WO2022097378A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2022097378A1
WO2022097378A1 PCT/JP2021/034293 JP2021034293W WO2022097378A1 WO 2022097378 A1 WO2022097378 A1 WO 2022097378A1 JP 2021034293 W JP2021034293 W JP 2021034293W WO 2022097378 A1 WO2022097378 A1 WO 2022097378A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock absorber
tube
annular plate
recess
annular
Prior art date
Application number
PCT/JP2021/034293
Other languages
French (fr)
Japanese (ja)
Inventor
和晶 柴原
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022560665A priority Critical patent/JP7438394B2/en
Publication of WO2022097378A1 publication Critical patent/WO2022097378A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages

Definitions

  • the present invention relates to a double-cylinder hydraulic shock absorber used in railway vehicles and the like.
  • Patent Document 1 discloses a double-cylinder shock absorber in which an orifice functioning as a damping force generating element and an air bleeding element is formed by a notch provided in an annular plate interposed between a cylinder and a rod guide. ing.
  • the annular plate is provided with a notch (orifice) having an extremely small flow path area (for example, "0.3 mm” in terms of hole diameter). Need to form. Therefore, a thin plate (for example, a plate thickness "0.3 mm") is used for the annular plate.
  • a thin plate for example, a plate thickness "0.3 mm"
  • the flow path area of the notch (orifice) will vary due to the influence of the tolerance of the plate thickness of the thin plate, and eventually the air bleeding performance between products. (Damping force characteristics) may vary and reliability may decrease.
  • An object of the present invention is to provide a double-cylinder hydraulic shock absorber with improved reliability.
  • the shock absorber according to the embodiment of the present invention is provided between the cylinder, the tube provided on the inner peripheral side of the cylinder and in which the working fluid is sealed, and the cylinder and the tube, and is provided between the cylinder and the gas.
  • An annular plate is provided, and a recess for communicating the tube and the reservoir chamber is formed on the surface of the annular plate facing the tube.
  • the reliability of the double-cylinder hydraulic shock absorber can be improved.
  • FIG. 4 is an arrow view taken along the line AA in FIG.
  • FIG. 6 is a view taken along the line BB in FIG.
  • FIG. 8 is a view taken along the line CC in FIG.
  • a double-cylinder horizontal hydraulic shock absorber 1 (hereinafter referred to as “buffer 1”), which is arranged substantially horizontally as a left-right moving damper between the vehicle body of a railway vehicle and a bogie, will be described.
  • buffer 1 a double-cylinder horizontal hydraulic shock absorber 1
  • the vertical direction and the horizontal direction in FIG. 1 are referred to as the vertical direction and the horizontal direction as they are, but it is not intended to limit the mounting direction (direction) of the shock absorber 1.
  • the shock absorber 1 has a cylinder 2 and a tube 3 provided on the inner peripheral side of the cylinder 2.
  • the left end of the cylinder 2 and the tube 3 is closed by the rod guide 41 (blocking member).
  • the right end of the cylinder 2 and the tube 3 is closed by the end plate 5.
  • An annular reservoir 4 (reservoir chamber) is formed between the cylinder 2 and the tube 3.
  • the end plate 5 is divided into an end plate 6 that closes the right end of the cylinder 2 and an end plate 7 that closes the right end of the tube 3.
  • a bracket 8 connected to the vehicle body side of the railway vehicle is fixed to the end plate 6.
  • the end plate 6 and the end plate 7 are integrated by fitting the shaft portion 9 formed at the right end of the end plate 7 into the recess 10 formed at the left end of the end plate 6.
  • the piston 12 is slidably fitted in the tube 3.
  • the piston 12 divides the inside of the tube 3 into a first chamber 13 on the rod guide 41 side and a second chamber 14 on the end plate 5 side.
  • the first chamber 13 and the second chamber 14 are filled with the hydraulic fluid, and the reservoir 4 is filled with the hydraulic fluid and air (gas).
  • the right end (one end) of the piston rod 15 is connected to the piston 12.
  • the left end side (the other end side) of the piston rod 15 extends to the outside of the tube 3 through the first chamber 13 and the rod guide 41.
  • a bracket 16 connected to the bogie side of a railroad vehicle is fixed to the left end of the piston rod 15.
  • a tubular cover 17 that covers the exposed portion of the piston rod 15 is attached to the bracket 16.
  • the piston 12 prevents the movement of the hydraulic fluid from the second chamber 14 to the first chamber 13 during the contraction stroke of the piston rod 15, and opens the valve when the hydraulic pressure of the second chamber 14 reaches a constant pressure.
  • a relief valve 18 is provided to release the hydraulic pressure of the second chamber 14 to the first chamber 13.
  • a relief valve 19 is provided to release the hydraulic pressure of the first chamber 13 to the second chamber 14.
  • the end plate 7 is provided with a relief valve 20 that opens when the hydraulic pressure of the second chamber 14 reaches a set pressure and releases the hydraulic pressure of the second chamber 14 to the reservoir 4. Further, the end plate 7 is provided with a check valve 21 (check valve) that allows the flow of the hydraulic fluid from the reservoir 4 to the second chamber 14.
  • a cylindrical portion 22 having an opening on the left end is formed on the outer peripheral edge of the end plate 7.
  • the right end portion 23 of the tube 3 is fitted inside the cylindrical portion 22.
  • the right end portion 23 of the tube 3 and the cylindrical portion 22 of the end plate 7 are sealed by a seal ring 25.
  • the tube 3 is positioned in the left-right direction (axial direction) by the end surface 24 of the right end portion 23 being abutted against the bottom portion of the cylindrical portion 22 of the end plate 7.
  • the left end portion 26 of the tube 3 is liquidt tightly fitted to the concave tube fitting portion 43 provided on the right end surface 42 of the rod guide 41.
  • the outer peripheral surface 44 of the rod guide 41 is fitted to the rod guide fitting portion 37 formed on the inner peripheral surface 36 of the left end portion 35 of the cylinder 2.
  • a lock ring 29 is screwed into the opening of the left end portion 35 of the cylinder 2. By tightening the lock ring 29, an axial force is applied to the tube 3 pressurized between the rod guide 41 and the end plate 7.
  • the shaft hole 30 of the lock ring 29 is provided with an oil seal 31 that is in sliding contact with the piston rod 15.
  • the shaft hole 47 of the rod guide 41 is provided with a seal ring 32 that is in sliding contact with the piston rod 15.
  • annular groove 49 is formed in the vicinity of the bottom 48 of the tube fitting portion 43 of the rod guide 41.
  • the annular groove 49 forms an endless annular circle extending in the circumferential direction of the tube fitting portion 43, and for example, a state in which the shock absorber 1 is attached to a railway vehicle (hereinafter, “attachment of the shock absorber 1”).
  • attachment of the shock absorber 1 In the state (referred to as "state"), it can be an ended annular semicircle extending from the upper end portion to the lower end portion of the tube fitting portion 43.
  • a small outer diameter portion 45 having a smaller diameter with respect to the outer peripheral surface 44 is formed on the right end portion of the rod guide 41, in other words, on the outer periphery of the tube fitting portion 43.
  • an annular gap 46 communicating with the reservoir 4 is formed between the small outer diameter portion 45 of the rod guide 41 and the inner peripheral surface 36 of the cylinder 2.
  • the annular gap 46 has a constant flow path area provided at the lower end of the small outer diameter portion 45 of the rod guide 41 (at the position of “6 o'clock” in the clock position) when the shock absorber 1 is attached.
  • the passage 50 having the rod guide 41 communicates with the annular groove 49 formed in the tube fitting portion 43 of the rod guide 41.
  • annular plate 53 (see FIG. 3) is interposed between the bottom 48 of the tube fitting portion 43 of the rod guide 41 and the end surface 27 of the left end portion 26 of the tube 3.
  • the annular plate 53 has a rectangular (channel shape) cross section formed by a plane perpendicular to the axis of the shock absorber 1 (hereinafter referred to as “axis right angle plane”).
  • a part of the outer peripheral surface 54 (see FIG. 3) of the annular plate 53 is a portion on the left side of the annular groove 49 in the tube fitting portion 43, in other words, an annular shape formed between the annular groove 49 and the bottom portion 48. It is fitted to the cylindrical surface of the plate fitting portion 51 with a constant fitting tolerance.
  • the inner diameter of the annular plate 53 is smaller than the inner diameter of the left end portion 26 of the tube 3.
  • the height of the plate fitting portion 51 of the rod guide 41 in other words, the distance in the left-right direction from the bottom 48 of the tube fitting portion 43 of the rod guide 41 to the annular groove 49 is the plate thickness (left-right direction) of the annular plate 53. Is shorter than the length of). That is, the right end of the outer peripheral surface 54 of the annular plate 53 faces the annular groove 49 of the rod guide 41.
  • the left end surface 56 of the annular plate 53 is in contact with the bottom 48 of the tube fitting portion 43 of the rod guide 41.
  • the end surface 27 of the left end portion 26 of the tube 3 is in contact with the right end surface 57 of the annular plate 53.
  • a recess 81 is formed in the right end surface 57 of the annular plate 53 facing the tube 3.
  • the recess 81 extends in the radial direction of the annular plate 53 from the outer peripheral surface 54 of the annular plate 53 to the inner peripheral surface 55 (see FIG. 3).
  • the recess 81 extends in the vertical direction at the upper end portion (position at the time of “12” in the clock position) of the annular plate 53 in the mounted state of the shock absorber 1.
  • the concave portion 81 is formed into a rectangular cross section (channel shape) by coining (printing pressure processing).
  • the recess 81 communicates the annular passage 52 defined by the annular groove 49 of the rod guide 41 with the first chamber 13 in the tube 3.
  • the recess 81 can be processed by engraving, etching, or the like in addition to coining.
  • the shock absorber 1 is configured to have an air bleeding structure for discharging the air accumulated in the first chamber 13 to the reservoir 4.
  • the air bleeding structure configured in the shock absorber 1 of the first embodiment, the air accumulated in the corners of the first chamber 13 reaches the recess 81, the annular passage 52, the passage 50, and the annular gap during the extension stroke of the piston rod 15. It is discharged to the reservoir 4 via 46.
  • the recess 81 functions as an orifice that generates a damping force with respect to the flow of the hydraulic fluid flowing from the first chamber 13 to the reservoir 4 through the recess 81, the annular passage 52, the passage 50, and the annular gap 46.
  • the operation of the first embodiment will be described.
  • the piston rod 15 of the shock absorber 1 arranged sideways expands and contracts as the vehicle body of the railroad vehicle and the bogie move relative to each other in the horizontal direction.
  • the hydraulic fluid in the first chamber 13 flows to the second chamber 14 through the relief valve 19 of the piston 12.
  • the hydraulic fluid in the first chamber 13 flows to the reservoir 4 through the recess 81 of the annular plate 53, the annular passage 52, the passage 50 of the rod guide 41, and the annular gap 46.
  • the hydraulic fluid in the first chamber 13 flows through the relief valve 18 and the recess 81 (orifice), so that a damping force on the extension side is generated.
  • the air accumulated in the corner portion of the first chamber 13 is contained in the hydraulic fluid as bubbles (aerobic hydraulic fluid), and the annular plate 53 is formed from the first chamber 13. It is discharged to the reservoir 4 through the recess 81, the annular passage 52, the passage 50 of the rod guide 41, and the annular gap 46.
  • the hydraulic fluid corresponding to the volume of the piston rod 15 exiting from the first chamber 13 opens the check valve 21 of the end plate 7 from the reservoir 4 to the second chamber 14. be introduced.
  • the hydraulic fluid in the second chamber 14 passes through the relief valve 18 of the piston 12 and flows to the first chamber 13.
  • the hydraulic fluid corresponding to the volume of the piston rod 15 entering the first chamber 13 is discharged from the second chamber 14 to the reservoir 4 via the relief valve 20 of the end plate 7.
  • the hydraulic fluid in the second chamber 14 flows through the relief valve 18 and the relief valve 20, so that a damping force on the contraction side is generated.
  • the annular plate is a thin plate (for example, plate thickness). "0.3 mm"
  • the flow path area of the notch (orifice) will vary due to the influence of the tolerance of the plate thickness of the thin plate, and eventually the air bleeding performance (air bleeding performance between products). The damping force characteristics) will vary, and the reliability of the shock absorber will decrease. Further, when a thin plate is used as the annular plate, the crushing allowance cannot be secured.
  • the end plate is only slightly tilted due to welding accuracy or the like, and a gap is generated at the contact portion between the annular plate and the tube.
  • the hydraulic fluid (pressure) of the first chamber 13 may leak to the reservoir 4 side through the gap.
  • the crushing allowance cannot be secured, so that the slight inclination of the end plate cannot be absorbed by the crushing allowance, and the axial force acting on the tube is deflected to lock.
  • the ring may loosen.
  • the plate thickness of the annular plate affects the flow path area of the orifice, the damping force of the orifice characteristic varies depending on the tolerance of the plate thickness.
