WO2022095774A1 - 控制电路及照明装置 - Google Patents

控制电路及照明装置 Download PDF

Info

Publication number
WO2022095774A1
WO2022095774A1 PCT/CN2021/126869 CN2021126869W WO2022095774A1 WO 2022095774 A1 WO2022095774 A1 WO 2022095774A1 CN 2021126869 W CN2021126869 W CN 2021126869W WO 2022095774 A1 WO2022095774 A1 WO 2022095774A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
current
voltage
module
control circuit
Prior art date
Application number
PCT/CN2021/126869
Other languages
English (en)
French (fr)
Inventor
陈�峰
张平伟
Original Assignee
苏州欧普照明有限公司
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011215920.7A external-priority patent/CN112291886A/zh
Priority claimed from CN202022525704.4U external-priority patent/CN213818274U/zh
Application filed by 苏州欧普照明有限公司, 欧普照明股份有限公司 filed Critical 苏州欧普照明有限公司
Priority to EP21888471.6A priority Critical patent/EP4240111A4/en
Publication of WO2022095774A1 publication Critical patent/WO2022095774A1/zh
Priority to US18/143,051 priority patent/US20230276550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/25Circuit arrangements for protecting against overcurrent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present application relates to the technical field of lighting, and in particular, to a control circuit and a lighting device.
  • control circuit can use the constant power adjustment technology to drive the load, that is, when the input voltage of the line network is high, the output current is reduced, and the input power of the light source load is kept basically unchanged.
  • the current output to the light source load has an overshoot phenomenon at the moment of power-on, which causes the light source load to be easily damaged or broken down.
  • the present application provides a control circuit and a lighting device.
  • the control circuit provided by the present invention includes: a signal sampling module, a constant power adjustment module, a negative feedback adjustment module and a constant current drive module;
  • the signal sampling module includes a voltage-limiting terminal, and the voltage-limiting terminal is used for outputting a voltage-limiting voltage value, and the voltage-limiting voltage value is lower than a first threshold;
  • the constant power adjustment module includes a first adjustment input terminal and a first adjustment output terminal, the voltage limiting terminal is connected to the first adjustment input terminal, and the output current of the first adjustment output terminal is the same as that of the first adjustment input terminal.
  • the input voltage is positively correlated;
  • the negative feedback regulation module includes a second regulation input end and a second regulation output end, the voltage limiting end is connected to the second regulation input end, and the output current of the second regulation output end is the same as that of the second regulation input end.
  • the input voltage is negatively correlated;
  • the constant current driving module includes a driving input terminal, and the first regulating output terminal and the second regulating output terminal are connected to the driving input terminal.
  • the signal sampling module includes a first resistor and a first capacitor, two ends of the first resistor are respectively connected to the signal sampling input voltage and the first capacitor, and two ends of the first capacitor are respectively connected
  • the first resistor and the ground terminal, and the voltage limiting terminal is a terminal located between the first resistor and the first capacitor, and the first threshold value is determined by the capacitance of the first capacitor.
  • the constant power adjustment module includes a second resistor and a constant power current mirror, the second resistor is connected between the limit terminal and the constant power current mirror, and the constant power current mirror is connected to between the second resistor and the constant current driving module.
  • the constant current drive module includes a first operational amplifier, a third resistor, a first switch tube and a current adjustment resistor;
  • the first operational amplifier includes a first positive input terminal and a first negative input terminal and a first amplifying output terminal
  • the first switch tube includes a first source, a first drain and a first gate, the first positive input terminal inputs a first reference voltage, the first source and all The first gate is short-circuited and connected to the first amplifying output terminal
  • the third resistor is connected between the first amplifying output terminal and the first negative input terminal
  • the current adjusting resistor is connected to the Between the first source electrode and the ground terminal, the driving input terminal includes the first negative input terminal, and the first drain electrode is used for connecting the light source load.
  • the negative feedback adjustment circuit includes a fourth resistor, a second operational amplifier, a second switch tube and a feedback current mirror;
  • the second operational amplifier includes a second positive input terminal and a second negative input terminal and a second amplifying output
  • the second switch tube includes a second source, a second drain and a second gate;
  • the feedback current mirror includes a feedback input and a feedback output;
  • the second positive input A second reference voltage is input, the second source and the second gate are short-circuited and connected to the second amplifying output terminal and the second negative input terminal, and the fourth resistor is connected to the second between the gate and the voltage limiting terminal;
  • the second drain is connected to the feedback input terminal, and the second adjustment output terminal includes the feedback output terminal.
  • the second reference voltage is equal to the first threshold.
  • the number of the constant current drive module is one;
  • the number of the constant current drive modules is at least two, at least two of the constant current drive modules are arranged in parallel, and at least two of the second drains are used to connect the light source load in parallel.
  • control circuit further includes a power supply module, and the power supply module provides power for the signal sampling module, the constant power adjustment module, the negative feedback adjustment module and the constant current drive module.
  • the signal sampling module, the constant power adjustment module, the negative feedback adjustment module and the constant current drive module are collectively arranged in an integrated circuit; or the constant power adjustment module and the negative feedback
  • the adjustment module is centrally arranged in the integrated circuit.
  • the present invention provides a lighting device, comprising a light source load and the control circuit according to any one of the above, wherein the light source load is an LED light source.
  • the voltage input to the driving input terminal of the constant current driving module rises slowly, resulting in the problem of current overshoot in the light source load.
  • the output current of the first regulating output terminal is positively correlated with the output voltage of the voltage limiting terminal, and the output current of the second regulating output terminal is negatively correlated with the output voltage of the voltage limiting terminal, therefore, on the control circuit
  • the current input to the driving input terminal can be relatively constant, so that the working current on the light source load connected to the constant current driving module is also relatively constant. The phenomenon of current overshoot on the light source load.
  • Fig. 1 shows the module schematic diagram of the control circuit in the prior art
  • Fig. 2 shows the schematic diagram of the device included in each module in Fig. 1;
  • Fig. 3a shows the waveform schematic diagram of working process Vt'
  • Fig. 3b shows the waveform schematic diagram of working process Iout'
  • Figure 3c shows a schematic diagram of the waveform of Vt' at the moment of power-on
  • Figure 3d shows a schematic diagram of the waveform of IA1' at the moment of power-on
  • Fig. 3e shows the waveform schematic diagram of Iout' at the moment of power-on
  • FIG. 4 is a schematic block diagram of a control circuit provided in Embodiment 1 of the present invention.
  • Fig. 5 shows the schematic diagram of the device included in each module in Fig. 4;
  • Fig. 6a shows the waveform diagram of Vt at the moment of power-on in Fig. 5;
  • Fig. 6b shows the waveform schematic diagram of IA1 at the moment of power-on in Fig. 5;
  • Fig. 6c shows the waveform schematic diagram of IA2 at the moment of power-on in Fig. 5;
  • Fig. 6d shows the waveform schematic diagram of IA3 at the moment of power-on in Fig. 5;
  • Fig. 6e shows the waveform schematic diagram of Iout at the moment of power-on in Fig. 5;
  • FIG. 7 shows a schematic diagram of an application circuit after integrating the remaining modules in FIG. 5 except the light source load.
