WO2022097301A1 - Predicting apparatus, mounting apparatus, mounting system, and predicting method - Google Patents

Predicting apparatus, mounting apparatus, mounting system, and predicting method Download PDF

Info

Publication number
WO2022097301A1
WO2022097301A1 PCT/JP2020/041745 JP2020041745W WO2022097301A1 WO 2022097301 A1 WO2022097301 A1 WO 2022097301A1 JP 2020041745 W JP2020041745 W JP 2020041745W WO 2022097301 A1 WO2022097301 A1 WO 2022097301A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
unit
gear
mounting
feeder
Prior art date
Application number
PCT/JP2020/041745
Other languages
French (fr)
Japanese (ja)
Inventor
剛 内田
大悟 近藤
弘健 江嵜
博史 大池
健二 杉山
雅史 天野
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2020/041745 priority Critical patent/WO2022097301A1/en
Priority to JP2022560624A priority patent/JPWO2022097301A1/ja
Publication of WO2022097301A1 publication Critical patent/WO2022097301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This specification discloses a prediction device, a mounting device, a mounting system, and a prediction method.
  • the mounting device has teeth that engage with the feed holes of the carrier tape that holds the parts, and a reference mark is provided at the center of the tip surface of the teeth of the sprocket that feeds the carrier tape by rotation, and its light reflectance is provided. Is higher than the tip surface, the reference mark is imaged prior to mounting the component on the board, the center position error is acquired, and the error is canceled based on the positional relationship between the feed hole, the component accommodating recess, and the reference mark.
  • Has been proposed to correct the component take-out position of the suction nozzle see, for example, Patent Document 1). In this device, it is possible to facilitate the improvement of the supply accuracy of the parts held by the carrier tape.
  • the present disclosure has been made in view of such problems, and mainly provides a prediction device, a mounting device, a mounting system, and a prediction method capable of more appropriately identifying the cause of misalignment during component sampling.
  • the purpose mainly provides a prediction device, a mounting device, a mounting system, and a prediction method capable of more appropriately identifying the cause of misalignment during component sampling. The purpose.
  • the prediction device of the present disclosure is A mounting unit that has a drive unit and a gear connected to the drive unit and that is equipped with a feeder that sends out a holding member that holds the component and supplies the component, and a mounting unit that collects the component from the feeder and processes it.
  • It is a prediction device used in a mounting device including a sampling unit arranged on an object and an image pickup unit that captures an image of the component in a state collected by the sampling unit. Time-series position including information on the position of the part including the misalignment of the part obtained based on the image taken every time the part is collected in the state of being collected by the collection unit.
  • a control unit that acquires information, extracts a periodic component related to the cycle of the gear from the time-series position information, and determines a defect of the gear based on the extracted periodic component. It is equipped with.
  • this prediction device when the parts in the state collected by the sampling unit include information on the position of the parts including the misalignment of the parts obtained based on the captured image taken every time the parts are collected. Acquire series position information. Then, this predictor extracts a periodic component related to the gear cycle from the time-series position information, and determines a gear defect based on the extracted periodic component.
  • the periodic component extracted from the time-series position information is strongly affected by gear defects such as deterioration and wear of the gear, for example. Therefore, in this prediction device, it is possible to determine whether or not the cause is due to a malfunction of the gear of the feeder by using the periodic component, and it is possible to more appropriately identify the cause of the misalignment at the time of collecting parts.
  • the schematic explanatory diagram which shows an example of the mounting system 10.
  • the schematic explanatory view which shows an example of a feeder 30.
  • pickup part 20 takes an image of a mounting part 20.
  • Explanatory drawing which shows an example which separates time series position information 28 into a periodic component of each gear.
  • Explanatory drawing which shows an example which separates a periodic component by a Fourier transform.
  • Explanatory drawing which shows an example of a gear defect specific screen 51.
  • FIG. 1 is a schematic explanatory view showing an example of the mounting system 10 and the mounting device 11 disclosed in the present disclosure.
  • FIG. 2 is a schematic explanatory view showing an example of the feeder 30.
  • FIG. 3 is an explanatory diagram in which the component imaging unit 16 images the mounting unit 20.
  • FIG. 4 is an explanatory diagram showing an example of information stored in the storage unit 27.
  • the left-right direction (X-axis), the front-back direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.
  • the mounting system 10 is configured as, for example, a production line in which mounting devices 11 for mounting and processing the component P on the substrate S as a processing target are arranged in the transport direction of the substrate S.
  • the object to be processed will be described as the substrate S, but it is not particularly limited as long as it mounts the component P, and may be a base material having a three-dimensional shape.
  • the mounting system 10 includes a mounting device 11, a management device 40, and the like. Note that FIG. 1 shows only one mounting device 11.
  • the mounting device 11 is a device that collects the component P and mounts it on the board S.
  • the mounting device 11 includes a board processing unit 12, a component supply unit 14, a component imaging unit 16, an operation panel 17, a mounting unit 20, and a control device 25.
  • the board processing unit 12 is a unit for carrying in, carrying, fixing, and carrying out the board S at the mounting position.
  • the substrate processing unit 12 conveys the substrate S by a pair of conveyor belts provided at intervals in the front and rear of FIG. 1 and straddled in the left-right direction.
  • the component supply unit 14 is a unit that supplies the component P to the mounting unit 20.
  • the component supply unit 14 includes a plurality of mounting units 15 and mounts one or more feeders 30. Further, the component supply unit 14 includes a tray unit having a tray on which a plurality of components P are arranged and placed.
  • the feeder 30 includes a controller 31, a drive unit 32, a gear mechanism 33, a sprocket 34, and a reel 35.
  • the feeder 30 is detachably mounted on the mounting portion 15 on the front surface of the mounting device 11, and the reel 35 wound with the tape 36 accommodating the component P is mounted so as to be rotatable around the axis.
  • the controller 31 is configured as a microprocessor centered on a CPU, and controls the entire feeder 30.
  • the controller 31 is electrically connected to the control device 25 of the mounting device 11 so as to be capable of bidirectional communication.
  • the drive unit 32 is a motor that rotationally drives the sprocket 34 and intermittently sends out the tape 36.
  • the drive unit 32 may be configured by, for example, a stepping motor, or may intermittently drive and control a continuously operating motor.
  • the gear mechanism 33 transmits the driving force of the driving unit 32 to the sprocket 34.
  • the gear mechanism 33 has, for example, a first gear 33a, a second gear 33b, and a third gear 33c.
  • the first gear 33a is fixed to the rotation shaft of the drive unit 32.
  • the third gear 33c is fixed to the rotation shaft of the sprocket 34.
  • the second gear 33b meshes with the first gear 33a and the third gear 33c.
  • the first gear 33a, the second gear 33b, and the third gear 33c are simply collectively referred to as gears.
  • the sprocket 34 is a kind of external gear and plays a role of feeding out the tape 36 unwound from the reel 35 to the rear.
  • the tape 36 is formed with an accommodating portion 37 accommodating a component P and a feed hole 38 arranged along the longitudinal direction of the tape 36.
  • the teeth of the sprocket 34 are fitted in the feed hole 38.
  • the feeder 30 is defined at a sampling position where the mounting head 22 collects the component P. In the feeder 30, when the drive unit 32 rotates the sprocket 34, the tape 36 is fed backward, and the parts P accommodated in the accommodating portion 37 of the tape 36 are sequentially delivered to the collection position.
  • the component image pickup unit 16 is a device that captures an image of one or more components P in a state of being collected and held by the mounting head 22.
  • the component imaging unit 16 is arranged between the substrate processing unit 12 and the component supply unit 14. As shown in FIG. 3, the imaging range of the component imaging unit 16 is above the component imaging unit 16.
  • the component image pickup unit 16 captures an image of the component P and outputs the captured image to the control device 25.
  • the control device 25 uses this captured image to inspect whether the shape and portion of the component P are normal, and to detect the amount of deviation (x, y) such as the position and rotation of the component P at the time of collection. can do.
  • the operation panel 17 includes a display unit 18 for displaying a screen and an operation unit 19 for receiving an input operation from an operator.
  • the display unit 18 is configured as a liquid crystal display, and displays the operating state and the setting state of the mounting device 11 on the screen.
  • the operation unit 19 is provided with various keys and is configured so that an operator's instruction can be key-inputted.
  • the mounting unit 20 is a unit that collects the component P from the component supply unit 14 and arranges the component P on the substrate S fixed to the substrate processing unit 12.
  • the mounting unit 20 includes a head moving unit 21, a mounting head 22, and a nozzle 23.
  • the head moving unit 21 includes a slider that is guided by a guide rail and moves in the XY directions, and a motor that drives the slider.
  • the mounting head 22 collects one or more parts P and moves them in the XY direction by the head moving unit 21.
  • the mounting head 22 is detachably mounted on the slider.
  • One or more nozzles 23 are detachably mounted on the lower surface of the mounting head 22 as a collecting member.
  • the nozzle 23 collects the component P by using a negative pressure.
  • the collecting member for collecting the component P may be a mechanical chuck or the like that mechanically holds the component P.
  • the control device 25 is configured as a microprocessor centered on the CPU 26, and controls the entire device.
  • the control device 25 has a storage unit 27.
  • the storage unit 27 is a large-capacity storage medium such as an HDD or a flash memory for storing various application programs and various data files.
  • the storage unit 27 stores, for example, time-series position information 28 and fluctuation information 29.
  • the time-series position information 28 is information in which the detection ID, the component ID, the feeder ID, the detection time, the detection position of the component P, and the deviation amount of the component P are associated with each other.
  • the detection ID identifies the information and is assigned in the order of detection.
  • the component ID is information that identifies the collected component P, and is given in advance for each type of the component P.
  • the feeder ID is information for specifying the feeder 30 that has supplied the collected parts P, and is given to each feeder 30 in advance.
  • the detection time is the time when the position of the component P is detected.
  • the detection position is the center position (coordinates) of the component P captured and detected by the component image pickup unit 16.
  • the amount of deviation is the difference between the reference position for collecting the component P and the actually measured position of the sampled component P (see the balloon diagram (x, y) in FIG. 3).
  • the time-series position information 28 includes changes over time in the position of the tape 36 sent out by the drive unit 32, misalignment of the component P on the tape 36 as a holding member, defects of the nozzle 23 as a sampling member, and the like. It contains information about the position of component P, including multiple factors.
  • the fluctuation information 29 is information obtained by extracting the change over time of the position shift based on the gear of the gear mechanism 33 for each feeder 30 based on the time-series position information 28.
  • a fluctuation value corresponding to the periodic component of each gear of the gear mechanism 33 of each feeder 30 is associated with each gear.
  • the storage unit 27 stores mounting condition information and the like as a mounting job.
  • the mounting condition information includes information such as information on the component P, an arrangement order in which the component P is mounted on the substrate S, an arrangement position, and a mounting position of a feeder 30 for collecting the component P.
  • the control device 25 outputs a control signal to the board processing unit 12, the component supply unit 14, the component image pickup unit 16, the operation panel 17, and the mounting unit 20, while the board processing unit 12, the component supply unit 14, and the component image pickup unit 16. A signal from the operation panel 17 and the mounting unit 20 is input.
  • the management device 40 (see FIG. 1) is configured as a server that manages information on each device of the mounting system 10.
  • the management device 40 stores and manages, for example, a production planning database including a plurality of mounting condition information, a time-series position information 28 of each mounting device 11, and the like.
  • the management device 40 includes a display unit 41 and an input device 42.
  • the display unit 41 is a display that displays a screen.
  • the input device 42 includes a keyboard, a mouse, and the like for input by an operator.
  • FIG. 5 is a flowchart showing an example of a mounting processing routine executed by the CPU 26 of the control device 25 of the mounting device 11.
  • This routine is stored in the storage unit 27 of the mounting device 11 and is executed by the start instruction by the operator.
  • the CPU 26 reads and acquires the mounting condition information of the board S to be produced this time (S100).
  • the CPU 26 may read out the mounting condition information acquired from the management device 40 and stored in the storage unit 27.
  • the CPU 26 conveys the substrate S to the mounting position by the substrate processing unit 12 and causes the substrate processing unit 12 to perform fixing processing (S110).
  • the CPU 26 drives the drive unit 32 of the feeder 30 to execute a process of sending out the tape 36 (S120).
  • the controller 31 that receives the command from the control device 25 drives the drive unit 32 and moves the accommodating unit 37 to the collection position.
  • the CPU 26 causes the mounting head 22 to collect the component P from the feeder 30 at a preset position, and moves the component P onto the component imaging unit 16 (S130).
  • the CPU 26 causes the component imaging unit 16 to take an image of the mounting head 22 in a state where the component P is collected, and obtains the amount of deviation of the component from the captured image (S140).
  • the CPU 26 uses the difference between the reference position and the center position of the component P as the deviation amount.
  • the CPU 26 stores the obtained deviation amount in the time-series position information 28 (S150).
  • the CPU 26 stores information such as the detected time and the position (coordinates) of the component P in the time-series position information 28 as well as the feeder ID and the component ID.
  • the CPU 26 corrects the positional deviation so as to cancel the displacement amount, and arranges the component P on the substrate S (S160).
  • the CPU 26 determines whether or not there is still a component to be arranged next with respect to the current board S based on the information of the mounting condition information (S170), and when the next component is present, the processing after S120 is performed. Run. On the other hand, when there is no component P to be arranged next, the CPU 26 determines whether or not there is a next board S on which the component P is arranged based on the information of the mounting condition information (S180). When there is the next board S, the CPU 26 executes the processing after S110.
  • the CPU 26 discharges the board S for which the arrangement of the component P has been completed to the board processing unit 12, conveys the new board S to the mounting position, supplies the component P to the component supply unit 14, and causes the mounting head 22 to supply the component P.
  • the position of the component P is detected and the time-series position information 28 is updated.
  • the CPU 26 ends this routine.
  • the control device 25 detects and corrects the positional deviation of the component P, arranges the component P on the substrate S, and executes the mounting process while updating the time-series position information 28.
  • FIG. 6 is a flowchart showing an example of a defect determination processing routine executed by the CPU 26 of the control device 25.
  • This routine is stored in the storage unit 27 and is executed after receiving a command from the operator to start execution of the mounting process.
  • the CPU 26 reads the time-series position information 28 from the storage unit 27 (S200), sets a specific feeder 30 for executing the determination process, and obtains the information of the feeder 30 in the time-series position information. Extract from 28 (S210). Since the time-series position information 28 includes information on a plurality of feeders 30, the CPU 26 first collects information on each feeder 30.
  • the specific feeder 30 may be set in the order of the feeder ID, for example.
  • the CPU 26 determines whether or not a predetermined period has elapsed since the previous defect determination (S220).
  • the CPU 26 sends out the tape 36 for a predetermined period, for example, at startup every day, at a preset time, at a preset time, and by a preset number of steps, when the data reaches a preset number. This determination can be made based on any of the above. The determination condition for the lapse of this period can be set in advance by the operator.
  • the CPU 26 omits the determination of the defect as the specific feeder 30 still requires data collection, and determines whether or not there is the next feeder 30 for which the defect should be determined. (S310). When there is the next feeder 30, the CPU 26 executes the processing after S210.
  • the CPU 26 extracts the periodic component of each gear from the deviation amount corresponding to the feeder 30 (S230).
  • the CPU 26 uses any of the deviation amounts (x, y) corresponding to the transmission direction of the tape 36 as the variable component when extracting the periodic component from the deviation amount. For example, in FIG. 2, since the X direction is the displacement amount x of the component P inside the accommodating portion 37 and the Y direction is the transmission direction of the tape 36, the displacement amount y is used as the variable component.