  • the notch is processed by pressing the thin plate, so that the burr generated in the notch may reduce the contamination dischargeability. Further, in the conventional shock absorber, since the end of the notch receives the jet of the hydraulic fluid, aeration may occur and the end of the notch may be worn.
  • the concave portion 81 is formed in the right end surface 57 of the annular plate 53 facing the tube 3, and the concave portion 81 forms the first chamber 13 and the reservoir 4 in the tube 3. Since the (reservoir chamber) is communicated with the (reservoir chamber), the cross-sectional area of the recess 81 and the flow path area of the passage defined by the recess 81 are not affected by the plate thickness of the annular plate 53. In addition, since the concave portion 81 is formed by coining (printing pressure processing), the concave portion 81 can be formed with extremely high accuracy. As a result, it is possible to suppress variations in air bleeding performance between products, and it is possible to improve the reliability of the shock absorber 1.
  • the shape of the recess 81 and the flow path area of the orifice formed by the recess 81 are not affected by the plate thickness of the annular plate 53, it is possible to suppress variations in damping force characteristics between products. It is possible and the reliability of the shock absorber 1 can be improved. Further, since the thickness of the annular plate 53 and the crushing allowance of the annular plate 53 are secured, it is possible to prevent the leakage of the hydraulic fluid through the contact portion between the annular plate and the tube. Further, since the inclination of the end plate 5 is absorbed by the crushing allowance, the axial force acting on the tube 3 can be made uniform in the circumferential direction, and the lock ring 29 can be suppressed from loosening.
  • the recess 81 is formed by coining (printing pressure processing), no burrs are generated in the recess 81, and contamination in the hydraulic fluid is transmitted from the first chamber 13 through the recess 81. It can be smoothly discharged to the reservoir 4. Further, since the flow path area of the orifice can be set finely, it is possible to provide the shock absorber 1 having improved tuning property of the damping force characteristic.
  • the concave portion 81 extends from the inner peripheral surface 55 (inner peripheral side end surface) of the annular plate 53 to the outer peripheral surface 54 (outer peripheral side end surface), the direction of the flow of the hydraulic fluid flowing through the concave portion 81 ( There is no barrier that hinders the radial direction), and wear of the annular plate 53 can be suppressed.
  • the left end portion 26 of the tube 3 is fitted into the concave tube fitting portion 43 provided on the right end surface 42 of the rod guide 41, and the tube 3 is connected to the rod guide 41.
  • the convex tube fitting portion 61 provided on the right end surface 42 of the rod guide 41 is fitted into the inside (inner peripheral surface) of the left end portion 26 of the tube.
  • the tube 3 was coupled to the rod guide 41.
  • the tube fitting portion 61 has an outer peripheral surface 62 formed of a cylindrical surface coaxial with the axis of the shock absorber 1.
  • An annular groove 49 is provided on the outer peripheral surface 62.
  • the annular groove 49 is formed in the vicinity of the right end surface 42 of the rod guide 41.
  • the outer peripheral surface 62 is provided with a groove 63 extending in the left-right direction (axial direction) from the upper end portion (position at “12 o'clock” in the clock position) of the tube fitting portion 61 in the mounted state of the shock absorber 1.
  • the base portion of the tube fitting portion 61 (the portion on the left side of the annular groove 49) is fitted to a part of the inner peripheral surface 55 (see FIG. 5), and the left end surface 56 is on the right side of the rod guide 41. It comes into contact with the end face 42.
  • the annular plate 53 has an outer diameter larger than the outer diameter of the tube 3.
  • a recess 81 is formed in the right end surface 57 of the annular plate 53 facing the tube 3.
  • the recess 81 extends in the vertical direction at the lower end of the annular plate 53 (at the “6 o'clock” position in the clock position) with the shock absorber 1 attached.
  • the recess 81 communicates the annular passage 52 defined by the annular groove 49 of the rod guide 41 with the first chamber 13 in the tube 3.
  • the air accumulated in the corner portion of the first chamber 13 is the groove 63 of the outer peripheral surface 62 of the tube fitting portion 61 and the annular passage during the extension stroke of the piston rod 15. It is discharged to the reservoir 4 through 52 and the recess 81.
  • the recess 81 functions as an orifice that generates a damping force with respect to the flow of the hydraulic fluid flowing from the first chamber 13 through the groove 63, the annular passage 52, and the recess 81 to the reservoir 4.
  • the rod guides 41 when the guide lengths of the rod guides 41 are the same as those of the first embodiment, the rod guides 41 have a length corresponding to the axial length of the tube fitting portion 61.
  • the total length (length in the axial direction), and thus the total length of the shock absorber 1, can be shortened, and the shock absorber 1 can be miniaturized.
  • a positioning mechanism 65 for positioning the annular plate 53 around the axis with respect to the rod guide 41 is provided.
  • the positioning mechanism 65 includes a groove 66 provided at the upper end of the tube fitting portion 61 of the rod guide 41 (at the “12 o'clock” position in the clock position) and the inside of the annular plate 53 when the shock absorber 1 is attached. It has a convex portion 67 that protrudes radially from the peripheral surface 55 and is fitted into the groove 66.
  • the groove 66 extends from the end surface 64 of the tube fitting portion 61 to the right end surface 42 of the rod guide 41, and the cross section in the plane perpendicular to the axis is formed in a rectangular shape (channel shape).
  • the convex portion 67 has a rectangular cross section formed by a plane perpendicular to the axis, and is provided on the opposite side of the concave portion 81 (upper end portion when the shock absorber 1 is attached) via the center of the annular plate 53.
  • the positioning mechanism 65 is configured such that the convex portion 67 of the annular plate 53 is fitted into the groove 66 with a constant gap in the vertical direction and the horizontal direction in FIG. 7.
  • the third embodiment it is possible to obtain the same effect as that of the first to second embodiments described above. Further, in the third embodiment, since the annular plate 53 is positioned around the axis with respect to the rod guide 41 by the positioning mechanism 65, the recess 81 is surely placed under the annular plate 53 in the mounted state of the shock absorber 1. It can be placed at the side end. As a result, malfunction due to improper assembly of the annular plate 53 is suppressed, and the reliability of the shock absorber 1 can be improved.
  • a positioning mechanism 71 for positioning the annular plate 53 around the axis with respect to the rod guide 41 is provided.
  • An annular convex portion 72 having a constant height is provided on the inner peripheral edge portion of the bottom portion 48 of the tube fitting portion 43 of the rod guide 41.
  • An annular plate 53 is provided on the outer periphery of the annular convex portion 72.
  • a certain gap is formed between the outer peripheral surface 73 of the annular convex portion 72 and the inner peripheral surface 55 of the annular plate 53.
  • the height of the annular convex portion 72 (the amount of protrusion from the bottom portion 48) is set to, for example, the plate thickness of the annular plate 53.
  • the positioning mechanism 71 has a groove 75 provided at the upper end of the annular convex portion 72 of the rod guide 41 (at the “12 o'clock” position in the clock position) and the inner circumference of the annular plate 53 when the shock absorber 1 is attached. It has a convex portion 67 that protrudes radially from the surface 55 and is fitted into the groove 75.
  • the groove 75 extends from the end surface 74 of the annular convex portion 72 to the bottom portion 48 of the tube fitting portion 43, and a rectangular cross section formed by a plane perpendicular to the axis is formed.
  • the convex portion 67 has a rectangular cross section formed by a plane perpendicular to the axis, and is provided at the upper end portion in the mounted state of the shock absorber 1.
  • the positioning mechanism 71 is configured such that the convex portion 67 of the annular plate 53 is fitted into the groove 75 with a certain gap in the vertical direction and the horizontal direction in FIG.
  • the concave portion 81 extends from the outer peripheral surface 54 of the annular plate 53 to the end surface 68 of the convex portion 67.
  • the fourth embodiment it is possible to obtain the same effect as that of the first to third embodiments described above. Further, in the fourth embodiment, since the annular plate 53 is positioned around the axis with respect to the rod guide 41 by the positioning mechanism 71, the recess 81 is surely positioned at the upper end of the annular plate 53 in the mounted state of the shock absorber 1. Can be placed in the department. As a result, malfunction due to improper assembly of the annular plate 53 is suppressed, and the reliability of the shock absorber 1 can be improved.
  • the double-cylinder type horizontal hydraulic shock absorber 1 in which the piston rod 15 expands and contracts in the horizontal direction is targeted.
  • a double-cylinder vertical hydraulic shock absorber 1A (hereinafter referred to as “buffer 1A”) in which the piston rod 15 expands and contracts in the vertical direction is targeted.
  • the number of recesses 81 formed in the lower end surface 57 of the annular plate 53 facing the tube 3 was one.
  • a plurality of (“6” in the fifth embodiment) recesses 81 are formed on the lower end surface 57 of the annular plate 53.
  • the plurality of recesses 81 are arranged at equal intervals (“60 ° around the axis” in the fifth embodiment) in the circumferential direction of the annular plate 53.
  • each recess 81 of the plurality of recesses 81 in the fifth embodiment is smaller than the flow path area of the recess 81 in the second embodiment, which also has a function as an orifice, and has an influence on the damping force characteristics. It is set to almost none.
  • the piston rod 15 expands and contracts, so that the aerobic hydraulic fluid containing the air staying in the tube 3 reaches the groove 63, the annular passage 52, and the annular passage 52 during the extension stroke of the piston rod 15. It is discharged to the reservoir 4 through the plurality of recesses 81.
  • the air staying in the tube 3 of the double-cylinder vertical hydraulic shock absorber 1A is stored from the plurality of recesses 81 formed on the facing surface of the annular plate 53 with the tube 3. It can be discharged to 4. Further, in the fifth embodiment, since the plurality of recesses 81 are formed (molded) by coining (printing pressure processing), it is possible to process a passage having an extremely small flow path area with high accuracy. As a result, the aeration hydraulic fluid in the tube 3 can be exuded to the reservoir 4 side through the passage having the minimum flow path area defined by the recess 81, and the hydraulic fluid in the tube 3 is recessed. Since it is not discharged as a jet from 81, it is possible to suppress the generation of aeration.
  • the recess 81 has a constant cross-sectional shape from the outer peripheral surface 54 to the inner peripheral surface 55 of the annular plate 53.
  • the recess 81 shown in FIG. 12 is composed of a stationary portion 82 formed on the inner peripheral surface 55 side of the annular plate 53 and a widening portion 83 formed on the outer peripheral surface 54 side of the annular plate 53. Will be done.
  • the stationary portion 82 extends radially from the inner peripheral surface 55 of the annular plate 53.
  • the widening portion 83 is widened from the outer peripheral end of the stationary portion 82 toward the outer peripheral surface 54 (end surface) of the annular plate 53.
  • the recess 81 shown in FIG. 13 is an inner peripheral side in which the stationary portion 82 in the recess 81 shown in FIG. 12 is widened from the connection portion 85 with the widening portion 83 toward the inner peripheral surface 55 of the annular plate 53.
  • a widening portion 84 is provided.
  • the flow path area (orifice area) in the connection portion 85 is set to be the same as the flow path area in the stationary portion 82 (see FIG. 12).
  • the opening width on the inner peripheral surface 54 side of the annular plate 53 in the recess 81 (inner peripheral widening portion 84), that is, the opening width on the first chamber 13 side is the opening of the stationary portion 82 (see FIG. 12). Since it is larger than the width, it is possible to improve the dischargeability of the air accumulated in the tube (3) and the contamination in the first chamber 13.
  • the bottom surface 86 of the widening portion 83 in the recess 81 shown in FIG. 12 is formed by a curved surface.
  • the bottom surface 86 has a depth from the right end surface 57 of the annular plate 53, which is a surface facing the tube 3 (hereinafter referred to as “depth of the bottom surface 86”), toward the outer peripheral surface 54 (end surface) of the annular plate 53. Get deeper.
  • depth of the bottom surface 86 a surface facing the tube 3
  • the pressure of the flowing hydraulic fluid can be further reduced, and aeration can be performed. Can be suppressed more effectively.
  • the bottom surface 87 of the inner peripheral side widening portion 84 in the recess 81 shown in FIG. 13 can be formed by a curved surface.
  • the first recess 81A is provided on the right end surface 57 of the annular plate 53 facing the tube 3, and the second recess 81B is provided on the left end surface 56 which is the opposite surface.
  • the shock absorber 1 can be provided.
  • the characteristics of one annular plate 53 differ depending on the orientation (front and back) in which the annular plate 53 is assembled. (Air bleeding property, damping force characteristic) can be selected, and the tuning property of the shock absorber 1 can be improved.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

