した微細組織を形成し、これによって引張強さと延性が共に大きく改善されることが判った。
 具体的には、ニアネットシェイプの合金部材が得られると共に、この合金部材は良好な機械的特性(例えば、1100MPa以上の引張強さ、10%以上の破断伸び)を有することが確認された。また、高い孔食発生電位を示し、優れた耐食性も有することが確認された。しかしながら、この合金部材を用いた機械装置について耐摩耗試験を行ったところ、摺動部など過酷な条件においてさらなる耐摩耗性の向上、すなわち硬度の改善が望まれるものであることが分かった。なお、本発明において合金部材とは、積層造形法により製造した金属積層造形部材のことであり、以下、単に合金基材と言うことがある。
 そこで、本発明者等は、製造方法に由来する合金部材の微細組織と諸特性との関係について調査、研究を重ねた。その結果、1080℃以上1180℃以下の溶体化熱処理を必須とせず、造形したまま(少なくとも表層部に凝固組織を有している状態)の積層造形部材(以下、合金基材Aと言う。)の表面に表面処理を施す構成に想到した。この点が本発明に共通する基本思想である。
 以上より、本発明の合金部材の製造方法の第1の実施形態は、
(i)Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、合金基材Aを得て、この合金基材Aに表面処理を施すものである。溶体化熱処理工程を必須とせずに、例えば、積層造形したままの合金基材の表面に表面処理をすることに特徴があり、これにより硬度が向上する。
 この合金部材は、従来の合金部材よりも高い引張強さや延性等の機械的特性を有しており耐食性にも優れるが、さらに硬度が改善されており、特に耐摩耗性も必要な用途に適している。この点は特許文献1とは異なる特徴である。
 第1の実施形態は上述の通りであるが、さらに他の製造方法として、予め得られた造形基材(合金基材)に対して新たな溶融・凝固工程を追加で実施する形態がある。
(ii)第2の実施形態としては、予め得られた合金基材Aに対し、1080℃以上1180℃以下で保持する溶体化熱処理を施す。これにより母相結晶粒中に平均粒径100nm以下の極小粒子が分散析出した組織を形成し、機械的特性を改善した合金基材Bを得る。その後、レーザビーム等を用いて前記合金基材Bの表層部を再び溶融・凝固させた合金基材C(以下、再溶融合金基材Cと言うことがある。)を得る。その後、この合金基材Cに、少なくとも表層部に凝固組織を有する状態で、表面処理層を形成する。なお、本明細書でいう母相とは、元の組織の相であり、析出物(析出した組織)を含まない相のことを指す。
 このとき、合金基材Cに表面処理を施して表面処理層を形成する前に、時効熱処理を施し、積層造形工程において、表層部の柱状晶からなる結晶粒の内部に生じた、周囲よりも密度の高い転位のネットワークによって細かく分けられた平均直径10μm以下のセル状領域(本発明ではミクロセル組織と呼ぶ)中に母相結晶粒中の極小粒子よりも小さい平均粒径50nm以下の極微細粒子を分散析出させて硬度を付与すすることが好ましい。従って、この実施形態によれば、第1の実施形態に加えて、より高い機械的特性が得られると共に、表層部の硬度が改善された合金部材を得ることができる。
 また、合金基材Cの表面に表面処理を行う際、合金基材Cを450℃以上1000℃未満の温度範囲で保持することが好ましい。
 (iii)第3の実施形態としては、上記(ii)の方法で、予め得た合金基材Bに対し、積層造形法(再積層造形工程)を実施して、合金基材Bの表層部に新たな溶融・凝固層を形成した合金基材D(以下、表層付加合金基材Dと言うことがある。)を得る。その後、この合金基材Dに表面処理を行い表面処理層を形成する。
 また、合金基材Dの表面に表面処理を行う際、合金基材Dを100℃超950℃未満の温度範囲で保持することが好ましい。
 合金基材Dについて、表面処理を施して表面処理層を形成する前に、時効熱処理を施すことで、表層部のミクロセル組織中に母相結晶粒中の極小粒子よりも小さい平均粒径50nm以下の極微細粒子を分散析出させて硬度を付与するものである。従って、この実施形態によっても、より高い機械的特性が得られると共に、表層部の硬度が改善された合金部材を得ることができる。
 上記(ii)(iii)の製造方法は、予め得た(製造した)合金基材に対して選択的に追加の溶融・凝固工程を実施するものである。(ii)第2の実施形態における再溶融合金基材Cと、(iii)第3の実施形態における表層付加合金基材Dは、少なくとも表層部がミクロセル組織を有する凝固組織であり、さらに溶体化処理(溶体化熱処理)を必須とせず、表面に表面処理層を形成する点で、合金基材Aと共通する。これらの製造方法によれば、専ら耐摩耗性が必要な用途だけでなく、耐摩耗性に加えて機械的特性も必要な用途など、用途に合わせた合金部材を選択的に製造することができる。従って、生産工程の短縮と共に製品のバリエーションが広がり、生産管理上有益である。
 また、上記合金部材の製造方法において、以下のような改良や変更を加えることができる。
(iv) 積層造形工程ならびに再積層造形工程における積層造形法に使用する熱源としてレーザビームあるいは電子ビームを用いることができる。これにより不活性ガス雰囲気下や真空中での積層造形も行えるようになり、酸素や窒素などの雰囲気を起因とする、合金部材中への不純物の混入を低減することができる。
(v) 前記積層造形工程ならびに再積層造形工程における積層造形法の材料供給方法としては、粉末床(パウダーベッド)による供給方法と、溶融部に直接粉末を噴出する直接金属堆積法、例えばレーザビーム粉末肉盛法を用いることができる。これにより、パウダーベッド法による形状自由度に優れた造形法への対応と、直接金属堆積法による局所造形への対応の双方に対応することが可能となる。
 また、本発明の合金部材における合金基材は、
(vi)Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金基材と、
前記合金基材表面に形成された表面処理層と、を有し、前記合金基材のロックウェル硬さが、38HRC以上であることを特徴の一つとする合金部材である。このような合金部材であれば、硬度と耐摩耗性とが非常に優れている。
 また、少なくとも表層部の結晶粒中に、平均直径10μm以下のミクロセル組織を有し、ミクロセル組織の境界部には、その内部よりも高い面密度の転位を有し、ミクロセル組織の少なくとも内部には平均粒径50nm以下の極微細粒子が分散析出していることが好ましい。このような組織を有することでさらに硬度が向上する。
 上記合金部材において、以下のような改良や変更を加えることができる。
(vii)上記母相のミクロセル組織の境界部にはTiが濃縮している。原子半径の大きいTiが濃縮していると、原子レベルでの格子ひずみが周囲より大きくなることで転位がより安定して残存できる。また、濃縮したTiの少なくとも一部が時効熱処理で極微細粒子や他の金属間化合物に変態することで転位の運動をさらに阻害する効果も期待され、硬度の増加に有効である。
(viii)前記母相の結晶構造が、面心立方構造または単純立方構造の少なくとも一方を有している。このような結晶構造は、変形能に優れる点でマトリックスとして必要な延性を付与することに有効である。
 (iX)上記合金部材は、硬度に優れており、ロックウェル硬さで38HRC以上とすることができる。特に上記(ii)(iii)の製造方法による合金部材は、1100MPa以上の引張強さと、10%以上の破断伸びを有する母体に、硬度が38HRCを超える硬さを示す表層部を有する。なお、(i)の製造方法でも5%以上の破断伸びと1500MPa以上の引張強さが得られる。耐食性についても耐食ステンレス鋼に比べ優れている。このように本合金部材は機械的特性及び硬度に優れており、且つ過酷な環境での耐食性を有する。
 以下、本発明の実施形態について、図面を参照しながら製造方法の手順に沿って説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。
