WO2022092436A1 - System for measuring river topography by using drone, and method therefor - Google Patents

System for measuring river topography by using drone, and method therefor Download PDF

Info

Publication number
WO2022092436A1
WO2022092436A1 PCT/KR2020/018919 KR2020018919W WO2022092436A1 WO 2022092436 A1 WO2022092436 A1 WO 2022092436A1 KR 2020018919 W KR2020018919 W KR 2020018919W WO 2022092436 A1 WO2022092436 A1 WO 2022092436A1
Authority
WO
WIPO (PCT)
Prior art keywords
river
information
laser signal
topography
relay device
Prior art date
Application number
PCT/KR2020/018919
Other languages
French (fr)
Korean (ko)
Inventor
성호제
이동섭
신재현
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Publication of WO2022092436A1 publication Critical patent/WO2022092436A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • G01C11/12Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the embodiment relates to a system and method for surveying a river topography using a drone.
  • Some devices such as water level gauges and water quality meters, use a communication network to install devices on site and then obtain information remotely. it costs
  • the embodiment may provide a system and a method for surveying a river topography using a drone.
  • the river topography surveying system is equipped with a lidar and a hyperspectral sensor, acquires distance information using the lidar while flying in a river area including the jean and excluding regions, and uses the hyperspectral sensor to acquire distance information.
  • a mobile device for acquiring a spectroscopic image; And while moving along the river region according to the flight of the mobile device, a relay device that receives the distance information and the hyperspectral image and calculates two-dimensional planar river topography information for the river region as a result of analysis.
  • the mobile device obtains distance information using a first laser signal and a second laser signal having different wavelengths of the lidar, and obtains distance information around a river using the first laser signal, and the second laser By using the signal, it is possible to obtain distance information of the river bed.
  • the first laser signal may be a near infrared laser signal
  • the second laser signal may be a green laser signal
  • the relay device calculates first river topography information using the distance information, calculates second river topography information using the hyperspectral image, and calculates the first river topography information and the second river topography information can be matched.
  • the relay device extracts a first matching criterion from the first river topography information, extracts a second matching criterion from the second river topography information, and the extracted first matching criterion and the second matching criterion coincide with each other
  • the first river topography information and the second river topography information may be matched to make the same.
  • the relay device extracts a first river edge from the first river topography information, extracts the first matching criterion from the extracted first river edge, and a second river edge from the second river topography information may be extracted, and the second matching criterion may be extracted from the extracted second edge of the river.
  • a mobile device equipped with a lidar and hyperspectral sensor acquires distance information using the lidar while flying in a river area including the jean and excluding regions, and uses the hyperspectral sensor to obtain a hyperspectral image; and calculating two-dimensional planar river topography information for the river region as a result of the relay device receiving and analyzing the distance information and the hyperspectral image while moving along the river region according to the flight of the mobile device.
  • the river bottom topography information is calculated using the distance information obtained from the lidar, and the river using the hyperspectral image acquired from the hyperspectral sensor
  • the river bottom topography information is calculated using the distance information obtained from the lidar, and the river using the hyperspectral image acquired from the hyperspectral sensor
  • the embodiment compared with the existing river topography surveying method, it is possible to obtain two-dimensional planar topography information with high continuity and precision, as well as the expansion of the survey section and efficient management of the topographic information of the river.
  • the manpower required for the topographic survey of the entire section of the river can greatly reduce the cost.
  • FIG. 1 is a view showing a system for managing a river according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a case in which a mobile device and a relay device move.
  • FIG. 3 is a diagram showing a detailed configuration of the mobile device shown in FIG. 1 .
  • FIG. 4 is a diagram showing a detailed configuration of the relay device shown in FIG. 1 .
  • FIG. 5 is a first diagram illustrating a river topography measurement process according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the river topography measurement principle shown in FIG. 5 .
  • FIG. 7 is a second diagram illustrating a river topography measurement process according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating the process of matching the river topography shown in FIG. 7 .
  • FIG. 9 is a view for explaining the river topography measurement principle shown in FIG. 7 .
  • FIG. 10 is a view for explaining the river topography matching principle shown in FIG. 7 .
  • FIG. 11 is a diagram illustrating a process of measuring river characteristic information according to an embodiment of the present invention.
  • FIG. 12 is a view showing a river facility recognition process according to an embodiment of the present invention.
  • FIG. 13 is a view for explaining the river facility recognition principle shown in FIG. 12 .
  • FIG. 14 is a diagram illustrating a method for managing a river according to an embodiment of the present invention.
  • 15A to 15B are diagrams comparing system performance according to whether a relay device is operated.
  • 16 is a diagram for explaining a mission scenario derivation technique according to an embodiment of the present invention.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as “at least one (or more than one) of A and (and) B, C”, it is combined with A, B, and C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • the top (above) or bottom (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components.
  • the meaning of not only the upward direction but also the downward direction based on one component may be included.
  • the lidar and hyperspectral sensor mounted on the drone are used, but the river bottom topography information is calculated using the distance information obtained from the lidar, and the hyperspectral image obtained from the hyperspectral sensor is used to surround the river
  • je-nae refers to the area protected by the river embankment, that is, to the village protected from the embankment.
  • FIG. 1 is a view showing a system for managing a river according to an embodiment of the present invention.
  • a system for managing a river may include a mobile device 100 , a relay device 200 , an integrated server 300 , and a DB (Database) 400 . .
  • the mobile device 100 may fly in an investigation target area that is a partial area or an entire area of a river, and may measure and transmit the first river information and the second river information.
  • the mobile device 100 may be, for example, an unmanned aerial vehicle (UAV) capable of autonomous driving.
  • UAV unmanned aerial vehicle
  • the first river information may be non-image information for analyzing water depth, surrounding topography, etc.
  • the second river information may be image information for analyzing water depth, water quality, flow velocity, floating sand, and the like.
  • the mobile device 100 may measure and transmit the first river information and the second river information while flying according to a predetermined flight altitude, flight path, and flight speed within the investigation target area.
  • the area to be irradiated may be one area or divided into a plurality of areas.
  • one mobile device 100 is used is described as an example, but the present invention is not limited thereto, and a plurality of mobile devices 100 may be used.
  • two mobile devices can be used to measure river information in different areas.
  • the relay device 200 interworks with the mobile device 100, receives first and second river information measured from the mobile device 100, and based on the received first and second river information It is possible to build a river information DB for the area to be investigated.
  • the relay device 200 analyzes the first river information to calculate the water depth, surrounding topography, etc. for the investigation target area, and analyzes the second river information to analyze the water depth, water quality, flow velocity, floating sand, etc. for the investigation target area can be calculated to build a river information DB.
  • the relay device 200 may move according to the movement of the mobile device 100 . For example, when the area to be irradiated is divided into a plurality of areas, the relay apparatus 200 may move together as the mobile apparatus 100 moves after the measurement is completed for each of the plurality of areas.
  • the relay device 200 may be installed in a vehicle to move together while maintaining a predetermined distance as the mobile device 100 moves along a river, and may be driven as a mobile relay device.
  • the relay device 200 may receive information on the flight altitude, flight path, and flight speed of the mobile device 100 according to a user's manipulation, and may provide the input information to the mobile device 100 .
  • the relay device 200 is described as an example of a device mounted on a vehicle, but the present invention is not limited thereto and may be a moving object capable of autonomous flight, such as a mobile device.
  • FIG. 2 is a diagram for explaining a case in which a mobile device and a relay device move.
  • the relay device may move along the mobile device in the first region.
  • the relay device may move along with the mobile device based on a predetermined time.
  • the integrated server 300 may interwork with the relay device 200 , receive a river information DB through the relay device 200 , and manage the received river information DB. In addition, the integrated server 300 may provide partial information of the river facility DB to the relay device 200 according to the request of the relay device 200 .
  • the DB 400 may store a river information DB and a river facility DB.
  • the DB 400 may be implemented as one physically coupled device, but is not necessarily limited thereto and may be implemented as a plurality of physically separated devices.
  • the DB 400 may be implemented to include a first DB for storing the river information DB and a second DB for storing the river facility DB.
