WO2022095504A1 - 光源系统及投影设备 - Google Patents

光源系统及投影设备 Download PDF

Info

Publication number
WO2022095504A1
WO2022095504A1 PCT/CN2021/106531 CN2021106531W WO2022095504A1 WO 2022095504 A1 WO2022095504 A1 WO 2022095504A1 CN 2021106531 W CN2021106531 W CN 2021106531W WO 2022095504 A1 WO2022095504 A1 WO 2022095504A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
polarized light
polarized
source system
Prior art date
Application number
PCT/CN2021/106531
Other languages
English (en)
French (fr)
Inventor
陈怡学
尹蕾
彭水海
Original Assignee
成都极米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都极米科技股份有限公司 filed Critical 成都极米科技股份有限公司
Publication of WO2022095504A1 publication Critical patent/WO2022095504A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of display technology, and in particular, to a light source system and a projection device.
  • the projection display light source is a very important component. Its function is to convert light of different colors, different angular distributions, different brightness and different shapes into uniform light spots that illuminate the effective area of the display chip.
  • the present invention provides a light source system and a projection device, which mainly use the polarization characteristics of light to split light and combine light, so that the entire light path is compact, the space of the light path is greatly saved, and the light combining efficiency is improved.
  • the present invention provides a light source system, the light source system includes a first light source, a light combining element, a wavelength conversion element, a first phase retardation element and a guiding element, wherein:
  • the first light source is used to generate first polarized light
  • the light combining element is used to partially reflect the first polarized light from the first light source to obtain the second polarized light, partially transmit it to obtain the third polarized light, and transmit the received laser light reflected back by the wavelength conversion element. , reflect the fifth polarized light converted by the first phase retardation element, or make part of the first polarized light from the first light source reflected to obtain the third polarized light, and part of it to be transmitted to obtain the second polarized light, and Reflecting the received laser light reflected by the wavelength conversion element, and transmitting the fifth polarized light converted by the first phase retardation element, the polarization directions of the first polarized light, the second polarized light and the third polarized light are different;
  • the wavelength conversion element is disposed on the transmission path of the second polarized light, and is used for generating the received laser light under the irradiation of the second polarized light, and reflecting the received laser light back to the light combining element;
  • the first phase retardation element and the guiding element are both arranged on the transmission path of the third polarized light, and the first phase retardation element is located between the light combining element and the guiding element,
  • the third polarized light is converted into a fourth polarized light after passing through the first phase retardation element, and the fourth polarized light is reflected back to the first phase retardation element by the guiding element, and passes through the first phase retardation element.
  • the retardation element is converted into fifth polarized light and passed to the light combining element.
  • the light source system further includes a second phase retardation element, the second phase retardation element is configured on the transmission path of the first polarized light, and is located between the first light source and the Between the light combining elements, the first polarized light from the first light source is converted by the second phase retardation element and then enters the light combining element.
  • the light source system further includes a second light source, and the light generated by the second light source passes through the guiding element and the first phase delay element in sequence and then is transmitted to the light combining
  • the light combining element is further configured to combine the light generated by the second light source with the received laser light and the fifth polarized light.
  • the light source system further includes a control unit, the control unit is configured to control the movement of the first light source and adjust the polarization direction of the first polarized light generated by the light source relative to the light combining element .
  • the light source system further includes a control unit, the control unit is configured to control the movement of the second phase delay element, and adjust the optical axis of the second phase delay element and the incident light to the The included angle between the polarization directions of the first polarized light of the second phase retardation element.
  • the polarization direction of the second polarized light and the polarization direction of the third polarized light are perpendicular to each other.
  • the polarization directions of the second polarized light and the fifth polarized light are the same.
  • the first light source is a polarized light source
  • the first polarized light is linearly polarized or approximately linearly polarized polarized light.
  • the first light source is a laser light source.
  • the first phase delay element is a quarter-wave plate or an optical rotation plate.
  • the second phase delay element is a half-wave plate or an optical rotation plate.
  • the guiding element is a reflective element.
  • the guiding element is a filter element having a function of reflecting the fourth polarized light and transmitting the light generated by the second light source.
  • the light generated by the first light source is blue light
  • the received laser light is yellow light
  • the light generated by the first light source is blue light
  • the received laser light is green light
  • the light generated by the second light source is red light
  • the present invention provides another light source system, the light source system includes a first light source, a sequential polarization converter, a light combining element, a wavelength conversion element, a first phase delay element, a filter element and a second light source, wherein :
  • the first light source is used to generate first polarized light
  • the time-series polarization converter is configured on the transmission path of the first polarized light, and is used to convert the first polarized light incident to the time-series polarization converter into the second polarized light or the third polarized light in a time-series manner ;
  • the light combining element is configured to reflect the second polarized light and transmit the third polarized light, transmit the received laser light reflected back by the wavelength conversion element, and reflect the fifth polarized light converted by the first phase retardation element, or , reflects the third polarized light and transmits the second polarized light, and reflects the received laser light reflected back by the wavelength conversion element, and transmits the fifth polarized light converted by the first phase retardation element;
  • the wavelength conversion element is disposed on the transmission path of the second polarized light, and is used for generating the received laser light under the irradiation of the second polarized light, and reflecting the received laser light back to the light combining element;
  • the first phase retardation element and the filter element are both arranged on the transmission path of the third polarized light, and the first phase retardation element is located between the light combining element and the filter element,
  • the third polarized light is converted into fourth polarized light after passing through the first phase retardation element, and the fourth polarized light is reflected by the filter element back to the first phase retardation element, and passed through the first phase retardation element.
  • the retardation element is converted into fifth polarized light and passed to the light combining element;
