WO2022096002A1 - 一种液晶超表面天线装置和通信装置 - Google Patents

一种液晶超表面天线装置和通信装置 Download PDF

Info

Publication number
WO2022096002A1
WO2022096002A1 PCT/CN2021/129357 CN2021129357W WO2022096002A1 WO 2022096002 A1 WO2022096002 A1 WO 2022096002A1 CN 2021129357 W CN2021129357 W CN 2021129357W WO 2022096002 A1 WO2022096002 A1 WO 2022096002A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
antenna
oscillator
vertical
horizontal
Prior art date
Application number
PCT/CN2021/129357
Other languages
English (en)
French (fr)
Inventor
张传安
曾昆
杜颖钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2023005328A priority Critical patent/MX2023005328A/es
Priority to EP21888694.3A priority patent/EP4228090A4/en
Publication of WO2022096002A1 publication Critical patent/WO2022096002A1/zh
Priority to US18/309,238 priority patent/US20230268661A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the present application relates to the field of communication, and in particular, to a liquid crystal metasurface antenna device and a communication device.
  • the antenna as a carrier for transmitting and receiving electromagnetic waves, has become an indispensable part of any complete communication system.
  • high-frequency millimeter-wave communication networks it is necessary to realize information transmission with large bandwidth and high capacity; at the same time, with the emergence of multi-standard communication equipment, narrow-band antennas can no longer meet the needs of existing scenarios, and the application of broadband and multi-band antennas increasingly widespread.
  • phased array antennas have the advantages of high gain, but they also have the disadvantages of narrow beam width and small coverage.
  • phased array antennas are often used.
  • phased array antennas have always been a research hotspot in academia and industry.
  • phased array antennas have complex system architectures.
  • the disadvantage of high cost, system performance is also highly dependent on the core chip.
  • liquid crystal metasurface antennas are one of the important approaches.
  • the present application provides a liquid crystal metasurface antenna device and a communication device, using a structure system of local loading of liquid crystal, which can not only reduce the loss of the liquid crystal antenna, but also enable independent regulation of different frequency points; not only can realize the characteristics of beam scanning, but also can Polarization reconstruction is realized; and the working bandwidth of the antenna can be increased, so that the antenna can work in a dual-band or broadband mode; in addition, the antenna device has the characteristics of regular arrangement or irregular arrangement, and the array arrangement is more flexible.
  • the present application provides a liquid crystal metasurface antenna device, comprising: a liquid crystal metasurface reflector and a feed; the liquid crystal metasurface reflector is composed of a plurality of liquid crystal antenna units; wherein the liquid crystal antenna units at least include : a plurality of oscillators, two layers of dielectric plates; the plurality of oscillators are arranged between the two layers of dielectric plates; the plurality of oscillators include a pair of horizontal oscillators and/or a pair of vertical oscillators; each of the oscillators includes a left arm , a right arm and a capacitor, the left arm and the right arm are connected by the capacitor, and the liquid crystal material fills the space enclosed by the left arm, the right arm and the capacitor.
  • the pair of horizontal oscillators is composed of a first horizontal oscillator and a second horizontal oscillator, and the horizontal oscillator is in a horizontal direction;
  • the pair of vertical oscillators is composed of a first vertical oscillator and a second vertical oscillator , the vertical oscillator is in the vertical direction.
  • the pair of horizontal oscillators has vertical polarization characteristics; the pair of vertical oscillators has horizontal polarization characteristics.
  • the oscillator includes a horizontal oscillator and a vertical oscillator, the horizontal oscillator pair has vertical polarization characteristics, and the vertical oscillator pair has horizontal polarization characteristics, so that the liquid crystal antenna has two polarization components, so as to have polarization Reconfigurable features.
  • first horizontal vibrator and the second horizontal vibrator are of equal length or unequal length; the first vertical vibrator and the second vertical vibrator are of equal length or unequal length .
  • the liquid crystal antenna unit when the first horizontal vibrator and the second horizontal vibrator are not equal in length, the liquid crystal antenna unit is in a dual-frequency mode or a broadband mode; when the first vertical vibrator and all the When the lengths of the second vertical vibrators are not equal, the liquid crystal antenna unit is in a dual-band mode or a broadband mode.
  • the relative length of the first horizontal oscillator and the second horizontal oscillator can be changed to make the The liquid crystal antenna unit is in dual-band or broadband mode, which improves the working bandwidth of the antenna; similarly, when the two vibrators of the vertical vibrator are not equal in length, the first vertical vibrator and the second vertical vibrator can be changed by changing the The relative length of , so that the liquid crystal antenna unit is in dual-band or broadband mode, which improves the working bandwidth of the antenna.
  • the antenna unit when the first horizontal vibrator and the second horizontal vibrator are the same length, the antenna unit is in a single-frequency mode; when the first vertical vibrator and the second vertical vibrator are the same length At the same time, the antenna unit is in single frequency mode.
  • the polarization characteristic of the liquid crystal antenna unit is 45° polarization or -45° polarization; when the phase difference of the liquid crystal material is -90° or 90°, the polarization characteristic of the liquid crystal antenna unit is left-handed circular polarization or right-handed circular polarization; when the phase difference of the liquid crystal material is not equal to 0° or 90° or -90° or 180°, the The polarization characteristic of the liquid crystal antenna unit is left-handed elliptical polarization or right-handed elliptical polarization.
  • the liquid crystal antenna unit can be in different polarization modes, thereby realizing the polarization reconfigurability of the antenna.
  • the loading mode of the liquid crystal material is local loading.
  • the liquid crystal material is in a local loading mode, so that each local area of the liquid crystal metasurface antenna can be independently controlled, which has better control flexibility and better electrical properties.
  • the filling manners of the liquid crystal materials of the plurality of vibrators are the same or different.
  • the filling manner of the liquid crystal material of the plurality of vibrators is not limited, which improves the diversity and flexibility of the design process.
  • the filling manner includes full filling, partial filling, and overflow filling.
  • the filling manner may be any one or more of full filling, partial filling, and overflow filling, which improves the diversity and flexibility of the design process.
  • the shape of the medium plate is not unique, and may be at least one of a square, a rectangle, a circle, an ellipse, a polygon, or any shape.
  • the shape of the medium plate is not limited, which increases the diversity of the design process of the medium plate.
  • the feed source is located at the focal point of the liquid crystal metasurface reflector.
  • the feed source is located at the focal point of the liquid crystal metasurface reflector, which ensures uniform illumination of the liquid crystal surface reflector and improves the antenna efficiency.
  • the arrangement of the oscillators in all the liquid crystal antenna units is the same.
  • the present application provides a communication device including the above liquid crystal metasurface antenna device.
  • a communication device including the above liquid crystal metasurface antenna device.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an existing metasurface antenna provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an existing liquid crystal metasurface antenna provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an existing liquid crystal metasurface unit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the overall structure of a liquid crystal metasurface antenna device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the overall structure of a liquid crystal metasurface antenna device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a liquid crystal antenna unit according to an embodiment of the present application.
  • FIG. 9 is an anatomical view of a liquid crystal antenna unit according to an embodiment of the present application.
  • FIG. 10 is a simulation diagram of a liquid crystal antenna unit operating in a dual-frequency mode according to an embodiment of the application;
  • FIG. 11 is a simulation diagram of a liquid crystal antenna unit operating in a broadband mode according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of a liquid crystal loading topology of a conventional liquid crystal antenna provided by an embodiment of the application;
  • FIG. 13 is a schematic diagram of a liquid crystal local loading topology of a liquid crystal antenna according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a single-polarized liquid crystal antenna unit according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a part of the shape of the dielectric plate provided by the embodiment of the application.
  • FIG. 16 is a schematic diagram of a part of the filling form of the liquid crystal material provided by the embodiment of the application.
  • FIG. 17 is a schematic diagram of a part of the shape of a metal pattern provided by an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of a single-polarized liquid crystal metasurface antenna device provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of a liquid crystal metasurface array provided by an embodiment of the application.
  • FIG. 20 is a schematic diagram of an arrangement of liquid crystal metasurface antenna units provided by an embodiment of the application.
  • FIG. 21 is a schematic structural diagram of a polarization reconfigurable liquid crystal antenna unit according to an embodiment of the application.
  • FIG. 22 is a schematic diagram of the relationship between a liquid crystal material control voltage and a phase difference provided by an embodiment of the present application.
  • Figures 23(a)-23(i) are schematic diagrams of the arrangement of a polarization reconfigurable liquid crystal metasurface antenna unit according to an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • Metasurface antenna is composed of electromagnetic metasurface material, forming an electromagnetic structure with antenna radiation characteristics.
  • electromagnetic metasurface material is a kind of artificially designed material, which usually has a certain arrangement law, and it has special properties that natural materials do not have.
  • the feed is the basic component of the reflective or transmissive antenna, usually a low-gain antenna. As a primary radiator, the feed source converts the bound electromagnetic wave into radiated electromagnetic wave energy and irradiates it on the reflective surface or transmission surface antenna, thereby forming a high gain reflective surface antenna or transmission surface antenna.
  • Common feed sources include: horn antenna, dipole antenna, patch antenna, etc.
  • Vibrator The vibrator usually refers to the antenna vibrator, which is the basic unit that constitutes the antenna radiation structure. The length of the vibrator determines the working characteristics of the antenna. Common vibrators include half-wave vibrators, full-wave vibrators, etc.
  • Liquid crystal The material properties of liquid crystal are an electronically controllable material. When the liquid crystal material is subjected to a bias voltage, the material molecules will be affected by the electric field force, and the axial arrangement of the molecules will be rearranged, and then the dielectric constant of the liquid crystal will be changed. changes, resulting in a phase shift characteristic. At present, for commonly used liquid crystal materials, when the bias voltage ranges from 0V to 20V, the variation range of the dielectric constant of the liquid crystal is 2.5 to 3.5.
  • the liquid crystal metasurface antenna device provided by the embodiments of the present application can be applied to various communication systems, for example, satellite communication systems, Internet of things (Internet of things, IoT), narrow band Internet of things (NB-IoT) system, global system for mobile communications (GSM), enhanced data rate for GSM evolution (EDGE), wideband code division multiple access (WCDMA), Code division multiple access 2000 system (code division multiple access, CDMA2000), time division synchronous code division multiple access system (time division-synchronization code division multiple access, TD-SCDMA), long term evolution system (long term evolution, LTE), fifth Generation (5G) communication systems, such as 5G new radio (NR), and three major application scenarios of 5G mobile communication systems, enhanced mobile broadband (eMBB), ultra-reliable, low-latency communication (ultra reliable low latency communications, uRLLC) and massive machine type communications (mMTC), device-to-device (D2D) communication systems, machine-to-machine (M2M) communication systems, Internet of Vehicles
  • the communication system or may also
  • the network architecture shown in FIG. 1 is a communication architecture between network devices (represented as base stations in FIG. 1 ).
  • the liquid crystal metasurface antenna device in the embodiment of the present application can be applied to a ground base station to realize the communication between the base station and the base station.
  • Communication and has the ability of beamforming, when it is used for communication between base stations, it can realize point-to-multipoint communication, and a central base station can connect multiple edge base stations.
  • the liquid crystal metasurface antenna device provided in the embodiment of the present application can be used for network equipment (represented as a base station in FIG. 2 ) and Communication between end users has the ability of beamforming, which can increase sector coverage, and one base station can cover multiple sector users; at the same time, the base station has dual-frequency characteristics and can support multiple standard information (such as 4G) at the same time. information and 5G information); in addition, it has the advantage of polarization reconfigurability, which can expand the signal transmission capacity.