According to the present invention, a first chamber and a reservoir (reservoir chamber) which are inside a tube are made to communicate with each other by means of a recess section formed on an annular plate on a right end surface, which is a tube-facing surface, and therefore the flow path cross-sectional area of a path defined by the recess section is not affected by the plate thickness of the annular plate. In addition, since the recess section is formed by coining (pressure imprinting), the recess section can be formed with extremely high accuracy. Thus, it is possible to suppress a variation in air venting performance and damping force characteristics between products, and the reliability of this shock absorber can be improved.

Description

緩衝器Shock absorber
 本発明は、鉄道車両等に用いられる複筒式液圧緩衝器に関する。 The present invention relates to a double-cylinder hydraulic shock absorber used in railway vehicles and the like.
 特許文献1には、減衰力発生要素及びエア抜き要素として機能するオリフィスを、シリンダとロッドガイドとの間に介装される環状プレートに設けた切欠きによって形成した複筒型緩衝器が開示されている。 Patent Document 1 discloses a double-cylinder shock absorber in which an orifice functioning as a damping force generating element and an air bleeding element is formed by a notch provided in an annular plate interposed between a cylinder and a rod guide. ing.
特開2012-233595号公報Japanese Unexamined Patent Publication No. 2012-233595
 ところで、特許文献1に開示された緩衝器(以下「従来の緩衝器」と称する)では、環状プレートに極めて小さい流路面積(例えば孔径換算で「0.3mm」)の切欠き(オリフィス)を形成する必要がある。このため、環状プレートには、薄板(例えば板厚「0.3mm」)が用いられる。この場合、薄板の板厚の公差を厳格に管理しないと、薄板の板厚の公差の影響によって切欠き(オリフィス)の流路面積にばらつきが発生し、延いては、製品間でエア抜き性能(減衰力特性)にばらつきが生じて信頼性が低下するおそれがある。 By the way, in the shock absorber disclosed in Patent Document 1 (hereinafter referred to as "conventional shock absorber"), the annular plate is provided with a notch (orifice) having an extremely small flow path area (for example, "0.3 mm" in terms of hole diameter). Need to form. Therefore, a thin plate (for example, a plate thickness "0.3 mm") is used for the annular plate. In this case, if the tolerance of the plate thickness of the thin plate is not strictly controlled, the flow path area of the notch (orifice) will vary due to the influence of the tolerance of the plate thickness of the thin plate, and eventually the air bleeding performance between products. (Damping force characteristics) may vary and reliability may decrease.
 本発明は、信頼性を向上させた複筒式液圧緩衝器を提供することを課題とする。 An object of the present invention is to provide a double-cylinder hydraulic shock absorber with improved reliability.
 本発明の一実施形態に係る緩衝器は、シリンダと、前記シリンダの内周側に設けられ、作動流体が封入されるチューブと、前記シリンダと前記チューブとの間に設けられ、作動液と気体とが封入されるリザーバ室と、前記チューブ内に摺動可能に設けられ、前記チューブ内を2室に区画するピストンと、一端が前記ピストンに連結され、他端側が前記シリンダの外部へ延出されるピストンロッドと、前記チューブの端部に設けられ、前記シリンダと前記チューブとを閉塞させる閉塞部材と、前記閉塞部材と前記チューブの端部との間に設けられ、前記閉塞部材に嵌合される環状プレートと、を有し、前記環状プレートの前記チューブとの対向面には、前記チューブと前記リザーバ室とを連通する凹部が形成されることを特徴とする。 The shock absorber according to the embodiment of the present invention is provided between the cylinder, the tube provided on the inner peripheral side of the cylinder and in which the working fluid is sealed, and the cylinder and the tube, and is provided between the cylinder and the gas. A reservoir chamber in which a gas is sealed, a piston slidably provided in the tube, and a piston that divides the inside of the tube into two chambers, one end of which is connected to the piston, and the other end of which extends to the outside of the cylinder. A piston rod, a closing member provided at the end of the tube and closing the cylinder and the tube, and a closing member provided between the closing member and the end of the tube and fitted to the closing member. An annular plate is provided, and a recess for communicating the tube and the reservoir chamber is formed on the surface of the annular plate facing the tube.
 本発明の一実施形態によれば、複筒式液圧緩衝器の信頼性を向上させることができる。 According to one embodiment of the present invention, the reliability of the double-cylinder hydraulic shock absorber can be improved.
第1実施形態の緩衝器における断面図である。It is sectional drawing in the shock absorber of 1st Embodiment. 図1における要部を拡大して示す図である。It is a figure which shows the main part in FIG. 1 in an enlarged manner. 第1実施形態の緩衝器における環状プレートの斜視図である。It is a perspective view of the annular plate in the shock absorber of 1st Embodiment. 第2実施形態の緩衝器における要部を拡大して示す断面図である。It is sectional drawing which shows the main part in the shock absorber of 2nd Embodiment by enlargement. 図4におけるA-A矢視図である。FIG. 4 is an arrow view taken along the line AA in FIG. 第3実施形態の緩衝器における要部を拡大して示す断面図である。It is sectional drawing which shows the main part in the shock absorber of 3rd Embodiment enlarged. 図6におけるB-B矢視図である。FIG. 6 is a view taken along the line BB in FIG. 第4実施形態の緩衝器における要部を拡大して示す断面図である。It is sectional drawing which shows the main part in the shock absorber of 4th Embodiment enlarged. 図8におけるC-C矢視図である。FIG. 8 is a view taken along the line CC in FIG. 第5実施形態の緩衝器における要部を拡大して示す図である。It is a figure which shows the main part in the shock absorber of the 5th Embodiment in an enlarged manner. 第5実施形態の緩衝器における環状プレートの斜視図である。It is a perspective view of the annular plate in the shock absorber of 5th Embodiment. 凹部の変形例を示すための環状プレートの斜視図である。It is a perspective view of the annular plate for showing the modification of the concave part. 凹部の変形例を示すための環状プレートの斜視図である。It is a perspective view of the annular plate for showing the modification of the concave part. 凹部の変形例を示すための環状プレートの斜視図である。It is a perspective view of the annular plate for showing the modification of the concave part. 凹部の変形例を示すための環状プレートの斜視図である。It is a perspective view of the annular plate for showing the modification of the concave part.
(第1実施形態) 本発明の第1実施形態を添付した図を参照して説明する。
 ここでは、鉄道車両の車体と台車との間に左右動ダンパとして略水平に配置される複筒式横置き液圧緩衝器1(以下「緩衝器1」という)を説明する。なお、以下の説明において、便宜上、図1における上下方向及び左右方向を、そのまま上下方向及び左右方向と称するが、緩衝器1の取付方向(向き)を限定することを意図していない。
(First Embodiment) This will be described with reference to the figure attached to the first embodiment of the present invention.
Here, a double-cylinder horizontal hydraulic shock absorber 1 (hereinafter referred to as “buffer 1”), which is arranged substantially horizontally as a left-right moving damper between the vehicle body of a railway vehicle and a bogie, will be described. In the following description, for convenience, the vertical direction and the horizontal direction in FIG. 1 are referred to as the vertical direction and the horizontal direction as they are, but it is not intended to limit the mounting direction (direction) of the shock absorber 1.
 図1に示されるように、緩衝器1は、シリンダ2と、シリンダ2の内周側に設けられたチューブ3と、を有する。シリンダ2及びチューブ3の左側端は、ロッドガイド41(閉塞部材)によって閉塞される。他方、シリンダ2及びチューブ3の右側端は、端板5によって閉鎖される。シリンダ2とチューブ3との間には、環状のリザーバ4(リザーバ室)が形成される。端板5は、シリンダ2の右側端を閉鎖する端板6と、チューブ3の右側端を閉塞する端板7と、に分割される。端板6には、鉄道車両の車体側に連結されるブラケット8が固定される。端板6と端板7とは、端板7の右側端に形成された軸部9が端板6の左側端に形成された凹部10に嵌合されて一体化される。 As shown in FIG. 1, the shock absorber 1 has a cylinder 2 and a tube 3 provided on the inner peripheral side of the cylinder 2. The left end of the cylinder 2 and the tube 3 is closed by the rod guide 41 (blocking member). On the other hand, the right end of the cylinder 2 and the tube 3 is closed by the end plate 5. An annular reservoir 4 (reservoir chamber) is formed between the cylinder 2 and the tube 3. The end plate 5 is divided into an end plate 6 that closes the right end of the cylinder 2 and an end plate 7 that closes the right end of the tube 3. A bracket 8 connected to the vehicle body side of the railway vehicle is fixed to the end plate 6. The end plate 6 and the end plate 7 are integrated by fitting the shaft portion 9 formed at the right end of the end plate 7 into the recess 10 formed at the left end of the end plate 6.
 チューブ3内には、ピストン12が摺動可能に嵌合される。ピストン12は、チューブ3内をロッドガイド41側の第1室13と端板5側の第2室14とに区画する。第1室13及び第2室14には作動液が封入され、リザーバ4には作動液及びエア(気体)が封入される。ピストン12には、ピストンロッド15の右側端(一端)が連結される。ピストンロッド15の左側端側(他端側)は、第1室13及びロッドガイド41を通ってチューブ3の外部へ延出される。ピストンロッド15の左側端には、鉄道車両の台車側に連結されるブラケット16が固定される。ブラケット16には、ピストンロッド15の露出部分を覆う筒形状のカバー17が取り付けられる。 The piston 12 is slidably fitted in the tube 3. The piston 12 divides the inside of the tube 3 into a first chamber 13 on the rod guide 41 side and a second chamber 14 on the end plate 5 side. The first chamber 13 and the second chamber 14 are filled with the hydraulic fluid, and the reservoir 4 is filled with the hydraulic fluid and air (gas). The right end (one end) of the piston rod 15 is connected to the piston 12. The left end side (the other end side) of the piston rod 15 extends to the outside of the tube 3 through the first chamber 13 and the rod guide 41. A bracket 16 connected to the bogie side of a railroad vehicle is fixed to the left end of the piston rod 15. A tubular cover 17 that covers the exposed portion of the piston rod 15 is attached to the bracket 16.
 ピストン12には、ピストンロッド15の縮み行程時に、第2室14から第1室13への作動液の移動を阻止して、第2室14の液圧が一定圧力に達したときに開弁することで、第2室14の液圧を第1室13へ逃がすリリーフ弁18が設けられる。また、ピストン12には、ピストンロッド15の伸び行程時に、第1室13から第2室14への作動液の移動を阻止して、第1室13の液圧が一定圧力に達したときに開弁することで、第1室13の液圧を第2室14へ逃がすリリーフ弁19が設けられる。他方、端板7には、第2室14の液圧が設定圧力に達したときに開弁して、第2室14の液圧をリザーバ4へ逃がすリリーフ弁20が設けられる。また、端板7には、リザーバ4から第2室14への作動液の流通を許容するチェック弁21(逆止弁)が設けられる。 The piston 12 prevents the movement of the hydraulic fluid from the second chamber 14 to the first chamber 13 during the contraction stroke of the piston rod 15, and opens the valve when the hydraulic pressure of the second chamber 14 reaches a constant pressure. By doing so, a relief valve 18 is provided to release the hydraulic pressure of the second chamber 14 to the first chamber 13. Further, when the hydraulic fluid in the first chamber 13 reaches a constant pressure by blocking the movement of the hydraulic fluid from the first chamber 13 to the second chamber 14 during the extension stroke of the piston rod 15 on the piston 12. By opening the valve, a relief valve 19 is provided to release the hydraulic pressure of the first chamber 13 to the second chamber 14. On the other hand, the end plate 7 is provided with a relief valve 20 that opens when the hydraulic pressure of the second chamber 14 reaches a set pressure and releases the hydraulic pressure of the second chamber 14 to the reservoir 4. Further, the end plate 7 is provided with a check valve 21 (check valve) that allows the flow of the hydraulic fluid from the reservoir 4 to the second chamber 14.
 端板7の外周縁部には、左側端が開口する円筒部22が形成される。円筒部22の内側には、チューブ3の右側端部23が嵌合される。チューブ3の右側端部23と端板7の円筒部22との間は、シールリング25によってシールされる。チューブ3は、右側端部23の端面24が端板7の円筒部22の底部に突き当てられることで、左右方向(軸方向)に位置決めされる。他方、チューブ3の左側端部26は、ロッドガイド41の右側端面42に設けられた凹状のチューブ嵌合部43に液密に嵌合される。 A cylindrical portion 22 having an opening on the left end is formed on the outer peripheral edge of the end plate 7. The right end portion 23 of the tube 3 is fitted inside the cylindrical portion 22. The right end portion 23 of the tube 3 and the cylindrical portion 22 of the end plate 7 are sealed by a seal ring 25. The tube 3 is positioned in the left-right direction (axial direction) by the end surface 24 of the right end portion 23 being abutted against the bottom portion of the cylindrical portion 22 of the end plate 7. On the other hand, the left end portion 26 of the tube 3 is liquidt tightly fitted to the concave tube fitting portion 43 provided on the right end surface 42 of the rod guide 41.
 ロッドガイド41の外周面44は、シリンダ2の左側端部35の内周面36に形成されたロッドガイド嵌合部37に嵌合される。シリンダ2の左側端部35の開口部には、ロックリング29が螺合される。ロックリング29を締め付けることにより、ロッドガイド41と端板7との間で加圧されたチューブ3に軸力を作用させる。ロックリング29の軸孔30には、ピストンロッド15に摺接するオイルシール31が設けられる。他方、ロッドガイド41の軸孔47には、ピストンロッド15に摺接するシールリング32が設けられる。 The outer peripheral surface 44 of the rod guide 41 is fitted to the rod guide fitting portion 37 formed on the inner peripheral surface 36 of the left end portion 35 of the cylinder 2. A lock ring 29 is screwed into the opening of the left end portion 35 of the cylinder 2. By tightening the lock ring 29, an axial force is applied to the tube 3 pressurized between the rod guide 41 and the end plate 7. The shaft hole 30 of the lock ring 29 is provided with an oil seal 31 that is in sliding contact with the piston rod 15. On the other hand, the shaft hole 47 of the rod guide 41 is provided with a seal ring 32 that is in sliding contact with the piston rod 15.