<合金部材の製造方法>
 図1は、本発明の実施形態に係る合金部材の製造方法の一例を示す工程図である。合金部材の製造方法の実施形態は、Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、合金基材を形成する積層造形工程と、前記合金基材に表面処理を施す表面処理工程と、を有することを特徴の一つとしている。以下、工程毎に本発明の実施形態をより具体的に説明する。
 まず、所望のHEA組成(Co-Cr-Fe-Ni-Ti-Mo)を有する合金粉末20を用意する。使用する合金粉末20は、例えばアトマイズ法で得ることができる。アトマイズ方法には特段の限定はなく、従前の方法を利用できる。例えば、ガスアトマイズ法(真空ガスアトマイズ法、電極誘導溶解式ガスアトマイズ法など)や遠心力アトマイズ法(ディスクアトマイズ法、プラズマ回転電極アトマイズ法など)、プラズマアトマイズ法などを好ましく用いることができる。
[化学組成]
 本実施形態のHEA組成は、主要成分としてCo、Cr、Fe、Ni、Tiの5元素をそれぞれ5原子%以上35原子%以下の範囲で含み、副成分としてMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなるものである。
 上記化学組成は、Co、Cr、Fe、Ni、Tiの5元素をそれぞれ5原子%以上35原子%以下で、Moを0原子%超8原子%以下で、Bを0原子%超、含むようにしても良い。
 また、上記化学組成は、Coを20原子%以上35原子%以下で、Crを10原子%以上25原子%以下で、Feを10原子%以上25原子%以下で、Niを15原子%以上30原子%以下で、Tiを5原子%以上15原子%以下で、含むようにしても良い。
 また、上記化学組成は、Coを25原子%以上33原子%以下で、Crを15原子%以上23原子%以下で、Feを15原子%以上23原子%以下で、Niを17原子%以上28原子%以下で、Tiを5原子%以上10原子%以下で、Moを1原子%以上7原子%以下で、含むようにしても良い。
 また、上記化学組成は、Coを25原子%以上30原子%未満で、Crを15原子%以上20原子%未満で、Feを15原子%以上20原子%未満で、Niを23原子%以上28原子%以下で、Tiを7原子%以上10原子%以下で、Moを1原子%以上7原子%以下で、含むようにしても良い。
 また、上記化学組成は、Coを30原子%以上33原子%以下で、Crを20原子%以上23原子%以下で、Feを20原子%以上23原子%以下で、Niを17原子%以上23原子%未満で、Tiを5原子%以上7原子%未満で、Moを1原子%以上3原子%以下で、含むようにしても良い。
 これらの組成範囲に制御することにより、延性の向上と引張強さの向上の両立にいっそう有効である。
 上記組成範囲の中で、引張強さの向上をより優先する場合、Coは25原子%以上30原子%未満がより好ましく、Crは15原子%以上20原子%未満がより好ましく、Feは15原子%以上20原子%未満がより好ましく、Niは23原子%以上28原子%以下がより好ましく、Tiは7原子%以上10原子%以下がより好ましく、Moは1原子%以上7原子%以下がより好ましい。
 また、上記組成範囲の中で、延性の向上をより優先する場合、Coは30原子%以上33原子%以下がより好ましく、Crは20原子%以上23原子%以下がより好ましく、Feは20原子%以上23原子%以下がより好ましく、Niは17原子%以上23原子%未満がより好ましく、Tiは5原子%以上7原子%未満がより好ましく、Moは1原子%以上3原子%以下がより好ましい。
[粉末粒径]
 本実施形態における合金粉末20の平均粒径は、ハンドリング性や充填性の観点から、10μm以上200μm以下が好ましい。またさらに、積層造形の方法によって好適な平均粒径は異なり、選択的レーザ溶融法(Selective Laser Melting:SLM)では10μm以上50μm以下、電子ビーム積層造形法(Electron Beam Melting:EBM)では45μm以上105μm以下がより好ましい。また、指向性エネルギー堆積法(Derected Energy Deposition:DED)またはレーザビーム粉末肉盛法(Laser Metal Deposition:LMD)では50μm以上150μm以下とするのが好ましい。平均粒径が10μm未満になると、次工程の積層造形工程において合金粉末20が舞い上がり易くなり、合金積層造形体の形状精度が低下する要因となる場合がある。一方、平均粒径が200μm超になると、次工程の積層造形工程において積層造形体の表面粗さが増加する要因や、合金粉末20の溶融が不十分になる要因となる場合がある。
(積層造形工程)
 次に、上記で用意した合金粉末20を用いた金属粉末積層造形法(以下、単に積層造形法と言う。)により、所望形状を有する合金積層造形体(以下、単に合金基材と言う。)101を形成する積層造形工程を行う。焼結ではなく溶融し凝固すること(溶融・凝固と言う。)によってニアネットシェイプの合金部材を造形する積層造形法の適用により、鍛造材と同等以上の硬度とともに、三次元の複雑形状を有する合金基材を作製することができる。積層造形法としては、上記に例示した通り、SLM法、EBM法、LMD法等を用いた積層造形法を好適に利用できる。
 積層造形法の一例として、以下にSLM法による積層造形工程を説明する。
 図2は、SLM法の粉末積層造形装置100の構成を示す模式図である。積層造形しようとする合金基材101の1層厚さ分(例えば、約20~50μm)でステージ102を下降させる。ステージ102上面上のベースプレート103上にパウダー供給用コンテナ104から合金粉末105を供給し、リコータ106により合金粉末105を平坦化して粉末床107(層状粉末)を形成する。
 次に、造形しようとする合金基材101の3D-CADデータから変換された2Dスライスデータに基づいて、レーザ発振器108から出力されるレーザビーム109を、ガルバノメーターミラー110を通してベースプレート103上の未溶融の粉末へ照射し、微小溶融池を形成すると共に、微小溶融池を移動させ逐次溶融・凝固させることにより、2Dスライス形状の凝固層112を形成する。なお、未溶融粉末は未溶融粉末回収用コンテナ111に回収される。この操作を繰り返して積層することにより、合金基材101を製作する。
(取出工程)
 合金基材101は、ベースプレート103と一体となって製作され、未溶融の粉末に覆われた状態となる。取出し時には、レーザビームの照射が終了して粉末と合金基材101が十分に冷却された後に未溶融の粉末を回収し、合金基材101とベースプレート103を粉末積層造形装置100から取り出す。その後に合金基材101をベースプレート103から切断することで合金基材101(合金基材Aに相当する。)を得る。
 ここで、取出し後の合金基材101から微細組織観察用の試料を採取し、走査電子顕微鏡を用いて、該試料の微細組織を観察した。その結果、合金基材101の母相は、微細な柱状晶(平均幅50μm以下)が合金基材101の積層方向に沿って林立した組織(いわゆる、急冷凝固組織)を有していた。さらに詳細に観察したところ、この微細な柱状晶の内部には平均直径10μm以下のミクロセル組織が生じていた。ここでミクロセル組織とはシュウ酸などによる電解エッチングなどにより現れる楕円形あるいは矩形の凝固組織を示している。
 次に、レーザビーム粉末肉盛法(LMD法)を用いた場合の積層造形工程を説明する。図3は、LMD法の粉末積層造形装置200の構成を示す模式図である。積層造形しようとする合金基材211の表層部に光学系の焦点を合わせ、パウダー供給用コンテナ201から合金粉末105をレーザ焦点部に向けて噴出供給する。