  • FIG. 3 is a diagram showing a detailed configuration of the mobile device shown in FIG. 1 .
  • a mobile device is a mobile device including a communication unit 111 , a GPS receiver 112 , a control unit 113 , a storage unit 114 , a power supply unit 115 , and a driving unit 116 .
  • 110 a lidar 121 , a hyperspectral sensor 122 , and a sensor unit 120 including an optical camera 123 .
  • the communication unit 111 may wirelessly interwork with the relay device 200 and transmit/receive various types of information.
  • the GPS receiver 112 may receive location information, that is, coordinate values from a GPS satellite.
  • the controller 113 may move to a predetermined location according to the received control command, and may control to measure and transmit the first river information and the second river information.
  • the storage unit 114 may store various types of information related to river investigation, for example, coordinate values and measurement values.
  • the power supply unit 115 may supply power to all electronic components mounted inside the moving body 110 .
  • the power supply unit 115 may include, for example, a rechargeable battery.
  • the driving unit 116 may drive the moving object 110 to fly at a flight altitude, a flight path, and a flight speed.
  • the driving unit 116 may include, for example, a DC (Direct Current) motor.
  • the lidar 121 is mounted on the movable body 110 and may measure the topography of the area to be investigated, that is, the distance from the topography around the river to the topography of the bottom of the river.
  • the lidar 121 emits a laser signal and measures the distance from the flight altitude at which the moving object 110 is located to the river topography by using the laser signal reflected from the terrain and features.
  • the hyperspectral sensor 122 may be mounted on the movable body 110 and may acquire a hyperspectral image of an area to be irradiated.
  • the hyperspectral sensor 122 refers to equipment capable of acquiring all subdivided wavelength-specific images in a specific wavelength region, compared to conventional electro-optical/infrared imaging equipment that acquires a comprehensive image of visible light or a specific infrared region.
  • the hyperspectral sensor 122 has a slightly lower resolution, it is possible to photograph up to about 1,000 narrow spectral bands, so that the reflective characteristics of the object can be recorded as it is, and the terrain and features can be distinguished.
  • the optical camera 123 may be mounted on the movable body 110 and acquire an optical image of the area to be irradiated.
  • FIG. 4 is a diagram showing a detailed configuration of the relay device shown in FIG. 1 .
  • the relay device 200 includes a communication unit 211 , an input unit 212 , a control unit 213 , a storage unit 214 , a power supply unit 215 , and a display unit 216 .
  • a communication unit 211 may include
  • the communication unit 211 may wirelessly interwork with the mobile device 100 and the integrated server 300 and transmit/receive various types of information.
  • the communication unit 211 may be implemented to include a first communication unit and a second communication unit.
  • the first communication unit may interwork with the mobile device 100 and the second communication unit may interwork with the integrated server 300 .
  • the input unit 212 may receive operation information according to a user's key or menu operation.
  • the controller 213 may build a river information DB and a river facility DB for the investigation target area based on the first and second river information measured from the mobile device 100 .
  • the storage unit 214 may store the first river information, the second river information, the river information DB, and the river facility DB.
  • the power supply unit 215 may supply power to all electronic components mounted in the relay device 200 .
  • the power supply unit 215 may include, for example, a rechargeable battery.
  • the display unit 216 may display the first river information, the second river information, the river information DB, and the river facility DB.
  • FIG. 5 is a first diagram illustrating a river topography measurement process according to an embodiment of the present invention
  • FIG. 6 is a diagram for explaining the river topography measurement principle shown in FIG. 5 .
  • the mobile device drives the lidar 121 to transmit a first laser signal and a second laser signal having different wavelengths, and a first laser that is reflected back by terrain and features
  • the first river information that is, the eleventh river information and the twelfth river information, may be obtained by receiving the signal and the second laser signal and measuring the topography and the distance to the feature.
  • the mobile device uses a first laser signal S1 and a second laser signal S2 having different wavelengths, the first laser signal S1 being a Near Infrared (NIR) laser signal,
  • the second laser signal S2 may be a green laser signal.
  • NIR Near Infrared
  • the topography around the river can be measured by using the first laser signal S1.
  • the second laser signal S2 can penetrate the water surface, the topography of the river bed can be measured by using the second laser signal S2.
  • the laser signal consists of one or more carrier wavelengths
  • the intensity is different for each carrier wavelength using the laser signal, and thus the elevation can be measured.
  • the mobile device may measure the irradiated metabolic region using the lidar 121 , and may circularly scan the irradiated metabolic region at predetermined positions using the lidar 121 .
  • the mobile device may transmit the obtained first river information to the relay device.
  • the relay device may calculate the two-dimensional planar river topography information for the investigation target area by using the transmitted first river information. That is, the relay device calculates the topography around the river of the investigation target area by using the eleventh river information among the transmitted first river information, and calculates the river bottom topography of the investigation target area by using the twelfth river information, Based on the topography and the topography of the river bed, two-dimensional planar topography of rivers can be calculated.
  • the relay device may convert distance information, which is the first river information, into a point cloud, and calculate the two-dimensional planar river topography information using the converted point cloud.
  • lidar is used to acquire river topography information.
  • a measuring device that uses the transmission and reflection characteristics of a laser signal. It has the characteristic of increasing uncertainty.
  • the hyperspectral sensor measures the depth of water by analyzing the spectral characteristics of light reflection, uncertainty increases at high depths where light transmission is weak.
  • lidar which has a characteristic of increasing uncertainty at low depth
  • hyperspectral sensor which has a characteristic of increasing uncertainty at high depth
  • FIG. 7 is a second diagram illustrating a river topography measurement process according to an embodiment of the present invention
  • FIG. 8 is a diagram illustrating the river topography matching process shown in FIG. 7
  • FIG. 9 is a river topography measurement principle shown in FIG.
  • FIG. 10 is a view for explaining the river topography matching principle shown in FIG. 7 .
  • the mobile device drives the lidar 121 ( S710 ) to transmit a first laser signal and a second laser signal having different wavelengths, and is reflected by the terrain and features.
  • the distance information may be obtained by receiving the first laser signal and the second laser signal and measuring the distance to the topography and the feature (S730).
  • the mobile device may acquire continuous 2D planar information by scanning the river section in a circle using the lidar 121 .
  • the mobile device may transmit the obtained distance information to the relay device (S750), and the relay device may calculate the first river topography information using the transmitted first river information (S770).
  • the mobile device may drive the hyperspectral sensor (S720) to obtain a hyperspectral image of the area to be irradiated (S740).
  • the mobile device may acquire continuous 2D planar information by scanning a river section in a line using a hyperspectral sensor.
  • the mobile device transmits the acquired hyperspectral image to the relay device (S760), and the relay device may calculate the second stream topography information using the spectral characteristics of the transmitted hyperspectral image (S780).
  • the relay device may match the first river topography information with the second river topography information (S790).
  • the relay device extracts a first river edge from the first river topography information (S791), and extracts a first matching criterion, for example, a specific curvature, an inflection point section, etc. from the extracted river edge. It can be (S793).
  • the relay device may extract a second river edge from the second river topography information (S792), and extract a second matching criterion, eg, a specific curvature, an inflection point section, and the like, from the extracted river edge (S794).
  • a second matching criterion eg, a specific curvature, an inflection point section, and the like
  • the relay device matches the first river topography information and the second river topography information based on the first matching criterion and the second matching criterion, but uses the first river topographic information in the high depth region, and in the low water depth region
  • the second stream topography information may be used and matched (S795).
  • both the lidar and hyperspectral sensors are based on the fact that both the lidar and the hyperspectral sensor can accurately analyze the edge of the river where the water surface begins, that is, the part where water and the ground meet. can be defined as the edge of the river.
  • the low-water depth section in which the error occurs in the first river topographic information is 2 is corrected with the river topography information
  • the high-depth section in which an error occurs in the second river topography information is corrected with the first river topography information.
  • FIG. 11 is a diagram illustrating a process of measuring river characteristic information according to an embodiment of the present invention.
  • the mobile device may drive a hyperspectral sensor (S1110) to acquire a hyperspectral image (S1130), and transmit the acquired hyperspectral image to a relay device (S1150) .