  • the light generated by the second light source passes through the filter element and the first phase delay element in sequence and then is transmitted to the light combining element, and the light combining element is also used to combine the light generated by the second light source. Combined with the received laser light and the fifth polarized light.
  • the time-series polarization converter is an electrically controlled polarization converter, and the polarization direction of the first polarized light and the polarization direction of the second polarized light or the polarization of the third polarized light same direction.
  • the polarization direction of the second polarized light and the polarization direction of the third polarized light are perpendicular to each other.
  • the polarization direction of the second polarized light and the polarization direction of the fifth polarized light are the same.
  • the first light source is a polarized light source
  • the first polarized light is linearly polarized or approximately linearly polarized polarized light.
  • the first light source is a laser light source.
  • the first phase delay element is a quarter-wave plate or an optical rotation plate.
  • the light generated by the first light source is blue light
  • the received laser light is green light
  • the light generated by the second light source is red light
  • the present invention provides a projection device including the first aspect and possible implementations of the first aspect or the light source system described in the second aspect and possible implementations of the second aspect.
  • the light source system and projection equipment provided by the present invention utilize the polarization characteristics of light, have a simple optical path, a compact structure, and a smaller volume; and can not only utilize the brightness advantage of the laser, but also greatly reduce the speckle effect of the pure laser.
  • the present invention adopts a static manner to perform time-division wavelength conversion, thereby reducing noise, volume and cost.
  • FIG. 1A and FIG. 1B are schematic structural diagrams of a light source system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a light source system according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a light source system according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a light source system according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a light source system according to another embodiment of the present invention.
  • the light source system includes a first light source 1 , a light combining element 3 , a wavelength conversion element 4 , a first phase retardation element 5 and a guiding element 6 .
  • the first light source 1 is used to generate the first polarized light 101 .
  • the light combining element 3 is used to partially reflect the first polarized light 101 from the first light source 1 to obtain the second polarized light 1011, partially transmit it to obtain the third polarized light 1012, and transmit the received laser light reflected by the wavelength conversion element 4.
  • the wavelength conversion element 4 is disposed on the transmission path of the second polarized light 1011 , and is used to generate the received laser light 102 under the irradiation of the second polarized light 1011 , and to reflect the received laser light 102 back to the optical element 3 .
  • Both the first phase retardation element 5 and the guiding element 6 are arranged on the transmission path of the third polarized light 1012, and the first phase retardation element 5 is located between the light combining element 3 and the guiding element 6, and the third polarized light 1012 is
  • the first phase retardation element 5 is converted into fourth polarized light, the fourth polarized light is reflected by the guiding element 6 back to the first phase retardation element 5, converted into the fifth polarized light 1013 by the first phase retardation element 5, and transmitted to Light combining element 3.
  • the light combining element 3 can not only polarize and split light of a specific wavelength, but also combine visible light.
  • the light combining element 3 can only polarize and split blue light, and transmit or reflect visible light of other colors to combine light.
  • the first light source 1 is a polarized light source, preferably a laser light source, such as a blue laser light source, and the first polarized light 101 generated by it is linearly polarized or approximately linearly polarized polarized light. As shown in FIG. 1A , the first polarized light 101 is incident on the light combining element 3 , and is partially reflected to obtain the second polarized light 1011 , and partially transmitted to obtain the third polarized light 1012 .
  • a polarized light source preferably a laser light source, such as a blue laser light source
  • the first polarized light 101 generated by it is linearly polarized or approximately linearly polarized polarized light.
  • the first polarized light 101 is incident on the light combining element 3 , and is partially reflected to obtain the second polarized light 1011 , and partially transmitted to obtain the third polarized light 1012 .
  • the polarization directions of the second polarized light 1011 and the third polarized light 1012 are perpendicular to each other, for example, the polarization directions of the second polarized light 1011 and the third polarized light 1012 are the P polarization direction and the S polarization direction, respectively.
  • the second polarized light 1011 excites the wavelength conversion element 4 to generate a received laser light 102 with a specific color, which is reflected back to the light element 3 to combine light.
  • the wavelength conversion element 4 may be a device with a wavelength conversion material formed on its surface, such as a phosphor powder, a nanoparticle, and the like. In the present application, the wavelength conversion element 4 is a static element, so that noise, volume and cost can be reduced.
  • the intensity of the second polarized light 1011 used to excite the wavelength conversion material needs to be increased.
  • the intensity distribution of the second polarized light 1011 and the third polarized light 1012 can be adjusted by changing the polarization direction of the first polarized light 101 , and the specific intensity distribution of the second polarized light 1011 and the third polarized light 1012 can be adjusted according to actual needs.
  • the intensity of the first polarized light 101 is 100.
  • the intensities of the second polarized light 1011 and the third polarized light 1012 are 50 and 50 respectively.
  • the intensities of the second polarized light 1011 and the third polarized light 1012 are 40 and 60 respectively.
  • a control unit may be provided to control the movement of the first light source 101 , so as to adjust the polarization direction of the first polarized light 101 generated by the first light source 101 relative to the light combining element 3 . It is also possible to manually control the rotation of the first light source 101 to an appropriate position, so that the intensities of the second polarized light 1011 and the third polarized light 1012 can meet requirements.
  • the third polarized light 1012 After the third polarized light 1012 passes through the first phase retardation element 5 and the guiding element 6 in sequence, it returns to the light combining element 3 for light combining, that is, the third polarized light 1012 is converted into the fourth polarized light by the first phase retardation element 5, The fourth polarized light is reflected by the guiding element 6 back to the first phase retardation element 5 , and is converted into the fifth polarized light 1013 by the first phase retardation element 5 , and the fifth polarized light 1013 is transmitted to the light combining element 3 .
  • the first phase retardation element 5 is preferably a quarter wave plate, and can also be an element with the same function, such as an optical rotator; the guiding element 6 is preferably a reflection element.
  • the third polarized light 1012 passes through the first phase retardation element 5 twice, it is converted into a fifth polarized light 1013.
  • the fifth polarized light 1013 and the second polarized light 1011 have the same polarization direction. reflected by the light combining element 3 .