 同時に、造形しようとする合金基材211の3D-CADデータから変換された照射パスに基づいて、レーザ発振器202からレーザヘッド部104を介して出力されるレーザビームあるいは電子ビーム203をベースプレート205上の合金基材に照射し、微小溶融池を形成すると共に、微小溶融池を移動させ、合金粉末209を逐次溶融・凝固させることにより、照射パス上に凝固層210を形成する。照射パスに沿いこの操作を進めて積層することにより凝固層を積層し、合金基材211(合金基材Aに相当する。)を製作する。なお、合金粉末209を噴出供給せずにレーザビームあるいは電子ビームを合金基材211上で走査することで溶融部を表層部に形成することもできる。
(表面処理工程)
 合金基材に表面処理を施す工程、すなわち表面処理工程は、前記合金基材の硬度を改善するという観点から、合金基材表面に被膜を形成する被膜処理や、窒素や炭素を拡散させる窒化処理や浸炭処理等の方法を好適に利用できる。
[被膜処理]
 以下に、表面処理の一例として、合金基材表面に被膜を形成する被膜処理について説明する。ここで、本明細書でいう「被膜」とは、合金基材よりも硬いものを指す。
 被膜の組成(構成成分)としては、例えば、窒化物、炭窒化物、酸窒化物、酸化物等がある。被膜の膜厚としては、0.5μm以上とすることが好ましい。更には、1.0μm以上とすることが好ましい。更には2.0μm以上とすることがより好ましい。但し、膜厚が厚くなり過ぎると剥離する可能性が高まるため、被膜の膜厚は100.0μm以下とすることが好ましい。更には、50.0μm以下とすることが好ましい。更には、30.0μm以下とすることがより好ましい。なお、被膜は、被膜と対象物とが接触する部分に形成されていれば良く、合金基材の表面の一部でもよいし、合金基材の全体でも良い。
 被膜の形成方法は特に限定しないが、被膜の形成方法としては、例えば、化学気相成長(CVD:Chemical Vapor Deposition)法や、物理気相成長(PVD:Physical Vapor Deposition)などを用いることができる。
 例えば、PVDは、合金基材を100℃~600℃に加熱した状態とし、所望の組成に調整したターゲットを原料とし、アークイオンプレーティング法やスパッタリング法によりターゲット成分を合金基材表面に被膜を形成する。ターゲットの組成を純金属もしくは合金とし、成膜中に窒素ガス、メタンガス、酸素ガスを導入することで、窒化物、炭窒化物、酸窒化物、酸化物等を被膜することができる。例えば、ターゲットの金属成分はTi、Cr、Al,Siのいずれか一種を含むことが好ましい。例えば被膜の窒化物組成はTiN、CrN、TiAlN、CrAlN、TiAlSiN、CrAlSiN、TiCrAlSiNなどである。また、ターゲットをカーボンとすることでDLC(Diamond like Carbon)を被覆することができる。
 例えば、CVDは、合金基材を600℃~1050℃に加熱した状態で原料ガスを用いて、合金基材表面に化学蒸着法により硬質被膜を形成する。金属成分を含むガスと窒素ガス、メタンガス及び残部水素ガスからなる原料ガスを用いることで金属の窒化物、炭窒化物、酸化物等の被膜を形成することができる。CVDの温度は1000℃程度の高温(High Temperature:HT)で成膜する方法や、コーティング温度を低下させた比較的低温(Moderate Temperature:MT)で成膜する方法がある。それぞれのコーティングは単層でもよいし、複層としてもよい。また、PVDとCVDとを組み合せることもできる。
 以上、上記の通り、合金基材の表面に被膜を形成することで、耐摩耗性や摺動特性に優れた表面を得ることができる。
[窒化処理・浸炭処理]
 次に、表面処理の別実施形態として、合金基材表面に窒素を拡散させる、窒化処理や浸炭処理について説明する。窒化処理や浸炭処理は、基材表面に窒素や炭素を侵入させ、拡散層を形成する。拡散層の厚さは0.5μm以上とすることが好ましい。更には、10.0μm以上とすることが好ましい。更には50.0μm以上とすることがより好ましい。拡散層の形成方法は特に限定しないが、例えば、プラズマ窒化、ガス窒化、塩浴窒化、ガス浸炭、固体浸炭、ガス浸炭、液体浸炭、真空浸炭(真空ガス浸炭)、プラズマ浸炭(イオン浸炭)などを用いることができる。拡散層上に窒素や炭素を含む化合物層が形成されてもよい。また,表面処理中に酸素や硫黄を導入することで酸窒化物層や硫化物層を形成させてもよい。
 例えば、プラズマ窒化処理では、基材を450℃に加熱し、アルゴンと水素の混合ガスにより表面の清浄化を行ったのち、ガス種を窒素と水素の混合ガスとし、基材にバイアス電圧を加えることで基材周囲にプラズマを発生させて、窒素の拡散処理を行うことができる。窒化層の上からPVDとCVDとによる被膜を形成することもできる。なお、窒化層の上からPVDとCVDとによる被膜を形成する場合は、窒化層上に化合物層は形成されない方が好ましい。
 ここで、積層造形工程後または表面処理工程前、すなわち積層造形工程と表面処理工程との間に、時効熱処理を施すことが好ましい。時効熱処理の一例を図4に示す。合金基材の硬度を高めることを目的に、上記の合金基材101を昇温加熱して極微細粒子が増加し易い温度領域、例えば450℃以上1000℃未満の温度範囲で保持する時効熱処理を施す。合金基材を使用する温度以上で時効熱処理することで、それ以下の温度域で使用する場合には、硬さ低下がほとんど生じない合金基材を得ることができる。高温下で耐摩耗性が要求される部材については、実用温度以上で時効熱処理することが好ましい。また、耐摩耗性を付与するために表面処理などが適用されることが多く、表面処理温度は高温下であることが多い。その場合、表面処理温度以上で時効熱処理することが好ましい。造形体(合金基材)の硬度を高める時効熱処理の温度は、好ましくは600℃以上950℃以下、より好ましくは650℃以上900℃以下である。
 なお、時効熱処理工程は、表面処理工程時に造形体(合金基材)を、例えば、450℃℃以上1000℃未満、好ましくは500℃超900℃以下に保持して表面処理する表面処理工程で兼ねてもよいし、時効熱処理工程後に、上記表面処理工程を行っても良い。すなわち、表面処理工程によって硬さを高めることもできる。表面処理工程が時効熱処理を兼ねることで、工程が簡略化できる。なお、後述するが、時効熱処理と溶体化処理とを組合せても良く、例えば溶体化処理後に時効熱処理を施した合金基材に表面処理を行っても良いし、溶体化処理のみ施した合金基材に表面処理を行っても良い。
 被膜の密着性は、被膜される部材の硬さに依存することがわかっている。すなわち、上記の時効熱処理を経て、合金基材の硬さが向上すると、合金基材と被膜との密着性が向上した合金部材を得ることができる。なお、CVDであれば、原料ガスによって被膜するため、複雑形状への付き回り性が高く、積層造形によって得られた複雑形状の内外表面部全体への被膜ができるため、被膜形成方法としてはCVDが好ましい。また、CVDは、PVDに比べて成膜温度が高いため、軟化抵抗の高い基材の選定が必要となるが、本発明に係る合金部材であれば、CVDの成膜温度域にて保持されることにより、時効熱処理を施さない場合でも、高硬度の合金部材を得ることができるという点からも、被膜形成方法はCVDが好ましい。
 時効熱処理温度が450℃以上であると強度の改善効果が得られ、900℃以下であると六方晶の析出物が生成することを抑制して延性を保持することができる。なお、上限値と下限値は任意に組み合わせることができる。以下も同様である。保持時間は0.5時間以上24時間以下が良い。好ましくは0.5時間以上8時間以下、より好ましくは1時間以上8時間以下に設定する。0.5時間以上であると強度の改善効果が得られ、24時間以下であると耐食性悪化の原因となる六方晶の析出物が生成することを抑制できる。以上の時効熱処理により、後述するミクロセル組織内に平均粒径50nm以下のナノスケールの極微細粒子を生成して、強度を改善することができる。