  • a hyperspectral sensor S1110
  • S1130 a hyperspectral image
  • a relay device S1150
  • the mobile device may drive the optical camera (S1120) to acquire an optical image (S1140), and transmit the acquired optical image to the relay device (S1160).
  • the repeater may extract spectral characteristics from the hyperspectral image (S1170) and extract image characteristics from the optical image (S1180).
  • the relay device may extract the spectral characteristics of the river using each pixel value of the hyperspectral image, which is the 21st river information, measured according to the river width, and a predefined hyperspectral standard index.
  • the relay device may match the optical image, which is the 22nd river information measured according to the river width, into a single image, and extract image characteristics of the river facility by using the river facility DB.
  • the relay device may calculate river characteristic information for the area to be investigated by using the spectral characteristics and image characteristics extracted in this way ( S1190 ).
  • the river characteristic information may include information such as water depth, water quality, and floating sand calculated by spectral characteristics and information such as water depth, flow velocity, and river facilities calculated by image characteristics.
  • the case of using the river facility DB is described as an example, but it is not necessarily limited thereto, and the river facility may be recognized and converted into a DB using a sensor.
  • FIG. 12 is a view showing a river facility recognition process according to an embodiment of the present invention
  • FIG. 13 is a view for explaining the river facility recognition principle shown in FIG. 12 .
  • the mobile device drives an optical camera (S1210) to acquire an optical image of an area to be irradiated (S1211), and drives a lidar (S1220) to get to the topography and features Distance information is obtained by measuring the distance (S1221), and a hyperspectral sensor is driven (S1230) to obtain a hyperspectral image of the irradiation target area (S1231).
  • an optical camera S1210
  • a lidar S1220
  • Distance information is obtained by measuring the distance (S1221)
  • a hyperspectral sensor is driven (S1230) to obtain a hyperspectral image of the irradiation target area (S1231).
  • the mobile device may transmit the acquired optical image, distance information, and hyperspectral image to the relay device (S1212, S1222, S1232).
  • the relay device may recognize a river facility such as a beam, embankment, and shoreline in the investigation target area based on the optical image acquired through the optical camera (S1213).
  • the repeater may extract a boundary line for detecting an object, ie, a river facility, from the optical image (S1213-1), and emphasize the boundary line using a predetermined filter (S1213-2) .
  • the relay device extracts a feature point from the optical image in which the boundary line is emphasized using a pre-built image library (S1213-3), and recognizes the river facility using a database built in advance based on the extracted feature point, that is, the river facility DB. It can be done (S1213-4).
  • the relay device recognizes the river facility in the investigation target area based on the distance information measured through the lidar (S1223), and the shape of the recognized river facility matches the shape of the recognized river facility based on the optical image It is possible to first verify the river facilities as a result of the comparison by comparing whether or not there is (S1214).
  • the relay device may convert distance information measured through the lidar into a point cloud and recognize the river facility using the converted point cloud.
  • the relay device may first verify as the river facility.
  • the shape matching means matching within a predetermined error range.
  • the relay device may check the first verified constituent material of the river facility, for example, concrete, based on the hyperspectral image (S1233), and may perform secondary verification with the river facility based on the confirmed constituent material (S1215) .
  • the relay device may extract the spectral characteristics from the hyperspectral image to identify the constituent materials.
  • the relay device may compare whether the identified constituent materials match the pre-established constituent materials of the first verified river facility, and may perform secondary verification of the river facility as a result of the comparison.
  • the relay device may update the river facility DB based on the received information on the river facility (S1216).
  • the relay device may update the river facility DB if the provided information on the river facility exists in the river facility DB, or may add it if it does not exist.
  • FIG. 14 is a diagram illustrating a method for managing a river according to an embodiment of the present invention.
  • the mobile device when the mobile device according to an embodiment of the present invention receives a movement command instructing river survey, it may move to a location of a corresponding survey target area according to the received movement command ( S1410 ).
  • the mobile device drives the lidar (S1420) to measure the terrain and the distance to the feature (S1330), and drives the optical camera (S1421) to obtain an optical image of the irradiation target area (S1331), hyperspectral
  • the sensor (S1422) it is possible to obtain a hyperspectral image of the area to be irradiated (S1432).
  • the mobile device may provide distance information, an optical image, and a hyperspectral image to the relay device (S1440, S1441, and S1442).
  • the relay device may calculate river topography information using the distance information ( S1450 ), and may calculate river characteristic information using the optical image and hyperspectral image ( S1451 ).
  • the relay device analyzes the calculated river topography information and river characteristic information to build a river information DB for the area to be investigated (S1460), and selectively selects at least a part of the river topography information, river characteristic information, and river information DB (S1460) It can be provided to the integration server (S1470).
  • 15A to 15B are diagrams comparing system performance according to whether a relay device is operated.
  • a system when a system is configured of a mobile device and an integrated server by operating a relay device, real-time transmission and reception between the mobile device and the relay device and between the relay device and the integrated server is possible, and the relay device has its own river information image Conversion and analysis, river information DB construction, digital twin module application, and river facility DB linkage necessary information transmission and reception are possible.
  • 16 is a diagram for explaining a mission scenario derivation technique according to an embodiment of the present invention.
  • the mission scenario is a drone and mission equipment for the most efficient river investigation using a drone specialized for river investigation and mission equipment that can be mounted on the drone, that is, lidar, hyperspectral sensor, and optical camera.
  • a drone specialized for river investigation and mission equipment that can be mounted on the drone, that is, lidar, hyperspectral sensor, and optical camera.
  • ' ⁇ unit' used in this embodiment means software or hardware components such as field-programmable gate array (FPGA) or ASIC, and ' ⁇ unit' performs certain roles.
  • '-part' is not limited to software or hardware.
  • ' ⁇ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ ' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.

Abstract

A system for measuring river topography by using a drone, and a method, according to an embodiment therefor, are disclosed. The river topography measurement system comprises: a mobile device, which has a LIDAR and a hyperspectral sensor mounted thereon, acquires distance information by using the LIDAR while flying over a river area including protected lowland and riverside land, and acquires a hyperspectral image by using the hyperspectral sensor; and a relay device for calculating two-dimensional planar river topography information about the river area as a result analyzed by receiving the distance information and the hyperspectral image, while moving along the river area according to the flight of the mobile device.

Description

드론을 이용하여 하천 지형을 측량하기 위한 시스템 및 그 방법System and method for surveying river topography using drone
실시예는 드론을 이용하여 하천 지형을 측량하기 위한 시스템 및 그 방법에 관한 것이다.The embodiment relates to a system and method for surveying a river topography using a drone.
현재 하천 조사는 토탈 스테이션, 음향 측심기 등 측량기구와 유속계, 수위계, 수질측정기 등 계측기기를 조사자가 직접 현장에서 운용해 하천 정보를 취득하고 있다.Currently, for river surveys, surveyors such as total stations and echo sounders and measuring instruments such as velocity gauges, water level gauges, and water quality meters are directly operated by the investigator at the site to acquire river information.
수위계와 수질 측정기 등 일부 기기는 통신 네트워크를 활용해 현장에 기기를 설치한 후 원격으로 정보를 취득하고 있지만 대부분 하천 조사 작업은 인력 위주의 현장 직접 계측이 주를 이루고 있어, 필요한 인력과 비용이 많이 든다.Some devices, such as water level gauges and water quality meters, use a communication network to install devices on site and then obtain information remotely. it costs
또한, 공간적 범위가 넓은 하천 구간 중 계측 기기가 설치된 특정 지점 정보만 확인할 수 있어 하천 조사 및 하천 정보 활용의 효율성이 매우 낮은 상황이다.In addition, the efficiency of river investigation and utilization of river information is very low because only specific point information where the measuring device is installed among river sections with a wide spatial range can be checked.
실시예는, 드론을 이용하여 하천 지형을 측량하기 위한 시스템 및 그 방법을 제공할 수 있다.The embodiment may provide a system and a method for surveying a river topography using a drone.