  • FIG. 8 shows a schematic diagram of a device in which the control circuit according to Embodiment 2 of the present invention includes two parallel constant current drive modules;
  • 100'-control circuit in the prior art 10'-signal sampling module; 20'-constant power adjustment module; 30'-constant current drive module; 40'-power supply module; 50'-light source load;
  • 100-control circuit 100-control circuit; 10-signal sampling module; 20-constant power adjustment module; 21-first adjustment input; 22-first adjustment output; 30-negative feedback adjustment module; 31-second adjustment input; 32 -The second adjustment output terminal; 40-constant current drive module; 41-drive input terminal; 50-power supply module; 60-light source load;
  • FIG. 1 is a schematic block diagram of a conventional control circuit 100' based on constant power technology.
  • the control circuit 100' includes a signal sampling module 10', a constant power adjustment module 20', a constant current drive module 30' and a power supply module 40',
  • the control circuit 100' provides working current for the light source load 50'.
  • Fig. 2 is a specific schematic diagram of the control circuit 100' in Fig. 1, the signal sampling input voltage Vin' input to the signal sampling module 10' in Fig. 2 can be obtained from the input end of the power supply module 40' or the constant current input module.
  • the power supply module 40' can also supply power to the signal sampling module 10', the constant power adjustment module 20', the constant current drive module 30' and the light source load 50' at the same time.
  • FIG. 1 is a schematic block diagram of a conventional control circuit 100' based on constant power technology.
  • the control circuit 100' includes a signal sampling module 10', a constant power adjustment module 20', a constant current drive module 30'
  • the first resistor R1', the second resistor R2', and the first switch M1' form a working loop, and the working current of this loop passes through the current mirror module W' in the constant power adjustment module 20' to generate the first Adjusting the output current IA1', wherein after the first switch M1' is turned on, the drain voltage Vth' on the drain of the first switch M1', the current mirror module W' includes a first current mirror and a second current mirror , the current ratio of the first current mirror is K1, and the current ratio of the second current mirror is K2, from which the following formula can be obtained.
  • the first reference voltage Vref1 ′ input to the first positive input terminal of the first operational amplifier INV1 ′, and the current adjusting resistor Rext′ can adjust the current through the light source load 50 ′, including the LED light string.
  • the load operating current Iout' is obtained by the following formula.
  • the voltage limiting voltage value Vt' is also a fixed value
  • the corresponding load operating current Iout' is a fixed value.
  • the variation trend of the voltage limiting voltage value Vt' and the load operating current Iout' is opposite, or in other words, the two are negatively correlated.
  • the first capacitor C1' converts the voltage signal of the voltage limiting terminal VT' into a DC voltage.
  • the signal sampling input voltage Vin' passes through the first resistor R1' and simultaneously charges the first capacitor C1'.
  • the voltage value that is, the voltage limiting voltage value Vt' rises from 0V to a fixed value, as shown in Figure 3c.
  • the current passing through the voltage limiting terminal VT' changes from 0 to a fixed value, which is equal to the ratio of (Vin'-Vth') to (R1'+R2').
  • IA1 is the minimum value of 0V
  • the load operating current Iout' is the maximum value, as shown in Figure 3e.
  • the first capacitor C1' is fully charged, and the voltage limiting terminal VT' maintains a fixed voltage.
  • the load operating current Iout' is reduced to the minimum value and This fixed current value is output.
  • the load operating current Iout' on the light source load 50' at the moment of power-on of the control circuit 100 is shown in Fig. 3e, and a current overshoot waveform is generated at the moment of power-on.
  • the embodiment of the present invention provides a control circuit 100, the control circuit 100 provides the working current for the light source load 60 such as the LED light string on the upper side. There will be no problem of current overshoot during the electrical process.
  • the control circuit 100 in the embodiment of the present invention includes: a signal sampling module 10 , a constant power adjustment module 20 , a negative feedback adjustment module 30 and a constant current drive module 40 .
  • the signal sampling module 10 includes a voltage limiting terminal VT, and the voltage limiting terminal VT is used for outputting a voltage limiting voltage value Vt lower than the first threshold.
  • the constant power adjustment module 20 includes a first adjustment input end 21 and a first adjustment output end 22 , the voltage limiting end VT is connected to the first adjustment input end 21 , and the output current of the first adjustment output end 22 is the same as that of the first adjustment input end 21 .
  • the input voltage is positively correlated.
  • the negative feedback regulation module 30 includes a second regulation input end 31 and a second regulation output end 32 , the voltage limiting end VT is connected to the second regulation input end 31 , and the output current of the second regulation output end 32 is connected to the input of the second regulation input end 31 .
  • the constant current drive module 40 includes a drive input end 41, the first regulation output end 22 and the second regulation output end 32 are connected to the drive input end 41, because the output current of the first regulation output end 22 and the voltage limiting voltage of the voltage limiting end VT.
  • the value Vt is positively correlated, and the output current of the second regulating output terminal 32 is negatively correlated with the voltage limiting voltage value Vt of the voltage limiting terminal VT.
  • the voltage of the voltage limiting terminal VT is changed from In the process from 0 to the first threshold value, the current input to the driving input terminal 41 can be relatively constant, so that the load operating current Iout on the light source load 60 connected to the constant current driving module 40 is also relatively constant, avoiding the light source load 60.
  • the phenomenon of current overshoot occurs.
  • the signal sampling module 10 may include a first capacitor C1 and a first resistor R1, and the first resistor R1 and the first capacitor C1 are sequentially connected in series between the signal sampling input voltage Vin and the ground terminal.
  • the two ends of the resistor R1 are respectively connected to the signal sampling input voltage Vin and the first capacitor C1
  • the two ends of the first capacitor C1 are respectively connected to the first resistor R1 and the ground terminal
  • the voltage limiting terminal VT is located between the first capacitor C1 and the first resistor R1 endpoints in between.
  • the voltage value at both ends of the first capacitor C1 is 0V, and the voltage on the voltage limiting terminal VT is 0V.
  • the voltage-limiting voltage value Vt is also 0V, until the first capacitor C1 is fully charged, the voltage-limiting voltage value Vt on the voltage-limiting terminal VT is also fixed to 0V.
  • the voltage-limiting terminal VT can be determined by the capacitance of the first capacitor C1
  • the maximum value of the output voltage that can be output on the upper side, that is, the first threshold value is determined by the capacitance value of the first capacitor C1.
  • other components can also be used to determine the first threshold on the voltage limiting terminal, so that the voltage of the voltage limiting terminal VT rises from 0V to the first threshold during the power-on process, which will not be repeated here.
  • the constant power adjustment module 20 may include a second resistor R2 and a constant power current mirror W1.
  • the second resistor R2 is connected between the voltage limiting terminal VT and the constant power current mirror W1
  • the constant power current mirror W1 is connected between the second resistor R2 and the constant current driving module 40 .
  • the constant power current mirror W1 includes at least one current mirror module. Specifically, it may include a first current mirror and a second current mirror connected in series with each other. Of course, more current mirrors may also be connected in series.
  • the current ratio of the first current mirror is K1
  • the current ratio of the second current mirror is K2.
  • the current output by the first adjustment output terminal 22 of the constant power adjustment module 20 is the first adjustment output current IA1, which can be determined:
  • the magnitude of the first adjusted output current IA1 is positively correlated with the signal sampling input voltage Vin, that is, positively correlated with the voltage limiting voltage value Vt of the voltage limiting terminal VT.