 時効熱処理後の冷却工程は、特に限定はされないが、時効熱処理温度近傍で長時間保持するとナノスケールの極微細粒子が過剰に生成する可能性があるため、空放冷、またはガス冷却などによって室温まで冷却すると良い。また、図4は一例であって熱処理パターンは種々変更が可能である。また、時効熱処理における昇温プロセスでは、例えば5℃/分以上の昇温速度とすれば析出量の調整が難しくなる中間温度域での滞留温度を短くできるため好適である。好ましくは10℃/分以上である。上限は特別には限定されないが、造形部材(合金基材)中の温度均一性、特に過熱部の発生防止の確保の観点で1000℃/分以下程度が良い。
 上記に説明した、積層造形工程と表面処理工程とを経て作製された合金部材であれば、合金基材表面に表面処理層が形成されており、硬度が38HRC以上、好ましくは40HRC以上、さらに好ましくは45HRC以上である合金部材を得ることができる。このような合金部材であれば、硬度と耐摩耗性とが非常に優れた合金部材とすることができる。
[極微細粒子]
 また、時効熱処理において、平均直径10μm以下のミクロセル組織の中に極微細粒子が生じる。その平均粒径は50nm以下で、下記する母相結晶粒中の極小粒子よりも小さい。平均粒径の下限は特に限定するものではないが、例えば2nm程度であり、好ましくは3nm、より好ましくは5nmである。好ましい上限は30nm程度であり、より好ましくは20nm、さらに好ましくは10nmである。極微細粒子の平均粒径が2nm以上50nm以下である場合、硬度を高めることが可能となる。極微細粒子の平均粒径が50nm超になると、延性が低下することが分かっている。なお、極微細粒子の大きさは、透過電子顕微鏡法、高分解能走査電子顕微鏡法に代表される高倍率の観察手段によって極微細粒子を含む画像を取得し、その極微細粒子の内接円直径と外接円直径の平均値を極微細粒子の粒径とし、極微細粒子20個分の粒径の平均値を平均粒径として用いる。
[合金基材の微細組織]
 図5は、表1に示す名目組成で、650℃-8時間の時効熱処理を施した合金基材(時効熱処理材:M1-AG)の微細組織の一例を示すもので、(a)(b)が走査電子顕微鏡像(SEM像)、(c)(d)が走査型透過電子顕微鏡像(STEM像)である。
 本実施形態における合金基材は、(a)のSEM像に示すように、結晶粒径20μm以上150μm以下(平均結晶粒径100μm以下)の柱状晶を主とする母相組織2を有している(この図では判別しづらいので一個の組織を破線で示している)。なお、結晶粒径は倍率500倍のSEM像にて切断法により計測した10個の結晶粒の平均である。また、(a)のSEM像では図示されていないが、組織の内部には平均直径10μm以下のミクロセル組織が形成されている。
 これは例えば、(b)の拡大像において矢印で示す間隔がミクロセル組織の直径を示していると言える。そして、(b)のSEM-EDS像において、白い明部で示すミクロセル組織の境界部3には、Tiの濃縮が確認された。また、(c)のSTEM像による高倍の明視野像では、より明るい領域がミクロセル組織の内部を示しており、ミクロ組織の境界部3には、その内部よりも高密度の黒線にて示される転位4を有している。従って、STEM像によりミクロ組織の内部よりも黒い筋が集まった濃化部を確認することにより、組織内部よりも高い面密度の転位を有していることが識別できる。また、別のミクロセル組織の境界部3には金属間化合物からなる析出物5が生成していることが確認された。さらに高倍の(d)STEM像には平均粒径が3nm程度の極微細粒子6を確認した。また(d)の右上にこの領域のSTEM-EDXによる元素マッピング像を示しているが、上記の極微細粒子6はNiとTiが濃化した粒子であることを確認した。
 一方、図6は、表1に示す名目組成で、1120℃-1時間の溶体化熱処理を施した合金基材(溶体化処理材:M1-ST)の微細組織の一例を示すもので、(a)が走査電子顕微鏡像(SEM像)、(b)が走査型透過電子顕微鏡像(STEM像)である。
 また、合金基材M1(溶体化熱処理なし、時効熱処理なし)は、図5(a)と同様に結晶粒径20μm~150μm(平均結晶粒径100μm以下)の柱状晶を主とする母相結晶組織を有し、内部に平均直径10μm以下のミクロセル組織が形成されていた。また、M1-S(溶体化熱処理あり、時効熱処理なし)は、図6(a)に示すように結晶粒径50μm~150μm(平均結晶粒径100μm以下)の等軸晶を主とする母相組織7を有していた。溶体化熱処理により柱状晶が等軸晶に再結晶化したことが確認された。また、M1-Sでは図6(b)に示すように、母相の結晶粒中に平均粒径20~30nmの極小粒子8が観察された。(b)にはSTEM-EDXによる元素マッピング像も示しているが、この極小粒子8はNiとTiが濃化した粒子であることを確認した。なお、合金部材M1では転位を有するミクロセル組織のみが見られて粒径3nm以上の明確な極微細粒子は観察されなかった。
[溶体化熱処理]
 溶体化熱処理での保持温度は、1080℃以上1180℃以下(1080℃~1180℃)の温度範囲とする。好ましくは1100℃以上1140℃以下、より好ましくは1110℃以上1130℃以下である。1080℃以上とすると脆化に繋がる六方晶の析出物の析出及び残存が抑制される。また、1180℃以下であると結晶粒径の粗大化や部分溶融などの不良が生じ難くなる。最高温度での保持時間は0.5時間以上24時間以下が良く、好ましくは0.5時間以上8時間以下、より好ましくは1時間以上4時間以下である。0.5時間以上とすると合金基材中の六方晶の析出物の生成を抑制することができ、24時間以下であると結晶粒径の粗大化を抑制することができる。
 また、この熱処理における昇温プロセスでは、六方晶の析出物が生じ易い温度帯(例えば800℃から1080℃まで)は速やかに、例えば5℃/分以上の昇温速度とすれば六方晶の析出物量を熱処理前に低減できるので好適である。好ましくは10℃/分以上である。上限は特別には限定されないが、合金基材中の温度均一性、特に過熱部の発生防止の確保の観点で1000℃/分程度である。なお、本発明では、合金の固溶限が明確ではないこと、および最終生成物である合金部材には平均粒径100nm以下の極小粒子が分散析出していることから、上述のような熱処理を擬溶体化熱処理とも言える。本明細書ではこれらを含めて単に溶体化熱処理と称している。
[冷却工程]
 次に、熱処理工程後の合金基材に冷却工程を施す。冷却工程は、熱処理において少なくとも保持温度から800℃迄の温度範囲を、110℃/分以上2400℃/分以下の冷却速度で冷却を行うことが好ましい。ここで好ましくは110℃/分以上600℃/分未満、より好ましくは200℃/分以上600℃/分未満の冷却速度で行う。この範囲の冷却は、例えば、窒素、アルゴン、ヘリウム等の不活性ガスを用いたガス冷却で調節することができる。110℃/分未満の冷却速度(例えば炉冷や空放冷処理)では、六方晶の析出物が粒界から生じ易く耐食性が低下する課題が生じる場合がある。また、600℃/分以上2400℃/分以下、より好ましくは1000℃/分以上2000℃/分以下の冷却速度で行う実施形態もある。この範囲の冷却は、例えば、塩浴、焼入油、ポリマー水溶液等を用いた液体冷却で調節することができる。また、2400℃/分を超える冷却速度(例えば水槽への浸漬冷却)では、急速冷却中に生じる温度ムラに起因する合金基材の変形が課題となる場合がある。また、800℃以下の温度でも冷却を継続して行うのが良い。例えば700℃から室温までの温度範囲をおよそ上記冷却速度で継続的に冷却することは好ましい。
 また、少なくとも表層部の結晶粒中に、平均直径10μm以下のミクロセル組織を有し、ミクロセル組織の境界部には、その組織内部よりも高い面密度の転位を有し、前記ミクロセル組織の少なくとも内部には平均粒径50nm以下の極微細粒子が分散析出していることが好ましい。またさらには、前記母相のミクロセル組織の境界部にはTiが濃縮している。前記表層部よりも内側の部材内部の母相の結晶粒中に、平均粒径100nm以下の極小粒子が分散析出している。
[再溶融・凝固工程を有する製造方法]