  • the number of network devices may be one or more, and the number of terminal devices may be one or more (as shown in FIG. 2, three terminal devices). The type and quantity are not limited.
  • the terminal device includes the device that provides voice and/or data connectivity to the user, specifically, includes the device that provides the user with voice, or includes the device that provides the user with data connectivity, or includes the device that provides the user with voice and data connectivity sexual equipment.
  • the terminal equipment may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal equipment can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, light terminal equipment (light UE), subscriber units ( subscriber unit), subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), User terminal, user agent, or user device, etc.
  • UE user equipment
  • D2D device-to-device
  • V2X vehicle to everything
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • light UE light UE
  • subscriber units subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • these may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • mobile telephones or "cellular" telephones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing power, etc.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • the terminal device may further include a relay (relay).
  • a relay relay
  • any device capable of data communication with the base station can be regarded as a terminal device.
  • the apparatus for implementing the function of the terminal device may be the terminal device, or may be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a network device including, for example, an access network (AN) device, such as a base station (eg, an access point), may refer to a device in an access network that communicates with a wireless terminal device over the air interface through one or more cells, or
  • AN access network
  • a network device in a vehicle-to-everything (V2X) technology is a roadside unit (RSU).
  • the base station may be used to interconvert the received air frames and IP packets, acting as a router between the terminal equipment and the rest of the access network, which may include the IP network.
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or long term evolution-advanced (LTE-A), Alternatively, it may also include the next generation node B (gNB) in the 5th generation mobile communication technology (the 5th generation, 5G) NR system (also referred to as the NR system for short), or may also include a cloud access network (cloud access network).
  • a centralized unit (CU) and a distributed unit (DU) in a radio access network (Cloud RAN) system or may be an apparatus for carrying network device functions in a future communication system.
  • the embodiments of this application do not Not limited.
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, an access and mobility management function (AMF) or a user plane function (UPF) and the like.
  • AMF access and mobility management function
  • UPF user plane function
  • the network device may also be a device for carrying network device functions in a device-to-device (Device to Device, D2D) communication, a machine-to-machine (Machine to Machine, M2M) communication, a vehicle networking, or a satellite communication system.
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 3 shows an existing metasurface antenna structure based on a printed circuit board (PCB) system.
  • the metasurface antenna prints a cross metal pattern on the surface of a common PCB, and the cross structure pattern on the surface is With dual polarization properties, it can realize horizontal polarization mode and vertical polarization mode at the same time.
  • This structure is a typical dual polarization metasurface structure.
  • this structure is a single-resonance structure, so its congenital shortcomings are: 1) the working frequency band is very narrow; 2) at the same time, the metasurface antenna can only achieve fixed beams and cannot achieve beam scanning characteristics.
  • Fig. 4 shows an existing liquid crystal metasurface antenna
  • the liquid crystal metasurface antenna is composed of two lower dielectric plates 501 and 502 and an intermediate liquid crystal material layer 503
  • Fig. 5 shows the liquid crystal metasurface antenna of the liquid crystal metasurface antenna.
  • Surface unit structure the lower surface of the upper dielectric plate 501 has a metal pattern 504, the upper surface of the lower dielectric plate 502 has a metal pattern 505, also known as a metal ground, and a liquid crystal material layer 503 is loaded between the two metal patterns 504 and 505.
  • the upper and lower metal patterns 504 and 505 constitute electrodes of the liquid crystal layer. By applying different voltages to the electrodes, the dielectric constant of the liquid crystal material can be adjusted, thereby realizing the beam scanning characteristic of the antenna array.
  • the metal pattern 504 printed on the lower surface of the upper dielectric plate 501 is a triplet structure, so the structure has three resonance frequency points, that is, it has a multi-resonance structure, so the antenna has broadband characteristics.
  • the liquid crystal metasurface antenna adopts the structure of the overall loading of liquid crystal material, so it has inherent shortcomings: 1) the loading area of liquid crystal is too large, so the loss of liquid crystal material in the metasurface structure is very serious; 2) when working at multiple frequencies , all frequency points are synchronously regulated; 3) polarization reconfiguration cannot be achieved.
  • the embodiments of the present application provide a liquid crystal metasurface antenna device and a communication device, which adopt a structure system of partial loading of liquid crystal, which can not only reduce the loss of the liquid crystal antenna, but also enable independent regulation of different frequency points;
  • the characteristics of beam scanning can be realized, and polarization reconfiguration can be realized at the same time; and the working bandwidth of the antenna can be improved, so that the antenna can work in dual-frequency or broadband mode; in addition, the antenna device has the characteristics of regular arrangement or irregular arrangement. cloth is more flexible.
  • the antenna device includes a liquid crystal metasurface reflector 602 and a feed 601 , wherein the liquid crystal metasurface reflector 602 is composed of a plurality of Liquid crystal antenna unit.
  • 701 is a feed source, and commonly used feed sources include but are not limited to horn antennas or dipole antennas.
  • 702 and 704 are dielectric plates, commonly used dielectric plates include but are not limited to PCB or glass; 703 is a mixed layer, the mixed layer contains liquid crystal material and metal patterns, 702, 703 and 704 together constitute a liquid crystal metasurface structure, that is, a super-surface structure. Surface reflector.
  • the feed 701 is located at the focal point of the liquid crystal metasurface reflector, that is, the feed 701 located at the focal point of the antenna irradiates the liquid crystal metasurface structure, and the metasurface structure will cause the electromagnetic waves in the corresponding polarization mode. , for reflection, convergence and shaping.
  • the way that the feed source 701 is located at the focal point of the liquid crystal metasurface can ensure uniform illumination of the liquid crystal metasurface reflector, thereby improving the efficiency of the antenna.
  • the smallest unit of a liquid crystal metasurface antenna device provided by the embodiment of the present application is also called a liquid crystal antenna unit.
  • the liquid crystal antenna unit at least includes: a plurality of oscillators and two layers of dielectric plates; a plurality of oscillators are arranged between the two layers of dielectric plates; the plurality of oscillators include a pair of horizontal oscillators and/or a pair of vertical oscillators; each oscillator includes a left arm , the right arm and the capacitor, the left arm and the right arm are connected by the capacitor, and the liquid crystal material fills the space enclosed by the left arm, the right arm and the capacitor.
  • the liquid crystal antenna unit shown in FIG. 8 is just an example, the liquid crystal antenna unit includes a first dielectric plate 801 and a second dielectric plate 802, and also includes a pair of horizontal dipoles 803 and a pair of vertical dipoles 804, That is, it includes two horizontal oscillators and two vertical oscillators at the same time; however, the antenna unit in the embodiment of the present application may also include only one horizontal oscillator pair 803 or only one vertical oscillator pair 804, that is, only includes two horizontal oscillators Or include two vertical oscillators.
  • the pair of horizontal oscillators is composed of a first horizontal oscillator and a second horizontal oscillator, and the horizontal oscillator is in the horizontal direction;
  • the pair of vertical oscillators is composed of a first vertical oscillator and a second vertical oscillator, and the vertical oscillator is located in the horizontal direction. vertical orientation.
  • the pair of horizontal oscillators has vertical polarization characteristics
  • the pair of vertical oscillators has horizontal polarization characteristics
  • the liquid crystal antenna unit is formed by stacking two upper and lower dielectric plates, a metal pattern is printed between the two dielectric plates, the metal pattern is composed of four oscillators, and the liquid crystal material is filled inside the metal pattern; the length of the oscillator is adjusted,
  • the liquid crystal antenna unit can be operated in dual-band mode or broadband mode.
  • 901 is a dielectric plate, and two vertical oscillators 902 up and down, that is, the first vertical oscillator and the second vertical oscillator form a oscillator pair, and adjust the
  • the length of the two oscillators can make the liquid crystal antenna unit work in dual-frequency mode or broadband mode; similarly, the left and right horizontal oscillators 903, that is, the first horizontal oscillator and the second horizontal oscillator form an oscillator pair, and the length of the two oscillators can be adjusted.
  • Each vibrator can be used as an electrode of the liquid crystal material 904 to load the control voltage 906 of the liquid crystal material 904; on each vibrator, a DC blocking capacitor 905 is welded, and an electric field can be generated inside the vibrator to control the phase shift characteristics of the liquid crystal material 904 .
  • first horizontal vibrator and the second horizontal vibrator may be of equal length or unequal length; similarly, the first vertical vibrator and the second vertical vibrator may be of equal length, It can also be of unequal length.
  • the liquid crystal antenna unit when the length of the first horizontal vibrator and the second horizontal vibrator are not equal, the liquid crystal antenna unit is in a dual-frequency mode or a broadband mode; similarly, when the first vertical vibrator and the second vertical vibrator are When the lengths are not equal, the liquid crystal antenna unit is in a dual-band mode or a broadband mode.
  • the liquid crystal cell can work in dual frequency or broad frequency.
  • the liquid crystal unit when the length difference between the two oscillators in the oscillator pair is large, the liquid crystal unit is in the dual-frequency mode, as shown in Figure 10, which is the simulation diagram of the liquid crystal unit in the dual-frequency mode.
  • the liquid crystal cell can work in the frequency bands of about 39.5GHz and 43GHz at the same time; and when the difference between the lengths of the two oscillators in the oscillator pair is small, the liquid crystal cell is in the broadband mode, as shown in Figure 11. From the simulation diagram of the mode, it can be clearly seen that at this time, the liquid crystal unit can work in the frequency range of about 40GHz-42GHz at the same time.
  • the relative length of the first horizontal vibrator and the second horizontal vibrator can be changed to make the liquid crystal antenna unit in the Dual-band or broadband mode improves the working bandwidth of the antenna.
  • the traditional liquid crystal antenna architecture requires all the liquid crystal materials to be loaded.
  • the liquid crystal material is mainly loaded between the resonant structure and the load, and the coupling relationship between the resonant structure and the load is controlled. Its topology is shown in Figure 12. With the difference of the liquid crystal control voltage, the corresponding coupling relationship changes accordingly, resulting in the phase shift characteristic of the liquid crystal antenna.
  • the traditional liquid crystal antenna adopts an overall loading structure of liquid crystal material, so it has inherent shortcomings: the loading area of liquid crystal is too large, so the loss of liquid crystal material in the metasurface structure is very serious.
  • the metasurface liquid crystal antenna device in the embodiment of the present application adopts the method of partial loading of liquid crystal, and the liquid crystal material is loaded at the position of the resonant structure, and its topology is shown in FIG. 13 .
  • the liquid crystal control voltage With the difference of the liquid crystal control voltage, the corresponding resonance characteristics change accordingly, resulting in the phase shift characteristic of the liquid crystal antenna.
  • the liquid crystal metasurface antenna in the embodiment of the present application has better control flexibility, and each local area can be independently controlled, which reduces the loss of the liquid crystal antenna and also has better electrical performance. .
  • the present application provides a single-polarized liquid crystal antenna unit, as shown in FIG. 14 , which only includes a pair of horizontal dipoles or a pair of vertical dipoles.
  • the single-polarized liquid crystal antenna unit also called the antenna unit radiation structure, is composed of a first dielectric plate 1410, a second dielectric plate 1420, and two oscillators 1430, and the two oscillators 1430 can constitute a horizontal oscillator pair or a Vertical oscillator pair.
  • Each vibrator 1430 includes a left arm, a right arm and a capacitor, wherein the left arm and the right arm can be metal clad copper layers; the metal pattern formed by the left arm and the right arm is discontinuous, and the capacitor 1431 is welded at the disconnected notch, which can be The control electrodes are formed, wherein the capacitor types include but are not limited to blocking capacitors; the liquid crystal material 1432 is filled in the area enclosed by the left arm, the right arm and the capacitor, and the liquid crystal material 1432 can extend beyond the area enclosed by the vibrator 1430 .
