WO2022095155A1 - 一种操控方法及声镊装置 - Google Patents
一种操控方法及声镊装置 Download PDFInfo
- Publication number
- WO2022095155A1 WO2022095155A1 PCT/CN2020/131619 CN2020131619W WO2022095155A1 WO 2022095155 A1 WO2022095155 A1 WO 2022095155A1 CN 2020131619 W CN2020131619 W CN 2020131619W WO 2022095155 A1 WO2022095155 A1 WO 2022095155A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wave signal
- sound
- acoustic wave
- transducer array
- acoustic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 98
- 239000002245 particle Substances 0.000 claims description 56
- 238000012937 correction Methods 0.000 claims description 25
- 238000004088 simulation Methods 0.000 claims description 23
- 238000003491 array Methods 0.000 claims description 22
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 13
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 8
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 7
- 229940079593 drug Drugs 0.000 claims description 7
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 claims description 6
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 35
- 210000003625 skull Anatomy 0.000 description 14
- 230000005855 radiation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000004794 expanded polystyrene Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 3
- 238000012576 optical tweezer Methods 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/003—Manipulation of charged particles by using radiation pressure, e.g. optical levitation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/006—Manipulation of neutral particles by using radiation pressure, e.g. optical levitation
Definitions
- the double trap includes two focus points whose distances are less than a preset first distance threshold
- the simulated sound wave signal collected by the simulated transducer array component is obtained; the simulated transducer array component is based on Obtained by simulation of real transducer array components;
- the electronic system is caused to excite the real transducer array assembly to emit a second acoustic wave according to the corrected acoustic wave signal.
- the transducer array assembly is used to collect the sound wave signal emitted by the sound source at the first target position and after passing through the inhomogeneous medium, and provide the sound wave signal to the processor;
- the vortex sound trap includes at least four focal points whose positions are arranged along the circumference and whose phases vary along the circumference;
- the first sound wave is emitted by the sound source at the first target position, and after the first sound wave reaches the transducer array assembly through the non-uniform medium, the first sound wave is collected on the transducer array assembly.
- the acoustic signal was corrected by time-reversal method. Since the acoustic wave signal is corrected by the time inversion method, the transducer array assembly is excited to emit the second acoustic wave according to the corrected acoustic wave signal, and the second acoustic wave can form the expected capturing target object after passing through the inhomogeneous medium.
- the sound field is precisely focused on the first target position. Thus, it is advantageous to capture the target object.
- the technical solution of the present application can correct the attenuation and distortion caused by the non-uniformity of the medium during the propagation of the sound wave, thereby reducing the difficulty of manipulating the target object in the non-uniform medium and improving the control success rate.
- Fig. 6 is the realization principle diagram of the control method that Fig. 5 provides;
- focus point 1 is used to capture particle 1 and focus point 2 is used to capture particle 2.
- the calibration process is implemented by the aforementioned processor 201 .
- the phase can be corrected first, and then the amplitude can be corrected; or the amplitude can be corrected first, and then the phase can be corrected.
- the amplitude and phase of the signal can also be corrected simultaneously.
- the first sound wave needs to be emitted by the sound source at the first target position first.
- the sound source may be a real sound source.
- the first target position may not be convenient to place the real sound source.
- the present application also provides a manipulation method for realizing signal correction by means of simulation. The following description will be given in conjunction with the accompanying drawings and embodiments.
- the first target position is a three-dimensional space position that actually exists in the non-homogeneous medium.
- the simulated sound source is used to simulate the emission of sound waves, and the effect that the sound source is actually set and the first sound wave emitted by the real sound source propagates from the non-uniform medium is simulated.
- the acoustic wave signal (also referred to as a time-reversed signal in this embodiment) is used to excite the transducer array assembly to generate a second acoustic wave in the real scene, so as to achieve precise focusing in the real scene.
- the convenience of focusing operation is improved by simulation.