 ロッドガイド41のチューブ嵌合部43における底部48の近傍には、環状溝49が形成される。第1実施形態において、環状溝49は、チューブ嵌合部43の周方向へ延びる無端環状の円形をなすが、例えば、緩衝器1が鉄道車両に取り付けられた状態(以下「緩衝器1の取付状態」と称する)で、チューブ嵌合部43の上側端部から下側端部まで延びる有端環状の半円形とすることができる。 An annular groove 49 is formed in the vicinity of the bottom 48 of the tube fitting portion 43 of the rod guide 41. In the first embodiment, the annular groove 49 forms an endless annular circle extending in the circumferential direction of the tube fitting portion 43, and for example, a state in which the shock absorber 1 is attached to a railway vehicle (hereinafter, “attachment of the shock absorber 1”). In the state (referred to as "state"), it can be an ended annular semicircle extending from the upper end portion to the lower end portion of the tube fitting portion 43.
 図2に示されるように、ロッドガイド41の右側端部、換言すれば、チューブ嵌合部43の外周には、外周面44に対して小径の小外径部45が形成される。これにより、ロッドガイド41の小外径部45とシリンダ2の内周面36との間には、リザーバ4に連通する環状隙間46が形成される。なお、環状隙間46は、緩衝器1の取付状態において、ロッドガイド41の小外径部45の下側端部(クロックポジションで「6時」の位置)に設けられた、一定の流路面積を有する通路50によって、ロッドガイド41のチューブ嵌合部43に形成された環状溝49に連通される。 As shown in FIG. 2, a small outer diameter portion 45 having a smaller diameter with respect to the outer peripheral surface 44 is formed on the right end portion of the rod guide 41, in other words, on the outer periphery of the tube fitting portion 43. As a result, an annular gap 46 communicating with the reservoir 4 is formed between the small outer diameter portion 45 of the rod guide 41 and the inner peripheral surface 36 of the cylinder 2. The annular gap 46 has a constant flow path area provided at the lower end of the small outer diameter portion 45 of the rod guide 41 (at the position of “6 o'clock” in the clock position) when the shock absorber 1 is attached. The passage 50 having the rod guide 41 communicates with the annular groove 49 formed in the tube fitting portion 43 of the rod guide 41.
 ロッドガイド41のチューブ嵌合部43の底部48と、チューブ3の左側端部26の端面27との間には、環状プレート53(図3参照)が介装される。環状プレート53は、緩衝器1の軸に対して垂直をなす平面(以下「軸直角平面」と称する)による断面が矩形(チャンネル形)をなす。環状プレート53の外周面54(図3参照)の一部は、チューブ嵌合部43における環状溝49よりも左側部分、換言すれば、環状溝49と底部48との間に形成された環状のプレート嵌合部51の円筒面に、一定の嵌め合い公差で嵌合される。なお、環状プレート53の内径は、チューブ3の左側端部26の内径よりも小さい。 An annular plate 53 (see FIG. 3) is interposed between the bottom 48 of the tube fitting portion 43 of the rod guide 41 and the end surface 27 of the left end portion 26 of the tube 3. The annular plate 53 has a rectangular (channel shape) cross section formed by a plane perpendicular to the axis of the shock absorber 1 (hereinafter referred to as “axis right angle plane”). A part of the outer peripheral surface 54 (see FIG. 3) of the annular plate 53 is a portion on the left side of the annular groove 49 in the tube fitting portion 43, in other words, an annular shape formed between the annular groove 49 and the bottom portion 48. It is fitted to the cylindrical surface of the plate fitting portion 51 with a constant fitting tolerance. The inner diameter of the annular plate 53 is smaller than the inner diameter of the left end portion 26 of the tube 3.
 ロッドガイド41のプレート嵌合部51の高さ、換言すれば、ロッドガイド41のチューブ嵌合部43の底部48から環状溝49までの左右方向の距離は、環状プレート53の板厚(左右方向の長さ)よりも短い。すなわち、環状プレート53の外周面54の右側端部は、ロッドガイド41の環状溝49に面する。環状プレート53の左側端面56は、ロッドガイド41のチューブ嵌合部43の底部48に当接される。他方、環状プレート53の右側端面57には、チューブ3の左側端部26の端面27が当接される。 The height of the plate fitting portion 51 of the rod guide 41, in other words, the distance in the left-right direction from the bottom 48 of the tube fitting portion 43 of the rod guide 41 to the annular groove 49 is the plate thickness (left-right direction) of the annular plate 53. Is shorter than the length of). That is, the right end of the outer peripheral surface 54 of the annular plate 53 faces the annular groove 49 of the rod guide 41. The left end surface 56 of the annular plate 53 is in contact with the bottom 48 of the tube fitting portion 43 of the rod guide 41. On the other hand, the end surface 27 of the left end portion 26 of the tube 3 is in contact with the right end surface 57 of the annular plate 53.
 図2、図3を参照すると、環状プレート53の、チューブ3との対向面である右側端面57には、凹部81が形成される。凹部81は、環状プレート53の外周面54から内周面55(図3参照)まで環状プレート53の径方向へ延びる。凹部81は、緩衝器1の取付状態で、環状プレート53の上側端部(クロックポジションで「12」時の位置)を上下方向へ延びる。凹部81は、コイニング(印圧加工)によって断面が矩形(チャンネル形)に成形される。凹部81は、ロッドガイド41の環状溝49によって画定された環状通路52を、チューブ3内の第1室13に連通させる。なお、凹部81は、コイニングの他、彫刻、エッチング等によって加工することができる。 Referring to FIGS. 2 and 3, a recess 81 is formed in the right end surface 57 of the annular plate 53 facing the tube 3. The recess 81 extends in the radial direction of the annular plate 53 from the outer peripheral surface 54 of the annular plate 53 to the inner peripheral surface 55 (see FIG. 3). The recess 81 extends in the vertical direction at the upper end portion (position at the time of “12” in the clock position) of the annular plate 53 in the mounted state of the shock absorber 1. The concave portion 81 is formed into a rectangular cross section (channel shape) by coining (printing pressure processing). The recess 81 communicates the annular passage 52 defined by the annular groove 49 of the rod guide 41 with the first chamber 13 in the tube 3. The recess 81 can be processed by engraving, etching, or the like in addition to coining.
 緩衝器1には、第1室13に滞留したエアをリザーバ4へ排出するエア抜き構造が構成される。第1実施形態の緩衝器1に構成されるエア抜き構造では、第1室13の角部に滞留したエアが、ピストンロッド15の伸び行程時に、凹部81、環状通路52、通路50、環状隙間46を経て、リザーバ4へ排出される。他方、凹部81は、第1室13から、凹部81、環状通路52、通路50、環状隙間46を経て、リザーバ4へ流れる作動液の流れに対して減衰力を発生させるオリフィスとして機能する。 The shock absorber 1 is configured to have an air bleeding structure for discharging the air accumulated in the first chamber 13 to the reservoir 4. In the air bleeding structure configured in the shock absorber 1 of the first embodiment, the air accumulated in the corners of the first chamber 13 reaches the recess 81, the annular passage 52, the passage 50, and the annular gap during the extension stroke of the piston rod 15. It is discharged to the reservoir 4 via 46. On the other hand, the recess 81 functions as an orifice that generates a damping force with respect to the flow of the hydraulic fluid flowing from the first chamber 13 to the reservoir 4 through the recess 81, the annular passage 52, the passage 50, and the annular gap 46.
 第1実施形態の作用を説明する。
 鉄道車両の車体と台車との水平方向への相対移動に伴い、横向きに配置された緩衝器1のピストンロッド15が伸縮する。ピストンロッド15の伸び行程時には、第1室13の作動液は、ピストン12のリリーフ弁19を通って第2室14へ流れる。これに並行して、第1室13の作動液は、環状プレート53の凹部81、環状通路52、ロッドガイド41の通路50、環状隙間46を経て、リザーバ4へ流れる。このとき、第1室13の作動液がリリーフ弁18及び凹部81(オリフィス)を流れることにより、伸び側の減衰力が発生する。
The operation of the first embodiment will be described.
The piston rod 15 of the shock absorber 1 arranged sideways expands and contracts as the vehicle body of the railroad vehicle and the bogie move relative to each other in the horizontal direction. During the extension stroke of the piston rod 15, the hydraulic fluid in the first chamber 13 flows to the second chamber 14 through the relief valve 19 of the piston 12. In parallel with this, the hydraulic fluid in the first chamber 13 flows to the reservoir 4 through the recess 81 of the annular plate 53, the annular passage 52, the passage 50 of the rod guide 41, and the annular gap 46. At this time, the hydraulic fluid in the first chamber 13 flows through the relief valve 18 and the recess 81 (orifice), so that a damping force on the extension side is generated.
 また、ピストンロッド15の伸び行程では、第1室13の角部に滞留したエアが、気泡として作動液に含まれた状態(含気作動液)で、第1室13から、環状プレート53の凹部81、環状通路52、ロッドガイド41の通路50、環状隙間46を経て、リザーバ4へ排出される。なお、ピストンロッド15の伸び行程時には、ピストンロッド15が第1室13から退出した体積相当分の作動液が、リザーバ4から、端板7のチェック弁21を開弁させて第2室14へ導入される。 Further, in the extension stroke of the piston rod 15, the air accumulated in the corner portion of the first chamber 13 is contained in the hydraulic fluid as bubbles (aerobic hydraulic fluid), and the annular plate 53 is formed from the first chamber 13. It is discharged to the reservoir 4 through the recess 81, the annular passage 52, the passage 50 of the rod guide 41, and the annular gap 46. During the extension stroke of the piston rod 15, the hydraulic fluid corresponding to the volume of the piston rod 15 exiting from the first chamber 13 opens the check valve 21 of the end plate 7 from the reservoir 4 to the second chamber 14. be introduced.
 一方、ピストンロッド15の縮み行程時には、第2室14の作動液が、ピストン12のリリーフ弁18を通過して第1室13へ流れる。これに並行して、ピストンロッド15が第1室13へ進入した体積相当分の作動液が、第2室14から端板7のリリーフ弁20を介してリザーバ4へ排出される。このとき、第2室14の作動液がリリーフ弁18及びリリーフ弁20を流れることにより、縮み側の減衰力が発生する。 On the other hand, during the contraction stroke of the piston rod 15, the hydraulic fluid in the second chamber 14 passes through the relief valve 18 of the piston 12 and flows to the first chamber 13. In parallel with this, the hydraulic fluid corresponding to the volume of the piston rod 15 entering the first chamber 13 is discharged from the second chamber 14 to the reservoir 4 via the relief valve 20 of the end plate 7. At this time, the hydraulic fluid in the second chamber 14 flows through the relief valve 18 and the relief valve 20, so that a damping force on the contraction side is generated.
 ここで、従来の緩衝器では、環状プレートに極めて小さい流路面積(例えば孔径換算で「0.3mm」)の切欠き(オリフィス)を形成する必要があるため、環状プレートとして薄板(例えば板厚「0.3mm」)が用いられる。しかし、薄板の板厚の公差を厳格に管理しないと、薄板の板厚の公差の影響によって切欠き(オリフィス)の流路面積にばらつきが発生し、延いては、製品間でエア抜き性能(減衰力特性)にばらつきが生じて緩衝器の信頼性が低下する。
 また、環状プレートとして薄板を用いた場合、潰し代を確保することができないので、端板が溶接精度等により僅かに傾いただけで、環状プレートとチューブとの当接部に隙間が生じて、当該隙間を介して、第1室13の作動液(圧力)がリザーバ4側へ漏出するおそれがある。
 また、環状プレートとして薄板を用いた場合、潰し代を確保することができないので、端板の僅かな傾きを潰し代で吸収することができず、チューブに作用する軸力が偏向して、ロックリングに緩みが発生するおそれがある。
 また、従来の緩衝器は、環状プレートの板厚がオリフィスの流路面積に影響するので、板厚の公差によってオリフィス特性の減衰力がばらつく。
 また、従来の緩衝器は、薄板をプレスによって切欠きを加工するので、切欠きに発生したバリがコンタミの排出性を低下させるおそれがある。
 また、従来の緩衝器は、切欠きの終端が作動液の噴流を受けるので、エアレーションの発生や、切欠きの終端に摩耗が発生するおそれがある。
Here, in the conventional shock absorber, it is necessary to form a notch (orifice) having an extremely small flow path area (for example, “0.3 mm” in terms of hole diameter) in the annular plate, so that the annular plate is a thin plate (for example, plate thickness). "0.3 mm") is used. However, if the tolerance of the plate thickness of the thin plate is not strictly controlled, the flow path area of the notch (orifice) will vary due to the influence of the tolerance of the plate thickness of the thin plate, and eventually the air bleeding performance (air bleeding performance between products). The damping force characteristics) will vary, and the reliability of the shock absorber will decrease.
Further, when a thin plate is used as the annular plate, the crushing allowance cannot be secured. Therefore, the end plate is only slightly tilted due to welding accuracy or the like, and a gap is generated at the contact portion between the annular plate and the tube. The hydraulic fluid (pressure) of the first chamber 13 may leak to the reservoir 4 side through the gap.
In addition, when a thin plate is used as the annular plate, the crushing allowance cannot be secured, so that the slight inclination of the end plate cannot be absorbed by the crushing allowance, and the axial force acting on the tube is deflected to lock. The ring may loosen.
Further, in the conventional shock absorber, since the plate thickness of the annular plate affects the flow path area of the orifice, the damping force of the orifice characteristic varies depending on the tolerance of the plate thickness.
Further, in the conventional shock absorber, the notch is processed by pressing the thin plate, so that the burr generated in the notch may reduce the contamination dischargeability.
Further, in the conventional shock absorber, since the end of the notch receives the jet of the hydraulic fluid, aeration may occur and the end of the notch may be worn.
 これに対し、第1実施形態では、環状プレート53の、チューブ3との対向面である右側端面57に凹部81を形成して、当該凹部81によって、チューブ3内の第1室13とリザーバ4(リザーバ室)とを連通させたので、凹部81の断面積、延いては、凹部81によって画定される通路の流路面積が、環状プレート53の板厚の影響を受けることがない。加えて、凹部81をコイニング(印圧加工)によって形成したので、凹部81を極めて高い精度で形成することができる。
 これにより、製品間におけるエア抜き性能のばらつきを抑止することが可能であり、緩衝器1の信頼性を向上させることができる。
 また、凹部81の形状、延いては、凹部81によって形成されるオリフィスの流路面積が、環状プレート53の板厚の影響を受けないので、製品間における減衰力特性のばらつきを抑止することが可能であり、緩衝器1の信頼性を向上させることができる。
 また、環状プレート53の板厚、延いては、環状プレート53の潰し代が確保されるので、環状プレートとチューブとの当接部を介した作動液の漏出を抑止することができる。さらに、潰し代によって端板5の傾きが吸収されるので、チューブ3に作用する軸力を周方向で均一化することが可能であり、ロックリング29の緩みを抑止することができる。
 また、第1実施形態では、凹部81をコイニング(印圧加工)によって形成したので、凹部81にバリが生じることがなく、作動液中のコンタミを、第1室13から、凹部81を介してリザーバ4へ円滑に排出することができる。さらに、オリフィスの流路面積を細かく設定することができるので、減衰力特性のチューニング性を向上させた緩衝器1を提供することができる。
 また、第1実施形態では、凹部81は、環状プレート53の内周面55(内周側端面)から外周面54(外周側端面)まで延びるので、凹部81を流れる作動液の流れの方向(径方向)を妨げる障壁が無く、環状プレート53の摩耗を抑止することができる。