  • the control voltage of the liquid crystal material 1432 is loaded on both sides of the capacitor 1431, and the liquid crystal material 1432 has a phase shift characteristic with the change of the control voltage.
  • the shapes of the first medium plate 1410 and the second medium plate 1420 are not unique, as shown in FIG. 15 , they may be square (a in FIG. 15 ), rectangle (b in FIG. 15 ) ), circle (c in FIG. 15 ), ellipse (d in FIG. 15 ), polygon (e in FIG. 15 ), or other irregular arbitrary shapes, which are not limited in the embodiments of the present application.
  • the shape of the medium plate is not limited, which increases the diversity of the design process of the medium plate.
  • the liquid crystal material fills the space or area in different ways, and can be partially filled, fully filled, or overflow filled, as shown in Figure 16, which are several common filling methods, such as a in Figure 16.
  • a in Figure 16 there are several different ways to partially fill the liquid crystal material, which can be partially filled in any dimension such as length, width or height; as shown in d in Figure 16, the liquid crystal material is completely filled
  • overflow filling of the liquid crystal material there are several ways of overflow filling of the liquid crystal material, which can be overflow filling in the dimension of length or height.
  • the filling manner may be any one or more of full filling, partial filling, and overflow filling, which improves the diversity and flexibility of the design process.
  • the pattern of the vibrator or the metal clad copper layer is not unique, including non-unique shapes and non-unique relative positions.
  • the pattern enclosed by the vibrator or the metal clad copper layer may be a rectangle. (a in FIG. 17 ), trapezoid (b, c in FIG. 17 ), triangle (d in FIG. 17 ) or other irregular shapes, which are not limited here; the vibrator or the metal clad copper layer
  • the relative position of the pattern can be in the form of just opposite as shown in e in FIG. 17 , or in the form of staggered as shown in f in FIG. 17 , which is not limited here. It should be understood that the above implementation manner is merely illustrative, and any simple modification based on this manner is within the protection scope of the embodiments of the present application.
  • the present application also provides a single-polarized liquid crystal metasurface antenna device, as shown in FIG. 18 , the single-polarized liquid crystal antenna device is composed of a feed 1801 and a liquid crystal metasurface array 1802 .
  • the liquid crystal metasurface array 1802 is composed of the above-mentioned single-polarized liquid crystal metasurface antenna units arranged periodically, as shown in FIG. 19 . It should be understood that the technical effects brought by the single-polarization liquid crystal metasurface antenna device may refer to the beneficial effects of the single-polarization liquid crystal metasurface antenna unit, which will not be repeated here.
  • the antenna when the lengths of the vibrator 1 and the vibrator 2 are equal, the antenna is a single resonance structure at this time, and the metasurface antenna array is a uniform regular array, as shown in a in Figure 20 When the length of vibrator 1 and vibrator 2 are not equal, the antenna is a multi-resonant structure at this time, which can work in broadband mode or multi-frequency mode, and the metasurface antenna array can form a regular array as shown in b in Figure 20.
  • An irregular matrix can be formed as shown in c in Figure 20.
  • the present application also provides a polarization reconfigurable liquid crystal antenna unit, as shown in FIG. 21 , the polarization reconfigurable liquid crystal antenna unit is composed of two upper and lower dielectric plates and an intermediate liquid crystal layer.
  • the radiation structure of the antenna unit is composed of a first dielectric plate 211, a second dielectric plate 212, a metal copper clad layer 213, and a metal copper clad layer 214, wherein the metal copper clad layer 213 is a pair of horizontal oscillators, and the metal copper clad layer is a pair of horizontal oscillators.
  • 214 is the vertical oscillator pair, and the metal clad copper layer is also called a metal pattern.
  • the pattern surrounded by the metal clad copper layer 213 has vertical polarization characteristics, and the liquid crystal materials 21311 and 21321 are filled inside.
  • the pattern of the metal clad copper layer 213 is discontinuous, and the DC blocking capacitors 21312 and 21322 are welded at the disconnected gaps to form a control electrode; the control voltage of the liquid crystal material 21311 and the liquid crystal material 21321 is loaded on the DC blocking capacitors 21312 and 21322 On both sides of , with the change of the control voltage, the liquid crystal material 21311 and the liquid crystal material 21321 have phase shift characteristics.
  • the pattern formed by the metal clad copper layer 214 has the characteristics of horizontal polarization, and the liquid crystal materials 21411 and 21421 are filled in the interior.
  • the pattern of the metal clad copper layer 21400 is discontinuous, and the DC blocking capacitors 21412 and 21422 are welded at the disconnected gap to form a control electrode; the control voltage of the liquid crystal material 21411 and the liquid crystal material 21421 is loaded on the DC blocking capacitor.
  • the liquid crystal material 21411 and the liquid crystal material 21421 have phase shift characteristics with the change of the control voltage.
  • the shapes of the dielectric plates 211 and 212 are not unique. As shown in FIG. 15 , they may be square, rectangle, circle, ellipse, polygon, or any other irregular shape. be limited.
  • the shape of the medium plate is not limited, which increases the diversity of the design process of the medium plate.
  • the liquid crystal material fills the space or area in different ways, and can be partially filled, fully filled, or overflow filled, as shown in Figure 16, which are several common filling methods, such as a in Figure 16.
  • a in Figure 16 there are several different ways to partially fill the liquid crystal material, which can be partially filled in any dimension such as length, width or height; as shown in d in Figure 16, the liquid crystal material is completely filled
  • overflow filling of the liquid crystal material there are several ways of overflow filling of the liquid crystal material, which can be overflow filling in the dimension of length or height.
  • the filling manner may be any one or more of full filling, partial filling, and overflow filling, which improves the diversity and flexibility of the design process.
  • the pattern of the vibrator or the metal clad copper layer is not unique, including non-unique shapes and non-unique relative positions.
  • the pattern enclosed by the vibrator or the metal clad copper layer may be a rectangle. , trapezoid, triangle or other irregular shapes, which are not limited here; the relative position of the vibrator or the pattern of the metal clad copper layer can be in the form of just opposite or staggered form, which is not limited here. It should be understood that the above implementation manner is merely illustrative, and any simple modification based on this manner is within the protection scope of the embodiments of the present application.
  • the metal pattern 213 has vertical polarization characteristics, and the metal pattern 214 has horizontal polarization characteristics, so this technical solution has dual polarization characteristics.
  • the liquid crystal material 21311, the liquid crystal material 21321, the liquid crystal material 21411 and the liquid crystal material 21421 have phase modulation properties, so this technical solution has the property of polarization reconfiguration.
  • the polarization characteristics are left-handed elliptical polarization or right-handed elliptical polarization at this time.
  • phase difference in the above technical solution is allowed to fluctuate up and down to a certain extent, and does not necessarily need to strictly follow the above angle, for example, it may be exactly equal to the above angle, or slightly lower than or larger than the above angle.
  • the present application also provides a polarization reconfigurable liquid crystal metasurface antenna device, as shown in FIG. 6 , which is composed of a feed source 601 and a liquid crystal metasurface reflector 602 .
  • the polarization reconfigurable liquid crystal metasurface plate is composed of the above polarization reconfigurable liquid crystal metasurface antenna units arranged periodically. It should be understood that for the technical effect brought by the polarization reconfigurable liquid crystal metasurface antenna device, reference may be made to the beneficial effects of the polarization reconfigurable liquid crystal antenna unit, which will not be repeated here.
  • the arrangement of the polarized reconfigurable liquid crystal metasurface antenna units includes, but is not limited to, as shown in FIG. 23 .
  • oscillator 1 and oscillator 2 are a group of oscillators with horizontal polarization characteristics
  • oscillator 3 and oscillator 4 are a group of oscillators with vertical polarization characteristics.
  • the physical lengths of the oscillators are different, and the corresponding resonant frequencies are different.
  • the corresponding polarization has a single resonance characteristic, and the antenna works in the narrow-band mode; when the physical lengths of the two oscillators in each group are not the same.
  • the corresponding polarization has multi-resonance characteristics, and the antenna works in multi-frequency mode or broadband mode.
  • the arrangement of the metasurface antenna units is shown in Figure 23(a)-23(i).
  • the lengths of oscillator 1 and oscillator 2 are equal, and the lengths of oscillator 3 and oscillator 4 are also the same, and The arrangement of the left and right antenna units is exactly the same; as shown in Figure 23(b), the lengths of the oscillator 1 and the oscillator 2 are not equal, the length of the oscillator 3 and the oscillator 4 are equal, and the arrangement of the left and right antenna units is exactly the same;
  • Figure 23(c) in the left antenna unit, the lengths of vibrator 1 and vibrator 2 are not equal, and the lengths of vibrator 3 and vibrator 4 are equal.
  • the antenna units have the characteristics of regular arrangement or irregular arrangement, the array arrangement is more flexible, and the diversity and flexibility of the design process are improved.
  • the present application also provides a communication device, including the above-mentioned liquid crystal metasurface antenna device.
  • the communication device may be any type of terminal, or may be any type of network device, which is not limited in this application. It should be understood that for the technical effect brought by the communication device, reference may be made to the beneficial effect of the corresponding liquid crystal metasurface antenna device provided by the above-mentioned embodiments, which will not be repeated here. As shown in FIG.
  • the communication device provided by the embodiment of the present application includes: a processor 2401, a memory 2402, a liquid crystal metasurface antenna device 2403, and a communication interface 2405; wherein, the processor 2401, the memory 2402, the liquid crystal metasurface antenna device 2403, and the The communication interface 2405 is connected through the system bus 2404 .
  • the computer program of the communication device is stored in the memory 2402, and the processor 2401 executes corresponding computer codes to perform corresponding functions, and controls the liquid crystal metasurface antenna device 2403 to send and receive signals.
  • the memory 2402 may include volatile memory, such as non-volatile dynamic random access memory (NVRAM), phase change random access memory (PRAM), magnetic Resistive random access memory (Magnetic Random Access Memory, MRAM), etc.; the memory 2402 may also include non-volatile memory, such as at least one magnetic disk storage device, Electronically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory) Memory, EEPROM), flash memory devices, such as NOR flash memory or NAND flash memory.
  • the non-volatile memory stores the operating system and application programs executed by the processor.
  • the processor 2401 loads the operating program and data from the non-volatile memory into the memory and stores the data content in the mass storage device.
  • the processor 2401 is the control center of the above-mentioned communication device.
  • the processor 2401 uses various interfaces and lines to connect various parts of the entire communication device, and executes each part of the communication device by running or executing the software programs and/or application modules stored in the memory 2402 and calling the data stored in the memory 2402. functions and process data for overall monitoring of the communication device.
  • the processor 2401 may only include a CPU, or may be a combination of a CPU, a graphics processor (Graphic Processing Unit, GPU), a DSP, and a control chip (such as a baseband chip) in the communication unit.
  • the CPU may be a single computing core, or may include multiple computing cores.
  • the processor 2401 and the memory 2402 may exist in the form of one device, such as a single-chip microcomputer or the like.
  • the system bus 2404 can be an industry standard architecture (Industry Standard Architecture, ISA) bus, a peripheral device interconnect (Peripheral Component Interconnect, PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus and the like.
  • ISA Industry Standard Architecture
  • PCI peripheral device interconnect
  • EISA Extended Industry Standard Architecture
  • the system bus 2404 can be divided into an address bus, a data bus, a control bus, and the like.
  • the liquid crystal metasurface antenna device 2403 communicates with the processor 2401 through the system bus 2404 , and realizes the communication function of the communication device under the control of the processor 2401 .
  • the disclosed apparatus may also be implemented in other manners.
  • the apparatus embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or integrated to another system, or some features can be ignored or not implemented.
  • the indirect coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in part that contributes to the prior art or all or part of the technical solution, and the computer software product is stored in a storage medium,
  • a computer device which may be a personal computer, a server, or a network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种液晶超表面天线装置和通信装置,该液晶超表面天线装置包括液晶超表面反射板和馈源;液晶超表面反射板由多个液晶天线单元构成;其中,液晶天线单元至少包括:多个振子、两层介质板材;多个振子设置在两层介质板材之间;多个振子包括水平振子对和/或垂直振子对;每个振子包括左臂、右臂和电容,左臂和右臂通过所述电容连接,液晶材料填充于所述左臂、右臂和电容围成的空间。其采用液晶局部加载的架构体系,不仅可以实现波束扫描的特性,还可以降低液晶天线的损耗,同时还可以实现极化重构,并提升天线的工作带宽。