  • FIG. 2 is a schematic structural diagram of a light source system according to another embodiment of the present invention.
  • the light source system includes a first light source 1 , a second phase retardation element 2 , a light combining element 3 , a wavelength conversion element 4 , a first phase retardation element 5 and a guiding element 6 .
  • the light source system of the embodiment shown in FIG. 1A the light source system of the embodiment shown in FIG.
  • the second phase retardation element 2 adds a second phase delay element 2 , and the second phase delay element 2 is arranged on the transmission path of the first polarized light 101 and located in the first Between the light source 1 and the light combining element 3 , the first polarized light 101 from the first light source 1 is converted by the second phase retardation element 2 and then enters the light combining element 3 .
  • the second phase retardation element 2 is preferably a half-wave plate, an optical rotatory plate or other elements with equivalent functions.
  • a control unit can be set to control the movement of the second phase retardation element 2 to adjust the difference between the optical axis of the second phase retardation element 2 and the polarization direction of the first polarized light 101 incident on the second phase retardation element 2 The angle between them is adjusted, so as to adjust the polarization direction of the light emitted from the second phase retardation element 2 relative to the light combining element 3 .
  • the second phase retardation element 2 can also be manually controlled to rotate to an appropriate position, so that the intensities of the second polarized light 1011 and the third polarized light 1012 can meet requirements.
  • the remaining elements in the embodiment shown in FIG. 2 are the same as those in the embodiment shown in FIG. 1A , and will not be repeated here.
  • the light combining element 3 combines the received laser light 102 and the fifth polarized light 1013 .
  • the first light source 1 is a blue laser light source
  • the wavelength conversion material of the wavelength conversion element 4 is a yellow light conversion material
  • the received laser 102 and the fifth polarized light 1013 are combined by the light combining element 3. for white light.
  • FIG. 3 is a schematic structural diagram of a light source system according to another embodiment of the present invention.
  • the light source system includes a first light source 1 , a second phase retardation element 2 , a light combining element 3 , a wavelength conversion element 4 , a first phase retardation element 5 , a guiding element 6 and a second light source 7 .
  • the second light source 7 may be an LED light source, or a laser light source or other light source.
  • the light 103 generated by the second light source 7 passes through the guiding element 6 and the first phase delay element 5 in sequence and then is transmitted to the light combining element 3, where the light is combined.
  • the element 3 is also used to combine the light 103 generated by the second light source 7 with the received laser light 102 and the fifth polarized light 1013 .
  • the first light source 1 is a blue laser light source
  • the wavelength conversion material of the wavelength conversion element 4 is a green light conversion material
  • the second light source 7 is a red light source
  • the light 103 generated by the second light source 7 is The received laser light 102 and the fifth polarized light 1013 become white light after being combined by the light combining element 3 .
  • the guiding element 6 is preferably a filter element having the function of reflecting the fourth polarized light and transmitting the light generated by the second light source, such as a filter that reverses blue and transmits red.
  • the remaining elements in this embodiment are the same as those in the embodiment shown in FIG. 2 , and will not be repeated here.
  • a collimating system, a converging system, a diffusing element, etc. may be added to the light source system of the above-mentioned embodiments to improve the utilization rate of light in the light source system, as shown in FIG. 4 .
  • FIG. 5 is a schematic structural diagram of a light source system according to another embodiment of the present invention.
  • the light source system includes a first light source 1 , a sequential polarization converter 8 , a light combining element 3 , a wavelength converting element 4 , a first phase delay element 5 , a filter element 6 and a second light source 7 .
  • the second phase delay element 2 is changed to a sequential polarization converter 8
  • the sequential polarization converter 8 is used to convert the first polarization incident to the sequential polarization converter 8 .
  • the light 101 is converted into the second polarized light 1011 or the third polarized light 1012 in a time-series manner. For example, in the first time period, the first polarized light 101 is converted into the second polarized light 1011, and in the second time period, the first polarized light 101 is converted into the second polarized light 1011. A polarized light 101 is converted into a third polarized light 1012, and in a third time period, the first polarized light 101 is converted into a second polarized light 1011, and the cycle is repeated.
  • the light combining element 3 is used to reflect the second polarized light 1011 and transmit the third polarized light 1012, transmit the received laser light 102 reflected back by the wavelength conversion element 4, and reflect the fifth polarized light 1013 converted by the first phase retardation element 5, Alternatively, the third polarized light 1012 is reflected and the second polarized light 1011 is transmitted, the received laser light 102 reflected by the wavelength conversion element 4 is reflected, and the fifth polarized light 1013 converted by the first phase retardation element 5 is transmitted.
  • the remaining elements in this embodiment are the same as those in the embodiment shown in FIG. 3 , and will not be repeated here.
  • the time-series polarization converter 8 is preferably an electrically controlled polarization converter, such as a liquid crystal light valve, which controls the polarization direction of light depending on whether it is energized or not.
  • an electrically controlled polarization converter such as a liquid crystal light valve
  • the initial polarization direction of the first polarized light 101 relative to the light combining element 3 is P light
  • the electrically controlled polarization converter when the electrically controlled polarization converter is not powered on, the first polarized light 101 will maintain P polarization after passing through the electrically controlled polarization converter
  • the electrically controlled polarization converter is powered on, the polarization direction of the first polarized light 101 is converted from the P polarization state to the S polarization state after passing through the electrically controlled polarization converter.
  • the sequential polarization converter 8 can also be other elements with the same function.
  • the first light source 1 is a blue laser light source
  • the wavelength conversion material of the wavelength conversion element 4 is a green light conversion material
  • the second light source 7 is a red light source
  • the embodiment shown in FIG. 5 can realize the timing control of red, green and blue, and then It can be applied to single optical machine chip system.
  • the light source systems of the embodiments shown in FIGS. 1A-4 are more suitable for multi-optical machine chip systems such as 3DLP, 3LCD, and 3LCOS.
  • Embodiments of the present invention also provide a projection device, including the light source system involved in the above embodiments, and the projection device further includes other components, such as a projection lens, etc., the settings of these components can be found in the related art, and details are not repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统,包括第一光源(1)、合光元件(3)、波长转换元件(4)、第一相位延迟元件(5)和导引元件(6)。第一光源(1)用于产生第一偏振光(101)。合光元件(3)用于使来自第一光源(1)的第一偏振光(101)部分被反射得到第二偏振光(1011),部分被透射得到第三偏振光(1012),并对可见光进行合光。波长转换元件(4)用于在第二偏振光(1011)的照射下产生受激光(102),并将受激光(102)反射回合光元件(3)。第三偏振光(1012)依次经过第一相位延迟元件(5)和导引元件(6),返回合光元件(3)进行合光。还涉及包括该光源系统的投影设备。该光源系统利用光的偏振性和采用静态的方式进行分时波长转换,即能利用激光的亮度优势,又能降低激光的散斑影响,还能减小噪音、体积以及降低成本。