  • FIG. 7 is an explanatory diagram showing an example of separating the fluctuation component of the deviation amount included in the time series position information 28 into the periodic component of each gear.
  • FIG. 8 is an explanatory diagram showing an example of separating the periodic components of the gears having the number of teeth Z1 and Z2 by the Fourier transform.
  • FIG. 9 is an explanatory diagram showing an example of separating the periodic component of the gear having the number of teeth Z2 from the variable component by a bandpass filter.
  • the gear mechanism 33 of the feeder 30 has two gears having the number of teeth Z1 and the number of teeth Z2 will be described. As shown in FIG.
  • the time-series position data of the feed order of the feeder 30 forms a complicated waveform including a periodic component repeated for each number of teeth of each gear and other components (left of FIG. 7). See figure). Focusing on a specific gear from this time-series position data, a periodic component is extracted from the variable component.
  • the CPU 26 can calculate the amplitude spectrum by Fourier transform, acquire the amplitude width of the spectrum corresponding to the gear for which the periodic component is to be extracted, and use it as the periodic component. ..
  • the CPU 26 applies a bandpass filter process having a frequency corresponding to the gear cycle as a pass band to the variable component of the time-series position data to obtain an amplitude component of the filtered data.
  • This can be a periodic component.
  • what is obtained by removing the periodic component from the variable component is used as another component (see the third row on the right side of FIG. 7).
  • Other components include, for example, fluctuations caused by the movement of the component P inside the accommodating portion 37, the inclined attachment of the nozzle 23, the adhesion of foreign matter to the nozzle 23, and the like.
  • This fluctuation value is an evaluation value of the periodic component within a predetermined period, and may be, for example, a difference value between the maximum value and the minimum value of the amplitude of the periodic component obtained every predetermined period. Alternatively, if it represents a periodic component, it is not particularly limited to this, and for example, the CPU 26 may obtain an amplitude value of the periodic component for each step within a predetermined period and use an average of these values as a fluctuation value. ..
  • the CPU 26 determines whether or not the obtained fluctuation value is within the predetermined allowable range (S250), and when the fluctuation value is not within the predetermined allowable range, the CPU 26 determines whether or not the obtained fluctuation value is within the predetermined allowable range. It is determined that a problem has occurred, and information to that effect is output (S260).
  • FIG. 10 is an explanatory diagram showing changes over time in fluctuation values with respect to time.
  • FIG. 10 shows changes over time in the fluctuation values of the gears having the number of teeth Z1 and Z2.
  • the behavior is relatively flat like Z1.
  • the wear of the gear or the like is accumulated, it exceeds the permissible range like Z2.
  • the CPU 26 may determine that a gear defect has occurred when the fluctuation value of the periodic component exceeds a predetermined allowable threshold value.
  • the CPU 26 may determine that a gear defect has occurred when the fluctuation value of the periodic component increases beyond a predetermined allowable threshold value as compared with the fluctuation value obtained last time.
  • This permissible range may be empirically set to a range in which, for example, an abnormal operation of the gear mechanism 33 has a great influence on the delivery process of the tape 36.
  • Gear defects include, for example, deterioration and wear of the gear, deformation, breakage, displacement of the rotating shaft, and contamination of foreign matter.
  • FIG. 11 is an explanatory diagram showing an example of the gear defect specifying screen 51.
  • the CPU 26 may display and output the occurrence of a defect in the gear mechanism 33 on the display unit 41 of the management device 40, or display and output the occurrence of a defect in the gear mechanism 33 on the display unit 18 of the operation panel 17. It may be displayed and output. Alternatively, the CPU 26 may turn on the warning light or output a warning sound when the defect is left unattended.
  • the gear defect specifying screen 51 includes a defect display column 52. In the defect display column 52, information for identifying the gear of the feeder 30 for which the occurrence of the defect is determined by the determination process is displayed. The operator who confirms the gear defect specifying screen 51, which is the output information, suspends the use of the corresponding gear mechanism 33, and performs maintenance such as gear replacement and cleaning.
  • the CPU 26 extracts components other than the periodic component (S270) and determines whether or not there is a defect behavior (S280). This determination may be made based on, for example, whether or not the difference between the maximum value and the minimum value of the amplitude values of other components within a predetermined period exceeds a predetermined allowable range, or may be determined based on whether or not the difference value exceeds a predetermined allowable range. It may be determined based on whether or not the average value of the amplitude values of the other components in the above exceeds the permissible range.
  • the permissible range may be set empirically to a range that affects the sampling process of the component P, for example. When there is a malfunction behavior, it is determined that a malfunction other than the gear has occurred, and information to that effect is output (S290).
  • FIG. 12 is an explanatory diagram showing an example of the defect identification screen 55 other than the gear.
  • the CPU 26 may display and output the occurrence of a defect other than the gear on the display unit 41 of the management device 40, or display and output the occurrence of a defect other than the gear on the display unit 18 of the operation panel 17. May be good. Alternatively, the CPU 26 may turn on the warning light or output a warning sound when the defect is left unattended.
  • the defect identification screen 55 other than the gear includes a defect display column 56. In the defect display column 56, for example, a defect of the tape 36, a defect of the nozzle 23, or the like is displayed and output as a defect.
  • the operator who confirms the defect identification screen 55 other than the gear which is the output information, suspends the use of the corresponding feeder 30 and nozzle 23, and performs maintenance such as replacement and cleaning.
  • the CPU 26 updates the fluctuation information 29 by including the information on the obtained periodic component (S300), and the next feeder 30 to be determined to be defective in S310 is Determine if it exists.
  • the CPU 26 executes the processing after S210, and when there is no next feeder 30, it is determined whether or not the mounting processing of the mounting device 11 is completed (S320).
  • the CPU 26 executes the process after S200.
  • the mounting process is completed in S320, the CPU 26 ends this routine.
  • the drive unit 32 of the present embodiment corresponds to the drive unit of the present disclosure
  • the first gear 33a, the second gear 33b, the third gear 33c, and the like of the gear mechanism 33 correspond to the gears.
  • the tape 36 corresponds to the holding member
  • the feeder 30 corresponds to the feeder
  • the mounting portion 15 corresponds to the mounting portion
  • the nozzle 23 corresponds to the sampling member
  • the mounting portion 20 corresponds to the sampling portion
  • the component image pickup is performed.
  • the unit 16 corresponds to the image pickup unit
  • the mounting device 11 corresponds to the mounting device.
  • the control device 25 corresponds to the prediction device
  • the CPU 26 corresponds to the control unit.
  • an example of the prediction method of the present disclosure is also clarified by explaining the operation of the control device 25.
  • the image pickup image obtained by capturing the image of the component P collected by the mounting unit 20 as the sampling unit is acquired every time the mounting unit 20 collects the component P, and the acquired image pickup is performed. Based on the image, information regarding the position of the component P including the positional deviation of the component P is acquired as time-series position information 28 over time. Then, the control device 25 extracts a periodic component related to the gear cycle from the time-series position information 28, and determines a gear defect based on the extracted periodic component.
  • the time-series position information 28 is a kind of time-series data in which the deviation amount x or y in the image processing result of each component P in the mounting head 22 is arranged in the feed order of the feeder 30.
  • This time-series data includes various variable components depending on the state of the feeder 30 and the nozzle 23 at that time, and the variable components caused by each gear appear for each gear cycle.
  • the periodic component extracted from the time-series position information 28 is strongly affected by gear defects such as deterioration and wear of the gear, for example. That is, the amount of deviation of the component P in the mounting head 22, which depends on the wear, inclination, and deformation of the gear of the gear mechanism 33 of the feeder 30, is highly reproducible to be repeated for each rotation of the gear. Therefore, in this control device 25, by using the periodic component, it is possible to determine whether or not the cause is due to a malfunction of the gear of the feeder 30, and it is possible to more appropriately identify the cause of the misalignment at the time of collecting parts. ..
  • the CPU 26 determines whether the misalignment of the component P in the mounting unit 20 is due to the gear defect, or the component misalignment on the tape 36 and the component misalignment on the tape 36, based on the extracted periodic component. It is determined whether or not it is based on a defect other than the gear including the defect of the nozzle 23. In this control device 25, by using the periodic component, it is possible to determine whether the malfunction is due to a gear or a defect other than the gear. Further, since the CPU 26 determines the occurrence of a gear defect when the fluctuation value included in the periodic component deviates from a predetermined allowable range, the allowable range can be used to more appropriately determine the gear defect. Furthermore, since the CPU 26 extracts the periodic component from the time series position information 28 using at least one of the Fourier transform and the bandpass filter, the periodic component can be extracted relatively easily by using the Fourier transform and the bandpass filter. Can be done.
  • the occurrence of a gear defect is determined when the fluctuation value included in the periodic component deviates from a predetermined allowable range, but if the defect is determined, it is particularly limited to this. Not done.
  • the control device 25 may determine a defect when the fluctuation value increases beyond a predetermined allowable value from the fluctuation value of the previous periodic component.
  • the control device 25 derives the fluctuation value of the periodic component from the deviation amount, it may derive the fluctuation value of the periodic component from the coordinates of the component P.
  • the control device 25 uses the difference value between the maximum value and the minimum value within the predetermined period as the variable value, the average value of the amplitude values within the predetermined period may be used as the variable value.
  • the periodic component is extracted by using any one or more of the Fourier transform and the bandpass filter, but any method that can extract the periodic component can be used without limitation.
  • the control device 25 acquires the captured image captured by the component image pickup unit 16 and creates the time-series position information 28, but the control device 25 is not particularly limited to this, and the control device 25 may be other than the above.
  • the time-series position information 28 created by the device of the above may be acquired. Also with this control device 25, by using the periodic component obtained from the time series position information 28, it is possible to determine whether or not it is caused by a malfunction of the gear of the feeder 30, and the cause of the misalignment at the time of collecting parts can be determined. It can be identified more appropriately.
  • the mounting unit 20 has been described as having a configuration of an XY robot, but the mounting unit 20 is not particularly limited as long as the component P can be arranged on the object to be processed. 20 may be used as an arm robot.
  • control device 25 has been described as having the function of the prediction device of the present disclosure, but the present invention is not particularly limited to this, and the function of the prediction device of the present disclosure is limited to the mounting device 11 such as the management device 40. It may be possessed by the device. Further, in the above-described embodiment, the prediction device of the present disclosure has been described as the control device 25, but the present invention is not particularly limited to this, and it may be a prediction method or a program in which a computer executes this prediction method.
  • control device and the information processing device of the present disclosure may be configured as follows.
  • the control unit determines a defect of the gear
  • the misalignment of the component in the sampling unit is based on the defect of the gear based on the extracted periodic component. It may be determined whether it is based on a defect other than the gear including a component misalignment on the holding member and a defect of the sampling member.
  • this predictor by using the periodic component, it is possible to determine whether the gear is defective or is based on a defect other than the gear.
  • the "holding member” includes a tape member that supplies parts.
  • "gear malfunction” includes deterioration and wear of the gear, as well as damage and displacement of the rotating shaft.
  • the "time-series position information” includes, for example, the position (coordinate value) of the component obtained from the captured image obtained over time, the amount of misalignment obtained based on the position of the component and the reference position, and the like. Information is included.
  • control unit may determine the occurrence of a malfunction of the gear when the fluctuation value included in the periodic component deviates from a predetermined allowable range.
  • the allowable range can be used to more appropriately determine a gear defect.
  • control unit may extract the periodic component from the time-series position information by using at least one of a Fourier transform and a bandpass filter.
  • This predictor can relatively easily extract periodic components using a Fourier transform or a bandpass filter.
  • the mounting device of the present disclosure includes a mounting portion for mounting a feeder having a drive unit and a gear connected to the drive unit and holding a component to supply the component, and collecting the component from the feeder. It is provided with a collecting unit that collects by a member and arranges it on an object to be processed, an imaging unit that captures an image of the component in a state collected by the collecting unit, and a prediction device according to any one of the above. Since this mounting device includes any of the above-mentioned prediction devices, it is possible to obtain an effect according to the adopted mode.
  • the mounting system of the present disclosure includes a mounting portion for mounting a feeder having a drive unit and a gear connected to the drive unit and holding a component to supply the component, and collecting the component from the feeder.
  • a mounting device including a sampling unit that collects by a member and arranges it on an object to be processed, and an imaging unit that captures an image of the component in a state collected by the sampling unit, and a prediction device according to any one of the above. It is equipped with. Since this mounting system is provided with any of the above-mentioned prediction devices, it is possible to obtain an effect according to the adopted mode.
  • the prediction method of this disclosure is A mounting unit that has a drive unit and a gear connected to the drive unit and that is equipped with a feeder that sends out a holding member that holds the component and supplies the component, and a mounting unit that collects the component from the feeder and processes it. It is a prediction method used in a mounting device including a sampling unit arranged on an object and an image pickup unit that captures an image of the component in a state collected by the sampling unit.
  • the parts in a state of being collected by the collecting unit include information on the position of the parts including the misalignment of the parts obtained based on an image taken every time the parts are collected.
  • Steps to get time series position information (B) A step of extracting a periodic component related to the cycle of the gear from the time-series position information acquired in the step (a), and a step of extracting the periodic component. (C) A step of determining a defect of the gear based on the periodic component extracted in the step (b), and Is included.
  • this prediction method can more appropriately identify the cause of the misalignment at the time of parts collection by using, for example, a periodic component that has a strong influence on gear deterioration or wear.
  • this prediction method there is further a step of acquiring an image taken by the collecting unit for capturing the component in a state of being collected each time the collecting unit collects the component, and based on the captured image acquired in this step. It may be possible to acquire time-series position information including information on the position of the part including the position shift of the part over time.
  • various aspects of the above-mentioned prediction device may be adopted, or steps may be added to realize each function of the above-mentioned prediction device.
  • the prediction device, mounting device, mounting system and prediction method of the present disclosure can be used, for example, in the field of mounting electronic components.
  • 10 mounting system 11 mounting device, 12 board processing unit, 14 parts supply unit, 15 mounting unit, 16 component imaging unit, 17 operation panel, 18 display unit, 19 operation unit, 20 mounting unit, 21 head movement unit, 22 mounting unit. Head, 23 nozzle, 25 control device, 26 CPU, 27 storage unit, 28 time series position information, 29 fluctuation information, 30 feeder, 31 controller, 32 drive unit, 33 gear mechanism, 33a 1st gear, 33b 2nd gear, 33c 3rd gear, 34 sprocket, 35 reel, 36 tape, 37 accommodating part, 38 feed hole, 40 management device, 41 display part, 42 input device, 51 gear defect identification screen, 52 defect display column, 55 defect identification other than gear Screen, 56 defect display column, P parts, S board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