Description

一种液晶超表面天线装置和通信装置
本申请要求在2020年11月06日提交中国专利局、申请号为202011231730.4、申请名称为“一种液晶超表面天线装置和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种液晶超表面天线装置和通信装置。
背景技术
随着通信技术的发展,天线作为发射和接收电磁波的载波,已经成为任何一个完整的通信系统中必不可少的一部分。在高频毫米波通信网络中,需要实现大带宽、高容量的信息传输;同时,随着多制式通信设备的出现,窄带天线已经不能满足现有场景的需求,宽频带和多频带天线的应用越来越广泛。
高频毫米波天线要实现远距离传输,天线必须阵列化。阵列天线具有高增益的优点,但同时也具有波束宽度窄,覆盖范围小的缺点。为了解决高增益天线覆盖问题,常采用相控阵天线的途径,相控阵天线作为传统的波束扫描天线,一直都是学术界与工业界的研究热点,但是相控阵天线自身存在系统架构复杂和高成本的缺点,系统性能对核心芯片也具有高度依赖性。为了突破传统波束扫描天线的架构约束,液晶超表面天线是重要途径之一。
发明内容
本申请提供一种液晶超表面天线装置和通信装置,采用液晶局部加载的架构体系,既可以降低液晶天线的损耗,也使得不同频点可以独立调控;不仅可以实现波束扫描的特性,同时还可以实现极化重构;并且能够提升天线的工作带宽,使得天线可以工作在双频或者宽频模式;另外,该天线装置具有规则排列或者非规则排列特性,阵列排布更灵活。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请提供一种液晶超表面天线装置,包括:液晶超表面反射板和馈源;所述液晶超表面反射板由多个液晶天线单元构成;其中,所述液晶天线单元至少包括:多个振子、两层介质板材;所述多个振子设置在所述两层介质板材之间;所述多个振子包括水平振子对和/或垂直振子对;每个所述振子包括左臂、右臂和电容,所述左臂和所述右臂通过所述电容连接,液晶材料填充于所述左臂、所述右臂和所述电容围成的空间。
在一种可能的实现方式中,所述水平振子对由第一水平振子和第二水平振子构成,所述水平振子处于水平方向;所述垂直振子对由第一垂直振子和第二垂直振子构成,所述垂直振子处于垂直方向。
在一种可能的实现方式中,所述水平振子对具有垂直极化特性;所述垂直振子对具有水平极化特性。
在上述实现方式中,所述振子包括水平振子和垂直振子,水平振子对具有垂直极化特 性,垂直振子对具有水平极化特性,使得所述液晶天线具有两个极化分量,从而具备极化可重构的特性。
在一种可能的实现方式中,所述第一水平振子和所述第二水平振子为等长或者不等长;所述第一垂直振子和所述第二垂直振子为等长或者不等长。
在一种可能的实现方式中,当所述第一水平振子和所述第二水平振子不等长时,所述液晶天线单元处于双频模式或者宽频模式;当所述第一垂直振子和所述第二垂直振子不等长时,所述液晶天线单元处于双频模式或者宽频模式。
在上述实现方式中,当所述水平振子对中的第一水平振子和第二水平振子不等长时,可以通过改变所述第一水平振子和第二水平振子的相对长度,来使得所述液晶天线单元处于双频或者宽频模式,提升了天线的工作带宽;类似的,当所述垂直振子对重的两个振子不等长时,可以通过改变所述第一垂直振子和第二垂直振子的相对长度,来使得所述液晶天线单元处于双频或者宽频模式,提升了天线的工作带宽。
在一种可能的实现方式中,当所述第一水平振子和所述第二水平振子等长时,所述天线单元处于单频模式;当所述第一垂直振子和所述第二垂直振子等长时,所述天线单元处于单频模式。
在一种可能的实现方式中,当所述第一水平振子和所述第一垂直振子等长时:
当所述液晶材料的相位差为0°或者180°时,所述液晶天线单元的极化特性为45°极化或者-45°极化;当所述液晶材料的相位差为-90°或者90°时,所述液晶天线单元的极化特性为左旋圆极化或者右旋圆极化;当所述液晶材料的相位差不等于0°或者90°或者-90°或者180°时,所述液晶天线单元的极化特性为左旋椭圆极化或者右旋椭圆极化。
在上述实现方式中,通过改变液晶材料的相位差,可以使得该液晶天线单元处于不同的极化模式,实现了天线的极化可重构性。
在一种可能的实现方式中,所述液晶材料的加载模式为局部加载。
在上述实现方式中,所述液晶材料为局部加载的模式,使得该液晶超表面天线的每个局部区域都可以独立控制,具有更好的控制灵活性,同时还具有更好的电性能。
在一种可能的实现方式中,所述多个振子的液晶材料的填充方式相同或不同。
在上述实现方式中,对多个振子的液晶材料的填充方式没有加以限定,提高了设计工艺的多样性和灵活性。
在一种可能的实现方式中,所述填充方式包括全部填充、部分填充、溢出填充。
在上述实现方式中,所述填充方式可以为全部填充、部分填充、溢出填充中的任意一种或者多种,提高了设计工艺的多样性和灵活性。
在一种可能的实现方式中,所述介质板材的形状不唯一,可以为正方形、长方形、圆形、椭圆形、多边形或者任意形状中的至少一种。
在上述实现方式中,对所述介质板材的形状不加限定,增加了该介质板材的设计工艺的多样性。
在一种可能的实现方式中,所述馈源位于所述液晶超表面反射板的焦点处。
在上述实现方式中,馈源位于液晶超表面反射板的焦点处,保证对该液晶表面反射板有均匀的照射,提高了天线效率。
在一种可能的实现方式中,所有的所述液晶天线单元中的所述振子的排列方式一致。
在上述实现方式中,由于所有的液晶天线单元中的振子的排列方式都可以保持一致,从而降低了天线架构的复杂度,进一步的,可以提高生产效率和降低生产成本。
第二方面,本申请提供一种通信装置,包括上述液晶超表面天线装置。其中,第二方面所带来的技术效果可参考第一方面所提供的对应的液晶超表面天线装置的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统架构的示意图;
图2为本申请实施例提供的一种通信系统架构的示意图;
图3为本申请实施例提供的一种现有的超表面天线的示意图;
图4为本申请实施例提供的一种现有的液晶超表面天线的示意图;
图5为本申请实施例提供的一种现有的液晶超表面单元的示意图;
图6为本申请实施例提供的一种液晶超表面天线装置的整体结构示意图;
图7为本申请实施例提供的一种液晶超表面天线装置的整体结构示意图;
图8为本申请实施例提供的一种液晶天线单元的结构示意图;
图9为本申请实施例提供的一种液晶天线单元的解剖图;
图10为本申请实施例提供的一种液晶天线单元工作于双频模式的仿真图;
图11为本申请实施例提供的一种液晶天线单元工作于宽频模式的仿真图;
图12为本申请实施例提供的一种传统液晶天线的液晶加载拓扑结构的示意图;
图13为本申请实施例提供的一种液晶天线的液晶局部加载拓扑结构的示意图;
图14为本申请实施例提供的一种单极化液晶天线单元的结构示意图;
图15为本申请实施例提供的介质板材的一部分形状示意图;
图16为本申请实施例提供的液晶材料的一部分填充形式示意图;
图17为本申请实施例提供的金属图案的一部分形状示意图;
图18为本申请实施例提供的一种单极化液晶超表面天线装置的结构示意图;
图19为本申请实施例提供的一种液晶超表面阵列的示意图;
图20为本申请实施例提供的一种液晶超表面天线单元排列形式的示意图;
图21为本申请实施例提供的一种极化可重构液晶天线单元的结构示意图;
图22为本申请实施例提供的一种液晶材料控制电压与相位差之间的关系示意图;
图23(a)-23(i)为本申请实施例提供的一种极化可重构液晶超表面天线单元的排列形式示意图;
图24为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产 品或设备固有的其它步骤或单元。本申请实施例中,“多个”包括两个或两个以上,“系统”可以和“网络”相互替换。本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
另外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
为了方便理解本申请实施例,下面介绍与本申请实施例相关的术语:
1、超表面天线:超表面天线是由电磁超表面材料构成的,形成具有天线辐射特性的电磁结构。其中电磁超表面材料是一种人工设计的材料,通常具有一定的排列规律,其具有天然材料不具有的特殊属性。
2、馈源:馈源是反射面或者透射面天线的基本组成部分,通常是一个低增益天线。馈源作为初级级辐射器,它把束缚的电磁波变成辐射的电磁波能量,照射到反射面或者透射面天线上,从而形成一个高增益的反射面天线或者透射面天线。常见的馈源包括:喇叭天线,偶极子天线,贴片天线等。
3、振子:振子通常是指天线振子,是构成天线辐射结构的基本单元,振子的长度决定着天线的工作特性,常见的振子包括半波振子,全波振子等。