  • the constant current driving module 40 may include a first operational amplifier INV1 , a third resistor R3 , a first switch tube M1 and a current adjustment resistor Rext.
  • the first operational amplifier INV1 includes a first positive input terminal, a first negative input terminal and a first amplified output terminal
  • the first switch tube M1 includes a first source, a first drain and a first gate
  • the first positive input The first reference voltage Vref1 is input to the terminal, the first source and the first gate are short-circuited and connected to the first amplifier output terminal
  • the third resistor R3 is connected between the first amplifier output terminal and the first negative input terminal
  • the current adjustment resistor Rext is connected between the first source electrode and the ground terminal
  • the driving input terminal 41 includes a first negative input terminal
  • the first drain electrode is used for connecting the light source load 60 .
  • the first operational amplifier INV1, the third resistor R3 and the current adjusting resistor Rext are used as a non-inverting closed-loop amplifier in the constant current driving module 40, and the first switch tube M1 may be a MOS tube.
  • the resistance value of the current adjustment resistor Rext can be adjusted, the first reference voltage Vref1 input on the first positive input terminal can also be adjusted, or the The fourth resistor R4.
  • the current adjusting resistor Rext is usually set as an adjustable resistor, and the load working current Iout can be adjusted by changing the resistance value of the current adjusting resistor Rext.
  • other electronic components may also be connected to form the constant current driving module 40 , which will not be repeated here.
  • drain voltage Vth in the formula (3) is the drain voltage of the third switch tube M3 in FIG. 5 .
  • the negative feedback adjustment circuit 30 includes a fourth resistor R4, a second operational amplifier INV2, a second switch M2, and a feedback current mirror W2.
  • the second operational amplifier INV2 includes a second positive input terminal, a second negative input terminal and a second amplifying output terminal
  • the second switching transistor M2 includes a second source, a second drain and a second gate
  • the feedback current mirror W2 It includes a feedback input terminal and a feedback output terminal
  • the second reference voltage Vref2 is input to the second positive input terminal
  • the second source and the second gate are short-circuited and connected to the second amplifying output terminal
  • the fourth resistor R4 is connected between the second gate and the voltage limiting terminal VT
  • the second drain is connected to the feedback input terminal
  • the second regulating output terminal 32 includes a feedback output terminal.
  • the second operational amplifier INV2 is used as a non-inverting closed-loop amplifier in the negative feedback adjustment module 30, and the second switch tube M2 may be a MOS tube.
  • the current value entering the feedback input terminal of the feedback current mirror W2 in the negative feedback adjustment module 30 is negatively correlated with the voltage limiting Vt voltage value of the voltage limiting terminal VT, thereby achieve negative feedback.
  • the current ratio of the feedback current mirror W2 may be K3, and the feedback current mirror W2 may include at least one current mirror.
  • the current output by the second regulation output end 32 of the negative feedback regulation module 30 is the second regulation output current IA2, wherein the second regulation output current IA2 is specifically obtained by the following formula:
  • the signal sampling input voltage Vin charges the first capacitor C1 through the first resistor R1, and the voltage-limiting voltage value Vt on the voltage-limiting terminal VT rises from 0 to a fixed value (as shown in FIG. 6a ). , that is, up to the first threshold.
  • the waveform of the first regulated output current IA1 shows an upward trend, that is, the value of the first regulated output current IA1 is positively correlated with the voltage limiting voltage value Vt (as shown in FIG.
  • Equation (4) shows that the waveform of the second regulated output current IA2 shows a downward trend, that is, the value of the second regulated output current IA2 is negatively correlated with the voltage limiting voltage value Vt (as shown in FIG. 6c ).
  • the second adjustment output current IA2 output by the second adjustment output terminal 32 of the negative feedback adjustment module 30 is 0, Then, the first regulation output current IA1 output by the first regulation output terminal 22 of the constant power regulation module 20 is equal to the current value input to the constant current driving module 40, and the second reference voltage Vreft2 can be set equal to the first threshold.
  • the first adjustment output current IA1 output by the first adjustment output terminal 22 of the constant power adjustment module 20 and the second adjustment output current IA2 output by the second adjustment output terminal 32 of the negative feedback adjustment module 30 are two The current waveforms are combined to form a driving input current IA3 (as shown in FIG. 6d ), which is input to the constant current driving module 40 from the driving input terminal 41 .
  • the driving input current IA3 is a fixed value.
  • the first regulated output current IA1 is 0, at this time, the voltage limiting voltage value is 0, and the second regulated output current IA2 is After the power-on is completed, the value of the first regulated output current IA1 should be equal to the momentary current IA2 at the start of power-on, that is:
  • the driving input current IA3 obtained by the sum of the first regulated output current IA1 and the second regulated output current IA2 should be a fixed value.
  • the control circuit 100 further includes a power supply module 50 that provides power for the signal sampling module 10 , the constant power adjustment module 20 , the negative feedback adjustment module 30 and the constant current drive module 40 .
  • the power supply of the signal sampling module 10 , the constant power adjustment module 20 , the negative feedback adjustment module 30 and the constant current drive module 40 may not be provided by the same power supply module 50 .
  • the signal sampling module 10 , the constant power adjustment module 20 , the negative feedback adjustment module 30 and the constant current drive module 40 may be centrally arranged in an integrated circuit.
  • at least two of the signal sampling module 10 , the constant power adjustment module 20 , the negative feedback adjustment module 30 and the constant current drive module 40 are collectively provided in an integrated circuit.
  • a circuit is set on the periphery of the chip U1 , and the LED light string is provided with a circuit. Provide operating current.
  • the number of constant current driving modules 40 may be one.
  • each switch tube in FIG. 5 may be a MOS tube, wherein M5, M6, M7 and M8 may be a P-type MOS tube, that is, the MOS tube connected to VDD is a P-type MOS tube.
  • the difference between the control circuit 100 in Embodiment 2 of the present invention and Embodiment 1 is that the number of constant current driving modules 40 is at least two, at least two of the constant current driving modules 40 are arranged in parallel, and at least two of the second The drain is used to connect the light source load 60 in parallel.
  • a constant current drive module where the first operational amplifier INV1 and the first switch M1 are located generates the first load current Iout1, and the third operational amplifier INV1-1 and the fourth switch M1-1 are located at A constant current driving module generates the second load current Iout2, so that the load operating current passing through the LED light string is the sum of the first load current Iout1 and the second load current Iout2.
  • the control circuit 100 of the embodiment of the present invention is provided with a plurality of parallel constant current driving modules 40, which can increase the output power of the control circuit 100, and make the control circuit 100 have more extended functions and a wider application range.
  • an embodiment of the present invention also provides a lighting device
  • An embodiment of the present invention provides a lighting device, the lighting device includes the light source load 60 mentioned above, and the control circuit 100 of the first embodiment or the second embodiment.
  • the light source load 60 is an LED light source. Since the control circuit 100 does not have current overshoot during the power-on process, the light source load 60 in the lighting device can have a longer service life, so that the lighting device has higher reliability sex.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种控制电路及照明装置,属于照明技术领域。相比现有技术中,在控制电路(100')上电过程中,输入至恒流驱动模块(30')的驱动输入端的电压上升缓慢,导致光源负载(50')存在电流过冲现象的问题。本发明公开的控制电路(100)中,由于第一调节输出端(22)的输出电流与限压端(VT)的输出电压呈正相关,而第二调节输出端(32)的输出电流与限压端(VT)的输出电压呈负相关,因此,在控制电路(100)上电过程中,也就是限压端(VT)的电压从0至第一阈值的过程中,输入至驱动输入端(41)的电流可以较为恒定,从而使得与恒流驱动模块(40)连接的光源负载(60)上的工作电流也较为恒定,避免在光源负载(60)上产生电流过冲的现象。