실시예에 따른 하천 지형 측량 시스템은 라이다, 초분광 센서가 장착되고, 제내지와 제외지를 포함한 하천 영역을 비행하면서 상기 라이다를 이용하여 거리 정보를 획득하고, 상기 초분광 센서를 이용하여 초분광 영상을 획득하는 이동 장치; 및 상기 이동 장치의 비행에 따라 상기 하천 영역을 따라 이동하면서, 상기 거리 정보와 상기 초분광 영상을 제공받아 분석한 결과로 상기 하천 영역에 대한 2차원 면형 하천 지형 정보를 산출하는 중계 장치를 포함할 수 있다.The river topography surveying system according to the embodiment is equipped with a lidar and a hyperspectral sensor, acquires distance information using the lidar while flying in a river area including the jean and excluding regions, and uses the hyperspectral sensor to acquire distance information. a mobile device for acquiring a spectroscopic image; And while moving along the river region according to the flight of the mobile device, a relay device that receives the distance information and the hyperspectral image and calculates two-dimensional planar river topography information for the river region as a result of analysis. can
상기 이동 장치는 상기 라이다의 파장이 다른 제1 레이저 신호와 제2 레이저 신호를 이용하여 거리 정보를 획득하되, 상기 제1 레이저 신호를 이용하여 하천 주변의 거리 정보를 획득하고, 상기 제2 레이저 신호를 이용하여 하천 바닥의 거리 정보를 획득할 수 있다.The mobile device obtains distance information using a first laser signal and a second laser signal having different wavelengths of the lidar, and obtains distance information around a river using the first laser signal, and the second laser By using the signal, it is possible to obtain distance information of the river bed.
상기 제1 레이저 신호는 근적외선(Near Infrared) 레이저 신호이고, 상기 제2 레이저 신호는 그린(green) 레이저 신호일 수 있다.The first laser signal may be a near infrared laser signal, and the second laser signal may be a green laser signal.
상기 중계 장치는 상기 거리 정보를 이용하여 제1 하천 지형 정보를 산출하고, 상기 초분광 영상을 이용하여 제2 하천 지형 정보를 산출하고, 산출된 상기 제1 하천 지형 정보와 상기 제2 하천 지형 정보를 정합할 수 있다.The relay device calculates first river topography information using the distance information, calculates second river topography information using the hyperspectral image, and calculates the first river topography information and the second river topography information can be matched.
상기 중계 장치는 상기 제1 하천 지형 정보로부터 제1 정합 기준을 추출하고, 상기 제2 하천 지형 정보로부터 제2 정합 기준을 추출하고, 추출된 상기 제1 정합 기준과 상기 제2 정합 기준이 서로 일치하도록 상기 제1 하천 지형 정보와 상기 제2 하천 지형 정보를 정합할 수 있다.The relay device extracts a first matching criterion from the first river topography information, extracts a second matching criterion from the second river topography information, and the extracted first matching criterion and the second matching criterion coincide with each other The first river topography information and the second river topography information may be matched to make the same.
상기 중계 장치는 상기 제1 하천 지형 정보로부터 제1 하천 가장 자리를 추출하고, 상기 추출된 제1 하천 가장 자리로부터 상기 제1 정합 기준을 추출하고, 상기 제2 하천 지형 정보로부터 제2 하천 가장 자리를 추출하고, 상기 추출된 제2 하천 가장 자리로부터 상기 제2 정합 기준을 추출할 수 있다.The relay device extracts a first river edge from the first river topography information, extracts the first matching criterion from the extracted first river edge, and a second river edge from the second river topography information may be extracted, and the second matching criterion may be extracted from the extracted second edge of the river.
실시예에 따른 하천 지형 측량 방법은 라이다, 초분광 센서가 장착된 이동 장치가 제내지와 제외지를 포함한 하천 영역을 비행하면서 상기 라이다를 이용하여 거리 정보를 획득하고, 상기 초분광 센서를 이용하여 초분광 영상을 획득하는 단계; 및 중계 장치가 상기 이동 장치의 비행에 따라 상기 하천 영역을 따라 이동하면서, 상기 거리 정보와 상기 초분광 영상을 제공받아 분석한 결과로 상기 하천 영역에 대한 2차원 면형 하천 지형 정보를 산출하는 단계를 포함할 수 있다.In the river topography surveying method according to the embodiment, a mobile device equipped with a lidar and hyperspectral sensor acquires distance information using the lidar while flying in a river area including the jean and excluding regions, and uses the hyperspectral sensor to obtain a hyperspectral image; and calculating two-dimensional planar river topography information for the river region as a result of the relay device receiving and analyzing the distance information and the hyperspectral image while moving along the river region according to the flight of the mobile device. may include
실시예에 따르면, 드론에 장착된 라이다, 초분광 센서를 이용하되, 라이다로부터 획득한 거리 정보를 이용하여 하천 바닥 지형 정보를 산출하고, 초분광 센서로부터 획득한 초분광 영상을 이용하여 하천 주변 지형 정보를 산출하여 하천 바닥 지형 정보와 하천 주변 지형 정보를 정합하도록 함으로써, 인력 위주의 현장 직접 계측 방식을 벗어나 효율적으로 하천 지형을 조사할 수 있다.According to the embodiment, using the lidar and hyperspectral sensor mounted on the drone, the river bottom topography information is calculated using the distance information obtained from the lidar, and the river using the hyperspectral image acquired from the hyperspectral sensor By calculating the surrounding topographical information and matching the riverbed topographical information with the riverside topographical information, it is possible to efficiently investigate the river topography, breaking away from the manpower-oriented on-site direct measurement method.
실시예에 따르면, 기존 하천 지형 측량 방법과 비교해 조사 구간 확대 및 연속성, 정밀도가 높은 2차원 면형 하천지형 정보의 획득이 가능하여 하천 지형 정보의 효율적인 관리가 가능하다.According to the embodiment, compared with the existing river topography surveying method, it is possible to obtain two-dimensional planar topography information with high continuity and precision, as well as the expansion of the survey section and efficient management of the topographic information of the river.
실시예에 따르면, 하천 조사자의 직접 계측으로 인한 하천 주변 지형과 하천 바닥 지형을 계측한 정보의 오차를 보정하기 위해 필요한 표정점 참조를 생략할 수 있기 때문에, 하천 전체 구간 지형 측량에 소요되는 인력과 비용을 크게 절감할 수 있다.According to the embodiment, since it is possible to omit the reference to the expression point required to correct the error of the information measured on the topography around the river and the topography of the river bed due to the direct measurement of the river investigator, the manpower required for the topographic survey of the entire section of the river It can greatly reduce the cost.
도 1은 본 발명의 실시예에 따른 하천을 관리하기 위한 시스템을 나타내는 도면이다.1 is a view showing a system for managing a river according to an embodiment of the present invention.
도 2는 이동 장치와 중계 장치가 이동하는 경우를 설명하기 위한 도면이다.2 is a diagram for explaining a case in which a mobile device and a relay device move.
도 3은 도 1에 도시된 이동 장치의 상세한 구성을 나타내는 도면이다.FIG. 3 is a diagram showing a detailed configuration of the mobile device shown in FIG. 1 .
도 4는 도 1에 도시된 중계 장치의 상세한 구성을 나타내는 도면이다.FIG. 4 is a diagram showing a detailed configuration of the relay device shown in FIG. 1 .
도 5는 본 발명의 실시예에 따른 하천 지형 계측 과정을 나타내는 제1 도면이다.5 is a first diagram illustrating a river topography measurement process according to an embodiment of the present invention.
도 6은 도 5에 도시된 하천 지형 계측 원리를 설명하기 위한 도면이다.6 is a view for explaining the river topography measurement principle shown in FIG. 5 .
도 7은 본 발명의 실시예에 따른 하천 지형 계측 과정을 나타내는 제2 도면이다.7 is a second diagram illustrating a river topography measurement process according to an embodiment of the present invention.
도 8은 도 7에 도시된 하천 지형 정합 과정을 나타내는 도면이다.FIG. 8 is a diagram illustrating the process of matching the river topography shown in FIG. 7 .
도 9는 도 7에 도시된 하천 지형 계측 원리를 설명하기 위한 도면이다.9 is a view for explaining the river topography measurement principle shown in FIG. 7 .