4、液晶:液晶的材料属性是一种可以电控的材料,当液晶材料受到偏压作用时,材料分子会受到电场力的作用,分子轴向排列顺序会重新排列,进而液晶介电常数会发生变化,产生相移特性。目前,常用的液晶材料,偏压范围0V~20V时,液晶介电常数的变化范围为2.5~3.5。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例提供的液晶超表面天线装置可以应用于各类通信系统中,例如,卫星通信系统、物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)系统、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、第五代(5G)通信系统,例如5G新无线(new radio,NR),以及5G移动通信系统的三大应用场景增强型移动带宽(enhanced mobile broadband,eMBB),超可靠、低时延通信(ultra reliable low latency communications,uRLLC)和海量机器类通信(massive machine type communications,mMTC),设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、车联网通信系统,或者还可以是其他的或者未来的通信系统,本申请实施例对此不作具体限定。
为了便于理解本申请实施例,示例性的,以图1和图2所示的网络架构对本申请实施 例所使用的应用场景进行说明,该网络架构可以应用于上述各类通信系统。图1所示的网络架构为一种网络设备(图1中表现为基站)间的通信架构,例如,本申请实施例中的液晶超表面天线装置可以应用于地面基站,实现基站与基站之间通信,并具有波束成型的能力,当其用于基站之间的通信时,可以实现点到多点之间的通信,一个中心基站可以连接多边缘基站。又如图2所示的网络架构,其为一种网络设备与终端设备之间的通信架构,本申请实施例提供的液晶超表面天线装置可以用于网络设备(图2中表示为基站)与终端用户之间的通信,其具有波束成型的能力,可以增大扇区覆盖,一个基站可以覆盖多个扇区用户;同时,该基站具有双频特性,可以同时支持多个制式信息(比如4G信息和5G信息);另外,具有极化可重构性的优势,可以扩大信号传递容量。所述网络设备的数量可以为一个或多个,所述终端设备的数量可以为一个或多个(如图2所示为三个终端设备),在本申请实施例中对网络设备和终端设备的类型和数量均不做限定。
其中,终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、轻型终端设备(light UE)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),或者可以是未来的通信系统中承载网络设备功能的装置,本申请实施例并不限定。
网络设备还可以包括核心网设备。核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)或用户面功能(user plane function,UPF)等。
网络设备还可以是设备到设备(Device to Device,D2D)通信、机器到机器(Machine to Machine,M2M)通信、车联网、或卫星通信系统中承载网络设备功能的装置。
需要说明的是,上述仅列举了部分网元之间通信的方式,其他网元之间也可以通过某些连接方式进行通信,本申请实施例这里不再赘述。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图3示出了一种现有的基于印制电路板(printed circuit board,PCB)体制的超表面天线结构,该超表面天线在普通的PCB表面印制十字金属图案,其表面的十字结构图案具有双极化特性,可以同时实现水平极化模式和垂直极化模式,该结构是一种典型的双极化超表面结构。但是,该结构为一种单谐振架构,所以其先天性的缺点在于1)工作频段很窄;2)同时,该超表面天线只能实现固定波束,不能实现波束扫描特性。
图4示出了一种现有的液晶超表面天线,该液晶超表面天线由下两块介质板501和502以及中间液晶材料层503组成,图5示出了该液晶超表面天线的液晶超表面单元结构,上层介质板501的下表面有金属图案504,下层介质板502的上表面有金属图案505,又称金属地,两层金属图案504和505之间加载液晶材料层503。其中,上下金属图案504和505构成液晶层的电极,通过在电极上施加不同的电压,可以调节液晶材料的介电常数, 从而实现天线阵列的波束扫描特性。上层介质板501的下表面印制金属图案504为三振子结构,因此该结构具有三个谐振频点,也就是说,其具有多谐振的结构,所以该天线具有宽带特性。但是该液晶超表面天线,采用液晶材料整体加载的架构,所以其存在先天性的缺点:1)液晶加载面积太大,因此液晶材料在超表面结构中的损耗很严重;2)多频工作时,所有频点同步调控;3)不能实现极化可重构。
为了解决上述问题,本申请实施例提供了一种液晶超表面天线装置和通信装置,其采用液晶局部加载的架构体系,既可以降低液晶天线的损耗,也使得不同频点可以独立调控;不仅可以实现波束扫描的特性,同时还可以实现极化重构;并且能够提升天线的工作带宽,使得天线可以工作在双频或者宽频模式;另外,该天线装置具有规则排列或者非规则排列特性,阵列排布更灵活。
下面将结合附图对本申请提供的液晶超表面天线装置和通信装置进行具体说明。
如图6所示,为本申请实施例提供的一种液晶超表面天线装置的整体结构,该天线装置包括液晶超表面反射板602和馈源601,其中,液晶超表面反射板602由多个液晶天线单元构成。
又如图7所示,仍然为本申请实施例提供的一种液晶超表面天线装置的整体结构,具体的,其中701为馈源,常用的馈源包括但不限于喇叭天线或者偶极子天线;702和704为介质板材,常用的介质板材包括但不限于PCB或者玻璃;703为混合层,该混合层包含液晶材料和金属图案,702、703和704共同构成液晶超表面结构,也即超表面反射板。
一种可能的实现方式中,馈源701位于液晶超表面反射板的焦点处,也即位于天线焦点处的馈源701照射到液晶超表面结构上,超表面结构会将相应极化方式的电磁波,进行反射,汇聚和赋形。该馈源701位于液晶超表面焦点处的方式,可以保证对该液晶超表面反射板有着均匀的照射,提高了天线效率。
一种可能的实现方式中,本申请实施例提供的一种液晶超表面天线装置的最小单元,也称液晶天线单元。该液晶天线单元至少包括:多个振子、两层介质板材;多个振子设置在所述两层介质板材之间;多个振子包括水平振子对和/或垂直振子对;每个振子包括左臂、右臂和电容,左臂和右臂通过电容连接,液晶材料填充于左臂、右臂和电容围成的空间。
图8中所示出的液晶天线单元仅为一种示例,该液晶天线单元包括第一介质板材801和第二介质板材802,并且其同时包含了一个水平振子对803和一个垂直振子对804,即同时包含了两个水平振子和两个垂直振子;但是本申请实施例中的天线单元也可以是仅包含一个水平振子对803或者是仅包含一个垂直振子对804,即仅包含两个水平振子或者进包含两个垂直振子。
在一种可能的实现方式中,水平振子对由第一水平振子和第二水平振子构成,该水平振子处于水平方向;垂直振子对由第一垂直振子和第二垂直振子构成,该垂直振子处于垂直方向。
相应的,在一种可能的实现中,水平振子对具有垂直极化特性,垂直振子对具有水平极化特性。
也就是说,该液晶天线单元由上下两块介质板层叠而成,两块介质板之间印制金属图案,金属图案由四个振子构成,液晶材料填充在金属图案内部;调整振子的长度,可以让液晶天线单元工作于双频模式或者宽频模式。
如图9所示,为本申请实施例提供的一种液晶天线单元的解剖图,901为介质板材,上下两个垂直振子902,即第一垂直振子和第二垂直振子组成一个振子对,调节两个振子的长度,可以让液晶天线单元工作于双频模式或者宽频模式;同样,左右两个水平振子903,即第一水平振子和第二水平振子组成一个振子对,调节两个振子的长度,可以让液晶天线单元工作于双频模式或者宽频模式。每个振子可以作为液晶材料904的电极,用于加载液晶材料904的控制电压906;在每个振子上,焊接隔直电容905,振子内部可以产生电场,用于控制液晶材料904的相移特性。
在一种可能的实现方式中,第一水平振子和第二水平振子可以为等长的,也可以为不等长的;同样的,第一垂直振子和第二垂直振子可以为等长的,也可以为不等长的。
在一种可能的实现方式中,当第一水平振子和第二水平振子不等长时,液晶天线单元处于双频模式或者宽频模式;同样的,当第一垂直振子和所述第二垂直振子不等长时,液晶天线单元处于双频模式或者宽频模式。
也就是说,当水平振子中的振子的长度不相等对或者垂直振子对中的振子不相等时,液晶单元可以工作在双频或者宽频上。简单来讲,当振子对中的两个振子长度相差较大时,液晶单元处于双频模式,如图10所示,为液晶单元出于双频模式的仿真图,可以很明显的看出,此时,液晶单元可以同时工作在大约39.5GHz和43GHz的频段上;而当振子对中的两个振子长度相差较小时,液晶单元处于宽频模式,如图11所示,为液晶单元出于宽频模式的仿真图,可以很明显的看出,此时,液晶单元可以同时工作在大约40GHz-42GHz的频段区间上。
由此可见,当水平振子中的振子的长度不相等对或者垂直振子对中的振子不相等时,可以通过改变第一水平振子和第二水平振子的相对长度,来使得所述液晶天线单元处于双频或者宽频模式,提升了天线的工作带宽。
传统的液晶天线架构,需要用到液晶材料全部加载,液晶材料主要加载在谐振结构和负载之间,控制的是谐振结构与负载之间的耦合关系,其拓扑结构如图12所示。随着液晶控制电压的不同,相应的耦合关系随之改变,从而产生液晶天线的相移特性。但是传统的液晶天线采用液晶材料整体加载的架构,所以其存在先天性的缺点:液晶加载面积太大,因此液晶材料在超表面结构中的损耗很严重。