Description

控制电路及照明装置 技术领域
本申请涉及照明技术领域,尤其涉及一种控制电路及照明装置。
背景技术
在照明装置中,控制电路可以利用恒功率调节技术驱动负载,即在线网输入电压较高时,降低输出电流,保持光源负载的输入功率基本不变。
然而,目前恒功率调节技术在上电瞬间,输出至光源负载的电流有过冲现象,导致光源负载容易损伤或被击穿。
发明内容
为解决控制电路在上电瞬间光源负载上的电流过冲的问题,本申请提供一种控制电路及照明装置。
本发明提供的控制电路,包括:信号采样模块、恒功率调节模块、负反馈调节模块和恒流驱动模块;
所述信号采样模块包括限压端,所述限压端用于输出限压电压值,所述限压电压值低于第一阈值;
所述恒功率调节模块包括第一调节输入端和第一调节输出端,所述限压端连接所述第一调节输入端,所述第一调节输出端的输出电流与所述第一调节输入端的输入电压呈正相关;
所述负反馈调节模块包括第二调节输入端和第二调节输出端,所述限压端连接所述第二调节输入端,所述第二调节输出端的输出电流与所述第二调节输入端的输入电压呈负相关;
恒流驱动模块包括驱动输入端,所述第一调节输出端和所述第二调节输出端连接所述驱动输入端。
上述的控制电路,所述信号采样模块包括第一电阻和第一电容,所述第 一电阻的两端分别连接信号采样输入电压和所述第一电容,所述第一电容的两端分别连接所述第一电阻和接地端,所述限压端为位于所述第一电阻和所述第一电容之间的端点,由所述第一电容的容值确定所述第一阈值。
上述的控制电路,所述恒功率调节模块包括第二电阻和恒功率电流镜,所述第二电阻连接于所述限位端和所述恒功率电流镜之间,所述恒功率电流镜连接于所述第二电阻与所述恒流驱动模块之间。
上述的控制电路,所述恒流驱动模块包括第一运放器、第三电阻、第一开关管和电流调节电阻;所述第一运放器包括第一正输入端、第一负输入端和第一放大输出端,所述第一开关管包括第一源极、第一漏极和第一栅极,所述第一正输入端输入第一参考电压,所述第一源极和所述第一栅极短接并连接所述第一放大输出端,所述第三电阻连接于所述第一放大输出端与所述第一负输入端之间,所述电流调节电阻连接于所述第一源极和接地端之间,所述驱动输入端包括所述第一负输入端,所述第一漏极用于连接光源负载。
上述的控制电路,所述负反馈调节电路包括第四电阻、第二运放器、第二开关管和反馈电流镜;所述第二运放器包括第二正输入端、第二负输入端和第二放大输出端,所述第二开关管包括第二源极、第二漏极和第二栅极;所述反馈电流镜包括反馈输入端和反馈输出端;所述第二正输入端输入第二参考电压,所述第二源极与所述第二栅极短接并连接所述第二放大输出端、所述第二负输入端,所述第四电阻连接于所述第二栅极与所述限压端之间;所述第二漏极连接所述反馈输入端,所述第二调节输出端包括所述反馈输出端。
上述的控制电路,所述第二参考电压等于所述第一阈值。
上述的控制电路,所述恒流驱动模块的数量为一个;
或所述恒流驱动模块的数量至少为两个,至少两个所述恒流驱动模块并联设置,至少两个所述第二漏极用于并联连接光源负载。
上述的控制电路,所述控制电路还包括供电模块,所述供电模块为所述信号采样模块、所述恒功率调节模块、所述负反馈调节模块和所述恒流驱动模块提供电源。
上述的控制电路,所述信号采样模块、所述恒功率调节模块、所述负反馈调节模块和所述恒流驱动模块集中设置于集成电路中;或所述恒功率调节模块和所述负反馈调节模块集中设置于集成电路中。
上述的控制电路,在所述限压端的输出电压从零至所述第一阈值之间时,所述第一调节输出端的输出电流和所述第二调节输出端的输出电流之和为恒定值。
本发明提供一种照明装置,包括光源负载和如上任一项所述的控制电路,所述光源负载为LED光源。
本发明采用的上述至少一个技术方案能够达到以下有益效果:
相比现有技术中,在控制电路上电过程中,输入至恒流驱动模块的驱动输入端的电压上升缓慢,导致光源负载存在电流过冲现象的问题。本发明实施例的控制电路中,由于第一调节输出端的输出电流与限压端的输出电压呈正相关,而第二调节输出端的输出电流与限压端的输出电压呈负相关,因此,在控制电路上电过程中,也就是限压端的电压从0至第一阈值的过程中,输入至驱动输入端的电流可以较为恒定,从而使得与恒流驱动模块连接的光源负载上的工作电流也较为恒定,避免在光源负载上产生电流过冲的现象。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部 分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了现有技术中的控制电路的模块示意图;
图2示出了图1中各模块所包含的器件示意图;
图3a示出了工作过程Vt’的波形示意图;
图3b示出了工作过程Iout’的波形示意图;
图3c示出了在上电瞬间Vt’的波形示意图;
图3d示出了在上电瞬间IA1’的波形示意图;
图3e示出了在上电瞬间Iout’的波形示意图;
图4为本发明实施例1提供控制电路的模块示意图;
图5示出了图4中各模块所包含的器件示意图;
图6a示出了图5中在上电瞬间Vt的波形示意图;
图6b示出了图5中在上电瞬间IA1的波形示意图;
图6c示出了图5中在上电瞬间IA2的波形示意图;
图6d示出了图5中在上电瞬间IA3的波形示意图;
图6e示出了图5中在上电瞬间Iout的波形示意图;
图7示出了将图5中除光源负载外其余模块集成后的应用电路示意图。
图8示出了本发明实施例2的控制电路包括两路并联的恒流驱动模块的器件示意图;
附图标记说明:
100’-现有技术中控制电路;10’-信号采样模块;20’-恒功率调节模块;30’-恒流驱动模块;40’-供电模块;50’-光源负载;
Vin’-信号采样输入电压;R1’-第一电阻;R2’-第二电阻;R3’-第三电阻;C1’-第一电容;M1’-第一开关管;Rext’-电流调节电阻;VT’-限压端;Vt’-限压电压值;Vth’-漏极电压;INV1’-第一运放;W’-电流镜模块;IA1’-第一调节输出电流;Vref1’-第一参考电压;Iout’-负载工作电流;
100-控制电路;10-信号采样模块;20-恒功率调节模块;21-第一调节输入端;22-第一调节输出端;30-负反馈调节模块;31-第二调节输入端;32-第二调节输出端;40-恒流驱动模块;41-驱动输入端;50-供电模块;60-光源负载;
Vin-信号采样输入电压;R1-第一电阻;R2-第二电阻;R3-第三电阻;R4-第四电阻;C1-第一电容;M1-第一开关管;M2-第二开关管;M3-第三开关管,M1-1-第四开关管;Rext-电流调节电阻;VT-限压端;Vt-限压电压值;Vth-漏极电压;INV1-第一运放器;INV2-第二运放器;INV1-1-第三运放器;W1-恒功率电流镜;W2-反馈电流镜;IA1-第一调节输出电流;IA2-第二调节输出电流;IA3-驱动输入电流;Vref1-第一参考电压;Vref2-第二参考电压;Iout-负载工作电流;Iout1-第一负载电流;Iout2-第二负载电流;U1-芯片。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在介绍本发明实施例之前,参图1、图2和图3a-图3e,具体说明目前控制电路100’中光源负载50’上产生电流过冲的现象。