A predicting apparatus of the present disclosure is used for a mounting apparatus comprising: an attachment unit for attaching a feeder including a drive unit and a gear connected to the drive unit to supply a component by feeding a holding member holding the component; a collecting unit for collecting the component from the feeder by means of a collecting member and disposing the component on a workpiece; and an imaging unit for imaging the component as collected by the collecting member. The predicting apparatus is provided with a control unit which: acquires a captured image capturing the component as collected by the collecting unit, each time the collecting unit collects a component; acquires, over time as time series position information, information pertaining to the position of the component including a position error of the component, on the basis of the captured image that has been acquired; extracts from the time series position information a periodic component associated with a period of the gear; and determines a problem of the gear on the basis of the extracted periodic component.

Description

予測装置、実装装置、実装システム及び予測方法Prediction device, mounting device, mounting system and prediction method
 本明細書では、予測装置、実装装置、実装システム及び予測方法を開示する。 This specification discloses a prediction device, a mounting device, a mounting system, and a prediction method.
 従来、実装装置としては、部品を保持するキャリヤテープの送り穴に係合する歯を有し、回転によりキャリヤテープを送るスプロケットの歯の先端面の中央部に基準マークを設け、その光反射率を先端面より高くし、部品の基板への装着に先立って基準マークを撮像し、その中心位置誤差を取得し、送り穴と部品収容凹部と基準マークとの位置関係に基づいて誤差を打ち消すように吸着ノズルの部品取出し位置を補正するものが提案されている(例えば、特許文献1など参照)。この装置では、キャリヤテープに保持された部品の供給精度の向上を容易化することができる。 Conventionally, the mounting device has teeth that engage with the feed holes of the carrier tape that holds the parts, and a reference mark is provided at the center of the tip surface of the teeth of the sprocket that feeds the carrier tape by rotation, and its light reflectance is provided. Is higher than the tip surface, the reference mark is imaged prior to mounting the component on the board, the center position error is acquired, and the error is canceled based on the positional relationship between the feed hole, the component accommodating recess, and the reference mark. Has been proposed to correct the component take-out position of the suction nozzle (see, for example, Patent Document 1). In this device, it is possible to facilitate the improvement of the supply accuracy of the parts held by the carrier tape.
特開2004-111797号公報Japanese Unexamined Patent Publication No. 2004-111997
 しかしながら、上述した特許文献1では、部品の採取時に部品の位置ずれが生じた場合に、その位置ずれがなにを原因として生じたかを判断することができなかった。 However, in the above-mentioned Patent Document 1, when the misalignment of a part occurs at the time of collecting the part, it is not possible to determine what caused the misalignment.
 本開示は、このような課題に鑑みなされたものであり、部品採取時の位置ずれの原因をより適切に特定することができる予測装置、実装装置、実装システム及び予測方法を提供することを主目的とする。 The present disclosure has been made in view of such problems, and mainly provides a prediction device, a mounting device, a mounting system, and a prediction method capable of more appropriately identifying the cause of misalignment during component sampling. The purpose.
 本開示では、上述の主目的を達成するために以下の手段を採った。 In this disclosure, the following measures have been taken to achieve the above-mentioned main purpose.
 本開示の予測装置は、
 駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、前記採取部が採取した状態の前記部品を撮像する撮像部と、を備えた実装装置に用いられる予測装置であって、
 前記採取部により採取された状態の前記部品を、該部品を採取するごとに撮像した撮像画像に基づいて得られた前記部品の位置ずれを含む部品の位置に関する情報を経時的に含む時系列位置情報を取得し、前記時系列位置情報から前記ギアの周期に関連する周期成分を抽出し、抽出した周期成分に基づいて前記ギアの不具合を判定する制御部、
 を備えたものである。
The prediction device of the present disclosure is
A mounting unit that has a drive unit and a gear connected to the drive unit and that is equipped with a feeder that sends out a holding member that holds the component and supplies the component, and a mounting unit that collects the component from the feeder and processes it. It is a prediction device used in a mounting device including a sampling unit arranged on an object and an image pickup unit that captures an image of the component in a state collected by the sampling unit.
Time-series position including information on the position of the part including the misalignment of the part obtained based on the image taken every time the part is collected in the state of being collected by the collection unit. A control unit that acquires information, extracts a periodic component related to the cycle of the gear from the time-series position information, and determines a defect of the gear based on the extracted periodic component.
It is equipped with.
 この予測装置では、採取部により採取された状態の部品を、この部品を採取するごとに撮像した撮像画像に基づいて得られた部品の位置ずれを含む部品の位置に関する情報を経時的に含む時系列位置情報を取得する。そして、この予測装置は、時系列位置情報からギアの周期に関連する周期成分を抽出し、抽出した周期成分に基づいてギアの不具合を判定する。時系列位置情報から抽出して得られた周期成分は、例えば、ギアの劣化や摩耗などギアの不具合に強く影響される。したがって、この予測装置では、周期成分を用いることによって、フィーダのギアの不具合に起因するか否かを判定可能であり、部品採取時の位置ずれの原因をより適切に特定することができる。 In this prediction device, when the parts in the state collected by the sampling unit include information on the position of the parts including the misalignment of the parts obtained based on the captured image taken every time the parts are collected. Acquire series position information. Then, this predictor extracts a periodic component related to the gear cycle from the time-series position information, and determines a gear defect based on the extracted periodic component. The periodic component extracted from the time-series position information is strongly affected by gear defects such as deterioration and wear of the gear, for example. Therefore, in this prediction device, it is possible to determine whether or not the cause is due to a malfunction of the gear of the feeder by using the periodic component, and it is possible to more appropriately identify the cause of the misalignment at the time of collecting parts.
実装システム10の一例を示す概略説明図。The schematic explanatory diagram which shows an example of the mounting system 10. フィーダ30の一例を示す概略説明図。The schematic explanatory view which shows an example of a feeder 30. 部品撮像部16が実装部20を撮像する説明図。Explanatory drawing which component image pickup | component image pickup | pickup part 20 takes an image of a mounting part 20. 記憶部27に記憶された情報の一例を示す説明図。An explanatory diagram showing an example of information stored in the storage unit 27. 実装処理ルーチンの一例を示すフローチャート。A flowchart showing an example of an implementation processing routine. 不具合判定処理ルーチンの一例を示すフローチャート。A flowchart showing an example of a defect determination processing routine. 時系列位置情報28を各ギアの周期成分に分離する一例を示す説明図。Explanatory drawing which shows an example which separates time series position information 28 into a periodic component of each gear. フーリエ変換によって周期成分を分離する一例を示す説明図。Explanatory drawing which shows an example which separates a periodic component by a Fourier transform. バンドパスフィルタによって周期成分を分離する一例を示す説明図。An explanatory diagram showing an example of separating periodic components by a bandpass filter. 時間に対する変動値の経時変化を示す説明図。Explanatory drawing which shows the time-dependent change of the fluctuation value with respect to time. ギア不具合特定画面51の一例を示す説明図。Explanatory drawing which shows an example of a gear defect specific screen 51. ギア以外不具合特定画面55の一例を示す説明図。Explanatory drawing which shows an example of the defect identification screen 55 other than a gear.
 本実施形態を図面を参照しながら以下に説明する。図1は、本開示である実装システム10及び実装装置11の一例を示す概略説明図である。図2は、フィーダ30の一例を示す概略説明図である。図3は、部品撮像部16が実装部20を撮像する説明図である。図4は、記憶部27に記憶された情報の一例を示す説明図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1~3に示した通りとする。 This embodiment will be described below with reference to the drawings. FIG. 1 is a schematic explanatory view showing an example of the mounting system 10 and the mounting device 11 disclosed in the present disclosure. FIG. 2 is a schematic explanatory view showing an example of the feeder 30. FIG. 3 is an explanatory diagram in which the component imaging unit 16 images the mounting unit 20. FIG. 4 is an explanatory diagram showing an example of information stored in the storage unit 27. In this embodiment, the left-right direction (X-axis), the front-back direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.
 実装システム10は、例えば、処理対象物としての基板Sに部品Pを実装処理する実装装置11が基板Sの搬送方向に配列された生産ラインとして構成されている。ここでは、処理対象物を基板Sとして説明するが、部品Pを実装するものであれば特に限定されず、3次元形状の基材としてもよい。この実装システム10は、図1に示すように、実装装置11や、管理装置40などを含んで構成されている。なお、図1には、実装装置11を1台のみ示した。 The mounting system 10 is configured as, for example, a production line in which mounting devices 11 for mounting and processing the component P on the substrate S as a processing target are arranged in the transport direction of the substrate S. Here, the object to be processed will be described as the substrate S, but it is not particularly limited as long as it mounts the component P, and may be a base material having a three-dimensional shape. As shown in FIG. 1, the mounting system 10 includes a mounting device 11, a management device 40, and the like. Note that FIG. 1 shows only one mounting device 11.
 実装装置11は、部品Pを採取して基板Sへ実装させる装置である。実装装置11は、基板処理部12と、部品供給部14と、部品撮像部16と、操作パネル17と、実装部20と、制御装置25とを備える。基板処理部12は、基板Sの搬入、搬送、実装位置での固定、搬出を行うユニットである。基板処理部12は、図1の前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトにより基板Sを搬送する。 The mounting device 11 is a device that collects the component P and mounts it on the board S. The mounting device 11 includes a board processing unit 12, a component supply unit 14, a component imaging unit 16, an operation panel 17, a mounting unit 20, and a control device 25. The board processing unit 12 is a unit for carrying in, carrying, fixing, and carrying out the board S at the mounting position. The substrate processing unit 12 conveys the substrate S by a pair of conveyor belts provided at intervals in the front and rear of FIG. 1 and straddled in the left-right direction.
 部品供給部14は、実装部20へ部品Pを供給するユニットである。この部品供給部14は、装着部15を複数備え、1以上のフィーダ30を装着する。また、部品供給部14は部品Pを複数配列して載置するトレイを有するトレイユニットを備えている。フィーダ30は、図2に示すように、コントローラ31と、駆動部32と、ギア機構33と、スプロケット34と、リール35と、を備えている。フィーダ30は、実装装置11の前面の装着部15に取り外し可能に装着されており、部品Pを収容しているテープ36を巻いたリール35が軸回転可能に装着されている。コントローラ31は、CPUを中心とするマイクロプロセッサとして構成されており、フィーダ30の全体を制御する。このコントローラ31は、実装装置11の制御装置25と双方向通信可能なように電気的に接続されている。駆動部32は、スプロケット34を回転駆動させ、テープ36を間欠的に送り出すモータである。この駆動部32は、例えば、ステッピングモータにより構成されるものとしてもよいし、連続動作するモータを間欠的に駆動制御するものとしてもよい。ギア機構33は、駆動部32の駆動力をスプロケット34に伝達するものである。このギア機構33は、例えば、第1ギア33aと、第2ギア33bと、第3ギア33cとを有している。第1ギア33aは、駆動部32の回転軸に固定されている。第3ギア33cは、スプロケット34の回転軸に固定されている。第2ギア33bは、第1ギア33aと第3ギア33cと噛合している。なお、ここでは、第1ギア33a、第2ギア33b及び第3ギア33cを単にギアと総称する。スプロケット34は、外歯車の一種であり、リール35から巻きほどかれたテープ36を後方へ繰り出す役割を果たす。テープ36には、図2に示すように、テープ36の長手方向に沿って並ぶ、部品Pを収容する収容部37と送り穴38とが形成されている。送り穴38には、スプロケット34の歯がはまり込んでいる。フィーダ30には、実装ヘッド22が部品Pを採取する採取位置が定められている。フィーダ30では、駆動部32がスプロケット34を回転させると、テープ36が後方へ送られ、テープ36の収容部37に収容された部品Pが順次、採取位置へ繰り出される。 The component supply unit 14 is a unit that supplies the component P to the mounting unit 20. The component supply unit 14 includes a plurality of mounting units 15 and mounts one or more feeders 30. Further, the component supply unit 14 includes a tray unit having a tray on which a plurality of components P are arranged and placed. As shown in FIG. 2, the feeder 30 includes a controller 31, a drive unit 32, a gear mechanism 33, a sprocket 34, and a reel 35. The feeder 30 is detachably mounted on the mounting portion 15 on the front surface of the mounting device 11, and the reel 35 wound with the tape 36 accommodating the component P is mounted so as to be rotatable around the axis. The controller 31 is configured as a microprocessor centered on a CPU, and controls the entire feeder 30. The controller 31 is electrically connected to the control device 25 of the mounting device 11 so as to be capable of bidirectional communication. The drive unit 32 is a motor that rotationally drives the sprocket 34 and intermittently sends out the tape 36. The drive unit 32 may be configured by, for example, a stepping motor, or may intermittently drive and control a continuously operating motor. The gear mechanism 33 transmits the driving force of the driving unit 32 to the sprocket 34. The gear mechanism 33 has, for example, a first gear 33a, a second gear 33b, and a third gear 33c. The first gear 33a is fixed to the rotation shaft of the drive unit 32. The third gear 33c is fixed to the rotation shaft of the sprocket 34. The second gear 33b meshes with the first gear 33a and the third gear 33c. Here, the first gear 33a, the second gear 33b, and the third gear 33c are simply collectively referred to as gears. The sprocket 34 is a kind of external gear and plays a role of feeding out the tape 36 unwound from the reel 35 to the rear. As shown in FIG. 2, the tape 36 is formed with an accommodating portion 37 accommodating a component P and a feed hole 38 arranged along the longitudinal direction of the tape 36. The teeth of the sprocket 34 are fitted in the feed hole 38. The feeder 30 is defined at a sampling position where the mounting head 22 collects the component P. In the feeder 30, when the drive unit 32 rotates the sprocket 34, the tape 36 is fed backward, and the parts P accommodated in the accommodating portion 37 of the tape 36 are sequentially delivered to the collection position.
 部品撮像部16は、実装ヘッド22に採取され保持された状態の1以上の部品Pの画像を撮像する装置である。この部品撮像部16は、基板処理部12と部品供給部14との間に配置されている。この部品撮像部16の撮像範囲は、図3に示すように、部品撮像部16の上方である。部品撮像部16は、部品Pを保持した実装ヘッド22が部品撮像部16の上方を通過する際、部品Pの画像を撮像し、撮像画像を制御装置25へ出力する。制御装置25は、この撮像画像によって、部品Pの形状及び部位が正常であるか否かの検査や、部品Pの採取時の位置や回転などのずれ量(x、y)の検出などを実行することができる。 The component image pickup unit 16 is a device that captures an image of one or more components P in a state of being collected and held by the mounting head 22. The component imaging unit 16 is arranged between the substrate processing unit 12 and the component supply unit 14. As shown in FIG. 3, the imaging range of the component imaging unit 16 is above the component imaging unit 16. When the mounting head 22 holding the component P passes above the component image pickup unit 16, the component image pickup unit 16 captures an image of the component P and outputs the captured image to the control device 25. The control device 25 uses this captured image to inspect whether the shape and portion of the component P are normal, and to detect the amount of deviation (x, y) such as the position and rotation of the component P at the time of collection. can do.