- Polymer particles include any of the following:
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
Claims (23)
- 一种操控方法,其特征在于,包括:获得第一目标位置的声源发射的第一声波经过非均匀介质到达换能器阵列组件后,所述换能器阵列组件采集的声波信号;根据时间反演方法对所述声波信号进行校正,得到校正后的声波信号;将所述校正后的声波信号发送给电子系统,以使所述电子系统根据所述校正后的声波信号激励所述换能器阵列组件发射第二声波;所述第二声波用于在经过所述非均匀介质后于所述第一目标位置聚焦;所述电子系统与所述换能器阵列组件电连接,所述电子系统的通道与所述换能器阵列组件的阵元一一对应。
- 根据权利要求1所述的操控方法,其特征在于,所述根据时间反演方法对所述声波信号进行校正,得到校正后的声波信号,具体包括:根据时间反演方法对所述声波信号的相位和幅度分别进行校正,得到校正后的声波信号。
- 根据权利要求2所述的操控方法,其特征在于,根据时间反演方法对所述声波信号的相位和幅度分别进行校正,得到校正后的声波信号,具体包括:按照以下公式对所述换能器阵列组件中第i个阵元采集的声波信号Pi(t)进行相位校正:Ri(t)=Pi(T-t);所述T为所述声波信号Pi(t)的总时间长度,所述Ri(t)为所述声波信号Pi(t)经过相位校正后的声波信号;按照以下公式对所述Ri(t)进行幅度校正:Ri’(t)=Ri(t)*Amax/Ai;所述Ai为所述第i个阵元采集的声波信号的最大峰值,所述Amax为所述换能器阵列组件中所有阵元分别采集的声波信号的最大峰值之中的最大值;所述Ri’(t)为所述Ri(t)经过幅度校正后的声波信号;所述将所述校正后的声波信号发送给电子系统,具体包括:将所述Ri’(t)发送给电子系统中所述第i个阵元对应的通道。
- 根据权利要求1-3任一项所述的操控方法,其特征在于,还包括:获得第二目标位置的声源发射的第三声波经过非均匀介质到达换能器阵列组件后,所述换能器阵列组件采集的声波信号;根据时间反演方法对该声波信号进行校正,得到该声波信号校正后的声波信号;将该声波信号校正后的声波信号发送给电子系统,以使所述电子系统根据该声波信号校正后的声波信号激励所述换能器阵列组件发射第四声波;所述第四声波用于在经过所述非均匀介质后于所述第二目标位置聚焦;所述第一目标位置和所述第二目标位置为对目标对象的操控轨迹上两个不同的操控位置。
- 根据权利要求1-3任一项所述的操控方法,其特征在于,所述第二声波在所述第一目标位置聚焦后,聚焦点用以捕捉负声对比系数的目标对象。
- 根据权利要求1-3任一项所述的操控方法,其特征在于,还包括:以在所述第一目标位置聚焦相同的方式形成x-1个聚焦点;x个聚焦点之中的部分或全部聚焦点用于形成用 以捕捉负声对比系数的目标对象或捕捉正声对比系数的目标对象的声阱;所述x为大于1的整数。
- 根据权利要求6所述的操控方法,其特征在于,用以捕捉负声对比系数的目标对象的声阱为聚焦声阱,所述聚焦声阱包括至少两个聚焦点。
- 根据权利要求6所述的操控方法,其特征在于,用以捕捉正声对比系数的目标对象的声阱为以下任意一种:涡旋声阱、双阱或局部空心声阱;所述涡旋声阱包括至少四个位置沿着圆周排列、相位沿着圆周间隔变化的聚焦点;所述双阱包括两个距离小于预设第一距离阈值的聚焦点;所述局部空心声阱包括前后、左右、上下分布的至少六个聚焦点。
- 根据权利要求1-3任一项所述的操控方法,其特征在于,在所述获得第一目标位置的声源发射的第一声波经过非均匀介质到达换能器阵列组件后,所述换能器阵列组件采集的声波信号之前,所述方法还包括:获得所述非均匀介质的三维图像;根据所述三维图像中的图像数据对所述非均匀介质进行建模;在建立的非均匀介质模型中与所述第一目标位置对应的位置设置虚拟声源;所述获得第一目标位置的声源发射的第一声波经过非均匀介质到达换能器阵列组件后,所述换能器阵列组件采集的声波信号,具体包括:获得所述虚拟声源发射的第一仿真声波经过非均匀介质模型到达仿真换能器阵列组件后,所述仿真换能器阵列组件采集的仿真声波信号;所述仿真换能器阵列组件为依据真实换能器阵列组件仿真获得;所述根据时间反演方法对所述声波信号进行校正,得到校正后的声波信号,具体包括:根据时间反演方法对所述仿真声波信号进行校正,得到校正后的声波信号;所述使所述电子系统根据所述校正后的声波信号激励所述换能器阵列组件发射第二声波,具体包括:使所述电子系统根据所述校正后的声波信号激励所述真实换能器阵列组件发射第二声波。
- 根据权利要求1-3任一项所述的操控方法,其特征在于,所述换能器阵列组件包括一个换能器阵列或者包括多个换能器阵列,所述多个换能器阵列以预设空间组合方式组合。
- 根据权利要求1-3任一项所述的操控方法,其特征在于,所述声源为虚拟声源或者真实声源。
- 根据权利要求6所述的操控方法,其特征在于,所述目标对象包括以下任意一种:聚合物粒子、载药粒子、细胞、微纳米器件、液滴、微泡或动态生物体。
- 根据权利要求12所述的操控方法,其特征在于,所述聚合物粒子包括以下任意一种:PDMS粒子、PS粒子、EPS粒子、PMMA粒子或玻璃球。
- 一种声镊装置,其特征在于,包括:电子系统、换能器阵列组件和处理器,所述电子系统、所述换能器阵列组件和所述处 理器两两连接;所述电子系统的通道与所述换能器阵列组件的阵元一一对应;所述换能器阵列组件,用于将第一目标位置的声源发射且经过非均匀介质后的声波信号采集下来,并将所述声波信号提供给所述处理器;所述处理器,用于根据时间反演方法对所述声波信号进行校正,得到校正后的声波信号;将所述校正后的声波信号发送给电子系统;所述电子系统,用于根据所述校正后的声波信号激励所述换能器阵列组件发射第二声波;所述第二声波用于在经过所述非均匀介质后于所述第一目标位置聚焦。
- 根据权利要求14所述的装置,其特征在于,所述处理器,具体用于根据时间反演方法对所述声波信号的相位和幅度分别进行校正,得到校正后的声波信号。
- 根据权利要求15所述的装置,其特征在于,所述处理器,具体用于按照以下公式对所述换能器阵列组件中第i个阵元采集的声波信号Pi(t)进行相位校正:Ri(t)=Pi(T-t);所述T为所述声波信号Pi(t)的总时间长度,所述Ri(t)为所述声波信号Pi(t)经过相位校正后的声波信号;所述处理器,具体用于按照以下公式对所述Ri(t)进行幅度校正:Ri’(t)=Ri(t)*Amax/Ai;所述Ai为所述第i个阵元采集的声波信号的最大峰值,所述Amax为所述换能器阵列组件中所有阵元分别采集的声波信号的最大峰值之中的最大值;所述Ri’(t)为所述Ri(t)经过幅度校正后的声波信号;所述处理器,具体用于将所述Ri’(t)发送给所述电子系统中所述第i个阵元对应的通道。