Description

光源系统及投影设备 技术领域
本发明涉及显示技术领域,尤其涉及一种光源系统及投影设备。
背景技术
在投影显示产品中,投影显示光源是非常重要的部件,它的功能在于将不同颜色、不同角度分布、不同亮度和不同形状的光线,转换成照射到显示芯片有效区域的均匀光斑。
在投影显示领域,传统的灯泡由于其自身的缺陷已越来越不被采用,而LED、激光荧光粉和三色激光等新型光源在亮度、色彩、寿命、能耗等方面表现出优异的特性,逐渐成为投影显示用光源的主流。在三种新型光源技术中,LED光源难以实现高亮度,而三激光光源存在散斑困扰,无法得到理想的画质。
发明内容
有鉴于此,本发明提供一种光源系统及投影设备,主要利用光的偏振特性进行分光合光,使整个光路紧凑,大大节省光路空间,提升合光效率。
第一方面,本发明提供一种光源系统,所述光源系统包括第一光源、合光元件、波长转换元件、第一相位延迟元件和导引元件,其中:
所述第一光源用于产生第一偏振光;
所述合光元件用于使来自所述第一光源的第一偏振光部分被反射得到第二偏振光,部分被透射得到第三偏振光,并透射经所述波长转换元件反射回的受激光,反射经所述第一相位延迟元件转换的第五偏振光,或者,使来自所述第一光源的第一偏振光部分被反射得到第三偏振光,部分被透射得到第二偏振光,并反射经所述波长转换元件反射回的受激光,透射经所述第一相位延迟元件转换的第五偏振光,所述第一偏振光、第二偏振光和第三偏振光的偏振方向不同;
所述波长转换元件配置于所述第二偏振光的传递路径上,用于在所述第二偏振光的照射下产生所述受激光,并将所述受激光反射回所述合光元件;
所述第一相位延迟元件和所述导引元件均配置于所述第三偏振光的传递路径上,且所述第一相位延迟元件位于所述合光元件与所述导引元件之间,所述第三偏振光经所述第一相位延迟元件后转换为第四偏振光,所述第四偏振光被所述 导引元件反射回所述第一相位延迟元件,经所述第一相位延迟元件转换为第五偏振光,并被传递至所述合光元件。
在一种可能的实现方式中,所述光源系统还包括第二相位延迟元件,所述第二相位延迟元件配置于所述第一偏振光的传递路径上,且位于所述第一光源与所述合光元件之间,来自所述第一光源的第一偏振光经所述第二相位延迟元件转换后再入射至所述合光元件。
在一种可能的实现方式中,所述光源系统还包括第二光源,所述第二光源产生的光依次经过所述导引元件和所述第一相位延迟元件后被传递至所述合光元件,所述合光元件还用于将所述第二光源产生的光与所述受激光和所述第五偏振光进行合光。
在一种可能的实现方式中,所述光源系统还包括控制单元,所述控制单元用于控制所述第一光源运动,调整其产生的第一偏振光相对于所述合光元件的偏振方向。
在一种可能的实现方式中,所述光源系统还包括控制单元,所述控制单元用于控制所述第二相位延迟元件运动,调整所述第二相位延迟元件的光轴与入射至所述第二相位延迟元件的第一偏振光的偏振方向之间的夹角。
在一种可能的实现方式中,所述第二偏振光的偏振方向和所述第三偏振光的偏振方向相互垂直。
在一种可能的实现方式中,所述第二偏振光和所述第五偏振光的偏振方向相同。
在一种可能的实现方式中,所述第一光源为偏振光源,所述第一偏振光为线偏振或近似线偏振的偏振光。
在一种可能的实现方式中,所述第一光源为激光光源。
在一种可能的实现方式中,所述第一相位延迟元件为四分之一波片或旋光片。
在一种可能的实现方式中,所述第二相位延迟元件为半波片或旋光片。
在一种可能的实现方式中,所述导引元件为反射元件。
在一种可能的实现方式中,所述导引元件为具有反射第四偏振光而透射第二光源产生的光的功能的滤光元件。
在一种可能的实现方式中,所述第一光源产生的光为蓝光,所述受激光为黄 光。
在一种可能的实现方式中,所述第一光源产生的光为蓝光,所述受激光为绿光,所述第二光源产生的光为红光。
第二方面,本发明提供另一种光源系统,所述光源系统包括第一光源、时序偏振转换器、合光元件、波长转换元件、第一相位延迟元件、滤光元件和第二光源,其中:
所述第一光源用于产生第一偏振光;
所述时序偏振转换器配置于所述第一偏振光的传递路径上,用于将入射至所述时序偏振转换器的第一偏振光以时序的方式转换为第二偏振光或第三偏振光;
所述合光元件用于反射第二偏振光而透射第三偏振光,并透射经所述波长转换元件反射回的受激光,反射经所述第一相位延迟元件转换的第五偏振光,或者,反射第三偏振光而透射第二偏振光,并反射经所述波长转换元件反射回的受激光,透射经所述第一相位延迟元件转换的第五偏振光;
所述波长转换元件配置于所述第二偏振光的传递路径上,用于在所述第二偏振光的照射下产生所述受激光,并将所述受激光反射回所述合光元件;
所述第一相位延迟元件和所述滤光元件均配置于所述第三偏振光的传递路径上,且所述第一相位延迟元件位于所述合光元件与所述滤光元件之间,所述第三偏振光经所述第一相位延迟元件后转换为第四偏振光,所述第四偏振光被所述滤光元件反射回所述第一相位延迟元件,经所述第一相位延迟元件转换为第五偏振光,并被传递至所述合光元件;
所述第二光源产生的光依次经过所述滤光元件和所述第一相位延迟元件后被传递至所述合光元件,所述合光元件还用于将所述第二光源产生的光与所述受激光和所述第五偏振光进行合光。
在一种可能的实现方式中,所述时序偏振转换器为电控偏振转换器,所述第一偏振光的偏振方向与所述第二偏振光的偏振方向或所述第三偏振光的偏振方向相同。
在一种可能的实现方式中,所述第二偏振光的偏振方向和所述第三偏振光的偏振方向相互垂直。
在一种可能的实现方式中,所述第二偏振光的偏振方向和所述第五偏振光的 偏振方向相同。
在一种可能的实现方式中,所述第一光源为偏振光源,所述第一偏振光为线偏振或近似线偏振的偏振光。
在一种可能的实现方式中,所述第一光源为激光光源。