On the other hand, in the first embodiment, the concave portion 81 is formed in the right end surface 57 of the annular plate 53 facing the tube 3, and the concave portion 81 forms the first chamber 13 and the reservoir 4 in the tube 3. Since the (reservoir chamber) is communicated with the (reservoir chamber), the cross-sectional area of the recess 81 and the flow path area of the passage defined by the recess 81 are not affected by the plate thickness of the annular plate 53. In addition, since the concave portion 81 is formed by coining (printing pressure processing), the concave portion 81 can be formed with extremely high accuracy.
As a result, it is possible to suppress variations in air bleeding performance between products, and it is possible to improve the reliability of the shock absorber 1.
Further, since the shape of the recess 81 and the flow path area of the orifice formed by the recess 81 are not affected by the plate thickness of the annular plate 53, it is possible to suppress variations in damping force characteristics between products. It is possible and the reliability of the shock absorber 1 can be improved.
Further, since the thickness of the annular plate 53 and the crushing allowance of the annular plate 53 are secured, it is possible to prevent the leakage of the hydraulic fluid through the contact portion between the annular plate and the tube. Further, since the inclination of the end plate 5 is absorbed by the crushing allowance, the axial force acting on the tube 3 can be made uniform in the circumferential direction, and the lock ring 29 can be suppressed from loosening.
Further, in the first embodiment, since the recess 81 is formed by coining (printing pressure processing), no burrs are generated in the recess 81, and contamination in the hydraulic fluid is transmitted from the first chamber 13 through the recess 81. It can be smoothly discharged to the reservoir 4. Further, since the flow path area of the orifice can be set finely, it is possible to provide the shock absorber 1 having improved tuning property of the damping force characteristic.
Further, in the first embodiment, since the concave portion 81 extends from the inner peripheral surface 55 (inner peripheral side end surface) of the annular plate 53 to the outer peripheral surface 54 (outer peripheral side end surface), the direction of the flow of the hydraulic fluid flowing through the concave portion 81 ( There is no barrier that hinders the radial direction), and wear of the annular plate 53 can be suppressed.
(第2実施形態) 次に、図4乃至図5を参照して第2実施形態を説明する。
 なお、第1実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。ここでは、主に、第1実施形態との差異を説明する。
(Second Embodiment) Next, the second embodiment will be described with reference to FIGS. 4 to 5.
For the parts common to the first embodiment, the same names and reference numerals will be used, and duplicate description will be omitted. Here, the difference from the first embodiment will be mainly described.
 第1実施形態では、ロッドガイド41の右側端面42に設けられた凹状のチューブ嵌合部43にチューブ3の左側端部26を嵌入させて、チューブ3をロッドガイド41に結合させた。 In the first embodiment, the left end portion 26 of the tube 3 is fitted into the concave tube fitting portion 43 provided on the right end surface 42 of the rod guide 41, and the tube 3 is connected to the rod guide 41.
 これに対し、第2実施形態では、ロッドガイド41の右側端面42に設けられた凸状のチューブ嵌合部61を、チューブの左側端部26の内側(内周面)に嵌入させることにより、チューブ3をロッドガイド41に結合させた。チューブ嵌合部61は、緩衝器1の軸と同軸の円筒面からなる外周面62を有する。外周面62には、環状溝49が設けられる。環状溝49は、ロッドガイド41の右側端面42近傍に形成される。外周面62には、緩衝器1の取付状態で、チューブ嵌合部61の上側端部(クロックポジションで「12時」の位置)を左右方向(軸方向)へ延びる溝63が設けられる。 On the other hand, in the second embodiment, the convex tube fitting portion 61 provided on the right end surface 42 of the rod guide 41 is fitted into the inside (inner peripheral surface) of the left end portion 26 of the tube. The tube 3 was coupled to the rod guide 41. The tube fitting portion 61 has an outer peripheral surface 62 formed of a cylindrical surface coaxial with the axis of the shock absorber 1. An annular groove 49 is provided on the outer peripheral surface 62. The annular groove 49 is formed in the vicinity of the right end surface 42 of the rod guide 41. The outer peripheral surface 62 is provided with a groove 63 extending in the left-right direction (axial direction) from the upper end portion (position at “12 o'clock” in the clock position) of the tube fitting portion 61 in the mounted state of the shock absorber 1.
 環状プレート53は、内周面55(図5参照)の一部に、チューブ嵌合部61の基部(環状溝49よりも左側部分)が嵌合され、左側端面56が、ロッドガイド41の右側端面42に当接される。環状プレート53は、チューブ3の外径よりも大きい外径を有する。環状プレート53の、チューブ3との対向面である右側端面57には、凹部81が形成される。凹部81は、緩衝器1の取付状態で、環状プレート53の下側端部(クロックポジションで「6時」の位置)を上下方向へ延びる。凹部81は、ロッドガイド41の環状溝49によって画定された環状通路52を、チューブ3内の第1室13に連通させる。 In the annular plate 53, the base portion of the tube fitting portion 61 (the portion on the left side of the annular groove 49) is fitted to a part of the inner peripheral surface 55 (see FIG. 5), and the left end surface 56 is on the right side of the rod guide 41. It comes into contact with the end face 42. The annular plate 53 has an outer diameter larger than the outer diameter of the tube 3. A recess 81 is formed in the right end surface 57 of the annular plate 53 facing the tube 3. The recess 81 extends in the vertical direction at the lower end of the annular plate 53 (at the “6 o'clock” position in the clock position) with the shock absorber 1 attached. The recess 81 communicates the annular passage 52 defined by the annular groove 49 of the rod guide 41 with the first chamber 13 in the tube 3.
 第2実施形態の緩衝器1におけるエア抜き構造では、第1室13の角部に滞留したエアは、ピストンロッド15の伸び行程時に、チューブ嵌合部61の外周面62の溝63、環状通路52、凹部81を経て、リザーバ4へ排出される。他方、凹部81は、第1室13から、溝63、環状通路52、凹部81を経て、リザーバ4へ流れる作動液の流れに対して減衰力を発生させるオリフィスとして機能する。 In the air bleeding structure of the shock absorber 1 of the second embodiment, the air accumulated in the corner portion of the first chamber 13 is the groove 63 of the outer peripheral surface 62 of the tube fitting portion 61 and the annular passage during the extension stroke of the piston rod 15. It is discharged to the reservoir 4 through 52 and the recess 81. On the other hand, the recess 81 functions as an orifice that generates a damping force with respect to the flow of the hydraulic fluid flowing from the first chamber 13 through the groove 63, the annular passage 52, and the recess 81 to the reservoir 4.
 第2実施形態によれば、前述した第1実施形態の作用効果と同等の作用効果を得ることができる。
 また、第2実施形態では、第1実施形態と比較して、ロッドガイド41のガイド長さが同一であるとき、チューブ嵌合部61の軸方向長さに相当する長さ分、ロッドガイド41の全長(軸方向長さ)、延いては、緩衝器1の全長を短くすることが可能であり、緩衝器1を小型化することができる。
According to the second embodiment, it is possible to obtain the same effect as that of the first embodiment described above.
Further, in the second embodiment, when the guide lengths of the rod guides 41 are the same as those of the first embodiment, the rod guides 41 have a length corresponding to the axial length of the tube fitting portion 61. The total length (length in the axial direction), and thus the total length of the shock absorber 1, can be shortened, and the shock absorber 1 can be miniaturized.
(第3実施形態) 次に、図6乃至図7を参照して第3実施形態を説明する。
 なお、第1乃至第2実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。ここでは、主に、第2実施形態との差異を説明する。
(Third Embodiment) Next, the third embodiment will be described with reference to FIGS. 6 to 7.
For the parts common to the first and second embodiments, the same names and reference numerals are used, and duplicate explanations will be omitted. Here, the difference from the second embodiment will be mainly described.
 第2実施形態では、緩衝器1の取付状態で、凹部81が下側端部(クロックポジションで「6時」の位置)に位置するように、環状プレート53を組付ける必要がある。そこで、第3実施形態では、環状プレート53を、ロッドガイド41に対して軸回りに位置決めさせる位置決め機構65を設けた。 In the second embodiment, it is necessary to assemble the annular plate 53 so that the recess 81 is located at the lower end portion (the position of "6 o'clock" in the clock position) in the mounted state of the shock absorber 1. Therefore, in the third embodiment, a positioning mechanism 65 for positioning the annular plate 53 around the axis with respect to the rod guide 41 is provided.
 位置決め機構65は、緩衝器1の取付状態で、ロッドガイド41のチューブ嵌合部61の上側端部(クロックポジションで「12時」の位置)に設けられた溝66と、環状プレート53の内周面55から径方向へ突出して溝66に嵌合される凸部67と、を有する。溝66は、チューブ嵌合部61の端面64からロッドガイド41の右側端面42まで延びて、軸直角平面による断面が矩形(チャンネル形)に形成される。他方、凸部67は、軸直角平面による断面が矩形に形成されて、環状プレート53の中心を介して凹部81の反対側(緩衝器1の取付状態で上側端部)に設けられる。位置決め機構65は、環状プレート53の凸部67が、図7における上下方向及び左右方向に一定の隙間を有して溝66に嵌合されることで構成される。 The positioning mechanism 65 includes a groove 66 provided at the upper end of the tube fitting portion 61 of the rod guide 41 (at the “12 o'clock” position in the clock position) and the inside of the annular plate 53 when the shock absorber 1 is attached. It has a convex portion 67 that protrudes radially from the peripheral surface 55 and is fitted into the groove 66. The groove 66 extends from the end surface 64 of the tube fitting portion 61 to the right end surface 42 of the rod guide 41, and the cross section in the plane perpendicular to the axis is formed in a rectangular shape (channel shape). On the other hand, the convex portion 67 has a rectangular cross section formed by a plane perpendicular to the axis, and is provided on the opposite side of the concave portion 81 (upper end portion when the shock absorber 1 is attached) via the center of the annular plate 53. The positioning mechanism 65 is configured such that the convex portion 67 of the annular plate 53 is fitted into the groove 66 with a constant gap in the vertical direction and the horizontal direction in FIG. 7.
 第3実施形態では、前述した第1乃至第2実施形態の作用効果と同等の作用効果を得ることができる。
 また、第3実施形態では、位置決め機構65によって、環状プレート53がロッドガイド41に対して軸回りに位置決めされるので、緩衝器1の取付状態で、凹部81を、確実に環状プレート53の下側端部に配置することができる。これにより、環状プレート53の組付不良による動作不良が抑止され、緩衝器1の信頼性を向上させることができる。
In the third embodiment, it is possible to obtain the same effect as that of the first to second embodiments described above.
Further, in the third embodiment, since the annular plate 53 is positioned around the axis with respect to the rod guide 41 by the positioning mechanism 65, the recess 81 is surely placed under the annular plate 53 in the mounted state of the shock absorber 1. It can be placed at the side end. As a result, malfunction due to improper assembly of the annular plate 53 is suppressed, and the reliability of the shock absorber 1 can be improved.
(第4実施形態) 次に、図8乃至図9を参照して第4実施形態を説明する。
 なお、第1乃至第3実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。ここでは、主に、第1実施形態との差異を説明する。
(Fourth Embodiment) Next, the fourth embodiment will be described with reference to FIGS. 8 to 9.
For the parts common to the first to third embodiments, the same names and reference numerals are used, and duplicate explanations will be omitted. Here, the difference from the first embodiment will be mainly described.
 第1実施形態では、緩衝器1の取付状態で、凹部81が上側端部(クロックポジションで「12時」の位置)に位置するように、環状プレート53を組付ける必要がある。そこで、第4実施形態では、環状プレート53を、ロッドガイド41に対して軸回りに位置決めさせる位置決め機構71を設けた。 In the first embodiment, it is necessary to assemble the annular plate 53 so that the recess 81 is located at the upper end (the position of "12 o'clock" in the clock position) in the mounted state of the shock absorber 1. Therefore, in the fourth embodiment, a positioning mechanism 71 for positioning the annular plate 53 around the axis with respect to the rod guide 41 is provided.
 ロッドガイド41のチューブ嵌合部43における底部48の内周縁部には、一定高さの環状凸部72が設けられる。環状凸部72の外周には、環状プレート53が設けられる。環状凸部72の外周面73と環状プレート53の内周面55との間には、一定の隙間が形成される。環状凸部72の高さ(底部48からの突出量)は、例えば、環状プレート53の板厚に設定される。 An annular convex portion 72 having a constant height is provided on the inner peripheral edge portion of the bottom portion 48 of the tube fitting portion 43 of the rod guide 41. An annular plate 53 is provided on the outer periphery of the annular convex portion 72. A certain gap is formed between the outer peripheral surface 73 of the annular convex portion 72 and the inner peripheral surface 55 of the annular plate 53. The height of the annular convex portion 72 (the amount of protrusion from the bottom portion 48) is set to, for example, the plate thickness of the annular plate 53.