一种可能的实现方式中,本申请实施例中的超表面液晶天线装置采用液晶局部加载的方式,液晶材料加载在谐振结构位置,其拓扑结构如图13所示。随着液晶控制电压的不同,相应的谐振特性随之改变,从而产生液晶天线的相移特性。相比于传统的液晶天线架构,本申请实施例中的液晶超表面天线具有更好的控制灵活性,每个局部区域可以独立控制,降低了液晶天线的损耗的同时还具有更好的电性能。
在一种可能的实现方式中,本申请提供一种单极化液晶天线单元,如图14所示,其只包含一对水平振子或一对垂直振子。其中,该单极化液晶天线单元,也称天线单元辐射结构,由第一介质板材1410,第二介质板材1420,和两个振子1430构成,这两个振子1430可以构成一个水平振子对或者一个垂直振子对。每个振子1430包括左臂、右臂和电容,其中,左臂和右臂可以为金属敷铜层;左臂和右臂构成的金属图案不连续,在断开的缺口处焊接电容1431,可以形成控制电极,其中,电容种类包括但不限于隔直电容;液晶材料1432填充于左臂、右臂和电容围成的区域内,液晶材料1432可以超出该振子1430围成的 区域。液晶材料1432的控制电压,加载在该电容1431的两侧,随着控制电压的变化,该液晶材料1432具有相移特性。
一种可能的实现方式中,第一介质板材1410和第二介质板材1420的形状不唯一,如图15所示,可以是正方形(如图15中的a)、长方形(如图15中的b)、圆形(如图15中的c)、椭圆形(如图15中的d)、多边形(如图15中的e)或者其他不规则的任意形状,本申请实施例不予限定。
在上述实现方式中,对所述介质板材的形状不加限定,增加了该介质板材的设计工艺的多样性。
一种可能的实现方式中,液晶材料的填充空间或区域的方式不唯一,可以部分填充,全部填充,溢出填充,如图16所示,为几种常见的填充方式,如图16中的a、b、c所示,为液晶材料部分填充的几种不同的方式,可以为长度、宽度或者高度等任意一个维度上的部分填充;又如图16中的d所示,为液晶材料全部填充的方式,液晶材料刚好填满;又如图16中的e或图16中的f所示,为液晶材料溢出填充的几种方式,可以为长度或者高度的维度上的溢出填充。应理解,上述的实现方式仅仅是示意性的,任何基于此方式的简单变形皆为本申请实施例保护的范围。
在上述实现方式中,所述填充方式可以为全部填充、部分填充、溢出填充中的任意一种或者多种,提高了设计工艺的多样性和灵活性。
一种可能的实现方式中,振子或者金属敷铜层的图案不唯一,包括形状不唯一和相对位置不唯一,如图17所示,该振子或者金属敷铜层的围成的图案可以为长方形(如图17中的a)、梯形(如图17中的b、c)、三角形(如图17中的d)或者其他不规则的形状,在此不做限定;该振子或者金属敷铜层的图案的相对位置可以为如图17中的e所示的刚好相对的形式,也可以为如图17中的f所示的错开的形式,在此不做限定。应理解,上述的实现方式仅仅是示意性的,任何基于此方式的简单变形皆为本申请实施例保护的范围。
本申请还提供一种单极化液晶超表面天线装置,如图18所示,该单极化液晶天线装置由馈源1801和液晶超表面阵列1802组成。其中,液晶超表面阵列1802由上述单极化液晶超表面天线单元,周期排列组成,如图19所示。应理解,该单极化液晶超表面天线装置所带来的技术效果可参考上述单极化液晶超表面天线单元的有益效果,此处不再赘述。
在一种可能的实现方式中,如图20所示,当振子1和振子2的长度相等时,此时天线为单谐振结构,超表面天线阵列为均匀的规则阵列,如图20中的a所示;当振子1和振子2不等长度时,此时天线为多谐振结构,可以工作在宽频模式或者多频模式,超表面天线阵列可以组成规则阵列如图20中的b所示,也可以组成非规则阵如图20中的c所示。
本申请还提供一种极化可重构液晶天线单元,如图21所示,该极化可重构液晶天线单元由上下层叠的两块介质板材和中间液晶层组成。其中,天线单元辐射结构由第一介质板材211,第二介质板材212,金属敷铜层213,和金属敷铜层214构成,其中,金属敷铜层213即为水平振子对,金属敷铜层214即为垂直振子对,金属敷铜层也称金属图案。金属敷铜层213围成的图案,具有垂直极化特性,其内部填充液晶材料21311和21321。金属敷铜层213的图案不连续,在断开的缺口处焊接隔直电容21312和21322,可以形成控制电极;液晶材料21311和液晶材料21321的控制电压,加载在所述隔直电容21312和21322的两侧,随着控制电压的变化,该液晶材料21311和液晶材料21321具有相移特性。相应 的,金属敷铜层214围成的图案,具有水平极化特性,其内部填充液晶材料21411和21421。所述金属敷铜层21400的图案不连续,在断开的缺口处焊接隔直电容21412和21422,可以形成控制电极;所述液晶材料21411和液晶材料21421的控制电压,加载在所述隔直电容21412和21422的两侧,随着控制电压的变化,该液晶材料21411和液晶材料21421具有相移特性。
一种可能的实现方式中,介质板材211和212的形状不唯一,如图15所示,可以是正方形,长方形,圆形,椭圆形,多边形或者其他不规则的任意形状,本申请实施例不予限定。
在上述实现方式中,对所述介质板材的形状不加限定,增加了该介质板材的设计工艺的多样性。
一种可能的实现方式中,液晶材料的填充空间或区域的方式不唯一,可以部分填充,全部填充,溢出填充,如图16所示,为几种常见的填充方式,如图16中的a、b、c所示,为液晶材料部分填充的几种不同的方式,可以为长度、宽度或者高度等任意一个维度上的部分填充;又如图16中的d所示,为液晶材料全部填充的方式,液晶材料刚好填满;又如图16中e或图16中的f所示,为液晶材料溢出填充的几种方式,可以为长度或者高度的维度上的溢出填充。应理解,上述的实现方式仅仅是示意性的,任何基于此方式的简单变形皆为本申请实施例保护的范围。
在上述实现方式中,所述填充方式可以为全部填充、部分填充、溢出填充中的任意一种或者多种,提高了设计工艺的多样性和灵活性。
一种可能的实现方式中,振子或者金属敷铜层的图案不唯一,包括形状不唯一和相对位置不唯一,如图17所示,该振子或者金属敷铜层的围成的图案可以为长方形、梯形、三角形或者其他不规则的形状,在此不做限定;该振子或者金属敷铜层的图案的相对位置可以为刚好相对的形式,也可以为错开的形式,在此不做限定。应理解,上述的实现方式仅仅是示意性的,任何基于此方式的简单变形皆为本申请实施例保护的范围。
一种可能的实现方式中,金属图案213具有垂直极化特性,金属图案214具有水平极化特性,所以该技术方案具有双极化特性。液晶材料21311、液晶材料21321、液晶材料21411和液晶材料21421,具有调相特性,所以该技术方案具有极化可重构特性。
当第一水平振子和第一垂直振子等长时,即当金属图案2131和金属图案2141完全等长时,通过改变液晶材料的控制电压,可以使得液晶材料的相位差发生改变,从而使得该液晶天线单元的极化特性处于不同的极化特性,液晶材料控制电压与相位差之间的关系如图22所示:
(1)改变液晶材料21311和液晶材料21411的控制电压,使其具有0°或者180°的相位差,此时合成的极化特性为45°线极化或者-45°线极化。(金属图案2132和金属图案2142,以及液晶材料21321和液晶材料21421,具有类似特性);
(2)改变液晶材料21311和液晶材料21411的控制电压,使其具有-90°或者90°的相位差,此时合成的极化特性为左旋圆极化或者右旋圆极化。(金属图案2132和金属图案2142,以及液晶材料21321和液晶材料21421,具有类似特性);
(3)改变液晶材料21311和液晶材料21411的控制电压,使其相位差不等于0°,+/-90°,180°时,此时极化特性为左旋椭圆极化或者右旋椭圆极化。(金属图案2132和金属图案2142,以及液晶材料21321和液晶材料21421,具有类似特性)。
应理解,上述技术方案中的相位差允许一定程度的上下浮动,并不一定需要严格遵照上述角度,例如,可以刚好等于上述角度,也可以稍微低于或者大于上述角度。
本申请还提供一种极化可重构液晶超表面天线装置,如图6所示,由馈源601和液晶超表面反射板602组成。其中极化可重构液晶超表面板由上述极化可重构液晶超表面天线单元,周期排列组成。应理解,该极化可重构液晶超表面天线装置所带来的技术效果可参考上述极化可重构液晶天线单元的有益效果,此处不再赘述。
一种可能的实现方式中,极化可重构液晶超表面天线单元的排列形式包括但不限于如图23所示。其中,振子1和振子2是一组振子,具有水平极化特性;振子3和振子4是一组振子,具有垂直极化特性。振子的物理长度不同,其对应的谐振频率不同,当每组两个振子物理长度相同时,其对应极化具有单谐振特性,该天线工作于窄带模式;当每组两个振子物理长度不相同时,对应极化具有多谐振特性,该天线工作于多频模式或者宽频模式。超表面天线单元的排列形式如图23(a)-23(i)所示,如图23(a)所示,振子1和振子2的长度相等,振子3和振子4的长度也相等,并且左右两个天线单元的排列完全一致;又如图23(b)所示,振子1和振子2的长度不相等,振子3和振子4的长度相等,并且左右两个天线单元的排列完全一致;又如图23(c)所示,在左边的天线单元中,振子1和振子2的长度不相等,振子3和振子4的长度相等,相比于左边的天线单元,右边的天线单元中的振子1和振子2的位置进行了互换,其它都相同;又如图23(d)所示,在左边的天线单元中,振子1和振子2的长度相等,振子3和振子4的长度相等,而在右边的天线单元中,振子1和振子2的长度相等,振子3和振子4的长度不相等;又如图23(e)所示,在左边的天线单元中,振子1和振子2的长度相等,振子3和振子4的长度不相等,相比于左边的天线单元,右边的天线单元中的振子3和振子4的位置进行了互换,其它都相同;又如图(f)所示,左右两个天线单元的排列完全一致,都是振子1和振子2不相等,振子3和振子4也不相等;又如图(g)所示,在左右两个天线单元中,都是振子1和2不相等,且振子3和振子4也不相等,不同之处在于,振子3和振子4的位置进行了互换;又如图23(h)所示,在左右两个的天线单元中,振子1和振子2的长度不相等,振子3与振子4的长度也不相等,不同之处在于,振子1和振子2的位置进行了互换,振子3和振子4的位置也进行了互换;又如图23(i)所示,在左右两个的天线单元中,振子1和振子2的长度不相等,振子3与振子4的长度也不相等,不同之处在于,振子1和振子2的位置进行了互换。应理解,上述的实现方式仅仅是示意性的,任何基于此方式的简单变形皆为本申请实施例保护的范围。