在一种可能的实现方式中,所述第一相位延迟元件为四分之一波片或旋光片。
在一种可能的实现方式中,所述第一光源产生的光为蓝光,所述受激光为绿光,所述第二光源产生的光为红光。
第三方面,本发明提供一种投影设备,所述投影设备包括第一方面及第一方面可能的实现方式或第二方面及第二方面可能的实现方式中所述的光源系统。
本发明提供的光源系统及投影设备,利用光的偏振特性,光路简单且结构紧凑,体积更小;且既能利用激光的亮度优势,又能大大降低纯激光的散斑影响。此外,本发明采用静态的方式进行分时波长转换,减少噪音、体积和成本。
附图说明
通过结合附图对本发明实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中,相同的参考标号通常代表相同部件或步骤。其中:
图1A和图1B为本发明一实施例的光源系统的结构示意图;
图2为本发明另一实施例的光源系统的结构示意图;
图3为本发明又一实施例的光源系统的结构示意图;
图4为本发明又一实施例的光源系统的结构示意图;
图5为本发明又一实施例的光源系统的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。此外,虽然本发明中公开内容按照 示范性一个或几个实例来介绍,但应理解,可以就这些公开内容的各个方面也可以单独构成一个完整技术方案。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
在本发明实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本发明中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而是仅用于区分描述。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。术语“和/或”包括一个或多个相关联的所列项目的任何和所有组合。
为了彻底理解本发明,将在下面提供详细的描述,以便阐释本发明的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
图1A和图1B为本发明一实施例的光源系统的结构示意图。如图1A和图1B所示,光源系统包括第一光源1、合光元件3、波长转换元件4、第一相位延迟元件5和导引元件6。第一光源1用于产生第一偏振光101。合光元件3用于使来自第一光源1的第一偏振光101部分被反射得到第二偏振光1011,部分被透射得到第三偏振光1012,并透射经波长转换元件4反射回的受激光102,反射经第一相位延迟元件5转换的第五偏振光1013,或者,使来自第一光源1的第一偏振光101部分被反射得到第三偏振光1012,部分被透射得到第二偏振光1011,并反射经波长转换元件4反射回的受激光102,透射经第一相位延迟元件5转换的第五偏振光1013,第一偏振光101、第二偏振光1011和第三偏振光1012的偏振方向不同。波长转换元件4配置于第二偏振光1011的传递路径上,用于在第二偏振光1011的照射下产生受激光102,并将受激光102反射回合光元件3。第一相位延迟元件5和导引元件6均配置于第三偏振光1012的传递路径上,且第一相位延迟元件5位于合光元件3与导引元件6之间,第三偏振光1012经第一 相位延迟元件5转换为第四偏振光,第四偏振光被导引元件6反射回第一相位延迟元件5,经第一相位延迟元件5转换为第五偏振光1013,并被传递至合光元件3。
需要说明的是,合光元件3既能对特定波长的光进行偏振分光,又能对可见光进行合光。如,合光元件3只能对蓝光进行偏振分光,对其他颜色的可见光透射或反射从而进行合光。
在一个具体实施例中,第一光源1为偏振光源,优选为激光光源,如蓝色激光光源,其产生的第一偏振光101为线偏振或近似线偏振的偏振光。如图1A所示,第一偏振光101入射至合光元件3,部分被反射得到第二偏振光1011,部分被透射得到第三偏振光1012。示例地,第二偏振光1011和第三偏振光1012的偏振方向相互垂直,如第二偏振光1011和第三偏振光1012的偏振方向分别为P偏振方向和S偏振方向。
第二偏振光1011激发波长转换元件4,产生具有特定颜色的受激光102并反射回合光元件3进行合光。波长转换元件4可以是表面形成有波长转换材料的装置,波长转换材料如荧光粉、纳米粒子等。本申请中,波长转换元件4是一个静态的元件,从而可以减少噪音、体积和成本。
随着使用时间的增加,荧光粉等波长转换材料的转换率通常会有所下降,为了最大化合光的亮度,需要提高用于激发波长转换材料的第二偏振光1011的强度。改变第一偏振光101的偏振方向,即可调整第二偏振光1011和第三偏振光1012的强度分配,第二偏振光1011和第三偏振光1012强度的具体分配可根据实际需要进行调整。如,第一偏振光101的强度为100,调整前,第二偏振光1011和第三偏振光1012的强度分别为50和50,调整后,第二偏振光1011和第三偏振光1012的强度分别为40和60。在一些实施例中,可通过设置一个控制单元来控制第一光源101运动,从而调整其产生的第一偏振光101相对于合光元件3的偏振方向。也可手动控制第一光源101旋转至合适位置,使第二偏振光1011和第三偏振光1012的强度满足需要。
第三偏振光1012依次经过第一相位延迟元件5和导引元件6后,返回到合光元件3进行合光,即第三偏振光1012经第一相位延迟元件5转换为第四偏振光,第四偏振光被导引元件6反射回第一相位延迟元件5,经第一相位延迟元件 5转换为第五偏振光1013,第五偏振光1013被传递至合光元件3。第一相位延迟元件5优选为四分之一波片,也可以为旋光片等具有同等功能的元件;导引元件6优选为反射元件。第三偏振光1012往返两次经过第一相位延迟元件5后,被转换为第五偏振光1013,第五偏振光1013与第二偏振光1011的偏振方向相同,如均为P偏振方向,可被合光元件3反射。