도 10은 도 7에 도시된 하천 지형 정합 원리를 설명하기 위한 도면이다.FIG. 10 is a view for explaining the river topography matching principle shown in FIG. 7 .
도 11은 본 발명의 실시예에 따른 하천 특성 정보 계측 과정을 나타내는 도면이다.11 is a diagram illustrating a process of measuring river characteristic information according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 하천 시설 인식 과정을 나타내는 도면이다.12 is a view showing a river facility recognition process according to an embodiment of the present invention.
도 13은 도 12에 도시된 하천 시설 인식 원리를 설명하기 위한 도면이다.13 is a view for explaining the river facility recognition principle shown in FIG. 12 .
도 14는 본 발명의 실시예에 따른 하천을 관리하기 위한 방법을 나타내는 도면이다.14 is a diagram illustrating a method for managing a river according to an embodiment of the present invention.
도 15a 내지 도 15b는 중계 장치의 운영 여부에 따른 시스템 성능을 비교하는 도면이다.15A to 15B are diagrams comparing system performance according to whether a relay device is operated.
도 16은 본 발명의 실시예에 따른 임무 시나리오 도출 기법을 설명하기 위한 도면이다.16 is a diagram for explaining a mission scenario derivation technique according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.However, the technical spirit of the present invention is not limited to some embodiments described, but may be implemented in various different forms, and within the scope of the technical spirit of the present invention, one or more of the components may be selected between the embodiments. It can be used by combining or substituted with .
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in the embodiments of the present invention may be generally understood by those of ordinary skill in the art to which the present invention belongs, unless specifically defined and described explicitly. It may be interpreted as a meaning, and generally used terms such as terms defined in advance may be interpreted in consideration of the contextual meaning of the related art.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.In addition, the terminology used in the embodiments of the present invention is for describing the embodiments and is not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In this specification, the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as “at least one (or more than one) of A and (and) B, C”, it is combined with A, B, and C It may include one or more of all possible combinations.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.These terms are only for distinguishing the component from other components, and are not limited to the essence, order, or order of the component by the term.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’ 되는 경우도 포함할 수 있다.And, when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In addition, when it is described as being formed or disposed on “above (above) or under (below)” of each component, the top (above) or bottom (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components. In addition, when expressed as “upper (upper) or lower (lower)”, the meaning of not only the upward direction but also the downward direction based on one component may be included.
실시예에서는, 드론에 장착된 라이다, 초분광 센서를 이용하되, 라이다로부터 획득한 거리 정보를 이용하여 하천 바닥 지형 정보를 산출하고, 초분광 센서로부터 획득한 초분광 영상을 이용하여 하천 주변 지형 정보를 산출하여 하천 바닥 지형 정보와 하천 주변 지형 정보를 정합하여 제내지와 제외지를 포함하는 조사 대상 영역에 대한 2차원 면형 하천 지형 정보를 산출하도록 한, 새로운 방안을 제안한다. 여기서 제내지는 하천 제방에 의하여 보호되고 있는 지역, 즉 제방으로부터 보호되고 있는 마을까지를 의미하고, 제외지는 하천 제방으로 둘러싸인 하천측 지역으로 하천수가 흐르는 공간을 의미한다.In the embodiment, the lidar and hyperspectral sensor mounted on the drone are used, but the river bottom topography information is calculated using the distance information obtained from the lidar, and the hyperspectral image obtained from the hyperspectral sensor is used to surround the river We propose a new method that calculates topographical information and combines the topographical information of the river bed with the topographical information around the river to calculate the two-dimensional planar topographical information for the area to be investigated including the inlet and excluded areas. Here, je-nae refers to the area protected by the river embankment, that is, to the village protected from the embankment.
도 1은 본 발명의 실시예에 따른 하천을 관리하기 위한 시스템을 나타내는 도면이다.1 is a view showing a system for managing a river according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 하천을 관리하기 위한 시스템은 이동 장치(100), 중계 장치(200), 통합 서버(300), DB(Database)(400)를 포함할 수 있다.Referring to FIG. 1 , a system for managing a river according to an embodiment of the present invention may include a mobile device 100 , a relay device 200 , an integrated server 300 , and a DB (Database) 400 . .
이동 장치(100)는 하천의 일부 영역 또는 전체 영역인 조사 대상 영역에서 비행이 가능하고, 제1 하천 정보와 제2 하천 정보를 측정하여 전송할 수 있다. 이러한 이동 장치(100)는 예컨대, 자율 주행이 가능한 UAV(Unmanned Aerial Vehicle)일 수 있다.The mobile device 100 may fly in an investigation target area that is a partial area or an entire area of a river, and may measure and transmit the first river information and the second river information. The mobile device 100 may be, for example, an unmanned aerial vehicle (UAV) capable of autonomous driving.
여기서, 제1 하천 정보는 수심, 주변 지형 등을 분석하기 위한 비영상 정보일 수 있고, 제2 하천 정보는 수심, 수질, 유속, 부유사 등을 분석하기 위한 영상 정보일 수 있다.Here, the first river information may be non-image information for analyzing water depth, surrounding topography, etc., and the second river information may be image information for analyzing water depth, water quality, flow velocity, floating sand, and the like.
이동 장치(100)는 조사 대상 영역 내에서 미리 정해진 비행 고도, 비행 경로, 비행 속도에 따라 비행하면서 제1 하천 정보와 제2 하천 정보를 측정하여 전송할 수 있다. 이때, 조사 대상 영역은 하나의 영역이거나 다수의 영역으로 분할될 수 있다.The mobile device 100 may measure and transmit the first river information and the second river information while flying according to a predetermined flight altitude, flight path, and flight speed within the investigation target area. In this case, the area to be irradiated may be one area or divided into a plurality of areas.
여기서는 하나의 이동 장치(100)가 사용되는 경우를 일 예로 설명하고 있지만 반드시 이에 한정되지 않고 다수의 이동 장치(100)가 사용될 수 있다. 예컨대, 2개의 이동 장치가 사용되어 서로 다른 영역에서 하천 정보를 측정할 수 있다.Here, a case in which one mobile device 100 is used is described as an example, but the present invention is not limited thereto, and a plurality of mobile devices 100 may be used. For example, two mobile devices can be used to measure river information in different areas.
중계 장치(200)는 이동 장치(100)와 연동하고, 상기 이동 장치(100)로부터 측정된 제1 하천 정보와 제2 하천 정보를 수신하고 수신된 제1 하천 정보와 제2 하천 정보를 기초로 조사 대상 영역에 대한 하천 정보 DB를 구축할 수 있다.The relay device 200 interworks with the mobile device 100, receives first and second river information measured from the mobile device 100, and based on the received first and second river information It is possible to build a river information DB for the area to be investigated.
예컨대, 중계 장치(200)는 제1 하천 정보를 분석하여 조사 대상 영역에 대한 수심, 주변 지형 등을 산출하고, 제2 하천 정보를 분석하여 조사 대상 영역에 대한 수심, 수질, 유속, 부유사 등을 산출하여 하천 정보 DB를 구축할 수 있다.For example, the relay device 200 analyzes the first river information to calculate the water depth, surrounding topography, etc. for the investigation target area, and analyzes the second river information to analyze the water depth, water quality, flow velocity, floating sand, etc. for the investigation target area can be calculated to build a river information DB.
중계 장치(200)는 이동 장치(100)의 이동에 따라 이동할 수 있다. 예컨대, 중계 장치(200)는 조사 대상 영역이 다수의 영역으로 분할된 경우 이동 장치(100)가 다수의 영역마다 측정이 완료된 후 이동함에 따라 함께 이동시킬 수 있다.The relay device 200 may move according to the movement of the mobile device 100 . For example, when the area to be irradiated is divided into a plurality of areas, the relay apparatus 200 may move together as the mobile apparatus 100 moves after the measurement is completed for each of the plurality of areas.
중계 장치(200)는 이동 장치(100)가 하천을 따라 이동함에 따라 소정 거리를 유지하면서 함께 이동하기 위해 차량에 장치되어, 이동식 중계 장치로서 구동될 수 있다.The relay device 200 may be installed in a vehicle to move together while maintaining a predetermined distance as the mobile device 100 moves along a river, and may be driven as a mobile relay device.