 上述したミクロセル組織と極微細粒子が共存する組織は、ミクロセル組織を有する凝固組織をそのまま直接、時効熱処理することによって生じる。この特性を活かした合金部材の製造方法の別実施形態について以下に説明する。
 合金部材の製造方法の別実施形態は、図7に示すように、予め得た合金基材Aを準備するところから始めることができる。合金基材Aは、上述の取出工程後に得られたものを用いても良いし、予め別途製造されていたものを用いてもよい。合金基材Aに対し下記する溶体化熱処理を施し、等軸晶を主とする母相組織を有す合金基材Bを得る。この合金基材Bの表層をレーザビームあるいは電子ビームにより溶融・凝固させて新たな凝固層を形成する。上述したように合金粉末を噴出供給せずにレーザビームあるいは電子ビームを合金基材B上で走査することにより凝固層を形成するができる。
 このような再溶融・凝固工程を実施して再溶融合金基材Cを得る。この再溶融合金基材Cは、優れた耐食性と機械的特性を有する母体の上に、表層に直径10μm以下のミクロセル組織を含む凝固組織を形成している。この再溶融合金基材Cに対し直接、時効熱処理を施すことで、引張強さや延性の機械的特性がより優れており、さらに硬度が改善された合金基材を得ることができる。そして、この合金部材に上記表面処理を施せばよい。
[表層付加製造工程を有する製造方法]
 またさらに、(第2の)別実施形態についても説明する。
 図8に示すように、溶体化熱処理を施し、等軸晶を主とする母相組織を有する合金基材Bを予め準備するところから始めることができる。合金基材Bは、溶体化熱処理工程後に得られたものを用いても良いし、予め別途製造されていたものを用いてもよい。合金基材Bに対しレーザあるいは電子ビームによる積層造形法を施して、その表層部に溶融・凝固による新たな凝固層を形成する表層付加製造工程を実施し、表層付加合金基材Dを得る。この表層付加合金基材Dに対し直接、時効熱処理を施すことで、合金基材の引張強さや延性の機械的特性がより優れており、さらに硬度が改善された合金部材(第二の合金部材)を得ることができる。そして、この合金部材に上記表面処理を施せばよい。
 以上の再溶融・凝固工程または表層付加製造工程を用いた製造方法によって製造された第二の合金部材は表層部の硬度が改善されている。すなわち、図9や図10に示すように、合金部材の内部401や501には靭性や延性に優れた等軸晶組織を配し、合金部材の内部401や501に含まれる極小粒子よりも小さい極微細粒子とが共存する構成を備え、最表層部402や503に表面処理層を備えることができる。これにより、上述の通り引張強さや延性の機械的特性がより優れており、加えて硬度が改善された合金部材となる。
<用途・製造物>
 本発明の合金部材を用いた用途や製造物は任意である。造形体に時効熱処理を施したもの、また、造形体に溶体化熱処理と時効熱処理を施したものなど、製造方法を適宜選択して、用途に応じた機械的特性と耐摩耗性を得ることができる。
 用途の一例として、油井の掘削装置や射出成形用のスクリューやシリンダー、発電機などのタービンホイール、圧縮機のインペラ、化学プラントのバルブや継手、熱交換機、ポンプ、半導体製造装置や部材、鋳造金型、鍛造金型、押し出し金型、プレス金型、プラスチック成型金型などに適用される。本発明ではこれらの機械、機器、部材、金型、部品等を総称して製造物と言う。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実験1)
[HEA粉末P1の作製]
 表1に示す名目組成で原料を混合し、真空ガスアトマイズ法により、溶湯から合金粉末を製造した。次に、得られた合金粉末に対して、ふるいによる分級を行って粒径を10μm以上53μm以下、平均粒径(d50)を約35μmとなるよう選別してHEA粉末P1を用意した。また、ふるいによる分級を行って粒径を53μm以上106μm以下、平均粒径(d50)を約80μmとなるよう選別してHEA粉末P2を用意した。尚、P1の組成を選定した理由は、発明者による予備検討において特に強度、延性に関わる機械的特性に優れていたためである。なお、例えば、上述の国際公開2019/031577号公報で開示された組成の粉末等を用いることもできる。
Figure JPOXMLDOC01-appb-T000001
(実験2)
[合金基材(M1)の作製と時効熱処理による硬度改善]
 実験1で用意したHEA粉末P1に対し、図2に示したような粉末積層造形装置(EOS社製EOS M290)を用いて、図1の積層造形工程の手順に沿ってSLM法による合金基材M1(積層造形体:φ20mm×高さ5mmの円柱材、高さ方向が積層方向)を積層造形した。尚、積層造形時のレーザ出力は、発明者による事前検討を基に300Wに設定し、レーザ走査速度は1000mm/秒、走査間隔は0.11mmとした。SLM法で造形したままの合金基材M1の硬さは40.9HRCであった。また、一層毎の積層厚みは約0.04mmに設定した。また、レーザビーム粉末肉盛装置(DMG森精機社製Lasertec65 3D)を用いて、マルエージング鋼上部にHEA粉末P2を積層造形した。尚、積層造形時のレーザ出力は、発明者による事前検討を基に1800Wに設定し、レーザ走査速度は1000mm/秒、粉体供給量は14g/分とし、8mm程度堆積させた。LMD法で造形したままの合金基材M1の硬さは38.1HRCであった。SLM法で製造した物よりもLMDで製造したものの方が、相対的に硬さが低い傾向にあった。
 積層造形工程S30と取出工程S50の後、合金基材M1(合金基材Aに相当)を得た。ここで、合金基材M1を450℃以上1000℃未満で保持(時効熱処理)した場合のビッカース硬さを図11に示す。図11に示す通り、合金基材M1を450℃以上1000℃未満で保持することにより、好適なビッカース硬さを有する合金基材を作製することができた。
 そして、硬度の改善機構について検討したところ、積層造形法によってミクロセル組織が生じており、時効熱処理によってミクロセル組織中には、図5に示すような、母相の結晶粒中の極小粒子よりも小さい平均粒径50nm以下の極微細粒子が生成していることが確認された。ここで転位とは、結晶中に含まれる線状の結晶欠陥であり、局所的に原子配列に変化が生じている部位である。高密度の転位を有した状態でナノスケールの極微細粒子が生成されることで、硬度が高くなったものと考えられる。
(実験3)
[諸熱処理を施した際のPVD成膜済み合金基材(M1)の硬度]
 次に、合金基材M1について、諸熱処理を施した合金基材M1表面にPVDによって被膜を形成させた合金部材を作製した。被膜工程には、アークイオンプレーティング方式の成膜装置を用いた。本装置は、アーク蒸発源、真空容器および基材回転機構を含む。AlCrSiNを成膜する際には、アーク蒸発源金属はAlCrSiのターゲットを設置した。TiNを成膜する際にはアーク蒸発源金属はTiのターゲットを設置した。真空容器は、内部は真空ポンプにより排気され、ガスは供給ポートより導入される。真空容器内に設置された合金部材にはバイアス電源が接続され、合金部材に負のDCバイアス電圧が印加される。
 成膜プロセスを以下にように実施した。まず、真空容器内を8×10-3Pa以下に真空排気した。その後、真空容器内に設置したヒーターにより、基材温度を設定温度(450℃、500℃、580℃)まで加熱して真空排気を行った。その後、真空容器内にArガスを導入し、0.67Paとした。その後、フィラメント電極に20Aの電流を供給、合金基材に-200Vのバイアス電圧を印加し、Arボンバードを4分間実施した。そして、真空容器内のガスを窒素に置き換えた。試料毎に基材に印加する負のバイアス電圧、カソード電圧、炉内圧力を調整し、カソードに150Aのアーク電流を供給してAlCrSiN組成の被膜を15μm被覆した。また、TiN組成の被膜を3.0μm被覆した。成膜時の基材の設定温度は膜組成によって変更し、CrAlSiN組成は450℃、TiN組成は500℃と580℃とした。その後、略200℃以下に基材を冷却して真空容器から取り出して試料を作製した。