 位置決め機構71は、緩衝器1の取付状態で、ロッドガイド41の環状凸部72の上側端部(クロックポジションで「12時」の位置)に設けられた溝75と、環状プレート53の内周面55から径方向へ突出して溝75に嵌合される凸部67と、を有する。溝75は、環状凸部72の端面74からチューブ嵌合部43の底部48まで延びて、軸直角平面による断面が矩形に形成される。他方、凸部67は、軸直角平面による断面が矩形に形成されて、緩衝器1の取付状態で上側端部に設けられる。位置決め機構71は、環状プレート53の凸部67が、図9における上下方向及び左右方向に一定の隙間を有して溝75に嵌合されることで構成される。なお、凹部81は、環状プレート53の外周面54から凸部67の端面68まで延びる。 The positioning mechanism 71 has a groove 75 provided at the upper end of the annular convex portion 72 of the rod guide 41 (at the “12 o'clock” position in the clock position) and the inner circumference of the annular plate 53 when the shock absorber 1 is attached. It has a convex portion 67 that protrudes radially from the surface 55 and is fitted into the groove 75. The groove 75 extends from the end surface 74 of the annular convex portion 72 to the bottom portion 48 of the tube fitting portion 43, and a rectangular cross section formed by a plane perpendicular to the axis is formed. On the other hand, the convex portion 67 has a rectangular cross section formed by a plane perpendicular to the axis, and is provided at the upper end portion in the mounted state of the shock absorber 1. The positioning mechanism 71 is configured such that the convex portion 67 of the annular plate 53 is fitted into the groove 75 with a certain gap in the vertical direction and the horizontal direction in FIG. The concave portion 81 extends from the outer peripheral surface 54 of the annular plate 53 to the end surface 68 of the convex portion 67.
 第4実施形態では、前述した第1乃至第3実施形態の作用効果と同等の作用効果を得ることができる。
 また、第4実施形態では、位置決め機構71によって環状プレート53がロッドガイド41に対して軸回りに位置決めされるので、緩衝器1の取付状態で、凹部81を、確実に環状プレート53の上側端部に配置することができる。これにより、環状プレート53の組付不良による動作不良が抑止され、緩衝器1の信頼性を向上させることができる。
In the fourth embodiment, it is possible to obtain the same effect as that of the first to third embodiments described above.
Further, in the fourth embodiment, since the annular plate 53 is positioned around the axis with respect to the rod guide 41 by the positioning mechanism 71, the recess 81 is surely positioned at the upper end of the annular plate 53 in the mounted state of the shock absorber 1. Can be placed in the department. As a result, malfunction due to improper assembly of the annular plate 53 is suppressed, and the reliability of the shock absorber 1 can be improved.
(第5実施形態) 次に、図10乃至図11を参照して第5実施形態を説明する。
 なお、第1乃至第4実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。ここでは、主に、第2実施形態との差異を説明する。
(Fifth Embodiment) Next, the fifth embodiment will be described with reference to FIGS. 10 to 11.
For the parts common to the first to fourth embodiments, the same names and reference numerals are used, and duplicate explanations will be omitted. Here, the difference from the second embodiment will be mainly described.
 第2実施形態では、ピストンロッド15が水平方向へ伸縮する複筒式横置き液圧緩衝器1を対象とした。これに対し、第5実施形態では、ピストンロッド15が垂直方向へ伸縮する複筒式縦置き液圧緩衝器1A(以下「緩衝器1A」と称する)を対象とした。 In the second embodiment, the double-cylinder type horizontal hydraulic shock absorber 1 in which the piston rod 15 expands and contracts in the horizontal direction is targeted. On the other hand, in the fifth embodiment, a double-cylinder vertical hydraulic shock absorber 1A (hereinafter referred to as “buffer 1A”) in which the piston rod 15 expands and contracts in the vertical direction is targeted.
 また、第2実施形態では、環状プレート53の、チューブ3との対向面である下側端面57に形成される凹部81の個数は、1つであった。これに対し、第5実施形態では、環状プレート53の下側端面57に、複数個(第5実施形態では「6個」)の凹部81が形成される。複数個の凹部81は、環状プレート53の周方向へ等間隔(第5実施形態では「軸回りに60°」)をあけて配置される。 Further, in the second embodiment, the number of recesses 81 formed in the lower end surface 57 of the annular plate 53 facing the tube 3 was one. On the other hand, in the fifth embodiment, a plurality of (“6” in the fifth embodiment) recesses 81 are formed on the lower end surface 57 of the annular plate 53. The plurality of recesses 81 are arranged at equal intervals (“60 ° around the axis” in the fifth embodiment) in the circumferential direction of the annular plate 53.
 ここで、第5実施形態における複数個の凹部81は、第2実施形態における凹部81とは異なり、オリフィスとして機能させるものではない。第5実施形態における複数個の凹部81の、個々の凹部81の流路面積は、オリフィスとしての機能を併せ持つ第2実施形態における凹部81の流路面積よりも小さく、減衰力特性への影響が殆ど無い程度に設定される。これにより、第5実施形態では、ピストンロッド15が伸縮することで、チューブ3内に滞留した空気を含んだ含気作動液が、ピストンロッド15の伸び行程時に、溝63、環状通路52、及び複数個の凹部81を経て、リザーバ4へ排出される。 Here, unlike the recesses 81 in the second embodiment, the plurality of recesses 81 in the fifth embodiment do not function as orifices. The flow path area of each recess 81 of the plurality of recesses 81 in the fifth embodiment is smaller than the flow path area of the recess 81 in the second embodiment, which also has a function as an orifice, and has an influence on the damping force characteristics. It is set to almost none. As a result, in the fifth embodiment, the piston rod 15 expands and contracts, so that the aerobic hydraulic fluid containing the air staying in the tube 3 reaches the groove 63, the annular passage 52, and the annular passage 52 during the extension stroke of the piston rod 15. It is discharged to the reservoir 4 through the plurality of recesses 81.
 第5実施形態によれば、複筒式縦置き液圧緩衝器1Aのチューブ3内に滞留した空気を、環状プレート53の、チューブ3との対向面に形成された複数個の凹部81からリザーバ4へ排出することができる。
 また、第5実施形態では、複数個の凹部81をコイニング(印圧加工)によって形成(成形)したので、流路面積が極小の通路を高い精度で加工することができる。これにより、チューブ3内の含気作動液を、凹部81によって画定される流路面積が極小の通路を介して、リザーバ4側へ滲出させることが可能であり、チューブ3内の作動液が凹部81から噴流となって排出されることがないので、エアレーションの発生を抑止することができる。
According to the fifth embodiment, the air staying in the tube 3 of the double-cylinder vertical hydraulic shock absorber 1A is stored from the plurality of recesses 81 formed on the facing surface of the annular plate 53 with the tube 3. It can be discharged to 4.
Further, in the fifth embodiment, since the plurality of recesses 81 are formed (molded) by coining (printing pressure processing), it is possible to process a passage having an extremely small flow path area with high accuracy. As a result, the aeration hydraulic fluid in the tube 3 can be exuded to the reservoir 4 side through the passage having the minimum flow path area defined by the recess 81, and the hydraulic fluid in the tube 3 is recessed. Since it is not discharged as a jet from 81, it is possible to suppress the generation of aeration.
 前述した実施形態は、次のように構成することができる。
 第1乃至第4実施形態では、凹部81は、環状プレート53の外周面54から内周面55まで一定の断面形状であった。
The above-described embodiment can be configured as follows.
In the first to fourth embodiments, the recess 81 has a constant cross-sectional shape from the outer peripheral surface 54 to the inner peripheral surface 55 of the annular plate 53.
 これに対し、図12に示される凹部81は、環状プレート53の内周面55側に形成される定常部82と、環状プレート53の外周面54側に形成される拡幅部83と、によって構成される。定常部82は、環状プレート53の内周面55から径方向へ延びる。他方、拡幅部83は、定常部82の外周端から環状プレート53の外周面54(端面)に向かって拡幅される。
 この場合、定常部82を流れる作動液の圧力(流速)が拡幅部83で減圧(減速)されるので、チューブ3内の作動液が凹部81から噴流となって排出されることがなく、エアレーションの発生を抑止することができる。また、凹部81の周辺部品が凹部81からの噴流を受けることがないので、部品の摩耗を抑止することができる。
On the other hand, the recess 81 shown in FIG. 12 is composed of a stationary portion 82 formed on the inner peripheral surface 55 side of the annular plate 53 and a widening portion 83 formed on the outer peripheral surface 54 side of the annular plate 53. Will be done. The stationary portion 82 extends radially from the inner peripheral surface 55 of the annular plate 53. On the other hand, the widening portion 83 is widened from the outer peripheral end of the stationary portion 82 toward the outer peripheral surface 54 (end surface) of the annular plate 53.
In this case, since the pressure (flow velocity) of the hydraulic fluid flowing through the stationary portion 82 is depressurized (decelerated) by the widening portion 83, the hydraulic fluid in the tube 3 is not discharged as a jet from the recess 81, and aeration is performed. Can be suppressed. Further, since the peripheral parts of the recess 81 do not receive the jet flow from the recess 81, it is possible to suppress the wear of the parts.
 また、図13に示される凹部81は、図12に示される凹部81における定常部82を、拡幅部83との接続部85から環状プレート53の内周面55に向かって拡幅させた内周側拡幅部84を備える。なお、接続部85における流路面積(オリフィス面積)は、定常部82(図12参照)における流路面積と同一に設定される。
 この場合、凹部81(内周側拡幅部84)における、環状プレート53の内周面54側の開口幅、即ち、第1室13側の開口幅が、定常部82(図12参照)の開口幅よりも大きくなるので、チューブ(3)内に滞留したエア、及び第1室13内のコンタミの排出性を向上させることができる。
Further, the recess 81 shown in FIG. 13 is an inner peripheral side in which the stationary portion 82 in the recess 81 shown in FIG. 12 is widened from the connection portion 85 with the widening portion 83 toward the inner peripheral surface 55 of the annular plate 53. A widening portion 84 is provided. The flow path area (orifice area) in the connection portion 85 is set to be the same as the flow path area in the stationary portion 82 (see FIG. 12).
In this case, the opening width on the inner peripheral surface 54 side of the annular plate 53 in the recess 81 (inner peripheral widening portion 84), that is, the opening width on the first chamber 13 side is the opening of the stationary portion 82 (see FIG. 12). Since it is larger than the width, it is possible to improve the dischargeability of the air accumulated in the tube (3) and the contamination in the first chamber 13.
 また、図14に示される凹部81は、図12に示される凹部81における拡幅部83の底面86を曲面によって形成した。底面86は、チューブ3との対向面である環状プレート53の右側端面57からの深さ(以下「底面86の深さ」と称する)が、環状プレート53の外周面54(端面)に向かって深くなる。
 この場合、底面86の深さが一定である図12に示される凹部81に対して、拡幅部83の体積が増大することから、流れる作動液の圧力をより減圧させることが可能であり、エアレーションの発生をより効果的に抑止することができる。
Further, in the recess 81 shown in FIG. 14, the bottom surface 86 of the widening portion 83 in the recess 81 shown in FIG. 12 is formed by a curved surface. The bottom surface 86 has a depth from the right end surface 57 of the annular plate 53, which is a surface facing the tube 3 (hereinafter referred to as “depth of the bottom surface 86”), toward the outer peripheral surface 54 (end surface) of the annular plate 53. Get deeper.
In this case, since the volume of the widening portion 83 increases with respect to the recess 81 shown in FIG. 12 where the depth of the bottom surface 86 is constant, the pressure of the flowing hydraulic fluid can be further reduced, and aeration can be performed. Can be suppressed more effectively.
 一方、図13に示される凹部81における内周側拡幅部84の底面87を曲面によって形成することができる。底面87は、チューブ3との対向面である環状プレート53の右側端面57からの深さ(以下「底面87の深さ」と称する)が、環状プレート53の内周面55(端面)に向かって深くなる。
 この場合、チューブ(3)内に滞留したエア、及び第1室13内のコンタミの排出性をより向上させることができる。
On the other hand, the bottom surface 87 of the inner peripheral side widening portion 84 in the recess 81 shown in FIG. 13 can be formed by a curved surface. The depth of the bottom surface 87 from the right end surface 57 of the annular plate 53, which is the surface facing the tube 3 (hereinafter referred to as “the depth of the bottom surface 87”), faces the inner peripheral surface 55 (end surface) of the annular plate 53. And get deeper.
In this case, the dischargeability of the air accumulated in the tube (3) and the contamination in the first chamber 13 can be further improved.
 また、図15に示されるように、環状プレート53の、チューブ3との対向面である右側端面57に第1凹部81Aを設けて、反対側の面である左側端面56に第2凹部81Bを設けて緩衝器1を構成することができる。
 この場合、第1凹部81Aにおける流路面積と第2凹部81Bにおける流路面積とを異なる面積に設定することにより、環状プレート53を組付ける向き(表裏)によって、1つの環状プレート53で異なる特性(エア抜き性、減衰力特性)を選択することが可能であり、緩衝器1のチューニング性を向上させることができる。
 一方、第1凹部81Aにおける流路面積と第2凹部81Bにおける流路面積とを同一の面積に設定することにより、環状プレート53の組付け向き(表裏)を誤ることによる動作不良が抑止されるので、緩衝器1の信頼性を向上させることができる。
Further, as shown in FIG. 15, the first recess 81A is provided on the right end surface 57 of the annular plate 53 facing the tube 3, and the second recess 81B is provided on the left end surface 56 which is the opposite surface. The shock absorber 1 can be provided.
In this case, by setting the flow path area in the first recess 81A and the flow path area in the second recess 81B to different areas, the characteristics of one annular plate 53 differ depending on the orientation (front and back) in which the annular plate 53 is assembled. (Air bleeding property, damping force characteristic) can be selected, and the tuning property of the shock absorber 1 can be improved.
On the other hand, by setting the flow path area in the first recess 81A and the flow path area in the second recess 81B to the same area, malfunction due to incorrect assembly direction (front and back) of the annular plate 53 is suppressed. Therefore, the reliability of the shock absorber 1 can be improved.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 本願は、2020年11月5日付出願の日本国特許出願第2020-185208号に基づく優先権を主張する。2020年11月5日付出願の日本国特許出願第2020-185208号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2020-185208 filed on November 5, 2020. The entire disclosure, including the specification, claims, drawings, and abstracts of Japanese Patent Application No. 2020-185208 filed November 5, 2020, is incorporated herein by reference in its entirety.
1 緩衝器、2 シリンダ、3 チューブ、4 リザーバ、12 ピストン、13 第1室、14 第2室、15 ピストンロッド、41 ロッドガイド(閉塞部材)、53 環状プレート、57 右側端面(チューブとの対向面)、81 凹部 1 shock absorber, 2 cylinder, 3 tube, 4 reservoir, 12 piston, 13 1st chamber, 14 2nd chamber, 15 piston rod, 41 rod guide (blocking member), 53 annular plate, 57 right end face (opposing to the tube) Surface), 81 concave