在上述可能的实现方式中,天线单元具有规则排列或者非规则排列特性,阵列排布更灵活,提高了设计工艺的多样性和灵活性。
本申请还提供一种通信装置,包括上述液晶超表面天线装置。该通信装置可以是任意一类终端,也可以是任意一类网络设备,本申请对此不予限定。应理解,该通信装置所带来的技术效果可参考上述实施例所提供的对应的液晶超表面天线装置的有益效果,此处不再赘述。如图24所示,本申请实施例提供的通信装置包括:处理器2401、存储器2402、液晶超表面天线装置2403以及通信接口2405;其中,处理器2401、存储器2402、液晶超表面天线装置2403以及通信接口2405通过系统总线2404连接。其中,该通信装置的计算机程序存储于存储器2402中,所述处理器2401会执行相应计算机代码执行相应功能, 控制液晶超表面天线装置2403收发信号。
在本申请具体实施方式中,存储器2402可以包括易失性存储器,例如非挥发性动态随机存取内存(Nonvolatile Random Access Memory,NVRAM)、相变化随机存取内存(Phase Change RAM,PRAM)、磁阻式随机存取内存(Magnetic Random Access Memory,MRAM)等;存储器2402还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)。非易失存储器储存处理器所执行的操作系统及应用程序。处理器2401从非易失存储器加载运行程序与数据到内存并将数据内容储存于大量储存装置中。
处理器2401是上述通信装置的控制中心。处理器2401利用各种接口和线路连接整个通信装置的各个部分,通过运行或执行存储在存储器2402内的软件程序和/或应用模块,以及调用存储在存储器2402内的数据,执行通信装置的各种功能和处理数据,从而对通信装置进行整体监控。
处理器2401可以仅包括CPU,也可以是CPU、图像处理器(Graphic Processing Unit,GPU)、DSP以及通信单元中的控制芯片(例如基带芯片)的组合。在本申请实施方式中,CPU可以是单运算核心,也可以包括多运算核心。在一些实施例中,所述处理器2401和所述存储器2402可以以一个器件的形式存在,例如单片机等。
系统总线2404可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该系统总线2404可以分为地址总线、数据总线、控制总线等。
所述液晶超表面天线装置2403通过系统总线2404与处理器2401进行通信,在处理器2401的控制下实现通信装置的通信功能。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可以集成到另一个系统,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步 骤。
以上所述,仅为本申请的一些具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可对这些实施例做出另外的变更和修改。因此,所附权利要求意欲解释为包括上述实施例以及落入本申请范围的说是有变更和修改。因此,本申请保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种液晶超表面天线装置,其特征在于,包括:液晶超表面反射板和馈源;
    所述液晶超表面反射板由多个液晶天线单元构成;
    其中,所述液晶天线单元至少包括:多个振子、两层介质板材;
    所述多个振子设置在所述两层介质板材之间;
    所述多个振子包括水平振子对和/或垂直振子对;
    每个所述振子包括左臂、右臂和电容,所述左臂和所述右臂通过所述电容连接,液晶材料填充于所述左臂、所述右臂和所述电容围成的空间。
  2. 如权利要求1中所述的液晶超表面天线装置,其特征在于,
    所述水平振子对由第一水平振子和第二水平振子构成,所述水平振子处于水平方向;
    所述垂直振子对由第一垂直振子和第二垂直振子构成,所述垂直振子处于垂直方向。
  3. 如权利要求1或2中所述的液晶超表面天线装置,其特征在于,
    所述水平振子对具有垂直极化特性;
    所述垂直振子对具有水平极化特性。
  4. 如权利要求2或3任一项所述的液晶超表面天线装置,其特征在于,
    所述第一水平振子和所述第二水平振子为等长或者不等长;
    所述第一垂直振子和所述第二垂直振子为等长或者不等长。
  5. 如权利要求2-4任一项所述的液晶超表面天线装置,其特征在于,
    当所述第一水平振子和所述第二水平振子不等长时,所述液晶天线单元处于双频模式或者宽频模式;
    当所述第一垂直振子和所述第二垂直振子不等长时,所述液晶天线单元处于双频模式或者宽频模式。
  6. 如权利要求1-5任一项所述的液晶超表面天线装置,其特征在于,
    当所述第一水平振子和所述第二水平振子等长时,所述天线单元处于单频模式;
    当所述第一垂直振子和所述第二垂直振子等长时,所述天线单元处于单频模式。
  7. 如权利要求1-6任一项所述的液晶超表面天线装置,其特征在于,
    当所述第一水平振子和所述第一垂直振子等长时:
    当所述液晶材料的相位差为0°或者180°时,所述液晶天线单元的极化特性为45°极化或者-45°极化;
    当所述液晶材料的相位差为-90°或者90°时,所述液晶天线单元的极化特性为左旋圆极化或者右旋圆极化;
    当所述液晶材料的相位差不等于0°或者90°或者-90°或者180°时,所述液晶天线单元的极化特性为左旋椭圆极化或者右旋椭圆极化。
  8. 如权利要求1中所述的液晶超表面天线装置,其特征在于,
    所述液晶材料的加载模式为局部加载。
  9. 如权利要求1-8中所述的液晶超表面天线装置,其特征在于,
    所述多个振子的液晶材料的填充方式相同或不同。
  10. 如权利要求9中所述的液晶超表面天线装置,其特征在于,
    所述填充方式包括全部填充、部分填充、溢出填充。
  11. 如权利要求1-10中所述的液晶超表面天线装置,其特征在于,
    所述馈源位于所述液晶超表面反射板的焦点处。
  12. 如权利要求1-11中所述的液晶超表面天线装置,其特征在于,
    所有的所述液晶天线单元中的所述振子的排列方式一致。
  13. 一种通信装置,其特征在于,所述通信装置包括如权利要求1-12任一项所述的液晶超表面天线装置。
PCT/CN2021/129357 2020-11-06 2021-11-08 一种液晶超表面天线装置和通信装置 WO2022096002A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2023005328A MX2023005328A (es) 2020-11-06 2021-11-08 Aparato de antena de superficie de cristal liquido y aparato de comunicacion.
EP21888694.3A EP4228090A4 (en) 2020-11-06 2021-11-08 LIQUID CRYSTAL METASURFACE ANTENNA APPARATUS AND COMMUNICATION APPARATUS
US18/309,238 US20230268661A1 (en) 2020-11-06 2023-04-28 Liquid Crystal Metasurface Antenna Apparatus and Communication Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011231730.4 2020-11-06
CN202011231730.4A CN114447578A (zh) 2020-11-06 2020-11-06 一种液晶超表面天线装置和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/309,238 Continuation US20230268661A1 (en) 2020-11-06 2023-04-28 Liquid Crystal Metasurface Antenna Apparatus and Communication Apparatus