图2为本发明另一实施例的光源系统的结构示意图。如图2所示,光源系统包括第一光源1、第二相位延迟元件2、合光元件3、波长转换元件4、第一相位延迟元件5和导引元件6。与图1A所示实施例相比,图2所示实施例的光源系统增加了第二相位延迟元件2,第二相位延迟元件2配置于第一偏振光101的传递路径上,且位于第一光源1与合光元件3之间,来自第一光源1的第一偏振光101经第二相位延迟元件2转换后再入射至合光元件3。第二相位延迟元件2优选为半波片、旋光片或其他具有同等功能的元件。通过第二相位延迟元件2改变第一偏振光101的偏振方向,可以调整第二偏振光1011和第三偏振光1012的强度。在一些实施例中,可设置一个控制单元来控制第二相位延迟元件2运动,调整第二相位延迟元件2的光轴与入射至第二相位延迟元件2的第一偏振光101的偏振方向之间的夹角,从而调整第二相位延迟元件2的出射光相对于合光元件3的偏振方向。也可手动控制第二相位延迟元件2旋转至合适位置,使第二偏振光1011和第三偏振光1012的强度满足需要。图2所示实施例中的其余元件与图1A所示实施例中的元件相同,在此不再赘述。
在图1A、图1B和图2所示实施例的光源系统中,合光元件3对受激光102和第五偏振光1013进行合光。若需要合成白光,示例地,第一光源1为蓝色激光光源,波长转换元件4的波长转换材料为黄光转换材料,受激光102和第五偏振光1013经合光元件3合光后即为白光。
图3为本发明又一实施例的光源系统的结构示意图。如图3所示,光源系统包括第一光源1、第二相位延迟元件2、合光元件3、波长转换元件4、第一相位延迟元件5、导引元件6和第二光源7。第二光源7可以为LED光源,也可以为激光光源或其他光源,第二光源7产生的光103依次经过导引元件6和第一相位延迟元件5后被传递至合光元件3,合光元件3还用于将第二光源7产生的光103与受激光102和第五偏振光1013进行合光。若需要合成白光,示例地,第一光 源1为蓝色激光光源,波长转换元件4的波长转换材料为绿光转换材料,第二光源7为红光光源,第二光源7产生的光103与受激光102和第五偏振光1013经合光元件3合光后即为白光。在该实施例中,导引元件6优选为具有反射第四偏振光而透射第二光源产生的光的功能的滤光元件,如反蓝透红的滤光片。该实施例中的其余元件与图2所示实施例相同,在此不再赘述。
在一些实施例中,可在上述实施例的光源系统中加入准直系统、汇聚系统以及扩散元件等,提高光源系统中光的利用率,如图4所示。
图5为本发明又一实施例的光源系统的结构示意图。如图5所示,光源系统包括第一光源1、时序偏振转换器8、合光元件3、波长转换元件4、第一相位延迟元件5、滤光元件6和第二光源7。相对于图3所示实施例的光源系统,该实施例将第二相位延迟元件2变更成了时序偏振转换器8,时序偏振转换器8用于将入射至时序偏振转换器8的第一偏振光101以时序的方式转换为第二偏振光1011或第三偏振光1012,如,在第一时间段,将第一偏振光101转换为第二偏振光1011,在第二时间段,将第一偏振光101转换为第三偏振光1012,在第三时间段,将第一偏振光101转换为第二偏振光1011,以此循环。合光元件3用于反射第二偏振光1011而透射第三偏振光1012,并透射经波长转换元件4反射回的受激光102,反射经第一相位延迟元件5转换的第五偏振光1013,或者,反射第三偏振光1012而透射第二偏振光1011,并反射经波长转换元件4反射回的受激光102,透射经第一相位延迟元件5转换的第五偏振光1013。该实施例中的其余元件与图3所示实施例相同,在此不再赘述。
时序偏振转换器8优选为电控偏振转换器,如液晶光阀,它靠通电与否来控制光的偏振方向。举例来说,假设第一偏振光101相对于合光元件3的初始偏振方向为P光,当电控偏振转换器不通电时,第一偏振光101通过电控偏振转换器后将保持P偏振态出射;当电控偏振转换器通电时,第一偏振光101通过电控偏振转换器后其偏振方向由P偏振态转换成S偏振态。当然,时序偏振转换器8也可以是具有同样功能的其它元件。若第一光源1为蓝色激光光源,波长转换元件4的波长转换材料为绿光转换材料,第二光源7为红光光源,图5所示实施例可以实现红绿蓝的时序控制,进而可以应用于单光机芯片系统。而图1A-图4所示实施例的光源系统更加适用于3DLP、3LCD和3LCOS等多光机芯片系统。
本发明实施例还提供一种投影设备,包括上述实施例涉及的光源系统,投影设备中还包括其他组件,如投影镜头等,这些组件的设置可参见相关技术,在此不再赘述。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种光源系统,其特征在于,所述光源系统包括第一光源、合光元件、波长转换元件、第一相位延迟元件和导引元件,其中:
    所述第一光源用于产生第一偏振光;
    所述合光元件用于使来自所述第一光源的第一偏振光部分被反射得到第二偏振光,部分被透射得到第三偏振光,并透射经所述波长转换元件反射回的受激光,反射经所述第一相位延迟元件转换的第五偏振光,或者,使来自所述第一光源的第一偏振光部分被反射得到第三偏振光,部分被透射得到第二偏振光,并反射经所述波长转换元件反射回的受激光,透射经所述第一相位延迟元件转换的第五偏振光,所述第一偏振光、第二偏振光和第三偏振光的偏振方向不同;
    所述波长转换元件配置于所述第二偏振光的传递路径上,用于在所述第二偏振光的照射下产生所述受激光,并将所述受激光反射回所述合光元件;