如图1所示是传统基于恒功率技术的控制电路100’的模块示意图,控制电路100’包括信号采样模块10’、恒功率调节模块20’、恒流驱动模块30’和供电模块40’,控制电路100’为光源负载50’提供工作电流。图2是图1中控制电路100’的具体示意图,图2中输入至信号采样模块10’的信号采样输入电压Vin’可从供电模块40’或恒流输入模块的输入端获取。此外,供电模块40’还可以同时给信号采样模块10’、恒功率调节模块20’、恒流驱动模块30’和光源负载50’供电。在图2中,第一电阻R1’、第二电阻R2’、 第一开关管M1’形成工作回路,此回路的工作电流经过恒功率调节模块20’中的电流镜模块W’后产生了第一调节输出电流IA1’,其中,第一开关管M1’导通后,第一开关管M1’漏极上的漏极电压Vth’,电流镜模块W’包括第一电流镜和第二电流镜,第一电流镜的电流比值为K1,第二电流镜的电流比值为K2,由此可以得到以下式子。
Figure PCTCN2021126869-appb-000001
进一步的,在图2中,第一运放器INV1’的第一正输入端的输入的第一参考电压Vref1’,电流调节电阻Rext’可以调节光源负载50’经的电流,包括LED灯串的负载工作电流Iout’由下式得到。
Figure PCTCN2021126869-appb-000002
公式(1)中只有信号采样输入电压Vin’为变量,随着如图1所示供电模块40’的输入电压升高,信号采样输入电压Vin’变大,第一调节输出电流IA1’变大,公式(2)中灯串上负载工作电流Iout’变小;当供电模块40’的输入电压降低,信号采样输入电压Vin’变小,第一调节输出电流IA1’变小,灯串上负载工作电流Iout’变大。具体如图3a和图3b的波形图所示,在信号采样输入电压Vin’为一固定值的情况下,限压电压值Vt’也是固定值,对应的负载工作电流Iout’为固定值。具体的,从图3a和图3b可知,在工作过程中,限压电压值Vt’和负载工作电流Iout’的变化趋势相反,或者说,两者成负相关。如图2所示第一电容C1’把限压端VT’的电压信号转为直流电压。控制电路100在上电瞬间,信号采样输入电压Vin’经过第一电阻R1’同时给第一C1’电容充电,在第一电容C1’充电的过程中,经过时间t,限压端VT’的电压值,也就是限压电压值Vt’从0V上升到固定值,如图3c所示。此时间t过程中,经过限压端VT’的电流从0变化为到固定值,且等于(Vin’-Vth’)与(R1’+R2’)的比值。经过电流镜模块W’中的第一电流镜和第二电流镜后产生的第一调节输出电流IA1’,在控制电路 100上电瞬间电流波形为从0上升到固定值,如图3d的波形图所示。当IA1为最小值0V时,通过公式(2)可知,负载工作电流Iout’为最大值,如图3e所示。控制电路100上电后给第一电容C1’充满电后,限压端VT’处保持固定电压,此时第一调节输出电流IA1’为最大值时,负载工作电流Iout’降低到最小值并输出此固定电流值。控制电路100上电瞬间光源负载50’上的负载工作电流Iout’如图3e所示,在上电瞬间产生了电流过冲波形。
实施例1
为解决上电过程中,包括LED灯串的光源负载上电流过冲的问题,本发明实施例提供一种控制电路100,该控制电路100为LED灯串等光源负载60提供的工作电流在上电过程中不会存在电流过冲的问题。
如图4所示,本发明实施例的控制电路100,包括:信号采样模块10、恒功率调节模块20、负反馈调节模块30和恒流驱动模块40。
其中,参图5,信号采样模块10包括限压端VT,限压端VT用于输出低于第一阈值的限压电压值Vt。恒功率调节模块20包括第一调节输入端21和第一调节输出端22,该限压端VT连接第一调节输入端21,第一调节输出端22的输出电流与第一调节输入端21的输入电压呈正相关。负反馈调节模块30包括第二调节输入端31和第二调节输出端32,限压端VT连接第二调节输入端31,第二调节输出端32的输出电流与第二调节输入端31的输入电压呈负相关。恒流驱动模块40包括驱动输入端41,该第一调节输出端22和第二调节输出端32连接驱动输入端41,由于第一调节输出端22的输出电流与限压端VT的限压电压值Vt呈正相关,而第二调节输出端32的输出电流与限压端VT的限压电压值Vt呈负相关,因此,在控制电路100上电过程中,也就是限压端VT的电压从0至第一阈值的过程中,输入至驱动输入端41的电流可以较为恒定,从而使得与恒流驱动模块40连接的光源负载60上的负载工作电流Iout也较为恒定,避免在光源负载60上产生电流过冲的现象。
本发明实施例中,信号采样模块10可以包括第一电容C1和第一电阻R1, 第一电阻R1和第一电容C1依次串联于信号采样输入电压Vin和接地端之间,换言之,该第一电阻R1的两端分别连接信号采样输入电压Vin和第一电容C1,第一电容C1的两端分别连接第一电阻R1和接地端,限压端VT则位于第一电容C1和第一电阻R1之间的端点上。由于第一电容C1的两端分别为限压端VT和接地端,因此,在电源向信号采样模块10供电的初始时刻,第一电容C1的两端的电压值为0V,限压端VT上的限压电压值Vt也为0V,直到第一电容C1充满电后,限压端VT上的限压电压值Vt也为固定至,换言之,可以由第一电容C1的容值确定限压端VT上所能输出电压的最大值,也就是由第一电容C1的容值确定第一阈值。当然,作为变形,也可以采用其他元器件确定限压端上的第一阈值,使得限压端VT在上电过程中的电压由0V上升至第一阈值,此处不再赘述。
本发明实施例中,恒功率调节模块20可以包括第二电阻R2和恒功率电流镜W1。其中,第二电阻R2连接于限压端VT和恒功率电流镜W1之间,恒功率电流镜W1连接于第二电阻R2和恒流驱动模块40之间。该恒功率电流镜W1包括至少一个电流镜模块,具体的,可以包括相互串联的第一电流镜和第二电流镜,当然,还可以串联更多的电流镜。其中,第一电流镜的电流比值为K1,第二电流镜的电流比值为K2。
参考上述式子(1),恒功率调节模块20的第一调节输出端22所输出的电流为第一调节输出电流IA1,可以确定:
Figure PCTCN2021126869-appb-000003
由公式(3)可知,第一调节输出电流IA1的大小与信号采样输入电压Vin成正相关,也就是与限压端VT的限压电压值Vt成正相关。