 操作パネル17は、画面を表示する表示部18と、作業者からの入力操作を受け付ける操作部19とを備えている。表示部18は、液晶ディスプレイとして構成されており、実装装置11の作動状態や設定状態を画面表示する。操作部19は、各種キーを備え、作業者の指示をキー入力可能に構成されてる。 The operation panel 17 includes a display unit 18 for displaying a screen and an operation unit 19 for receiving an input operation from an operator. The display unit 18 is configured as a liquid crystal display, and displays the operating state and the setting state of the mounting device 11 on the screen. The operation unit 19 is provided with various keys and is configured so that an operator's instruction can be key-inputted.
 実装部20は、部品Pを部品供給部14から採取し、基板処理部12に固定された基板Sへ配置するユニットである。実装部20は、ヘッド移動部21と、実装ヘッド22と、ノズル23とを備えている。ヘッド移動部21は、ガイドレールに導かれてXY方向へ移動するスライダと、スライダを駆動するモータとを備えている。実装ヘッド22は、1以上の部品Pを採取してヘッド移動部21によりXY方向へ移動するものである。この実装ヘッド22は、スライダに取り外し可能に装着されている。実装ヘッド22の下面には、採取部材として、1以上のノズル23が取り外し可能に装着されている。ノズル23は、負圧を利用して部品Pを採取するものである。なお、部品Pを採取する採取部材は、ノズル23のほか部品Pを機械的に保持するメカニカルチャックなどとしてもよい。 The mounting unit 20 is a unit that collects the component P from the component supply unit 14 and arranges the component P on the substrate S fixed to the substrate processing unit 12. The mounting unit 20 includes a head moving unit 21, a mounting head 22, and a nozzle 23. The head moving unit 21 includes a slider that is guided by a guide rail and moves in the XY directions, and a motor that drives the slider. The mounting head 22 collects one or more parts P and moves them in the XY direction by the head moving unit 21. The mounting head 22 is detachably mounted on the slider. One or more nozzles 23 are detachably mounted on the lower surface of the mounting head 22 as a collecting member. The nozzle 23 collects the component P by using a negative pressure. In addition to the nozzle 23, the collecting member for collecting the component P may be a mechanical chuck or the like that mechanically holds the component P.
 制御装置25は、CPU26を中心とするマイクロプロセッサとして構成されており、装置全体の制御を司る。制御装置25は、記憶部27を有している。記憶部27は、各種アプリケーションプログラムや各種データファイルを記憶する、HDDやフラッシュメモリなどの大容量の記憶媒体である。図4に示すように、記憶部27には、例えば、時系列位置情報28や変動情報29が記憶される。時系列位置情報28は、検出IDと、部品IDと、フィーダIDと、検出時刻と、部品Pの検出位置と、部品Pのずれ量とを対応付けた情報である。検出IDは、情報を特定するものであり、検出順に付与される。部品IDは、採取された部品Pを特定する情報であり、予め部品Pの種別ごとに付与されている。フィーダIDは、採取された部品Pを供給したフィーダ30を特定する情報であり、各フィーダ30に予め付与されている。検出時刻は、部品Pの位置を検出した時刻である。検出位置は、部品撮像部16で撮像されて検出された部品Pの中心位置(座標)である。ずれ量は、部品Pを採取する基準位置と採取された部品Pの実測位置との間の位置の差である(図3の吹き出し図(x、y)を参照)。この時系列位置情報28は、駆動部32により送り出されたテープ36の位置の経時的な変化や、保持部材としてのテープ36上での部品Pのずれ、採取部材としてのノズル23の不具合など、複数の因子を含んだ、部品Pの位置に関する情報を含んでいる。変動情報29は、時系列位置情報28に基づいて、フィーダ30ごとの、ギア機構33のギアに基づく位置ずれの経時的な変化を抽出した情報である。変動情報29では、各フィーダ30が有するギア機構33が有する各ギアの周期成分に応じた変動値が各ギアに対応付けられている。また、記憶部27には、実装ジョブとしての実装条件情報などが記憶されている。実装条件情報は、部品Pの情報や部品Pを基板Sへ実装する配置順、配置位置、部品Pを採取するフィーダ30の装着位置などの情報が含まれている。この制御装置25は基板処理部12や部品供給部14、部品撮像部16、操作パネル17、実装部20へ制御信号を出力する一方、基板処理部12や部品供給部14、部品撮像部16、操作パネル17、実装部20からの信号を入力する。 The control device 25 is configured as a microprocessor centered on the CPU 26, and controls the entire device. The control device 25 has a storage unit 27. The storage unit 27 is a large-capacity storage medium such as an HDD or a flash memory for storing various application programs and various data files. As shown in FIG. 4, the storage unit 27 stores, for example, time-series position information 28 and fluctuation information 29. The time-series position information 28 is information in which the detection ID, the component ID, the feeder ID, the detection time, the detection position of the component P, and the deviation amount of the component P are associated with each other. The detection ID identifies the information and is assigned in the order of detection. The component ID is information that identifies the collected component P, and is given in advance for each type of the component P. The feeder ID is information for specifying the feeder 30 that has supplied the collected parts P, and is given to each feeder 30 in advance. The detection time is the time when the position of the component P is detected. The detection position is the center position (coordinates) of the component P captured and detected by the component image pickup unit 16. The amount of deviation is the difference between the reference position for collecting the component P and the actually measured position of the sampled component P (see the balloon diagram (x, y) in FIG. 3). The time-series position information 28 includes changes over time in the position of the tape 36 sent out by the drive unit 32, misalignment of the component P on the tape 36 as a holding member, defects of the nozzle 23 as a sampling member, and the like. It contains information about the position of component P, including multiple factors. The fluctuation information 29 is information obtained by extracting the change over time of the position shift based on the gear of the gear mechanism 33 for each feeder 30 based on the time-series position information 28. In the fluctuation information 29, a fluctuation value corresponding to the periodic component of each gear of the gear mechanism 33 of each feeder 30 is associated with each gear. Further, the storage unit 27 stores mounting condition information and the like as a mounting job. The mounting condition information includes information such as information on the component P, an arrangement order in which the component P is mounted on the substrate S, an arrangement position, and a mounting position of a feeder 30 for collecting the component P. The control device 25 outputs a control signal to the board processing unit 12, the component supply unit 14, the component image pickup unit 16, the operation panel 17, and the mounting unit 20, while the board processing unit 12, the component supply unit 14, and the component image pickup unit 16. A signal from the operation panel 17 and the mounting unit 20 is input.
 管理装置40(図1参照)は、実装システム10の各装置の情報を管理するサーバとして構成されている。管理装置40は、例えば、実装条件情報を複数含む生産計画データベースや、各実装装置11の時系列位置情報28などを記憶、管理する。この管理装置40は、表示部41と、入力装置42とを備える。表示部41は、画面を表示するディスプレイである。入力装置42は、作業者が入力するキーボードやマウスなどを含む。 The management device 40 (see FIG. 1) is configured as a server that manages information on each device of the mounting system 10. The management device 40 stores and manages, for example, a production planning database including a plurality of mounting condition information, a time-series position information 28 of each mounting device 11, and the like. The management device 40 includes a display unit 41 and an input device 42. The display unit 41 is a display that displays a screen. The input device 42 includes a keyboard, a mouse, and the like for input by an operator.
 次に、こうして構成された本実施形態の実装システム10の動作、まず実装装置11が部品Pを基板Sへ実装する処理について説明する。図5は、実装装置11の制御装置25のCPU26により実行される実装処理ルーチンの一例を示すフローチャートである。このルーチンは、実装装置11の記憶部27に記憶され、作業者による開始指示により実行される。このルーチンを開始すると、まず、CPU26は、今回生産する基板Sの実装条件情報を読み出して取得する(S100)。CPU26は、管理装置40から取得して記憶部27に記憶された実装条件情報を読み出すものとしてもよい。次に、CPU26は、基板処理部12に基板Sを実装位置まで搬送させ、固定処理させる(S110)。次に、CPU26はフィーダ30の駆動部32を駆動させテープ36を送り出す処理を実行させる(S120)。制御装置25から指令を受信したコントローラ31は、駆動部32を駆動し、収容部37を採取位置まで移動させる。次に、CPU26は、予め設定された位置のフィーダ30から部品Pを実装ヘッド22に採取させ、部品撮像部16上へ移動させる(S130)。 Next, the operation of the mounting system 10 of the present embodiment configured in this way, first, the process of mounting the component P on the board S by the mounting device 11 will be described. FIG. 5 is a flowchart showing an example of a mounting processing routine executed by the CPU 26 of the control device 25 of the mounting device 11. This routine is stored in the storage unit 27 of the mounting device 11 and is executed by the start instruction by the operator. When this routine is started, first, the CPU 26 reads and acquires the mounting condition information of the board S to be produced this time (S100). The CPU 26 may read out the mounting condition information acquired from the management device 40 and stored in the storage unit 27. Next, the CPU 26 conveys the substrate S to the mounting position by the substrate processing unit 12 and causes the substrate processing unit 12 to perform fixing processing (S110). Next, the CPU 26 drives the drive unit 32 of the feeder 30 to execute a process of sending out the tape 36 (S120). The controller 31 that receives the command from the control device 25 drives the drive unit 32 and moves the accommodating unit 37 to the collection position. Next, the CPU 26 causes the mounting head 22 to collect the component P from the feeder 30 at a preset position, and moves the component P onto the component imaging unit 16 (S130).
 次に、CPU26は、部品Pを採取した状態の実装ヘッド22を部品撮像部16に撮像させ、撮像画像から部品のずれ量を求める(S140)。CPU26は、基準位置と部品Pの中心位置との差分をずれ量とする。次に、CPU26は、求めたずれ量を時系列位置情報28に記憶させる(S150)。このとき、CPU26は、フィーダIDや部品IDと共に、検出した時刻、部品Pの位置(座標)などの情報も時系列位置情報28に記憶させる。続いて、CPU26は、このずれ量を打ち消すように位置ずれを補正して部品Pを基板Sへ配置させる(S160)。そして、CPU26は、現在の基板Sに対し、次に配置する部品がまだあるか否かを実装条件情報の情報に基づいて判定し(S170)、次の部品があるときには、S120以降の処理を実行する。一方、次に配置する部品PがないときにはCPU26は、部品Pを配置する次の基板Sがあるか否かを、実装条件情報の情報に基づいて判定する(S180)。次の基板Sがあるときには、CPU26は、S110以降の処理を実行する。即ち、CPU26は、基板処理部12に、部品Pの配置が完了した基板Sを排出すると共に新たな基板Sを実装位置まで搬送させ、部品Pを部品供給部14に供給させ、実装ヘッド22に部品Pを採取配置させつつ、部品Pの位置を検出して時系列位置情報28を更新させる。一方、S180で次の基板がないときには、CPU26は、このルーチンを終了する。このように、制御装置25は、部品Pの位置ずれを検出し、補正して部品Pを基板Sに配置すると共に、時系列位置情報28を更新しながら、実装処理を実行する。 Next, the CPU 26 causes the component imaging unit 16 to take an image of the mounting head 22 in a state where the component P is collected, and obtains the amount of deviation of the component from the captured image (S140). The CPU 26 uses the difference between the reference position and the center position of the component P as the deviation amount. Next, the CPU 26 stores the obtained deviation amount in the time-series position information 28 (S150). At this time, the CPU 26 stores information such as the detected time and the position (coordinates) of the component P in the time-series position information 28 as well as the feeder ID and the component ID. Subsequently, the CPU 26 corrects the positional deviation so as to cancel the displacement amount, and arranges the component P on the substrate S (S160). Then, the CPU 26 determines whether or not there is still a component to be arranged next with respect to the current board S based on the information of the mounting condition information (S170), and when the next component is present, the processing after S120 is performed. Run. On the other hand, when there is no component P to be arranged next, the CPU 26 determines whether or not there is a next board S on which the component P is arranged based on the information of the mounting condition information (S180). When there is the next board S, the CPU 26 executes the processing after S110. That is, the CPU 26 discharges the board S for which the arrangement of the component P has been completed to the board processing unit 12, conveys the new board S to the mounting position, supplies the component P to the component supply unit 14, and causes the mounting head 22 to supply the component P. While collecting and arranging the component P, the position of the component P is detected and the time-series position information 28 is updated. On the other hand, when there is no next board in S180, the CPU 26 ends this routine. In this way, the control device 25 detects and corrects the positional deviation of the component P, arranges the component P on the substrate S, and executes the mounting process while updating the time-series position information 28.
 次に、実装装置11の動作、例えば、時系列位置情報28を用いてフィーダ30のギア機構33の不具合の有無を判定する処理について説明する。図6は、制御装置25のCPU26により実行される、不具合判定処理ルーチンの一例を示すフローチャートである。このルーチンは、記憶部27に記憶され、作業者による実装処理の実行開始の指令を受けたあと実行される。このルーチンを開始すると、CPU26は、時系列位置情報28を記憶部27から読み出して取得し(S200)、判定処理を実行する特定のフィーダ30を設定し、そのフィーダ30の情報を時系列位置情報28から抽出する(S210)。時系列位置情報28には、複数のフィーダ30の情報が含まれているため、CPU26は、まず、各フィーダ30の情報を収集する。特定のフィーダ30の設定は、例えば、フィーダIDの順としてもよい。 Next, the operation of the mounting device 11, for example, the process of determining the presence or absence of a defect in the gear mechanism 33 of the feeder 30 by using the time-series position information 28 will be described. FIG. 6 is a flowchart showing an example of a defect determination processing routine executed by the CPU 26 of the control device 25. This routine is stored in the storage unit 27 and is executed after receiving a command from the operator to start execution of the mounting process. When this routine is started, the CPU 26 reads the time-series position information 28 from the storage unit 27 (S200), sets a specific feeder 30 for executing the determination process, and obtains the information of the feeder 30 in the time-series position information. Extract from 28 (S210). Since the time-series position information 28 includes information on a plurality of feeders 30, the CPU 26 first collects information on each feeder 30. The specific feeder 30 may be set in the order of the feeder ID, for example.
 次に、CPU26は、前回の不具合判定から所定期間が経過したか否か判定する(S220)。CPU26は、所定期間として、例えば、毎日起動時、予め設定した時刻、予め設定された時間、予め設定されたステップ数だけテープ36を送り出したとき、データが予め設定された個数に至ったとき、などのいずれかに基づいてこの判定を行うことができる。この期間経過の判定条件は、作業者が予め設定することができるものとする。CPU26は、所定期間が経過していないときには、この特定のフィーダ30がデータの収集をまだ要するものとして不具合の判定を割愛し、不具合を判定すべき次のフィーダ30があるか否かを判定する(S310)。次のフィーダ30があるときには、CPU26は、S210以降の処理を実行する。 Next, the CPU 26 determines whether or not a predetermined period has elapsed since the previous defect determination (S220). When the CPU 26 sends out the tape 36 for a predetermined period, for example, at startup every day, at a preset time, at a preset time, and by a preset number of steps, when the data reaches a preset number. This determination can be made based on any of the above. The determination condition for the lapse of this period can be set in advance by the operator. When the predetermined period has not elapsed, the CPU 26 omits the determination of the defect as the specific feeder 30 still requires data collection, and determines whether or not there is the next feeder 30 for which the defect should be determined. (S310). When there is the next feeder 30, the CPU 26 executes the processing after S210.
 一方、S220で所定期間が経過したときには、CPU26は、フィーダ30に対応するずれ量から各ギアの周期成分を抽出する(S230)。CPU26は、ずれ量から周期成分を抽出するに際してテープ36の送出方向に対応するずれ量(x、y)のいずれかを変動成分として用いる。例えば、図2では、X方向が収容部37の内部での部品Pのずれ量xであり、Y方向がテープ36の送出方向であるから、ずれ量yを変動成分に用いる。 On the other hand, when the predetermined period has elapsed in S220, the CPU 26 extracts the periodic component of each gear from the deviation amount corresponding to the feeder 30 (S230). The CPU 26 uses any of the deviation amounts (x, y) corresponding to the transmission direction of the tape 36 as the variable component when extracting the periodic component from the deviation amount. For example, in FIG. 2, since the X direction is the displacement amount x of the component P inside the accommodating portion 37 and the Y direction is the transmission direction of the tape 36, the displacement amount y is used as the variable component.