    所述第一相位延迟元件和所述导引元件均配置于所述第三偏振光的传递路径上,且所述第一相位延迟元件位于所述合光元件与所述导引元件之间,所述第三偏振光经所述第一相位延迟元件转换为第四偏振光,所述第四偏振光被所述导引元件反射回所述第一相位延迟元件,经所述第一相位延迟元件转换为第五偏振光,并被传递至所述合光元件。
  2. 根据权利要求1所述的一种光源系统,其特征在于,所述光源系统还包括第二相位延迟元件,所述第二相位延迟元件配置于所述第一偏振光的传递路径上,且位于所述第一光源与所述合光元件之间,来自所述第一光源的第一偏振光经所述第二相位延迟元件转换后再入射至所述合光元件。
  3. 根据权利要求1所述的一种光源系统,其特征在于,所述光源系统还包括第二光源,所述第二光源产生的光依次经过所述导引元件和所述第一相位延迟元件后被传递至所述合光元件,所述合光元件还用于将所述第二光源产生的光与所述受激光和所述第五偏振光进行合光。
  4. 根据权利要求1所述的一种光源系统,其特征在于,所述光源系统还包括控制单元,所述控制单元用于控制所述第一光源运动,调整其产生的第一偏振光相对于所述合光元件的偏振方向。
  5. 根据权利要求2所述的一种光源系统,其特征在于,所述光源系统还包括控制单元,所述控制单元用于控制所述第二相位延迟元件运动,调整所述第二 相位延迟元件的光轴与入射至所述第二相位延迟元件的第一偏振光的偏振方向之间的夹角。
  6. 根据权利要求1-5中任一项所述的一种光源系统,其特征在于,所述第二偏振光的偏振方向和所述第三偏振光的偏振方向相互垂直。
  7. 根据权利要求1-5中任一项所述的一种光源系统,其特征在于,所述第二偏振光和所述第五偏振光的偏振方向相同。
  8. 根据权利要求1-5中任一项所述的一种光源系统,其特征在于,所述第一光源为偏振光源,所述第一偏振光为线偏振或近似线偏振的偏振光。
  9. 根据权利要求8所述的一种光源系统,其特征在于,所述第一光源为激光光源。
  10. 根据权利要求1所述的一种光源系统,其特征在于,所述第一相位延迟元件为四分之一波片或旋光片。
  11. 根据权利要求2所述的一种光源系统,其特征在于,所述第二相位延迟元件为半波片或旋光片。
  12. 根据权利要求1或2所述的一种光源系统,其特征在于,所述导引元件为反射元件。
  13. 根据权利要求3所述的一种光源系统,其特征在于,所述导引元件为具有反射第四偏振光而透射第二光源产生的光的功能的滤光元件。
  14. 根据权利要求1或2所述的一种光源系统,其特征在于,所述第一光源产生的光为蓝光,所述受激光为黄光。
  15. 根据权利要求3所述的一种光源系统,其特征在于,所述第一光源产生的光为蓝光,所述受激光为绿光,所述第二光源产生的光为红光。
  16. 一种光源系统,其特征在于,所述光源系统包括第一光源、时序偏振转换器、合光元件、波长转换元件、第一相位延迟元件、滤光元件和第二光源,其中:
    所述第一光源用于产生第一偏振光;
    所述时序偏振转换器配置于所述第一偏振光的传递路径上,用于将入射至所述时序偏振转换器的第一偏振光以时序的方式转换为第二偏振光或第三偏振光;
    所述合光元件用于反射第二偏振光而透射第三偏振光,并透射经所述波长转 换元件反射回的受激光,反射经所述第一相位延迟元件转换的第五偏振光,或者,反射第三偏振光而透射第二偏振光,并反射经所述波长转换元件反射回的受激光,透射经所述第一相位延迟元件转换的第五偏振光;
    所述波长转换元件配置于所述第二偏振光的传递路径上,用于在所述第二偏振光的照射下产生所述受激光,并将所述受激光反射回所述合光元件;
    所述第一相位延迟元件和所述滤光元件均配置于所述第三偏振光的传递路径上,且所述第一相位延迟元件位于所述合光元件与所述滤光元件之间,所述第三偏振光经所述第一相位延迟元件后转换为第四偏振光,所述第四偏振光被所述滤光元件反射回所述第一相位延迟元件,经所述第一相位延迟元件转换为第五偏振光,并被传递至所述合光元件;
    所述第二光源产生的光依次经过所述滤光元件和所述第一相位延迟元件后被传递至所述合光元件,所述合光元件还用于将所述第二光源产生的光与所述受激光和所述第五偏振光进行合光。
  17. 根据权利要求16所述的一种光源系统,其特征在于,所述时序偏振转换器为电控偏振转换器,所述第一偏振光的偏振方向与所述第二偏振光的偏振方向或所述第三偏振光的偏振方向相同。
  18. 根据权利要求16-17中任一项所述的一种光源系统,其特征在于,所述第二偏振光的偏振方向和所述第三偏振光的偏振方向相互垂直。
  19. 根据权利要求16-17中任一项所述的一种光源系统,其特征在于,所述第二偏振光的偏振方向和所述第五偏振光的偏振方向相同。
  20. 根据权利要求16-17中任一项所述的一种光源系统,其特征在于,所述第一光源为偏振光源,所述第一偏振光为线偏振或近似线偏振的偏振光。
  21. 根据权利要求20所述的一种光源系统,其特征在于,所述第一光源为激光光源。
  22. 根据权利要求16-17中任一项所述的一种光源系统,其特征在于,所述第一相位延迟元件为四分之一波片或旋光片。
  23. 根据权利要求16-17中任一项所述的一种光源系统,其特征在于,所述第一光源产生的光为蓝光,所述受激光为绿光,所述第二光源产生的光为红光。
  24. 一种投影设备,其特征在于,所述投影设备包括权利要求1-23中任一项 所述的光源系统。
PCT/CN2021/106531 2020-11-07 2021-07-15 光源系统及投影设备 WO2022095504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011233980.1 2020-11-07
CN202011233980.1A CN114460797B (zh) 2020-11-07 2020-11-07 光源系统及投影设备