(熱処理条件)
 合金基材M1に施す熱処理は、溶体化熱処理、時効熱処理、溶体化熱処理後に時効熱処理とした。溶体化熱処理条件としては、真空炉を用い、昇温速度10℃/分で昇温して1120℃-1時間保持した後に、設定圧0.5MPaの高圧窒素ガスを用いて冷却した。時効熱処理条件としては、マッフル炉中で大気雰囲気にて800℃で1時間保持し、炉冷にて室温まで冷却した。溶体化処理後に時効熱処理をする条件としては、溶体化処理は前期の条件を用いた。その後の時効処理は、SLM法で作製したものについては、真空炉を用い、昇温速度10℃/分で昇温して700℃で8時間保持した後に、設定圧0.5MPaの高圧窒素ガスを用いて冷却した。LMD法で作製したものについては、真空炉を用い、昇温速度10℃/分で昇温して700℃で5時間保持した後に、設定圧0.5MPaの高圧窒素ガスを用いて冷却した。
 このようにして熱処理とPVD成膜処理をした合金部材について、SLM法で作製した造形ままのもの(M1-As Built)を本発明例2、3、4、SLM法で作製し溶体化熱処理したもの(M1-ST)を本発明例7、8、9、SLM法で作製し溶体化熱処理後に時効熱処理したもの(M1-ST-AG)を本発明例12、13、14、SLM法で作製し時効熱処理したもの(M1-AG)を本発明例17、18、19、LMD法で作製し時効熱処理したもの(M1-AG)を本発明例22、23、24と呼ぶ。また、従来例として、鍛圧材のSKD61の焼き戻し材について上記PVD成膜条件と同じ条件で成膜したものを従来例2~4とした。そして、それぞれの合金部材について硬度を評価した。
(硬さ測定)
 硬さ測定は、ロックウェル硬さ試験機によって、室温にて荷重150kgf、保持時間15秒でロックウェル硬さを測定した。測定は3回行い、3回の平均値を記録した。結果を表2~5に示す。
 その結果、ロックウェル硬さについては、本発明例12、13、14、17、22を除き、いずれの表面処理を実施しても、表面処理前に比べて硬さが同等以上に向上したことがわかった。これは表面処理工程が時効処理と同等の効果を発揮したためである。
(実験4)
[諸熱処理を施した際のCVD成膜済み合金基材(M1)の硬度]
 次に、合金基材M1について、諸熱処理を施した合金基材M1表面にCVDによって被膜を形成させた合金部材を作製した。被膜工程には、昇温工程、水素洗浄工程、成膜工程、降温工程を含む。
 成膜プロセスを以下にように実施した。まず、炉内に合金基材M1を設置し、Arガスを導入し900℃まで2時間で昇温後、H2ガスを導入し30分間保持することで、M1合金表面を清浄化した。次いで、H2とTiCl4とN2ガスを導入し、1時間程度保持することでTiN組成の被膜を3.0μm被覆した。最後にArガスを導入し、基材を冷却して真空容器から取り出して試料を作製した。
 合金基材M1に施す熱処理は、上記「(熱処理条件)」に記載同様のものとした。
 このようにして熱処理と成膜処理をした合金部材について、SLM法で作製した造形ままのもの(M1-As Built)を本発明例5、SLM法で作製し溶体化熱処理したもの(M1-ST)を本発明例10、SLM法で作製し溶体化熱処理後に時効熱処理したもの(M1-ST-AG)を本発明例15、SLM法で作製し時効熱処理したもの(M1-AG)を本発明例20、LMD法で作製し時効熱処理したもの(M1-AG)を本発明例25と呼ぶ。また、鍛圧材のSKD61について、上記CVD成膜条件と同じ条件で成膜した場合のものを従来例5とした。また、それぞれの合金部材について硬度を評価した。
(硬さ測定)
 硬さ測定は、ロックウェル硬さ試験機によって、室温にて荷重150kgf、保持時間15秒でロックウェル硬さを測定した。測定は3回行い、3回の平均値を記録した。結果を表2~5に示す。
 その結果、ロックウェル硬さについては、本発明例15を除き、いずれの熱処理を実施しても、表面処理前に比べて硬さが同等以上に向上したことがわかった。これは表面処理工程が時効処理と同等の効果を発揮したためである。そのため、特に高温となるCVDプロセスを経たものの硬さは大きく向上した。一方で、従来例5は、CVDプロセスを経ても、本発明例ほどの硬度改善は見られなかった。
(実験5)
[諸熱処理を施した際の窒化処理済み合金基材(M1)の硬度]
 次に、合金基材M1について、諸熱処理を施した合金基材M1表面に窒化処理によって拡散層を形成させた合金部材を作製した。窒化処理工程には、昇温工程、表面清浄化工程、成膜工程、降温工程を含む。
 窒化処理方法はプラズマ窒化を用いた。まず、炉内に合金基材M1を設置し、アルゴンガスを充填した。基材を450℃に加熱し、ガス種をアルゴンと水素の混合とし、アルゴンによるスパッタにより表面の清浄化を45分間実施した。その後、ガス種を窒素と水素の混合ガスとし、基材にバイアス電圧を加えることで基材周囲にプラズマを発生させて、10時間かけて窒素の拡散処理を行った。その後、炉内で冷却して試験片を作製した。
 合金基材M1に施す熱処理は、上記「(熱処理条件)」に記載同様のものとした。
 このようにして熱処理と成膜処理をした合金部材について、SLM法で作製した造形ままのもの(M1-As Built)を本発明例1、SLM法で作製し溶体化熱処理したもの(M1-ST)を本発明例6、SLM法で作製し溶体化熱処理後に時効熱処理したもの(M1-ST-AG)を本発明例11、SLM法で作製し時効熱処理したもの(M1-AG)を本発明例16、LMD法で作製し時効熱処理したもの(M1-AG)を本発明例21と呼ぶ。また、従来例として、鍛圧材のSKD61に上記の窒化処理条件と同じ条件で窒化処理したものを従来例1とした。また、それぞれの合金部材について硬度を評価した。
(硬さ測定)
 硬さ測定は、ロックウェル硬さ試験機によって、室温にて荷重150kgf、保持時間15秒でロックウェル硬さを測定した。測定は3回行い、3回の平均値を記録した。結果を表2~5に示す。
 その結果、ロックウェル硬さについては、いずれの熱処理を実施しても、表面処理前に比べて硬さが同等以上に向上したことがわかった。このことから、表層部に被膜を形成する被膜処理だけでなく、表層部に窒素を拡散させる窒化処理によっても、合金部材の硬度を改善できることがわかった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除したり、他の構成に置換したり、また他の構成の追加をすることが可能である。このような実施形態の調整により、本発明で開示した合金部材は、産業分野や資源分野、化学プラント、金型部材などで広く用いられる耐食耐摩耗部品へと適用することが可能となる。
2,7:母相組織
3:ミクロセル組織の境界部
4:転位
5:析出物
6:極微細粒子
8:極小粒子
10:溶湯
20:合金粉末
100:SLM粉末積層造形装置
101:合金基材
102:ステージ
103:ベースプレート
104:パウダー供給用コンテナ
105:合金粉末
106:リコータ
107:粉末床(層状粉末)
108:レーザ発振器
109:レーザビーム
110:ガルバノメーターミラー
111:未溶融粉末回収用コンテナ
112:2Dスライス形状の凝固層
200:粉末積層造形装置
201:パウダー供給コンテナ
202:レーザヘッド部
203:レーザビームあるいは電子ビーム
204:テーブル
205:バイス
206:造形ヘッド
207:ベースプレート
208:パウダー供給用コンテナ
209:合金粉末
210:凝固層
211:合金基材
400:合金部材
401:合金基材内部
402:合金基材最表層
500:合金部材
501:合金基材内部
502:合金基材表層
503:合金基材最表層
S10:原料粉末製造工程
S30:積層造形工程
S40:溶体化熱処理工程
S50:取出工程
S60:再溶融・凝固工程
S65:表層付加製造工程
S70:表面処理工程

Claims (9)

  1.  Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、合金基材を形成する積層造形工程と、