Claims (8)

  1.  緩衝器であって、該緩衝器は、
     シリンダと、
     前記シリンダの内周側に設けられ、作動流体が封入されるチューブと、
     前記シリンダと前記チューブとの間に設けられ、作動液と気体とが封入されるリザーバ室と、
     前記チューブ内に摺動可能に設けられ、前記チューブ内を2室に区画するピストンと、
     一端が前記ピストンに連結され、他端側が前記シリンダの外部へ延出されるピストンロッドと、
     前記チューブの端部に設けられ、前記シリンダと前記チューブとを閉塞させる閉塞部材と、
     前記閉塞部材と前記チューブの端部との間に設けられ、前記閉塞部材に嵌合される環状プレートと、を有し、
     前記環状プレートの前記チューブとの対向面には、前記チューブと前記リザーバ室とを連通する凹部が形成されることを特徴とする緩衝器。
    It is a shock absorber, and the shock absorber is
    Cylinder and
    A tube provided on the inner peripheral side of the cylinder and filled with a working fluid,
    A reservoir chamber provided between the cylinder and the tube and in which the hydraulic fluid and the gas are sealed,
    A piston that is slidably provided in the tube and divides the inside of the tube into two chambers,
    A piston rod whose one end is connected to the piston and whose other end extends to the outside of the cylinder.
    A closing member provided at the end of the tube and closing the cylinder and the tube,
    It has an annular plate provided between the closing member and the end of the tube and fitted to the closing member.
    A shock absorber characterized in that a recess for communicating the tube and the reservoir chamber is formed on the surface of the annular plate facing the tube.
  2.  請求項1に記載の緩衝器において、
     前記凹部は、前記環状プレートの内周側端面から外周側端面まで延びることを特徴とする緩衝器。
    In the shock absorber according to claim 1,
    The recess is a shock absorber extending from the inner peripheral side end surface of the annular plate to the outer peripheral side end surface.
  3.  請求項1又は2に記載の緩衝器において、
     前記凹部は、前記環状プレートの周方向に沿って複数個設けられることを特徴とする緩衝器。
    In the shock absorber according to claim 1 or 2.
    A shock absorber characterized in that a plurality of the recesses are provided along the circumferential direction of the annular plate.
  4.  請求項1乃至3のいずれか1項に記載の緩衝器において、
     前記凹部は、前記環状プレートの外周側が端面に向かって拡幅されることを特徴とする緩衝器。
    In the shock absorber according to any one of claims 1 to 3,
    The recess is a shock absorber characterized in that the outer peripheral side of the annular plate is widened toward an end face.
  5.  請求項1乃至4のいずれか1項に記載の緩衝器において、
     前記凹部は、前記環状プレートの外周側が端面に向かって底が深くなるように形成されることを特徴とする緩衝器。
    In the shock absorber according to any one of claims 1 to 4.
    The recess is a shock absorber characterized in that the outer peripheral side of the annular plate is formed so that the bottom becomes deeper toward the end face.
  6.  請求項1乃至5のいずれか1項に記載の緩衝器において、
     前記凹部は、前記環状プレートの内周側が端面に向かって拡幅されることを特徴とする緩衝器。
    In the shock absorber according to any one of claims 1 to 5.
    The recess is a shock absorber characterized in that the inner peripheral side of the annular plate is widened toward an end face.
  7.  請求項1乃至6のいずれか1項に記載の緩衝器において、
     前記凹部は、前記環状プレートの内周側が端面に向かって底が深くなるように形成されることを特徴とする緩衝器。
    In the shock absorber according to any one of claims 1 to 6.
    The recess is a shock absorber characterized in that the inner peripheral side of the annular plate is formed so that the bottom becomes deeper toward the end face.
  8.  請求項1乃至7のいずれか1項に記載の緩衝器において、
     前記環状プレートの前記閉塞部材との対向面には、第2凹部が形成されることを特徴とする緩衝器。
    In the shock absorber according to any one of claims 1 to 7.
    A shock absorber characterized in that a second recess is formed on the surface of the annular plate facing the closing member.
PCT/JP2021/034293 2020-11-05 2021-09-17 Shock absorber WO2022097378A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022560665A JP7438394B2 (en) 2020-11-05 2021-09-17 buffer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-185208 2020-11-05
JP2020185208 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097378A1 true WO2022097378A1 (en) 2022-05-12