本发明实施例中,如图5所示,恒流驱动模块40可以包括第一运放器INV1、第三电阻R3、第一开关管M1和电流调节电阻Rext。第一运放器INV1包括第一正输入端、第一负输入端和第一放大输出端,第一开关管M1包括第一源极、第一漏极和第一栅极,第一正输入端输入第一参考电压Vref1,第 一源极和第一栅极短接并连接第一放大输出端,第三电阻R3连接于第一放大输出端和第一负输入端之间,电流调节电阻Rext连接于第一源极和接地端之间,驱动输入端41包括第一负输入端,第一漏极用于连接光源负载60。可见,第一运放器INV1、第三电阻R3和电流调节电阻Rext在恒流驱动模块中40作为非反向闭环放大器,第一开关管M1可以是MOS管。实际应用中,如果需要对流经光源负载60的负载工作电流Iout进行调整,可以通过调整电流调节电阻Rext的阻值,也可以通过调节第一正输入端上输入的第一参考电压Vref1,或调整第四电阻R4。为了方便按比例且较精细地调整流经光源负载60的负载工作电流Iout,通常将电流调节电阻Rext设置为可调电阻,通过改变电流调节电阻Rext的阻值实现调节负载工作电流Iout。当然,还可以是其他的电子元器件相连构成恒流驱动模块40,此处不再赘述。
需要说明的是,公式(3)中的漏极电压Vth为图5中第三开关管M3的漏极电压。
本发明实施例中,负反馈调节电路30包括第四电阻R4、第二运放器INV2、第二开关管M2和反馈电流镜W2。第二运放器INV2包括第二正输入端、第二负输入端和第二放大输出端,第二开关管M2包括第二源极、第二漏极和第二栅极,反馈电流镜W2包括反馈输入端和反馈输出端,第二正输入端上输入第二参考电压Vref2,第二源极和第二栅极短接并连接第二放大输出端、第二负输入端,第四电阻R4连接于第二栅极和限压端VT之间,第二漏极连接反馈输入端,第二调节输出端32包括反馈输出端。其中,第二运放器INV2在负反馈调节模块30中作为非反向闭环放大器,第二开关管M2可以是MOS管。利用第二运放器INV2的非反向闭环放大作用,使得负反馈调节模块30中进入到反馈电流镜W2的反馈输入端的电流值与限压端VT的限压Vt电压值成负相关,从而实现负反馈目的。其中,反馈电流镜W2的电流比值可以为K3,反馈电流镜W2中可以包括至少一个电流镜。
参图5,负反馈调节模块30的第二调节输出端32所输出的电流为第二 调节输出电流IA2,其中,第二调节输出电流IA2具体由下式得到:
Figure PCTCN2021126869-appb-000004
在控制电路100上电瞬间,信号采样输入电压Vin通过第一电阻R1给第一电容C1进行充电,限压端VT上的限压电压值Vt从0上升到固定值(如图6a所示),也就是上升到第一阈值。在控制电路100上电瞬间,如上所提,第一调节输出电流IA1的波形呈上升趋势,也就是第一调节输出电流IA1的值与限压电压值Vt呈正相关(如图6b所示)通过公式(4)可知,第二调节输出电流IA2的波形呈下降趋势,也就是第二调节输出电流IA2的值与限压电压值Vt呈负相关(如图6c所示)。
为了使得第一电容C1的电荷容量充满达到第一阈值时,也就是控制电路100完成上电后,负反馈调节模块30的第二调节输出端32所输出的第二调节输出电流IA2为0,进而使得恒功率调节模块20的第一调节输出端22输出的第一调节输出电流IA1等于输入至恒流驱动模块40的电流值,可设置第二参考电压Vreft2等于第一阈值。
如图5所示,恒功率调节模块20的第一调节输出端22输出的第一调节输出电流IA1,负反馈调节模块30的第二调节输出端32输出的第二调节输出电流IA2,两种电流波形汇合形成驱动输入电流IA3(如图6d所示),从驱动输入端41输入到恒流驱动模块40。在控制电路100上电瞬间时间t,由于第一调节输出电流IA1电流为上升趋势,第二调节输出电流IA2电流为下降趋势,通过调节公式(1)和公式(3)的相关参数,可使驱动输入电流IA3为一固定值。
具体的,在开始上电的瞬间,第一调节输出电流IA1为0,此时,限压电压值为0,第二调节输出电流IA2为
Figure PCTCN2021126869-appb-000005
而上电完成后,第一调节输出电流IA1的值应等于开始上电瞬间电流IA2的时,也就是:
Figure PCTCN2021126869-appb-000006
而且,第一调节输出电流IA1和第二调节输出电流IA2之和所得到的驱动输入电流IA3应为固定值。
结合图5和图6a-图6e可知,此时负载工作电流Iout为
Figure PCTCN2021126869-appb-000007
在驱动输入电流IA3为固定值时,对应的的负载工作电流Iout的波形图如图6e所示,可见,负载工作电流Iout在上电过程中没有电流过冲现象。本发明实施例中,控制电路100还包括供电模块50,该供电模块50为信号采样模块10、恒功率调节模块20、负反馈调节模块30和恒流驱动模块40提供电源。当然,信号采样模块10、恒功率调节模块20、负反馈调节模块30和恒流驱动模块40的电源可以不是由同一供电模块50提供的。
本发明实施例中,为了提高集成度,可以将信号采样模块10、恒功率调节模块20、负反馈调节模块30和恒流驱动模块40集中设置于集成电路中。或者,将信号采样模块10、恒功率调节模块20、负反馈调节模块30和恒流驱动模块40中的至少两者集中设置于集成电路中。如图7所示,为将信号采样模块10、恒功率调节模块20、负反馈调节模块30和恒流驱动模块40集成于为芯片U1后,在芯片U1的外围设置电路,并为LED灯串提供工作电流。
本发明实施例中,恒流驱动模块40的数量可以是一个。
此外,图5中的各开关管可以是MOS管,其中,M5、M6、M7和M8可以是P型MOS管,即连接VDD的MOS管是P型MOS管。
实施例2
本发明实施例2的控制电路100,与实施例1的区别在于:恒流驱动模块40的数量至少为两个,至少两个所述恒流驱动模块40并联设置,至少两个所述第二漏极用于并联连接光源负载60。如图8所示,第一运放器INV1和第一开关管M1所在的一恒流驱动模块生产第一负载电流Iout1,第三运放 器INV1-1和第四开关管M1-1所在的一恒流驱动模块生产第二负载电流Iout2,从而使得经过LED灯串的负载工作电流为第一负载电流Iout1和第二负载电流Iout2之和。
本发明实施例的控制电路100,设置多个并联的恒流驱动模块40,可以增大控制电路100的输出功率,而且使得控制电路100具有更多的扩展功能,具有更大的适用范围。
实施例3
此外,本发明实施例还提供一种照明装置,
本发明实施例提供一种照明装置,照明装置包括如上所提的光源负载60,以及实施例1或实施例2的控制电路100。该光源负载60为LED光源,由于控制电路100在上电过程中不存在电流过冲的现象,因此,照明装置中的光源负载60可以有较长的使用寿命,使得照明装置具有更高的可靠性。
本申请上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (11)