중계 장치(200)는 사용자의 조작에 따라 이동 장치(100)의 비행 고도, 비행 경로, 비행 속도에 대한 정보를 입력 받고, 입력된 정보를 이동 장치(100)에 제공할 수 있다.The relay device 200 may receive information on the flight altitude, flight path, and flight speed of the mobile device 100 according to a user's manipulation, and may provide the input information to the mobile device 100 .
여기서는 중계 장치(200)를 차량에 장착되는 장치를 일 예로 설명하고 있지만 반드시 이에 한정되지 않고 이동 장치와 같이 자율 비행이 가능한 이동체일 수 있다.Here, the relay device 200 is described as an example of a device mounted on a vehicle, but the present invention is not limited thereto and may be a moving object capable of autonomous flight, such as a mobile device.
도 2는 이동 장치와 중계 장치가 이동하는 경우를 설명하기 위한 도면이다.2 is a diagram for explaining a case in which a mobile device and a relay device move.
도 2를 참조하면, 이동 장치가 조사 대상 영역 내 제1 영역으로 이동하여 제1 영역에서 하천 정보를 측정하는 경우 중계 장치는 이동 장치를 따라 제1 영역에서 이동할 수 있다.Referring to FIG. 2 , when the mobile device moves to the first region within the investigation target region and measures river information in the first region, the relay device may move along the mobile device in the first region.
이때, 중계 장치는 미리 정해진 시간을 기초로 이동 장치를 따라 이동할 수 있다.In this case, the relay device may move along with the mobile device based on a predetermined time.
통합 서버(300)는 중계 장치(200)와 연동하고, 상기 중계 장치(200)를 통해 하천 정보 DB를 제공받고 제공받은 하천 정보 DB를 관리할 수 있다. 또한, 통합 서버(300)는 중계 장치(200)의 요청에 따라 하천 시설물 DB의 일부 정보를 중계 장치(200)에 제공할 수 있다.The integrated server 300 may interwork with the relay device 200 , receive a river information DB through the relay device 200 , and manage the received river information DB. In addition, the integrated server 300 may provide partial information of the river facility DB to the relay device 200 according to the request of the relay device 200 .
DB(400)는 하천 정보 DB, 하천 시설물 DB를 저장할 수 있다. DB(400)는 물리적으로 결합된 하나의 장치로 구현될 수 있지만 반드시 이에 한정되지 않고 물리적으로 분리된 다수의 장치로 구현될 수 있다. 예컨대, DB(400)는 하천 정보 DB를 저장하는 제1 DB와 하천 시설물 DB를 저장하는 제2 DB를 포함하도록 구현될 수 있다.The DB 400 may store a river information DB and a river facility DB. The DB 400 may be implemented as one physically coupled device, but is not necessarily limited thereto and may be implemented as a plurality of physically separated devices. For example, the DB 400 may be implemented to include a first DB for storing the river information DB and a second DB for storing the river facility DB.
도 3은 도 1에 도시된 이동 장치의 상세한 구성을 나타내는 도면이다.FIG. 3 is a diagram showing a detailed configuration of the mobile device shown in FIG. 1 .
도 3을 참조하면, 본 발명의 실시예에 따른 이동 장치는 통신부(111), GPS 수신기(112), 제어부(113), 저장부(114), 전원부(115), 구동부(116)으로 구성된 이동체(110), 라이다(121), 초분광 센서(122), 광학 카메라(123)로 구성된 센서부(120)를 포함할 수 있다.Referring to FIG. 3 , a mobile device according to an embodiment of the present invention is a mobile device including a communication unit 111 , a GPS receiver 112 , a control unit 113 , a storage unit 114 , a power supply unit 115 , and a driving unit 116 . 110 , a lidar 121 , a hyperspectral sensor 122 , and a sensor unit 120 including an optical camera 123 .
통신부(111)는 중계 장치(200)와 무선 연동하고, 각종 정보를 송수신할 수 있다.The communication unit 111 may wirelessly interwork with the relay device 200 and transmit/receive various types of information.
GPS 수신기(112)는 GPS 위성으로부터 위치 정보 즉, 좌표값을 수신할 수 있다.The GPS receiver 112 may receive location information, that is, coordinate values from a GPS satellite.
제어부(113)는 중계 장치(200)로부터 제어 명령을 수신하면, 수신된 제어 명령에 따라 소정 위치로 이동하여 제1 하천 정보와 제2 하천 정보를 측정하여 전송하도록 제어할 수 있다.Upon receiving a control command from the relay device 200 , the controller 113 may move to a predetermined location according to the received control command, and may control to measure and transmit the first river information and the second river information.
저장부(114)는 하천 조사와 관련된 각종 정보 예컨대, 좌표값, 측정값을 저장할 수 있다.The storage unit 114 may store various types of information related to river investigation, for example, coordinate values and measurement values.
전원부(115)는 이동체(110)의 내부에 장착된 모든 전자 부품에 전원을 공급할 수 있다. 이러한 전원부(115)는 예컨대, 충전이 가능한 배터리를 포함할 수 있다.The power supply unit 115 may supply power to all electronic components mounted inside the moving body 110 . The power supply unit 115 may include, for example, a rechargeable battery.
구동부(116)는 이동체(110)가 비행 고도, 비행 경로, 비행 속도로 비행하도록 구동시킬 수 있다. 이러한 구동부(116)는 예컨대, DC(Direct Current) 모터를 포함할 수 있다.The driving unit 116 may drive the moving object 110 to fly at a flight altitude, a flight path, and a flight speed. The driving unit 116 may include, for example, a DC (Direct Current) motor.
라이다(121)는 이동체(110)에 장착되고, 조사 대상 영역의 지형 즉, 하천 주변 지형과 하천 바닥 지형까지의 거리를 계측할 수 있다. 라이다(121)는 레이저 신호를 발사하여 지형, 지물로부터 반사되어 돌아오는 레이저 신호를 이용하여 이동체(110)가 위치하는 비행 고도로부터 하천 지형까지의 거리를 계측한다.The lidar 121 is mounted on the movable body 110 and may measure the topography of the area to be investigated, that is, the distance from the topography around the river to the topography of the bottom of the river. The lidar 121 emits a laser signal and measures the distance from the flight altitude at which the moving object 110 is located to the river topography by using the laser signal reflected from the terrain and features.
초분광 센서(122)는 이동체(110)에 장착되고, 조사 대상 영역의 초분광 영상을 획득할 수 있다. 일반적으로 초분광 센서(122)는 기존의 전자광학/적외선 영상장비가 가시광선 또는 특정 적외선 영역의 포괄적인 영상을 획득하는데 비해 특정 파장 영역에서 세분된 파장별 영상을 모두 확보할 수 있는 장비를 말한다. 초분광 센서(122)는 해상도가 약간 낮지만 최대 1,000개 정도의 좁은 스펙트럼 밴드를 촬영할 수 있어 물체의 반사특성을 그대로 기록하여 지형, 지물을 구분할 수 있다.The hyperspectral sensor 122 may be mounted on the movable body 110 and may acquire a hyperspectral image of an area to be irradiated. In general, the hyperspectral sensor 122 refers to equipment capable of acquiring all subdivided wavelength-specific images in a specific wavelength region, compared to conventional electro-optical/infrared imaging equipment that acquires a comprehensive image of visible light or a specific infrared region. . Although the hyperspectral sensor 122 has a slightly lower resolution, it is possible to photograph up to about 1,000 narrow spectral bands, so that the reflective characteristics of the object can be recorded as it is, and the terrain and features can be distinguished.
광학 카메라(123)는 이동체(110)에 장착되고, 조사 대상 영역의 광학 영상을 획득할 수 있다.The optical camera 123 may be mounted on the movable body 110 and acquire an optical image of the area to be irradiated.
도 4는 도 1에 도시된 중계 장치의 상세한 구성을 나타내는 도면이다.FIG. 4 is a diagram showing a detailed configuration of the relay device shown in FIG. 1 .