 図7は、時系列位置情報28に含まれるずれ量の変動成分を各ギアの周期成分に分離する一例を示す説明図である。図8は、フーリエ変換によって歯数Z1,Z2のギアの周期成分を分離する一例を示す説明図である。図9は、変動成分からバンドパスフィルタによって歯数Z2のギアの周期成分を分離する一例を示す説明図である。ここでは、一例としてフィーダ30のギア機構33に歯数Z1と歯数Z2のギアが2つある場合について説明する。図7に示すように、フィーダ30の送り順の時系列位置データは、それぞれのギアの歯数ごとに繰り返される周期成分と、その他の成分とを含んだ複雑な波形をなす(図7の左図参照)。この時系列位置データから特定のギアに注目して変動成分から周期成分を抽出する。この抽出方法は、例えば、図8に示すように、CPU26は、フーリエ変換によって振幅スペクトルを算出し、周期成分を抽出したいギアに対応するスペクトルの振幅幅を取得し、周期成分とすることができる。あるいは、図9に示すように、CPU26は、ギア周期に対応する周波数を通過帯域とするバンドパスフィルタ処理を時系列位置データの変動成分に施し、フィルタ処理後のデータの振幅成分を得て、これを周期成分とすることができる。そして、変動成分から周期成分を除去して得られたものをその他の成分とする(図7右側3段目参照)。その他の成分には、例えば、収容部37の内部での部品Pの移動、ノズル23の傾斜した取り付け、ノズル23への異物の付着、などにより生じた変動が含まれる。 FIG. 7 is an explanatory diagram showing an example of separating the fluctuation component of the deviation amount included in the time series position information 28 into the periodic component of each gear. FIG. 8 is an explanatory diagram showing an example of separating the periodic components of the gears having the number of teeth Z1 and Z2 by the Fourier transform. FIG. 9 is an explanatory diagram showing an example of separating the periodic component of the gear having the number of teeth Z2 from the variable component by a bandpass filter. Here, as an example, a case where the gear mechanism 33 of the feeder 30 has two gears having the number of teeth Z1 and the number of teeth Z2 will be described. As shown in FIG. 7, the time-series position data of the feed order of the feeder 30 forms a complicated waveform including a periodic component repeated for each number of teeth of each gear and other components (left of FIG. 7). See figure). Focusing on a specific gear from this time-series position data, a periodic component is extracted from the variable component. In this extraction method, for example, as shown in FIG. 8, the CPU 26 can calculate the amplitude spectrum by Fourier transform, acquire the amplitude width of the spectrum corresponding to the gear for which the periodic component is to be extracted, and use it as the periodic component. .. Alternatively, as shown in FIG. 9, the CPU 26 applies a bandpass filter process having a frequency corresponding to the gear cycle as a pass band to the variable component of the time-series position data to obtain an amplitude component of the filtered data. This can be a periodic component. Then, what is obtained by removing the periodic component from the variable component is used as another component (see the third row on the right side of FIG. 7). Other components include, for example, fluctuations caused by the movement of the component P inside the accommodating portion 37, the inclined attachment of the nozzle 23, the adhesion of foreign matter to the nozzle 23, and the like.
 次に、CPU26は、周期成分の変動値を算出する(S240)。この変動値は、所定期間内における周期成分の評価値であり、例えば、所定期間内ごとに得られる周期成分の振幅の最大値と最小値との差分値としてもよい。あるいは、周期成分を表すものとすれば、特にこれに限定されず、例えば、CPU26は、所定期間内の1ステップごとの周期成分の振幅値を求め、これを平均したものを変動値としてもよい。変動値を算出すると、CPU26は、得られた変動値が所定の許容範囲内であるか否かを判定し(S250)、変動値が所定の許容範囲内でないときには、CPU26は、特定のギアの不具合が発生したものと判定して、その旨の情報を出力する(S260)。 Next, the CPU 26 calculates the fluctuation value of the periodic component (S240). This fluctuation value is an evaluation value of the periodic component within a predetermined period, and may be, for example, a difference value between the maximum value and the minimum value of the amplitude of the periodic component obtained every predetermined period. Alternatively, if it represents a periodic component, it is not particularly limited to this, and for example, the CPU 26 may obtain an amplitude value of the periodic component for each step within a predetermined period and use an average of these values as a fluctuation value. .. When the fluctuation value is calculated, the CPU 26 determines whether or not the obtained fluctuation value is within the predetermined allowable range (S250), and when the fluctuation value is not within the predetermined allowable range, the CPU 26 determines whether or not the obtained fluctuation value is within the predetermined allowable range. It is determined that a problem has occurred, and information to that effect is output (S260).
 図10は、時間に対する変動値の経時変化を示す説明図である。図10では、歯数Z1,Z2のギアの変動値の経時変化を示した。図10に示すように、ギアの不具合が生じていない場合、Z1のように比較的平坦な挙動を示す。一方、ギアの摩耗などが蓄積されると、Z2のように許容範囲を超える。CPU26は、周期成分の変動値が所定の許容閾値を超えたときに、ギアの不具合が発生したものと判定してもよい。あるいは、CPU26は、周期成分の変動値が、前回得られた変動値に比して所定の許容閾値を超えて増加している場合に、ギアの不具合が発生したものと判定してもよい。この許容範囲は、例えば、ギア機構33の異常動作によってテープ36の送出処理に大きな影響を与えるような範囲に経験的に定められているものとしてもよい。ギアの不具合としては、例えば、ギアの劣化や摩耗のほか、変形、破損や回転軸のずれ、異物の混入などが含まれる。 FIG. 10 is an explanatory diagram showing changes over time in fluctuation values with respect to time. FIG. 10 shows changes over time in the fluctuation values of the gears having the number of teeth Z1 and Z2. As shown in FIG. 10, when there is no gear defect, the behavior is relatively flat like Z1. On the other hand, if the wear of the gear or the like is accumulated, it exceeds the permissible range like Z2. The CPU 26 may determine that a gear defect has occurred when the fluctuation value of the periodic component exceeds a predetermined allowable threshold value. Alternatively, the CPU 26 may determine that a gear defect has occurred when the fluctuation value of the periodic component increases beyond a predetermined allowable threshold value as compared with the fluctuation value obtained last time. This permissible range may be empirically set to a range in which, for example, an abnormal operation of the gear mechanism 33 has a great influence on the delivery process of the tape 36. Gear defects include, for example, deterioration and wear of the gear, deformation, breakage, displacement of the rotating shaft, and contamination of foreign matter.
 図11は、ギア不具合特定画面51の一例を示す説明図である。CPU26は、図11に示すように、管理装置40の表示部41に、ギア機構33の不具合発生を表示出力してもよいし、操作パネル17の表示部18に、ギア機構33の不具合発生を表示出力してもよい。あるいは、CPU26は、不具合を放置するに際して、警告灯を点灯したり、警告音を出力するものとしてもよい。ギア不具合特定画面51には、不具合表示欄52が含まれている。不具合表示欄52には、上記判定処理で不具合の発生が判定されたフィーダ30のギアを特定する情報が表示される。この出力情報であるギア不具合特定画面51を確認した作業者は、該当するギア機構33の使用を中断し、ギアの交換や洗浄など、メンテナンスを行う。 FIG. 11 is an explanatory diagram showing an example of the gear defect specifying screen 51. As shown in FIG. 11, the CPU 26 may display and output the occurrence of a defect in the gear mechanism 33 on the display unit 41 of the management device 40, or display and output the occurrence of a defect in the gear mechanism 33 on the display unit 18 of the operation panel 17. It may be displayed and output. Alternatively, the CPU 26 may turn on the warning light or output a warning sound when the defect is left unattended. The gear defect specifying screen 51 includes a defect display column 52. In the defect display column 52, information for identifying the gear of the feeder 30 for which the occurrence of the defect is determined by the determination process is displayed. The operator who confirms the gear defect specifying screen 51, which is the output information, suspends the use of the corresponding gear mechanism 33, and performs maintenance such as gear replacement and cleaning.
 S260のあと、またはS250で変動値が許容範囲内であるときには、CPU26は、周期成分以外のその他の成分を抽出し(S270)、不具合の挙動があるか否かを判定する(S280)。この判定は、例えば、所定期間内における、その他の成分の振幅値の最大値と最小値との差分値が所定の許容範囲を超えているか否かに基づいて判定してもよいし、所定期間内におけるその他の成分の振幅値の平均値が許容範囲を超えているか否かに基づいて判定してもよい。許容範囲は、例えば、部品Pの採取処理に影響がある範囲に経験的に定められているものとしてもよい。不具合の挙動があるときには、ギア以外の不具合が発生したものと判定して、その旨の情報を出力する(S290)。 After S260 or when the fluctuation value is within the permissible range in S250, the CPU 26 extracts components other than the periodic component (S270) and determines whether or not there is a defect behavior (S280). This determination may be made based on, for example, whether or not the difference between the maximum value and the minimum value of the amplitude values of other components within a predetermined period exceeds a predetermined allowable range, or may be determined based on whether or not the difference value exceeds a predetermined allowable range. It may be determined based on whether or not the average value of the amplitude values of the other components in the above exceeds the permissible range. The permissible range may be set empirically to a range that affects the sampling process of the component P, for example. When there is a malfunction behavior, it is determined that a malfunction other than the gear has occurred, and information to that effect is output (S290).
 図12は、ギア以外不具合特定画面55の一例を示す説明図である。CPU26は、図12に示すように、管理装置40の表示部41にギア以外の不具合発生を表示出力してもよいし、操作パネル17の表示部18にギア以外の不具合発生を表示出力してもよい。あるいは、CPU26は、不具合を放置するに際して、警告灯を点灯したり、警告音を出力するものとしてもよい。ギア以外不具合特定画面55には、不具合表示欄56が含まれている。不具合表示欄56には、例えば、不具合として、テープ36の不具合やノズル23の不具合などが表示出力される。この出力情報であるギア以外不具合特定画面55を確認した作業者は、該当するフィーダ30やノズル23の使用を中断し、交換や洗浄など、メンテナンスを行う。 FIG. 12 is an explanatory diagram showing an example of the defect identification screen 55 other than the gear. As shown in FIG. 12, the CPU 26 may display and output the occurrence of a defect other than the gear on the display unit 41 of the management device 40, or display and output the occurrence of a defect other than the gear on the display unit 18 of the operation panel 17. May be good. Alternatively, the CPU 26 may turn on the warning light or output a warning sound when the defect is left unattended. The defect identification screen 55 other than the gear includes a defect display column 56. In the defect display column 56, for example, a defect of the tape 36, a defect of the nozzle 23, or the like is displayed and output as a defect. The operator who confirms the defect identification screen 55 other than the gear, which is the output information, suspends the use of the corresponding feeder 30 and nozzle 23, and performs maintenance such as replacement and cleaning.
 S290のあと、またはS280で不具合の挙動がないときには、CPU26は、上記得られた周期成分に関する情報を変動情報29に含ませて更新し(S300)、S310で不具合判定すべき次のフィーダ30があるか否かを判定する。S310で次のフィーダ30があるときには、CPU26は、S210以降の処理を実行し、次のフィーダ30がないときには、実装装置11の実装処理が完了したか否かを判定する(S320)。実装処理が完了していないときには、CPU26は、S200以降の処理を実行する。一方、S320で実装処理が完了したときには、CPU26は、このルーチンを終了する。 After S290 or when there is no defect behavior in S280, the CPU 26 updates the fluctuation information 29 by including the information on the obtained periodic component (S300), and the next feeder 30 to be determined to be defective in S310 is Determine if it exists. When there is the next feeder 30 in S310, the CPU 26 executes the processing after S210, and when there is no next feeder 30, it is determined whether or not the mounting processing of the mounting device 11 is completed (S320). When the mounting process is not completed, the CPU 26 executes the process after S200. On the other hand, when the mounting process is completed in S320, the CPU 26 ends this routine.
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態の駆動部32が本開示の駆動部に相当し、ギア機構33の第1ギア33a、第2ギア33b、第3ギア33cなどがギアに相当する。また、テープ36が保持部材に相当し、フィーダ30がフィーダに相当し、装着部15が装着部に相当し、ノズル23が採取部材に相当し、実装部20が採取部に相当し、部品撮像部16が撮像部に相当し、実装装置11が実装装置に相当する。また、制御装置25が予測装置に相当し、CPU26が制御部に相当する。なお、本実施形態では、制御装置25の動作を説明することにより本開示の予測方法の一例も明らかにしている。 Here, the correspondence between the components of the present embodiment and the components of the present disclosure will be clarified. The drive unit 32 of the present embodiment corresponds to the drive unit of the present disclosure, and the first gear 33a, the second gear 33b, the third gear 33c, and the like of the gear mechanism 33 correspond to the gears. Further, the tape 36 corresponds to the holding member, the feeder 30 corresponds to the feeder, the mounting portion 15 corresponds to the mounting portion, the nozzle 23 corresponds to the sampling member, the mounting portion 20 corresponds to the sampling portion, and the component image pickup is performed. The unit 16 corresponds to the image pickup unit, and the mounting device 11 corresponds to the mounting device. Further, the control device 25 corresponds to the prediction device, and the CPU 26 corresponds to the control unit. In the present embodiment, an example of the prediction method of the present disclosure is also clarified by explaining the operation of the control device 25.
 以上説明した本実施形態の制御装置25では、採取部としての実装部20により採取された状態の部品Pを撮像した撮像画像を実装部20が部品Pを採取するごとに取得し、取得した撮像画像に基づいて部品Pの位置ずれを含む部品Pの位置に関する情報を経時的に時系列位置情報28として取得する。そして、この制御装置25は、時系列位置情報28からギアの周期に関連する周期成分を抽出し、抽出した周期成分に基づいてギアの不具合を判定する。時系列位置情報28は、実装ヘッド22での部品Pのひとつひとつの画像処理結果におけるずれ量x又はyをフィーダ30の送り順に並べた一種の時系列データとなる。この時系列データは、そのときどきのフィーダ30やノズル23の状態により、様々な変動成分が含まれるが、各ギアに起因する変動成分は、ギアの周期ごとに現れる。時系列位置情報28から抽出して得られた周期成分は、例えば、ギアの劣化や摩耗などギアの不具合に強く影響される。即ち、フィーダ30のギア機構33のギアの摩耗や傾き、変形に依存する、実装ヘッド22での部品Pのずれ量は、ギアの回転ごとに繰り返される再現性が高い。したがって、この制御装置25では、周期成分を用いることによって、フィーダ30のギアの不具合に起因するか否かを判定可能であり、部品採取時の位置ずれの原因をより適切に特定することができる。 In the control device 25 of the present embodiment described above, the image pickup image obtained by capturing the image of the component P collected by the mounting unit 20 as the sampling unit is acquired every time the mounting unit 20 collects the component P, and the acquired image pickup is performed. Based on the image, information regarding the position of the component P including the positional deviation of the component P is acquired as time-series position information 28 over time. Then, the control device 25 extracts a periodic component related to the gear cycle from the time-series position information 28, and determines a gear defect based on the extracted periodic component. The time-series position information 28 is a kind of time-series data in which the deviation amount x or y in the image processing result of each component P in the mounting head 22 is arranged in the feed order of the feeder 30. This time-series data includes various variable components depending on the state of the feeder 30 and the nozzle 23 at that time, and the variable components caused by each gear appear for each gear cycle. The periodic component extracted from the time-series position information 28 is strongly affected by gear defects such as deterioration and wear of the gear, for example. That is, the amount of deviation of the component P in the mounting head 22, which depends on the wear, inclination, and deformation of the gear of the gear mechanism 33 of the feeder 30, is highly reproducible to be repeated for each rotation of the gear. Therefore, in this control device 25, by using the periodic component, it is possible to determine whether or not the cause is due to a malfunction of the gear of the feeder 30, and it is possible to more appropriately identify the cause of the misalignment at the time of collecting parts. ..