  1. 一种控制电路,其中,包括:信号采样模块、恒功率调节模块、负反馈调节模块和恒流驱动模块;
    所述信号采样模块包括限压端,所述限压端用于输出限压电压值,所述限压电压值低于第一阈值;
    所述恒功率调节模块包括第一调节输入端和第一调节输出端,所述限压端连接所述第一调节输入端,所述第一调节输出端的输出电流与所述第一调节输入端的输入电压呈正相关;
    所述负反馈调节模块包括第二调节输入端和第二调节输出端,所述限压端连接所述第二调节输入端,所述第二调节输出端的输出电流与所述第二调节输入端的输入电压呈负相关;
    恒流驱动模块包括驱动输入端,所述第一调节输出端和所述第二调节输出端连接所述驱动输入端。
  2. 根据权利要求1所述的控制电路,其中,所述信号采样模块包括第一电阻和第一电容,所述第一电阻的两端分别连接信号采样输入电压和所述第一电容,所述第一电容的两端分别连接所述第一电阻和接地端,所述限压端为位于所述第一电阻和所述第一电容之间的端点,由所述第一电容的容值确定所述第一阈值。
  3. 根据权利要求1所述的控制电路,其中,所述恒功率调节模块包括第二电阻和恒功率电流镜,所述第二电阻连接于所述限位端和所述恒功率电流镜之间,所述恒功率电流镜连接于所述第二电阻与所述恒流驱动模块之间。
  4. 根据权利要求1所述的控制电路,其中,所述恒流驱动模块包括第一运放器、第三电阻、第一开关管和电流调节电阻;所述第一运放器包括第一正输入端、第一负输入端和第一放大输出端,所述第一开关管包括第一源极、第一漏极和第一栅极,所述第一正输入端输入第一参考电压,所述第一源极和所述第一栅极短接并连接所述第一放大输出端,所述第三电阻连接于所述第一放大输出端与所述第一负输入端之间,所述电流调节电阻连接于所述第一源极和接地端之间,所述驱动输入端包括所述第一负输入端,所述第一漏极用于连接光源负载。
  5. 根据权利要求1所述的控制电路,其中,所述负反馈调节电路包括第四电阻、第二运放器、第二开关管和反馈电流镜;所述第二运放器包括第二正输入端、第二负输入端和第二放大输出端,所述第二开关管包括第二源极、第二漏极和第二栅极;所述反馈电流镜包括反馈输入端和反馈输出端;所述第二正输入端输入第二参考电压,所述第二源极与所述第二栅极短接并连接所述第二放大输出端、所述第二负输入端,所述第四电阻连接于所述第二栅极与所述限压端之间;所述第二漏极连接所述反馈输入端,所述第二调节输出端包括所述反馈输出端。
  6. 根据权利要求5所述的控制电路,其中,所述第二参考电压等于所述第一阈值。
  7. 根据权利要求1所述的控制电路,其中,
    所述恒流驱动模块的数量为一个;
    或所述恒流驱动模块的数量至少为两个,至少两个所述恒流驱动模块并联设置,至少两个所述第二漏极用于并联连接光源负载。
  8. 根据权利要求1所述的控制电路,其中,所述控制电路还包括供电模 块,所述供电模块为所述信号采样模块、所述恒功率调节模块、所述负反馈调节模块和所述恒流驱动模块提供电源。
  9. 根据权利要求1所述的控制电路,其中,所述信号采样模块、所述恒功率调节模块、所述负反馈调节模块和所述恒流驱动模块集中设置于集成电路中;或所述恒功率调节模块和所述负反馈调节模块集中设置于集成电路中。
  10. 根据权利要求1所述的控制电路,其中,在所述限压端的输出电压从零至所述第一阈值之间时,所述第一调节输出端的输出电流和所述第二调节输出端的输出电流之和为恒定值。
  11. 一种照明装置,其中,包括光源负载和如权利要求1-10任一项所述的控制电路,所述光源负载为LED光源。
PCT/CN2021/126869 2020-11-04 2021-10-28 控制电路及照明装置 WO2022095774A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21888471.6A EP4240111A4 (en) 2020-11-04 2021-10-28 CONTROL CIRCUIT AND LIGHTING DEVICE
US18/143,051 US20230276550A1 (en) 2020-11-04 2023-05-03 Control circuit and lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011215920.7A CN112291886A (zh) 2020-11-04 2020-11-04 控制电路及照明装置
CN202011215920.7 2020-11-04
CN202022525704.4 2020-11-04
CN202022525704.4U CN213818274U (zh) 2020-11-04 2020-11-04 控制电路及照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/143,051 Continuation US20230276550A1 (en) 2020-11-04 2023-05-03 Control circuit and lighting device