도 4를 참조하면, 본 발명의 실시예에 따른 중계 장치(200)는 통신부(211), 입력부(212), 제어부(213), 저장부(214), 전원부(215), 표시부(216)를 포함할 수 있다.Referring to FIG. 4 , the relay device 200 according to an embodiment of the present invention includes a communication unit 211 , an input unit 212 , a control unit 213 , a storage unit 214 , a power supply unit 215 , and a display unit 216 . may include
통신부(211)는 이동 장치(100), 통합 서버(300)와 무선 연동하고, 각종 정보를 송수신할 수 있다. 통신부(211)는 제1 통신부와 제2 통신부를 포함하도록 구현될 수 있다. 제1 통신부는 이동 장치(100)와 연동하고 제2 통신부는 통합 서버(300)와 연동할 수 있다.The communication unit 211 may wirelessly interwork with the mobile device 100 and the integrated server 300 and transmit/receive various types of information. The communication unit 211 may be implemented to include a first communication unit and a second communication unit. The first communication unit may interwork with the mobile device 100 and the second communication unit may interwork with the integrated server 300 .
입력부(212)는 사용자의 키 또는 메뉴 조작에 따라 조작 정보를 입력 받을 수 있다.The input unit 212 may receive operation information according to a user's key or menu operation.
제어부(213)는 이동 장치(100)로부터 측정된 제1 하천 정보와 제2 하천 정보를 기초로 조사 대상 영역에 대한 하천 정보 DB, 하천 시설 DB를 구축할 수 있다.The controller 213 may build a river information DB and a river facility DB for the investigation target area based on the first and second river information measured from the mobile device 100 .
저장부(214)는 제1 하천 정보와 제2 하천 정보, 하천 정보 DB, 하천 시설 DB를 저장할 수 있다.The storage unit 214 may store the first river information, the second river information, the river information DB, and the river facility DB.
전원부(215)는 중계 장치(200)의 내부에 장착된 모든 전자 부품에 전원을 공급할 수 있다. 이러한 전원부(215)는 예컨대, 충전이 가능한 배터리를 포함할 수 있다.The power supply unit 215 may supply power to all electronic components mounted in the relay device 200 . The power supply unit 215 may include, for example, a rechargeable battery.
표시부(216)는 제1 하천 정보와 제2 하천 정보, 하천 정보 DB, 하천 시설 DB를 표시할 수 있다.The display unit 216 may display the first river information, the second river information, the river information DB, and the river facility DB.
도 5는 본 발명의 실시예에 따른 하천 지형 계측 과정을 나타내는 제1 도면이고, 도 6은 도 5에 도시된 하천 지형 계측 원리를 설명하기 위한 도면이다.5 is a first diagram illustrating a river topography measurement process according to an embodiment of the present invention, and FIG. 6 is a diagram for explaining the river topography measurement principle shown in FIG. 5 .
도 5를 참조하면, 본 발명의 실시예에 따른 이동 장치는 라이다(121)를 구동시켜 파장이 다른 제1 레이저 신호와 제2 레이저 신호를 발신하고, 지형, 지물에 반사되어 돌아온 제1 레이저 신호와 제2 레이저 신호를 수신하여 지형, 지물까지의 거리를 측정하여 제1 하천 정보 즉, 제11 하천 정보와 제12 하천 정보를 획득할 수 있다.Referring to FIG. 5 , the mobile device according to an embodiment of the present invention drives the lidar 121 to transmit a first laser signal and a second laser signal having different wavelengths, and a first laser that is reflected back by terrain and features The first river information, that is, the eleventh river information and the twelfth river information, may be obtained by receiving the signal and the second laser signal and measuring the topography and the distance to the feature.
도 6을 참조하면, 이동 장치는 파장이 다른 제1 레이저 신호(S1)와 제2 레이저 신호(S2)를 이용하는데, 제1 레이저 신호(S1)는 근적외선(Near Infrared; NIR) 레이저 신호이고, 제2 레이저 신호(S2)는 그린(green) 레이저 신호일 수 있다.Referring to FIG. 6 , the mobile device uses a first laser signal S1 and a second laser signal S2 having different wavelengths, the first laser signal S1 being a Near Infrared (NIR) laser signal, The second laser signal S2 may be a green laser signal.
제1 레이저 신호(S1)는 하천 수면을 투과하지 못하고 반사하기 때문에 제1 레이저 신호(S1)를 이용하면, 하천 주변 지형을 계측할 수 있다. 반면, 제2 레이저 신호(S2)는 수면을 투과할 수 있기 때문에 제2 레이저 신호(S2)를 이용하면 하천 바닥 지형을 계측할 수 있다.Since the first laser signal S1 does not penetrate the water surface but reflects it, the topography around the river can be measured by using the first laser signal S1. On the other hand, since the second laser signal S2 can penetrate the water surface, the topography of the river bed can be measured by using the second laser signal S2.
이때, 레이저 신호는 하나 이상의 반송 파장으로 이루어져 있어, 레이저 신호를 이용하여 각 반송 파장마다 강도가 다르기 때문에 이에 따른 표고를 측정할 수 있다.At this time, since the laser signal consists of one or more carrier wavelengths, the intensity is different for each carrier wavelength using the laser signal, and thus the elevation can be measured.
이때, 이동 장치는 라이다(121)를 이용하여 조사 대사 영역을 계측하되, 라이다(121)를 이용하여 미리 정해진 위치마다 조사 대사 영역을 원형 스캔할 수 있다.In this case, the mobile device may measure the irradiated metabolic region using the lidar 121 , and may circularly scan the irradiated metabolic region at predetermined positions using the lidar 121 .
다음으로, 이동 장치는 획득된 제1 하천 정보를 중계 장치에 전송할 수 있다.Next, the mobile device may transmit the obtained first river information to the relay device.
다음으로, 중계 장치는 전송된 제1 하천 정보를 이용하여 조사 대상 영역에 대한 2차원 면형 하천 지형 정보를 산출할 수 있다. 즉, 중계 장치는 전송된 제1 하천 정보 중 제11 하천 정보를 이용하여 조사 대상 영역의 하천 주변 지형을 산출하고, 제12 하천 정보를 이용하여 조사 대상 영역의 하천 바닥 지형을 산출함으로써, 하천 주변 지형과 하천 바닥 지형을 기초로 2차원 면형 하천 지형 정보를 산출할 수 있다.Next, the relay device may calculate the two-dimensional planar river topography information for the investigation target area by using the transmitted first river information. That is, the relay device calculates the topography around the river of the investigation target area by using the eleventh river information among the transmitted first river information, and calculates the river bottom topography of the investigation target area by using the twelfth river information, Based on the topography and the topography of the river bed, two-dimensional planar topography of rivers can be calculated.
예컨대, 중계 장치는 제1 하천 정보인 거리 정보를 포인트 클라우드(point cloud)로 변환하여 변환된 포인트 클라우드를 이용하여 2차원 면형 하천 지형 정보를 산출할 수 있다.For example, the relay device may convert distance information, which is the first river information, into a point cloud, and calculate the two-dimensional planar river topography information using the converted point cloud.
본 발명의 실시예에서는 하천 지형 정보를 획득하기 위하여 라이다를 사용하고 있는데, 라이다의 경우 레이저 신호의 투과와 반사 특성을 이용하는 계측 장비로 1m 이하의 저수심 조건에서는 투과와 반사 구간이 짧아져 불확실성이 높아지는 특성을 갖는다.In the embodiment of the present invention, lidar is used to acquire river topography information. In the case of lidar, a measuring device that uses the transmission and reflection characteristics of a laser signal. It has the characteristic of increasing uncertainty.
이 라이다를 이용한 계측 결과의 단점을 보완하기 위하여 초분광 센서를 이용하고자 한다. 초분광 센서는 빛이 반사되는 분광특성을 분석하여 수심을 계측하기 때문에 빛의 투과가 약해지는 고수심에서는 불확실성이 높아지는 특성을 갖고 있다.In order to compensate for the shortcomings of the measurement results using this lidar, we intend to use a hyperspectral sensor. Since the hyperspectral sensor measures the depth of water by analyzing the spectral characteristics of light reflection, uncertainty increases at high depths where light transmission is weak.