     前記合金基材に表面処理を施す表面処理工程と、を有することを特徴とする合金部材の製造方法。
  2.  前記積層造形工程と前記表面処理工程との間に、前記合金基材を450℃以上1000℃未満の温度範囲で保持する時効熱処理工程とを有する
    ことを特徴とする請求項1に記載の合金部材の製造方法。
  3.  前記表面処理工程において、
    前記合金基材を450℃以上1000℃未満の温度で保持しながら表面処理する
    ことを特徴とする請求項1に記載の合金部材の製造方法。
  4.  前記積層造形工程において、積層造形法に使用する熱源がレーザビームあるいは電子ビームであることを特徴とする請求項1から請求項3のいずれか一項に記載の合金部材の製造方法。
  5.  Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金基材と、
    前記合金基材表面に形成された表面処理層と、を有し、
    前記合金基材のロックウェル硬さが、38HRC以上である
    ことを特徴とする合金部材。
  6.  少なくとも表層部の結晶粒中に、平均直径10μm以下のミクロセル組織を有し、ミクロセル組織の境界部には、その組織内部よりも高い面密度の転位を有し、前記ミクロセル組織の少なくとも内部には平均粒径50nm以下の極微細粒子が分散析出していることを特徴とする請求項5に記載の合金部材。
  7.  前記ミクロセル組織の境界部にはTiが濃縮していることを特徴とする請求項5または請求項6に記載の合金部材。
  8.  前記表層部よりも内側の部材内部の母相の結晶粒中に、平均粒径100nm以下の極小粒子が分散析出していることを特徴とする請求項5から7のいずれか一項に記載の合金部材。
  9.  請求項5から請求項8のいずれか一項に記載の合金部材を用いた製造物。

     
PCT/JP2021/040431 2020-11-04 2021-11-02 合金部材の製造方法、合金部材、および合金部材を用いた製造物 WO2022097652A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022537817A JP7248196B2 (ja) 2020-11-04 2021-11-02 合金部材の製造方法、合金部材、および合金部材を用いた製造物
CN202180074268.8A CN116368250A (zh) 2020-11-04 2021-11-02 合金构件的制造方法、合金构件及使用合金构件的制造物
US18/035,104 US20240001445A1 (en) 2020-11-04 2021-11-02 Alloy member manufacturing method, alloy member, and product using alloy member
EP21889205.7A EP4242335A4 (en) 2020-11-04 2021-11-02 METHOD FOR MANUFACTURING ALLOY ELEMENT, ALLOY ELEMENT AND PRODUCT USING ALLOY ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184125 2020-11-04
JP2020-184125 2020-11-04

Publications (1)

Publication Number Publication Date
WO2022097652A1 true WO2022097652A1 (ja) 2022-05-12

Family

ID=81457021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040431 WO2022097652A1 (ja) 2020-11-04 2021-11-02 合金部材の製造方法、合金部材、および合金部材を用いた製造物

Country Status (5)

Country Link
US (1) US20240001445A1 (ja)
EP (1) EP4242335A4 (ja)
JP (1) JP7248196B2 (ja)
CN (1) CN116368250A (ja)
WO (1) WO2022097652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070987A1 (ja) * 2022-09-26 2024-04-04 株式会社プロテリアル Fe基合金、合金部材、製造物及び合金部材の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117328060B (zh) * 2023-11-24 2024-02-13 山西海诚智能制造有限公司 一种煤矿刮板输送机中部槽用高熵合金涂层及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149101A1 (ja) * 2010-05-25 2011-12-01 パナソニック電工株式会社 粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物
JP6325736B1 (ja) * 2017-01-24 2018-05-16 株式会社ソディック 造形物の製造方法
CN108941581A (zh) * 2018-08-06 2018-12-07 天津大学 一种激光增材制造高熵合金的原位制备方法及产品
WO2019031577A1 (ja) 2017-08-09 2019-02-14 日立金属株式会社 合金部材、該合金部材の製造方法、および該合金部材を用いた製造物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3105364B1 (en) * 2014-02-13 2020-05-27 General Electric Company Anti-coking coatings, processes therefor, and hydrocarbon fluid passages provided therewith
JP2015224363A (ja) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 金型用鋼及び金型
US10975719B2 (en) * 2017-01-05 2021-04-13 General Electric Company Process and printed article
EP3705590B1 (en) * 2017-10-31 2023-01-11 Hitachi Metals, Ltd. Alloy material, product using said alloy material, and fluid machine having said product
KR20190125798A (ko) * 2018-04-30 2019-11-07 인하대학교 산학협력단 고온성형용 금형의 제조방법 및 이를 이용하여 제조된 금형
US20230122004A1 (en) * 2020-03-03 2023-04-20 Hitachi Metals, Ltd. Production method of alloy member, alloy member, and product using alloy member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149101A1 (ja) * 2010-05-25 2011-12-01 パナソニック電工株式会社 粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物
JP6325736B1 (ja) * 2017-01-24 2018-05-16 株式会社ソディック 造形物の製造方法