Publications (1)

Publication Number Publication Date
WO2022096002A1 true WO2022096002A1 (zh) 2022-05-12

Family

ID=81361873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129357 WO2022096002A1 (zh) 2020-11-06 2021-11-08 一种液晶超表面天线装置和通信装置

Country Status (5)

Country Link
US (1) US20230268661A1 (zh)
EP (1) EP4228090A4 (zh)
CN (1) CN114447578A (zh)
MX (1) MX2023005328A (zh)
WO (1) WO2022096002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115480325A (zh) * 2022-10-10 2022-12-16 成都信息工程大学 一种用于强偏振光场调控的液浸超表面及其设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036684B (zh) * 2022-06-08 2023-03-07 电子科技大学 一种基于液晶的Ka波段二维波束扫描反射阵天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450765A (zh) * 2016-09-08 2017-02-22 电子科技大学 一种毫米波可重构天线
US20170099041A1 (en) * 2015-10-02 2017-04-06 Hrl Laboratories, Llc Electromechanical frequency selective surface
CN107591625A (zh) * 2017-08-31 2018-01-16 电子科技大学 一种用于可重构平面反射阵的宽带平面反射阵单元
CN108711669A (zh) * 2018-05-28 2018-10-26 京东方科技集团股份有限公司 一种频率可调天线及其制作方法
CN111786090A (zh) * 2020-07-06 2020-10-16 电子科技大学 一种基于液晶可调材料的平面宽带透射阵天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394318B (zh) * 2017-07-14 2019-11-05 合肥工业大学 一种用于反射式可调移相器的液晶移相单元

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170099041A1 (en) * 2015-10-02 2017-04-06 Hrl Laboratories, Llc Electromechanical frequency selective surface
CN106450765A (zh) * 2016-09-08 2017-02-22 电子科技大学 一种毫米波可重构天线
CN107591625A (zh) * 2017-08-31 2018-01-16 电子科技大学 一种用于可重构平面反射阵的宽带平面反射阵单元
CN108711669A (zh) * 2018-05-28 2018-10-26 京东方科技集团股份有限公司 一种频率可调天线及其制作方法
CN111786090A (zh) * 2020-07-06 2020-10-16 电子科技大学 一种基于液晶可调材料的平面宽带透射阵天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228090A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115480325A (zh) * 2022-10-10 2022-12-16 成都信息工程大学 一种用于强偏振光场调控的液浸超表面及其设计方法

Also Published As

Publication number Publication date
EP4228090A4 (en) 2024-04-03
US20230268661A1 (en) 2023-08-24
EP4228090A1 (en) 2023-08-16
MX2023005328A (es) 2023-05-22
CN114447578A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2022096002A1 (zh) 一种液晶超表面天线装置和通信装置
US9525212B2 (en) Feeding network, antenna, and dual-polarized antenna array feeding circuit
JP2018525909A (ja) BluetoothとWiFiの共存のための高いアイソレーションをもつ薄型アンテナ
CN104037501B (zh) 移动装置
WO2020134362A1 (zh) 一种天线、天线阵列和基站
CN103633420B (zh) 双极化宽频辐射单元及阵列天线
CN104143681A (zh) 移动装置
WO2020134448A1 (zh) 一种天线单元、天线阵列和基站
US9871300B1 (en) Steerable phased array antenna
Roges et al. Planar and printed antennas for Internet of Things‐enabled environment: Opportunities and challenges
CN204348905U (zh) 一种全向宽频带高增益pcb天线
CN104518278A (zh) 天线及终端
US8368601B2 (en) Multiprotocol antenna structure and method for synthesizing a multiprotocol antenna pattern
CN110518359A (zh) 一种扇形双谐偶极子天线
CN111742446B (zh) 包括反射器的天线模块和包括该天线模块的电子设备
CN105896030B (zh) 一种多频段分形结构移动终端天线
TW202017244A (zh) 共用輻射器多頻帶天線系統
CN104022339A (zh) 一种绿色混合可重构手机天线
CN101505008A (zh) 一种能覆盖三个频段的双极化宽频带阵列智能天线
CN201490345U (zh) 一种能覆盖三个频段的双极化宽频带阵列智能天线
CN110071358B (zh) 一种基于折叠耦合的5g多频段蝶形天线
CN101789546A (zh) 一种小型分形智能天线
CN215644985U (zh) 基于介质谐振器的增加带宽的天线结构及电子设备
CN113872738B (zh) 一种天线阵列形态的指示方法、确定方法及通信装置
Picher et al. Multiband handset antennas by combining monopoles and intelligent ground planes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888694

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008065

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021888694

Country of ref document: EP

Effective date: 20230508

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023008065

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427