Family

ID=81457854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034293 WO2022097378A1 (en) 2020-11-05 2021-09-17 Shock absorber

Country Status (2)

Country Link
JP (1) JP7438394B2 (en)
WO (1) WO2022097378A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166149U (en) * 1988-04-27 1989-11-21
JP2012233595A (en) * 2012-09-03 2012-11-29 Kyb Co Ltd Double-cylinder type damper
JP2013181573A (en) * 2012-02-29 2013-09-12 Showa Corp Front fork

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166149U (en) * 1988-04-27 1989-11-21
JP2013181573A (en) * 2012-02-29 2013-09-12 Showa Corp Front fork
JP2012233595A (en) * 2012-09-03 2012-11-29 Kyb Co Ltd Double-cylinder type damper

Also Published As

Publication number Publication date
JPWO2022097378A1 (en) 2022-05-12
JP7438394B2 (en) 2024-02-26

Similar Documents

Publication Publication Date Title
US7100909B2 (en) Fluid filled cylindrical vibration damping device
WO2016067733A1 (en) Damper and method for manufacturing same
JPWO2019239720A1 (en) Damping force generation mechanism and pressure buffer
KR20140114050A (en) Damping valve for shock absorber
KR20180054601A (en) buffer
WO2018128601A1 (en) Check valve assembly structure for hydraulic tensioner
CN111279097B (en) Valve and damper
WO2022097378A1 (en) Shock absorber
US7240775B2 (en) Shock absorber
US20220074461A1 (en) Shock absorber
US20220412428A1 (en) Shock absorber
CN210769980U (en) Buffer, shock absorber and vehicle
EP3073145B1 (en) Shock absorber
WO2017022494A1 (en) Cylinder apparatus
GB2279424A (en) Piston rod guide for a vibration damper
US10794447B2 (en) Bump stopper and shock absorber
WO2019189560A1 (en) Valve seat member, valve, and shock absorber
US20230272835A1 (en) Shock absorber
JPH0960680A (en) Hydraulic shock absorber
US20230287954A1 (en) Shock absorber
JP2020200932A (en) Liquid seal bush and suspension device
JPS59194143A (en) Piston structure for hydraulic damper
WO2023188285A1 (en) Piston for buffer device and buffer device
WO2023176117A1 (en) Damping valve and buffer
US20240151290A1 (en) Shock absorber and frequency sensitive mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888931

Country of ref document: EP

Kind code of ref document: A1