 また、CPU26は、ギアの不具合を判定するに際して、抽出した周期成分に基づいて、実装部20での部品Pの位置ずれがギアの不具合に基づくものであるか、テープ36上での部品ずれ及びノズル23の不具合を含むギア以外の不具合に基づくものであるかを判定する。この制御装置25では、周期成分を用いることによって、ギアの不具合か、ギア以外の不具合に基づくかを判定することができる。更に、CPU26は、周期成分に含まれる変動値が所定の許容範囲から外れたときにギアの不具合発生を判定するため、許容範囲を用いて、より適切にギアの不具合を判定することができる。更にまた、CPU26は、時系列位置情報28からフーリエ変換及びバンドパスフィルタの少なくとも一方を用いて周期成分を抽出するため、フーリエ変換やバンドパスフィルタを用いて周期成分を比較的容易に抽出することができる。 Further, when determining a gear defect, the CPU 26 determines whether the misalignment of the component P in the mounting unit 20 is due to the gear defect, or the component misalignment on the tape 36 and the component misalignment on the tape 36, based on the extracted periodic component. It is determined whether or not it is based on a defect other than the gear including the defect of the nozzle 23. In this control device 25, by using the periodic component, it is possible to determine whether the malfunction is due to a gear or a defect other than the gear. Further, since the CPU 26 determines the occurrence of a gear defect when the fluctuation value included in the periodic component deviates from a predetermined allowable range, the allowable range can be used to more appropriately determine the gear defect. Furthermore, since the CPU 26 extracts the periodic component from the time series position information 28 using at least one of the Fourier transform and the bandpass filter, the periodic component can be extracted relatively easily by using the Fourier transform and the bandpass filter. Can be done.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present disclosure is not limited to the above-described embodiment, and it goes without saying that the present disclosure can be carried out in various embodiments as long as it belongs to the technical scope of the present disclosure.
 例えば、上述した実施形態では、周期成分に含まれる変動値が所定の許容範囲から外れたときにギアの不具合発生を判定するものとしたが、不具合を判定するものとすれば、特にこれに限定されない。例えば、制御装置25は、前回の周期成分の変動値から所定の許容値を超えて変動値が増加した場合に不具合を判定するものとしてもよい。また、制御装置25は、ずれ量から周期成分の変動値を導き出すものとしたが、部品Pの座標から周期成分の変動値を導き出すものとしてもよい。また、制御装置25は、所定期間内の最大値と最小値との差分値を変動値として用いるものとしたが、所定期間内の振幅値の平均値を変動値としてもよい。 For example, in the above-described embodiment, the occurrence of a gear defect is determined when the fluctuation value included in the periodic component deviates from a predetermined allowable range, but if the defect is determined, it is particularly limited to this. Not done. For example, the control device 25 may determine a defect when the fluctuation value increases beyond a predetermined allowable value from the fluctuation value of the previous periodic component. Further, although the control device 25 derives the fluctuation value of the periodic component from the deviation amount, it may derive the fluctuation value of the periodic component from the coordinates of the component P. Further, although the control device 25 uses the difference value between the maximum value and the minimum value within the predetermined period as the variable value, the average value of the amplitude values within the predetermined period may be used as the variable value.
 上述した実施形態では、フーリエ変換及びバンドパスフィルタのいずれか1以上を用いて周期成分を抽出するものとしたが、周期成分を抽出可能な手法であれば、これに限られず用いることができる。 In the above-described embodiment, the periodic component is extracted by using any one or more of the Fourier transform and the bandpass filter, but any method that can extract the periodic component can be used without limitation.
 上述した実施例では、制御装置25が部品撮像部16で撮像された撮像画像を取得し、時系列位置情報28を作成するものとしたが、特にこれに限定されず、制御装置25は、他の装置で作成された時系列位置情報28を取得するものとしてもよい。この制御装置25によっても、時系列位置情報28から得られた周期成分を用いることによって、フィーダ30のギアの不具合に起因するか否かを判定可能であり、部品採取時の位置ずれの原因をより適切に特定することができる。 In the above-described embodiment, the control device 25 acquires the captured image captured by the component image pickup unit 16 and creates the time-series position information 28, but the control device 25 is not particularly limited to this, and the control device 25 may be other than the above. The time-series position information 28 created by the device of the above may be acquired. Also with this control device 25, by using the periodic component obtained from the time series position information 28, it is possible to determine whether or not it is caused by a malfunction of the gear of the feeder 30, and the cause of the misalignment at the time of collecting parts can be determined. It can be identified more appropriately.
 上述した実施例では、実装部20は、XYロボットの構成を有するものとして説明したが、部品Pを処理対象物に配置することができるものであれば特にこれに限定されず、例えば、実装部20をアームロボットとしてもよい。 In the above-described embodiment, the mounting unit 20 has been described as having a configuration of an XY robot, but the mounting unit 20 is not particularly limited as long as the component P can be arranged on the object to be processed. 20 may be used as an arm robot.
 上述した実施形態では、制御装置25が本開示の予測装置の機能を備えるものとして説明したが、特にこれに限定されず、本開示の予測装置の機能を管理装置40などの実装装置11以外の装置が有するものとしてもよい。また、上述した実施形態では、本開示の予測装置を制御装置25として説明したが、特にこれに限定されず、予測方法としてもよいし、この予測方法をコンピュータが実行するプログラムとしてもよい。 In the above-described embodiment, the control device 25 has been described as having the function of the prediction device of the present disclosure, but the present invention is not particularly limited to this, and the function of the prediction device of the present disclosure is limited to the mounting device 11 such as the management device 40. It may be possessed by the device. Further, in the above-described embodiment, the prediction device of the present disclosure has been described as the control device 25, but the present invention is not particularly limited to this, and it may be a prediction method or a program in which a computer executes this prediction method.
 ここで、本開示の制御装置や情報処理装置は、以下のように構成してもよい。例えば、本開示の予測装置において、前記制御部は、前記ギアの不具合を判定するに際して、抽出した前記周期成分に基づいて、前記採取部での前記部品の位置ずれが前記ギアの不具合に基づくものであるか、前記保持部材上での部品ずれ及び前記採取部材の不具合を含む前記ギア以外の不具合に基づくものであるかを判定するものとしてもよい。この予測装置では、周期成分を用いることによって、ギアの不具合か、ギア以外の不具合に基づくかを判定することができる。 Here, the control device and the information processing device of the present disclosure may be configured as follows. For example, in the prediction device of the present disclosure, when the control unit determines a defect of the gear, the misalignment of the component in the sampling unit is based on the defect of the gear based on the extracted periodic component. It may be determined whether it is based on a defect other than the gear including a component misalignment on the holding member and a defect of the sampling member. In this predictor, by using the periodic component, it is possible to determine whether the gear is defective or is based on a defect other than the gear.
 なお、「保持部材」としては、部品を供給するテープ部材などが挙げられる。また、「ギアの不具合」には、ギアの劣化や摩耗のほか、破損や回転軸のずれなどが含まれる。また、「時系列位置情報」には、例えば、経時的に求められた撮像画像から得られた部品の位置(座標値)や、部品の位置と基準位置とに基づいて求められる位置ずれ量などの情報が含まれる。 The "holding member" includes a tape member that supplies parts. In addition, "gear malfunction" includes deterioration and wear of the gear, as well as damage and displacement of the rotating shaft. Further, the "time-series position information" includes, for example, the position (coordinate value) of the component obtained from the captured image obtained over time, the amount of misalignment obtained based on the position of the component and the reference position, and the like. Information is included.
 本開示の予測装置において、前記制御部は、前記周期成分に含まれる変動値が所定の許容範囲から外れたときに前記ギアの不具合発生を判定するものとしてもよい。この予測装置では、許容範囲を用いて、より適切にギアの不具合を判定することができる。 In the prediction device of the present disclosure, the control unit may determine the occurrence of a malfunction of the gear when the fluctuation value included in the periodic component deviates from a predetermined allowable range. In this predictor, the allowable range can be used to more appropriately determine a gear defect.
 本開示の予測装置において、前記制御部は、前記時系列位置情報からフーリエ変換及びバンドパスフィルタの少なくとも一方を用いて前記周期成分を抽出するものとしてもよい。この予測装置は、フーリエ変換やバンドパスフィルタを用いて周期成分を比較的容易に抽出することができる。 In the prediction device of the present disclosure, the control unit may extract the periodic component from the time-series position information by using at least one of a Fourier transform and a bandpass filter. This predictor can relatively easily extract periodic components using a Fourier transform or a bandpass filter.
 本開示の実装装置は、駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、前記採取部が採取した状態の前記部品を撮像する撮像部と、上述したいずれかに記載の予測装置と、を備えたものである。この実装装置では、上述したいずれかの予測装置を備えるため、採用した態様に応じた効果を得ることができる。 The mounting device of the present disclosure includes a mounting portion for mounting a feeder having a drive unit and a gear connected to the drive unit and holding a component to supply the component, and collecting the component from the feeder. It is provided with a collecting unit that collects by a member and arranges it on an object to be processed, an imaging unit that captures an image of the component in a state collected by the collecting unit, and a prediction device according to any one of the above. Since this mounting device includes any of the above-mentioned prediction devices, it is possible to obtain an effect according to the adopted mode.
 本開示の実装システムは、駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、前記採取部が採取した状態の前記部品を撮像する撮像部と、を備えた実装装置と、上述したいずれかに記載の予測装置と、を備えたものである。この実装システムでは、上述したいずれかの予測装置を備えるため、採用した態様に応じた効果を得ることができる。 The mounting system of the present disclosure includes a mounting portion for mounting a feeder having a drive unit and a gear connected to the drive unit and holding a component to supply the component, and collecting the component from the feeder. A mounting device including a sampling unit that collects by a member and arranges it on an object to be processed, and an imaging unit that captures an image of the component in a state collected by the sampling unit, and a prediction device according to any one of the above. It is equipped with. Since this mounting system is provided with any of the above-mentioned prediction devices, it is possible to obtain an effect according to the adopted mode.
 本開示の予測方法は、
 駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、前記採取部が採取した状態の前記部品を撮像する撮像部と、を備えた実装装置に用いられる予測方法であって、
(a)前記採取部により採取された状態の前記部品を、該部品を採取するごとに撮像した撮像画像に基づいて得られた前記部品の位置ずれを含む部品の位置に関する情報を経時的に含む時系列位置情報を取得するステップと、
(b)前記ステップ(a)で取得した前記時系列位置情報から前記ギアの周期に関連する周期成分を抽出するステップと、
(c)前記ステップ(b)で抽出した周期成分に基づいて前記ギアの不具合を判定するステップと、
 を含むものである。
The prediction method of this disclosure is
A mounting unit that has a drive unit and a gear connected to the drive unit and that is equipped with a feeder that sends out a holding member that holds the component and supplies the component, and a mounting unit that collects the component from the feeder and processes it. It is a prediction method used in a mounting device including a sampling unit arranged on an object and an image pickup unit that captures an image of the component in a state collected by the sampling unit.
(A) The parts in a state of being collected by the collecting unit include information on the position of the parts including the misalignment of the parts obtained based on an image taken every time the parts are collected. Steps to get time series position information and
(B) A step of extracting a periodic component related to the cycle of the gear from the time-series position information acquired in the step (a), and a step of extracting the periodic component.
(C) A step of determining a defect of the gear based on the periodic component extracted in the step (b), and
Is included.
 この予測方法は、上述した予測装置と同様に、例えばギアの劣化や摩耗などにより強く影響した周期成分を用いることによって、部品採取時の位置ずれの原因をより適切に特定することができる。この予測方法において、前記採取部が採取した状態の前記部品を撮像した撮像画像を前記採取部が部品を採取するごとに取得するステップを更に有し、このステップで取得した前記撮像画像に基づいて該部品の位置ずれを含む部品の位置に関する情報を経時的に含む時系列位置情報を取得するものとしてもよい。なお、この予測方法において、上述した予測装置の種々の態様を採用してもよいし、また、上述した予測装置の各機能を実現するようなステップを追加してもよい。 Similar to the above-mentioned prediction device, this prediction method can more appropriately identify the cause of the misalignment at the time of parts collection by using, for example, a periodic component that has a strong influence on gear deterioration or wear. In this prediction method, there is further a step of acquiring an image taken by the collecting unit for capturing the component in a state of being collected each time the collecting unit collects the component, and based on the captured image acquired in this step. It may be possible to acquire time-series position information including information on the position of the part including the position shift of the part over time. In this prediction method, various aspects of the above-mentioned prediction device may be adopted, or steps may be added to realize each function of the above-mentioned prediction device.
 本開示の予測装置、実装装置、実装システム及び予測方法は、例えば、電子部品の実装分野に利用可能である。 The prediction device, mounting device, mounting system and prediction method of the present disclosure can be used, for example, in the field of mounting electronic components.
10 実装システム、11 実装装置、12 基板処理部、14 部品供給部、15 装着部、16 部品撮像部、17 操作パネル、18 表示部、19 操作部、20 実装部、21 ヘッド移動部、22 実装ヘッド、23 ノズル、25 制御装置、26 CPU、27 記憶部、28 時系列位置情報、29 変動情報、30 フィーダ、31 コントローラ、32 駆動部、33 ギア機構、33a 第1ギア、33b 第2ギア、33c 第3ギア、34 スプロケット、35 リール、36 テープ、37 収容部、38 送り穴、40 管理装置、41 表示部、42 入力装置、51 ギア不具合特定画面、52 不具合表示欄、55 ギア以外不具合特定画面、56 不具合表示欄、P 部品、S 基板。 10 mounting system, 11 mounting device, 12 board processing unit, 14 parts supply unit, 15 mounting unit, 16 component imaging unit, 17 operation panel, 18 display unit, 19 operation unit, 20 mounting unit, 21 head movement unit, 22 mounting unit. Head, 23 nozzle, 25 control device, 26 CPU, 27 storage unit, 28 time series position information, 29 fluctuation information, 30 feeder, 31 controller, 32 drive unit, 33 gear mechanism, 33a 1st gear, 33b 2nd gear, 33c 3rd gear, 34 sprocket, 35 reel, 36 tape, 37 accommodating part, 38 feed hole, 40 management device, 41 display part, 42 input device, 51 gear defect identification screen, 52 defect display column, 55 defect identification other than gear Screen, 56 defect display column, P parts, S board.