- 根据权利要求14-16任一项所述的装置,其特征在于,所述处理器,还用于以在所述第一目标位置聚焦相同的方式形成x-1个聚焦点;x个聚焦点之中的部分或全部聚焦点用于形成用以捕捉负声对比系数的目标对象或捕捉正声对比系数的目标对象的声阱;所述x为大于1的整数。
- 根据权利要求17所述的装置,其特征在于,用以捕捉负声对比系数的目标对象的声阱为聚焦声阱,所述聚焦声阱包括至少两个聚焦点。
- 根据权利要求17所述的装置,其特征在于,用以捕捉正声对比系数的目标对象的声阱为以下任意一种:涡旋声阱、双阱或局部空心声阱;所述涡旋声阱包括至少四个位置沿着圆周排列、相位沿着圆周间隔变化的聚焦点;所述双阱包括两个距离小于预设第一距离阈值的聚焦点;所述局部空心声阱包括前后、左右、上下分布的至少六个聚焦点。
- 根据权利要求14-16任一项所述的装置,其特征在于,所述换能器阵列组件包括一个换能器阵列或者包括多个换能器阵列,所述多个换能器阵列以预设空间组合方式组合。
- 根据权利要求14-16任一项所述的装置,其特征在于,所述声源为虚拟声源或者真实声源。
- 根据权利要求17所述的装置,其特征在于,所述目标对象包括以下任意一种:聚合物粒子、载药粒子、细胞、微纳米器件、液滴、微泡或动态生物体。
- 根据权利要求22所述的装置,其特征在于,所述聚合物例子包括以下任意一种:PDMS粒子、PS粒子、EPS粒子、PMMA粒子或玻璃球。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011210593.6A CN112349446B (zh) | 2020-11-03 | 2020-11-03 | 一种操控方法及声镊装置 |
CN202011210593.6 | 2020-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022095155A1 true WO2022095155A1 (zh) | 2022-05-12 |
Family
ID=74356352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/131619 WO2022095155A1 (zh) | 2020-11-03 | 2020-11-26 | 一种操控方法及声镊装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112349446B (zh) |
WO (1) | WO2022095155A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114426964A (zh) * | 2021-12-03 | 2022-05-03 | 深圳先进技术研究院 | 一种超声声操控的方法 |
CN114146890B (zh) * | 2021-12-03 | 2022-09-13 | 深圳先进技术研究院 | 一种超声声操控的方法及声镊装置 |
CN118179885A (zh) * | 2022-12-12 | 2024-06-14 | 中国科学院深圳先进技术研究院 | 大规模阵列的声镊控制装置及方法 |
CN116421397A (zh) * | 2023-03-06 | 2023-07-14 | 中国科学院深圳先进技术研究院 | 一种治疗疾病的声镊系统、声镊系统的控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106373706A (zh) * | 2016-09-05 | 2017-02-01 | 电子科技大学 | 基于时间反演空时聚焦机制的双聚焦场电磁镊实现方法 |
CN107050630A (zh) * | 2017-04-01 | 2017-08-18 | 深圳先进技术研究院 | 一种基于时间反转技术操控微粒的系统与方法 |
US10106397B1 (en) * | 2012-04-23 | 2018-10-23 | University Of Southern California | Acoustic tweezers |
CN111013518A (zh) * | 2019-12-12 | 2020-04-17 | 深圳先进技术研究院 | 一种声镊装置及对微粒的操控方法 |
CN111254076A (zh) * | 2020-01-19 | 2020-06-09 | 武汉大学 | 一种用于细胞排列与组装的六边形表面波声镊芯片 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060272418A1 (en) * | 2005-06-03 | 2006-12-07 | Brown University | Opto-acoustic methods and apparatus for perfoming high resolution acoustic imaging and other sample probing and modification operations |
US7587291B1 (en) * | 2008-05-05 | 2009-09-08 | Artann Laboratories | Focusing of broadband acoustic signals using time-reversed acoustics |
CN104586426B (zh) * | 2014-12-30 | 2017-02-22 | 深圳先进技术研究院 | 一种基于超声时间反演的医学影像系统 |
CN105536156A (zh) * | 2015-12-25 | 2016-05-04 | 中国科学院深圳先进技术研究院 | 一种基于大规模面阵元的超声脑刺激或调控方法及装置 |
CN111419185B (zh) * | 2020-04-08 | 2023-03-28 | 国网山西省电力公司电力科学研究院 | 一种声速不均匀的磁声成像图像重建方法 |
-
2020