Publications (1)

Publication Number Publication Date
WO2022095774A1 true WO2022095774A1 (zh) 2022-05-12

Family

ID=81457501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126869 WO2022095774A1 (zh) 2020-11-04 2021-10-28 控制电路及照明装置

Country Status (3)

Country Link
US (1) US20230276550A1 (zh)
EP (1) EP4240111A4 (zh)
WO (1) WO2022095774A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423436A (zh) * 2020-12-17 2021-02-26 北京集创北方科技股份有限公司 供电电路以及显示装置
US12062303B2 (en) * 2022-05-31 2024-08-13 Chip Design Systems Inc. LED driver circuitry for an infrared scene projector system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455227A (zh) * 2016-11-11 2017-02-22 深圳市明微电子股份有限公司 一种led线性恒流控制电路以及led发光装置
JP2017142970A (ja) * 2016-02-10 2017-08-17 岩崎電気株式会社 Led用電源装置及びled照明装置
CN207744200U (zh) * 2018-01-05 2018-08-17 深圳市明微电子股份有限公司 一种恒温驱动控制电路
CN209692345U (zh) * 2019-05-07 2019-11-26 烽火通信科技股份有限公司 一种用于限制电流过冲的恒流源电路
CN111465144A (zh) * 2020-04-24 2020-07-28 深圳市晟碟半导体有限公司 一种恒功率led控制电路、装置及其控制方法
CN111629490A (zh) * 2020-07-07 2020-09-04 中科慧远视觉技术(洛阳)有限公司 一种电流可调及pwm闪频控制的恒流驱动电路以及控制方法
CN112291886A (zh) * 2020-11-04 2021-01-29 欧普照明股份有限公司 控制电路及照明装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635448A (zh) * 2019-11-01 2019-12-31 无锡安趋电子有限公司 一种低静态电流且具有动态滤波功能的欠压保护电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017142970A (ja) * 2016-02-10 2017-08-17 岩崎電気株式会社 Led用電源装置及びled照明装置
CN106455227A (zh) * 2016-11-11 2017-02-22 深圳市明微电子股份有限公司 一种led线性恒流控制电路以及led发光装置
CN207744200U (zh) * 2018-01-05 2018-08-17 深圳市明微电子股份有限公司 一种恒温驱动控制电路
CN209692345U (zh) * 2019-05-07 2019-11-26 烽火通信科技股份有限公司 一种用于限制电流过冲的恒流源电路
CN111465144A (zh) * 2020-04-24 2020-07-28 深圳市晟碟半导体有限公司 一种恒功率led控制电路、装置及其控制方法
CN111629490A (zh) * 2020-07-07 2020-09-04 中科慧远视觉技术(洛阳)有限公司 一种电流可调及pwm闪频控制的恒流驱动电路以及控制方法
CN112291886A (zh) * 2020-11-04 2021-01-29 欧普照明股份有限公司 控制电路及照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4240111A4 *

Also Published As

Publication number Publication date
EP4240111A1 (en) 2023-09-06
US20230276550A1 (en) 2023-08-31
EP4240111A4 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2022095774A1 (zh) 控制电路及照明装置
US8148903B2 (en) Light emitting diode driving circuit
JP6400740B2 (ja) Ledバックライト駆動回路及び液晶表示器
TWI474751B (zh) 具複數個發光二極體之負載電流控制裝置與方法
US20090096739A1 (en) Light source driving circuit for backlight module
JP4686434B2 (ja) アクティブ型電流調整回路及びその発光構造
WO2015089928A1 (zh) 背光调节电路及电子装置
US9332607B2 (en) LED backlight driving circuit and liquid crystal display device
KR101778898B1 (ko) Led 백라이트 구동회로 및 액정 디스플레이
WO2014205671A1 (zh) Led背光源的驱动电路、led背光源及液晶显示设备
JP2006049028A (ja) 放電灯点灯装置
WO2015172402A1 (zh) 用于液晶显示设备的led背光源
CN112291886A (zh) 控制电路及照明装置
CN110582137B (zh) 恒流驱动电路
CN202855273U (zh) 基于差分反馈的lcd显示屏背光恒流驱动电路
WO2016049946A1 (zh) 用于液晶显示设备的led背光源及液晶显示设备
CN213818274U (zh) 控制电路及照明装置
TWI379482B (en) Current balance power supplying circuit for plural sets of dc loads
JP4214276B2 (ja) 放電灯点灯装置
WO2022213416A1 (zh) 驱动电路及显示装置
TWI406592B (zh) 低接腳數led驅動器積體電路
CN108712801B (zh) 一种宽输入电压的恒功率驱动电路及装置
JP2002289374A (ja) 光源及び表示装置及び電子機器
CN106455203B (zh) 一种led驱动电路和驱动装置
CN109275233B (zh) 定功率led驱动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888471

Country of ref document: EP

Effective date: 20230531