Claims (7)

  1.  駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、前記採取部が採取した状態の前記部品を撮像する撮像部と、を備えた実装装置に用いられる予測装置であって、
     前記採取部により採取された状態の前記部品を、該部品を採取するごとに撮像した撮像画像に基づいて得られた前記部品の位置ずれを含む部品の位置に関する情報を経時的に含む時系列位置情報を取得し、前記時系列位置情報から前記ギアの周期に関連する周期成分を抽出し、抽出した周期成分に基づいて前記ギアの不具合を判定する制御部、
     を備えた予測装置。
    A mounting unit that has a drive unit and a gear connected to the drive unit and that is equipped with a feeder that sends out a holding member that holds the component and supplies the component, and a mounting unit that collects the component from the feeder and processes it. It is a prediction device used in a mounting device including a sampling unit arranged on an object and an image pickup unit that captures an image of the component in a state collected by the sampling unit.
    Time-series position including information on the position of the part including the misalignment of the part obtained based on the image taken every time the part is collected in the state of being collected by the collection unit. A control unit that acquires information, extracts a periodic component related to the cycle of the gear from the time-series position information, and determines a defect of the gear based on the extracted periodic component.
    Predictor with.
  2.  前記制御部は、前記ギアの不具合を判定するに際して、抽出した前記周期成分に基づいて、前記採取部での前記部品の位置ずれが前記ギアの不具合に基づくものであるか、前記保持部材上での部品ずれ及び前記採取部材の不具合を含む前記ギア以外の不具合に基づくものであるかを判定する、請求項1に記載の予測装置。 When determining a gear defect, the control unit determines whether the misalignment of the component in the sampling unit is due to the gear defect based on the extracted periodic component, or on the holding member. The predictive apparatus according to claim 1, wherein it is determined whether or not the gear is based on a defect other than the gear, including a component displacement of the above and a defect of the collection member.
  3.  前記制御部は、前記周期成分に含まれる変動値が所定の許容範囲から外れたときに前記ギアの不具合発生を判定する、請求項1又は2に記載の予測装置。 The prediction device according to claim 1 or 2, wherein the control unit determines the occurrence of a malfunction of the gear when the fluctuation value included in the periodic component deviates from a predetermined allowable range.
  4.  前記制御部は、前記時系列位置情報からフーリエ変換及びバンドパスフィルタの少なくとも一方を用いて前記周期成分を抽出する、請求項1~3のいずれか1項に記載の予測装置。 The prediction device according to any one of claims 1 to 3, wherein the control unit extracts the periodic component from the time-series position information using at least one of a Fourier transform and a bandpass filter.
  5.  駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、
     前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、
     前記採取部が採取した状態の前記部品を撮像する撮像部と、
     請求項1~4のいずれか1項に記載の予測装置と、
     を備えた実装装置。
    A mounting unit that has a drive unit and a gear connected to the drive unit, sends out a holding member that holds the component, and mounts a feeder that supplies the component.
    A sampling unit that collects the parts from the feeder with a sampling member and arranges them on the object to be processed.
    An image pickup unit that captures an image of the component in a state collected by the sampling unit, and an image pickup unit.
    The prediction device according to any one of claims 1 to 4, and the prediction device.
    Mounting device with.
  6.  駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、前記採取部が採取した状態の前記部品を撮像する撮像部と、を備えた実装装置と、
     請求項1~4のいずれか1項に記載の予測装置と、
     を備えた実装システム。
    A mounting unit that has a drive unit and a gear connected to the drive unit and that is equipped with a feeder that sends out a holding member that holds the component and supplies the component, and a mounting unit that collects the component from the feeder and processes it. A mounting device including a sampling unit arranged on an object and an imaging unit that captures an image of the component in a state collected by the sampling unit.
    The prediction device according to any one of claims 1 to 4, and the prediction device.
    Implementation system with.
  7.  駆動部と駆動部に接続されたギアとを有し部品を保持した保持部材を送り出して該部品を供給するフィーダを装着する装着部と、前記フィーダから前記部品を採取部材により採取して処理対象物に配置する採取部と、前記採取部が採取した状態の前記部品を撮像する撮像部と、を備えた実装装置に用いられる予測方法であって、
    (a)前記採取部により採取された状態の前記部品を、該部品を採取するごとに撮像した撮像画像に基づいて得られた前記部品の位置ずれを含む部品の位置に関する情報を経時的に含む時系列位置情報を取得するステップと、
    (b)前記ステップ(a)で取得した前記時系列位置情報から前記ギアの周期に関連する周期成分を抽出するステップと、
    (c)前記ステップ(b)で抽出した周期成分に基づいて前記ギアの不具合を判定するステップと、
     を含む予測方法。
    A mounting unit that has a drive unit and a gear connected to the drive unit and that is equipped with a feeder that sends out a holding member that holds the component and supplies the component, and a mounting unit that collects the component from the feeder and processes it. It is a prediction method used in a mounting device including a sampling unit arranged on an object and an image pickup unit that captures an image of the component in a state collected by the sampling unit.
    (A) The parts in a state of being collected by the collecting unit include information on the position of the parts including the misalignment of the parts obtained based on an image taken every time the parts are collected. Steps to get time series position information and
    (B) A step of extracting a periodic component related to the cycle of the gear from the time-series position information acquired in the step (a), and a step of extracting the periodic component.
    (C) A step of determining a defect of the gear based on the periodic component extracted in the step (b), and
    Prediction method including.
PCT/JP2020/041745 2020-11-09 2020-11-09 Predicting apparatus, mounting apparatus, mounting system, and predicting method WO2022097301A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/041745 WO2022097301A1 (en) 2020-11-09 2020-11-09 Predicting apparatus, mounting apparatus, mounting system, and predicting method
JP2022560624A JPWO2022097301A1 (en) 2020-11-09 2020-11-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041745 WO2022097301A1 (en) 2020-11-09 2020-11-09 Predicting apparatus, mounting apparatus, mounting system, and predicting method