WO2019031577A1 (ja) 2017-08-09 2019-02-14 日立金属株式会社 合金部材、該合金部材の製造方法、および該合金部材を用いた製造物
JP2019178427A (ja) * 2017-08-09 2019-10-17 日立金属株式会社 合金部材の製造方法
CN108941581A (zh) * 2018-08-06 2018-12-07 天津大学 一种激光增材制造高熵合金的原位制备方法及产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4242335A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070987A1 (ja) * 2022-09-26 2024-04-04 株式会社プロテリアル Fe基合金、合金部材、製造物及び合金部材の製造方法

Also Published As

Publication number Publication date
CN116368250A (zh) 2023-06-30
EP4242335A1 (en) 2023-09-13
JP7248196B2 (ja) 2023-03-29
EP4242335A4 (en) 2024-04-24
JPWO2022097652A1 (ja) 2022-05-12
US20240001445A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
Alshataif et al. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review
Chen et al. In situ TiC/Inconel 625 nanocomposites fabricated by selective laser melting: Densification behavior, microstructure evolution, and wear properties
WO2022097652A1 (ja) 合金部材の製造方法、合金部材、および合金部材を用いた製造物
CN115772628A (zh) 合金部件的制造方法
JP6690789B2 (ja) 合金材、該合金材を用いた製造物、および該製造物を有する流体機械
Zhou et al. Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting
JP7173397B2 (ja) 合金部材の製造方法、合金部材、および合金部材を用いた製造物
Wu et al. Microstructure and mechanical properties of Ti-6Al-4V prepared by nickel preplating and electron beam surface remelting
Song et al. Effect of remelting processes on the microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting
Xiao et al. In-situ synthesis of high strength and toughness TiN/Ti6Al4V sandwich composites by laser powder bed fusion under a nitrogen-containing atmosphere
Mosallanejad et al. In-situ alloying of a fine grained fully equiaxed Ti-based alloy via electron beam powder bed fusion additive manufacturing process
Chen et al. Microstructure tailoring of Ti–15Mo alloy fabricated by selective laser melting with high strength and ductility
Kazantseva et al. Analysis of structure and mechanical properties of Co–Cr–Mo alloy obtained by 3D printing
Sharkeev et al. Structural and phase state of Ti–Nb alloy at selective laser melting of the composite powder
He et al. Microstructure and wear behaviors of a WC10%-Ni60AA cermet coating synthesized by laser-directed energy deposition
Li et al. Microstructural evolution and mechanical properties of eutectoid Ti–7Ni alloy produced by electron beam powder bed fusion
Karimi et al. Interplay of Process, Microstructure, and Mechanical Performance in Electron Beam-Powder Bed Fusion of Ti48Al2Nb2Cr
Yang et al. Microstructure Twinning and Mechanical Properties of Laser Melted Cu-10Sn Alloy for High Strength and Plasticity
Singh et al. Parametric analysis to explore the viability of cold spray additive manufacturing to print SS316L parts for biomedical application
Liu et al. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication
Chauhan Microstructural characterization of cobalt chromium (ASTM F75) cubes produced by EBM technique
JP6960099B2 (ja) 合金部材の製造方法
Sai Deepak Kumar et al. The Effect of Porosity, Oxygen and Phase Morphology on the Mechanical Properties of Selective Laser Melted Ti-6Al-4V with Respect to Annealing Temperature
WO2024075443A1 (ja) 積層造形用Fe-Cr-Al系合金粉末、Fe-Cr-Al系合金部材およびFe-Cr-Al系合金部材の製造方法
WO2023176650A1 (ja) 積層造形体からなるNi-Cr合金部材、Ni-Cr合金部材の製造方法、およびNi-Cr合金部材を用いた製造物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022537817

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18035104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889205

Country of ref document: EP

Effective date: 20230605