Publications (1)

Publication Number Publication Date
WO2022095504A1 true WO2022095504A1 (zh) 2022-05-12

Family

ID=81404300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106531 WO2022095504A1 (zh) 2020-11-07 2021-07-15 光源系统及投影设备

Country Status (2)

Country Link
CN (1) CN114460797B (zh)
WO (1) WO2022095504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542649A (zh) * 2022-11-24 2022-12-30 深圳市橙子数字科技有限公司 一种投影照明光源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544048A1 (en) * 2011-07-05 2013-01-09 Ricoh Company, Ltd. Illumination Apparatus and Projection Apparatus
CN107402494A (zh) * 2016-05-19 2017-11-28 深圳市光峰光电技术有限公司 一种光源系统及其投影设备、照明装置
CN109188709A (zh) * 2018-09-18 2019-01-11 无锡视美乐激光显示科技有限公司 一种偏振光转换装置及光源系统
CN111736415A (zh) * 2020-07-15 2020-10-02 成都极米科技股份有限公司 一种混合光源装置以及投影显示设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207507B (zh) * 2012-01-11 2015-07-08 中强光电股份有限公司 光源模组与投影装置
TWI483000B (zh) * 2012-02-22 2015-05-01 Delta Electronics Inc 極化轉換元件組及包含該極化轉換元件組之投影裝置
US11275253B2 (en) * 2019-03-20 2022-03-15 Hisense Laser Display Co., Ltd. Laser projector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544048A1 (en) * 2011-07-05 2013-01-09 Ricoh Company, Ltd. Illumination Apparatus and Projection Apparatus
CN107402494A (zh) * 2016-05-19 2017-11-28 深圳市光峰光电技术有限公司 一种光源系统及其投影设备、照明装置
CN109188709A (zh) * 2018-09-18 2019-01-11 无锡视美乐激光显示科技有限公司 一种偏振光转换装置及光源系统
CN111736415A (zh) * 2020-07-15 2020-10-02 成都极米科技股份有限公司 一种混合光源装置以及投影显示设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542649A (zh) * 2022-11-24 2022-12-30 深圳市橙子数字科技有限公司 一种投影照明光源装置

Also Published As

Publication number Publication date
CN114460797B (zh) 2023-02-24
CN114460797A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
EP3306391B1 (en) Laser light source and projection display device
CN111562713B (zh) 激光投影设备
CN109656084A (zh) 一种激光光源模组及激光投影设备
WO2009070918A1 (fr) Source lumineuse pour système de projection et appareil d'affichage par projection
US10809607B2 (en) Illuminaiton system and projection apparatus
CN111258165B (zh) 激光投影设备
US11448954B2 (en) Illumination system and projection device
WO2008118317A1 (en) System and method for led polarization recycling
US10509303B2 (en) Laser projection device with reflective component and 1/4 wave plate
WO2019061821A1 (zh) 光源系统及应用所述光源系统的投影系统
WO2022012207A1 (zh) 一种混合光源装置以及投影显示设备
WO2022095504A1 (zh) 光源系统及投影设备
CN107193177A (zh) 一种光源系统及其投影装置
US11624974B2 (en) Projection apparatus and illumination system
US11405597B2 (en) Illumination system and projection device
US10921699B2 (en) Optical rotating device, illumination system and projection device
US11467479B2 (en) Polarizing rotation device and projection device
CN209281139U (zh) 一种光源装置及投影系统
WO2022048324A1 (zh) 一种混合光源系统及投影设备
US11614678B2 (en) Light source device and projection system
WO2023005673A1 (zh) 激光光源系统和激光投影设备
CN115793369A (zh) 一种混合光源装置及投影显示系统
WO2022048325A1 (zh) 一种光源系统及投影设备
CN211786560U (zh) 照明系统与投影装置
CN113311653A (zh) 一种波长转换装置、光源装置及投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888205

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21888205

Country of ref document: EP

Kind code of ref document: A1