- 2020-11-03 CN CN202011210593.6A patent/CN112349446B/zh active Active
- 2020-11-26 WO PCT/CN2020/131619 patent/WO2022095155A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10106397B1 (en) * | 2012-04-23 | 2018-10-23 | University Of Southern California | Acoustic tweezers |
CN106373706A (zh) * | 2016-09-05 | 2017-02-01 | 电子科技大学 | 基于时间反演空时聚焦机制的双聚焦场电磁镊实现方法 |
CN107050630A (zh) * | 2017-04-01 | 2017-08-18 | 深圳先进技术研究院 | 一种基于时间反转技术操控微粒的系统与方法 |
CN111013518A (zh) * | 2019-12-12 | 2020-04-17 | 深圳先进技术研究院 | 一种声镊装置及对微粒的操控方法 |
CN111254076A (zh) * | 2020-01-19 | 2020-06-09 | 武汉大学 | 一种用于细胞排列与组装的六边形表面波声镊芯片 |
Also Published As
Publication number | Publication date |
---|---|
CN112349446B (zh) | 2022-03-01 |
CN112349446A (zh) | 2021-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022095155A1 (zh) | 一种操控方法及声镊装置 | |
Tanter et al. | Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull | |
US7587291B1 (en) | Focusing of broadband acoustic signals using time-reversed acoustics | |
Lee et al. | Radiation forces exerted on arbitrarily located sphere by acoustic tweezer | |
JP6824989B2 (ja) | 超音波装置、およびホログラフィック超音波場を生成する方法 | |
CN111013518B (zh) | 一种声镊装置及对微粒的操控方法 | |
US20190374764A1 (en) | System and method for manipulating particles based on a time reversal technique | |
JP5480280B2 (ja) | 物体の物理的特性の検査 | |
KR102207919B1 (ko) | 초음파를 생성하는 방법, 장치 및 시스템 | |
Yuldashev et al. | The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array | |
CN102974046A (zh) | 医疗设备及其控制方法 | |
WO2020037041A1 (en) | Apparatus and method for ultrasound beam shaping | |
Bawiec et al. | Inertial cavitation behaviors induced by nonlinear focused ultrasound pulses | |
Hu et al. | 3-D acoustic tweezers using a 2-D matrix array with time-multiplexed traps | |
CN114146890B (zh) | 一种超声声操控的方法及声镊装置 | |
Prego-Borges et al. | Producing acoustic frozen waves: simulated experiments | |
Karzova et al. | Dual-use transducer for ultrasound imaging and pulsed focused ultrasound therapy | |
JP2022029165A (ja) | 超音波評価装置及び超音波評価方法 | |
Robin et al. | Self-adaptive ultrasonic beam amplifiers: Application to transcostal shock wave therapy | |
CN112741599A (zh) | 一种光声信号反演引导的时间反演超声编码光聚焦方法 | |
Chen et al. | Ultrasonic imaging based on pulsed Airy beams | |
Tanter et al. | Time reversing waves for biomedical applications | |
Nie et al. | A human ear-inspired ultrasonic transducer (HEUT) for 3D localization of sub-wavelength scatterers | |
Zemzemi et al. | Multiple sources array controls shear-wave field in soft tissue using time reversal | |
JP5937890B2 (ja) | 超音波治療システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20960612 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960612 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960612 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2023) |