Publications (1)

Publication Number Publication Date
WO2022097301A1 true WO2022097301A1 (en) 2022-05-12

Family

ID=81457701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041745 WO2022097301A1 (en) 2020-11-09 2020-11-09 Predicting apparatus, mounting apparatus, mounting system, and predicting method

Country Status (2)

Country Link
JP (1) JPWO2022097301A1 (en)
WO (1) WO2022097301A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287776A (en) * 2009-06-12 2010-12-24 Sony Corp Component-supplying apparatus, component-mounting apparatus, component-supplying method, positioning apparatus, and positioning method
WO2016046932A1 (en) * 2014-09-25 2016-03-31 富士機械製造株式会社 Mounting device and mounting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287776A (en) * 2009-06-12 2010-12-24 Sony Corp Component-supplying apparatus, component-mounting apparatus, component-supplying method, positioning apparatus, and positioning method
WO2016046932A1 (en) * 2014-09-25 2016-03-31 富士機械製造株式会社 Mounting device and mounting method

Also Published As

Publication number Publication date
JPWO2022097301A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
JP4839314B2 (en) Pick and place machine with improved component pick-up inspection
JP4926919B2 (en) Mounting system
JP6846350B2 (en) Feeder maintenance device and its control method
JP2007194253A (en) Mounting system
JP7365376B2 (en) Mounting equipment and detection method
US20200012264A1 (en) Work management device
WO2016113864A1 (en) Feeder maintenance device, and method for controlling feeder maintenance device
JP2007188981A (en) Electronic component mounting apparatus
JP6763048B2 (en) Feeder maintenance system and control method of feeder maintenance system
JP2023126381A (en) system
JP6697468B2 (en) Feeder maintenance device and its control method
WO2022097301A1 (en) Predicting apparatus, mounting apparatus, mounting system, and predicting method
JP4690205B2 (en) Mounting system
WO2019163044A1 (en) Component mounting system
JP6831401B2 (en) Control device, mounting device and control method
JP2021073743A (en) Feeder maintenance device and control method of feeder maintenance device
JP7096286B2 (en) Work processing support method
JP7197705B2 (en) Mounting equipment, mounting system, and inspection mounting method
JP6850415B2 (en) Feeder maintenance system
JP7325935B2 (en) Management device and management method
JP2017038084A (en) Inspection management device, inspection management method, and program therefor
JP2007194252A (en) Mounting system
JP7441154B2 (en) Battery information acquisition device and battery information acquisition method
CN114342578A (en) Tracking assistance device and tracking assistance method
WO2018179187A1 (en) Information processing device, mounting device, and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960853

Country of ref document: EP

Kind code of ref document: A1