따라서 저수심에서 불확실성이 높아지는 특성을 갖는 라이다와 고수심에서 불확실성이 높아지는 특성을 갖는 초분광 센서를 이용하여 하천 지형 정보를 정합하고자 한다.Therefore, we intend to match the river topography information using lidar, which has a characteristic of increasing uncertainty at low depth, and a hyperspectral sensor, which has a characteristic of increasing uncertainty at high depth.
도 7은 본 발명의 실시예에 따른 하천 지형 계측 과정을 나타내는 제2 도면이고, 도 8은 도 7에 도시된 하천 지형 정합 과정을 나타내는 도면이고, 도 9는 도 7에 도시된 하천 지형 계측 원리를 설명하기 위한 도면이고, 도 10은 도 7에 도시된 하천 지형 정합 원리를 설명하기 위한 도면이다.7 is a second diagram illustrating a river topography measurement process according to an embodiment of the present invention, FIG. 8 is a diagram illustrating the river topography matching process shown in FIG. 7, and FIG. 9 is a river topography measurement principle shown in FIG. FIG. 10 is a view for explaining the river topography matching principle shown in FIG. 7 .
도 7을 참조하면, 본 발명의 실시예에 따른 이동 장치는 라이다(121)를 구동시켜(S710) 파장이 다른 제1 레이저 신호와 제2 레이저 신호를 발신하고, 지형, 지물에 반사되어 돌아온 제1 레이저 신호와 제2 레이저 신호를 수신하여 지형, 지물까지의 거리를 측정하여 거리 정보를 획득할 수 있다(S730).Referring to FIG. 7 , the mobile device according to the embodiment of the present invention drives the lidar 121 ( S710 ) to transmit a first laser signal and a second laser signal having different wavelengths, and is reflected by the terrain and features. The distance information may be obtained by receiving the first laser signal and the second laser signal and measuring the distance to the topography and the feature (S730).
도 9와 같이, 이동 장치는 라이다(121)를 이용하여 하천 구간을 원형(circle)으로 스캔하여 연속적인 2차원 면형 정보를 획득할 수 있다.As shown in FIG. 9 , the mobile device may acquire continuous 2D planar information by scanning the river section in a circle using the lidar 121 .
다음으로, 이동 장치는 획득된 거리 정보를 중계 장치에 전송하고(S750), 중계 장치는 전송된 제1 하천 정보를 이용하여 제1 하천 지형 정보를 산출할 수 있다(S770).Next, the mobile device may transmit the obtained distance information to the relay device (S750), and the relay device may calculate the first river topography information using the transmitted first river information (S770).
다음으로, 이동 장치는 초분광 센서를 구동시켜(S720) 조사 대상 영역의 초분광 영상을 획득할 수 있다(S740).Next, the mobile device may drive the hyperspectral sensor (S720) to obtain a hyperspectral image of the area to be irradiated (S740).
도 9와 같이, 이동 장치는 초분광 센서를 이용하여 하천 구간을 선형(line)으로 스캔하여 연속적인 2차원 면형 정보를 획득할 수 있다.As illustrated in FIG. 9 , the mobile device may acquire continuous 2D planar information by scanning a river section in a line using a hyperspectral sensor.
다음으로, 이동 장치는 획득된 초분광 영상을 중계 장치에 전송하고(S760), 중계 장치는 전송된 초분광 영상의 분광 특성을 이용하여 제2 하천 지형 정보를 산출할 수 있다(S780).Next, the mobile device transmits the acquired hyperspectral image to the relay device (S760), and the relay device may calculate the second stream topography information using the spectral characteristics of the transmitted hyperspectral image (S780).
다음으로, 중계 장치는 제1 하천 지형 정보와 제2 하천 지형 정보를 정합할 수 있다(S790).Next, the relay device may match the first river topography information with the second river topography information (S790).
이때, 정합 과정을 구체적으로 설명하면 다음과 같다. 즉, 도 8을 참조하면, 중계 장치는 제1 하천 지형 정보로부터 제1 하천 가장 자리를 추출하고(S791), 추출된 하천 가장 자리로부터 제1 정합 기준 예컨대, 특정 곡률, 변곡점 구간 등을 추출할 수 있다(S793).In this case, the matching process will be described in detail as follows. That is, referring to FIG. 8 , the relay device extracts a first river edge from the first river topography information (S791), and extracts a first matching criterion, for example, a specific curvature, an inflection point section, etc. from the extracted river edge. It can be (S793).
중계 장치는 제2 하천 지형 정보로부터 제2 하천 가장 자리를 추출하고(S792), 추출된 하천 가장 자리로부터 제2 정합기준 예컨대, 특정 곡률, 변곡점 구간 등을 추출할 수 있다(S794).The relay device may extract a second river edge from the second river topography information (S792), and extract a second matching criterion, eg, a specific curvature, an inflection point section, and the like, from the extracted river edge (S794).
다음으로, 중계 장치는 제1 정합 기준과 제2 정합 기준을 기초로 제1 하천 지형 정보와 제2 하천 지형 정보를 정합하되, 고수심 영역에서는 제1 하천 지형 정보를 이용하여, 저수심 영역에는 제2 하천 지형 정보를 이용하고 정합할 수 있다(S795).Next, the relay device matches the first river topography information and the second river topography information based on the first matching criterion and the second matching criterion, but uses the first river topographic information in the high depth region, and in the low water depth region The second stream topography information may be used and matched (S795).
부연 설명하면, 도 10과 같이 라이다와 초분광 센서 모두 하천 수면이 시작되는 하천 가장 자리 즉, 물과 지반이 접하는 부분을 정확하게 분석할 수 있다는 사실에 기반해 두 장비의 지형 정보를 정합하는 기준을 하천 가장 자리로 정할 수 있다.To elaborate, as shown in FIG. 10, both the lidar and hyperspectral sensors are based on the fact that both the lidar and the hyperspectral sensor can accurately analyze the edge of the river where the water surface begins, that is, the part where water and the ground meet. can be defined as the edge of the river.
따라서 제1 정합 기준과 제2 정합 기준이 일치하도록 제1 하천 지형 정보와 제2 하천 지형 정보를 하천 가장 자리를 기준으로 합치게 되면, 제1 하천 지형 정보에서 오차가 발생하는 저수심 구간은 제2 하천 지형 정보로 보정이 되고, 제2 하천 지형 정보에서 오차가 발생하는 고수심 구간은 제1 하천 지형 정보로 보정이 된다.Therefore, if the first and second stream topographic information are combined with the river edge as a standard so that the first and second matching criteria coincide, the low-water depth section in which the error occurs in the first river topographic information is 2 is corrected with the river topography information, and the high-depth section in which an error occurs in the second river topography information is corrected with the first river topography information.
도 11은 본 발명의 실시예에 따른 하천 특성 정보 계측 과정을 나타내는 도면이다.11 is a diagram illustrating a process of measuring river characteristic information according to an embodiment of the present invention.
도 11을 참조하면, 본 발명의 실시예에 따른 이동 장치는 초분광 센서를 구동시켜(S1110) 초분광 영상을 획득하고(S1130), 획득된 초분광 영상을 중계 장치에 전송할 수 있다(S1150).Referring to FIG. 11 , the mobile device according to an embodiment of the present invention may drive a hyperspectral sensor (S1110) to acquire a hyperspectral image (S1130), and transmit the acquired hyperspectral image to a relay device (S1150) .
다음으로, 이동 장치는 광학 카메라를 구동시켜(S1120) 광학 영상을 획득하고(S1140), 획득된 광학 영상을 중계 장치에 전송할 수 있다(S1160).Next, the mobile device may drive the optical camera (S1120) to acquire an optical image (S1140), and transmit the acquired optical image to the relay device (S1160).
다음으로, 중계 장치는 초분광 영상과 광학 영상을 수신하면, 초분광 영상으로부터 분광 특성을 추출하고(S1170), 광학 영상으로부터 영상 특성을 추출할 수 있다(S1180).Next, upon receiving the hyperspectral image and the optical image, the repeater may extract spectral characteristics from the hyperspectral image (S1170) and extract image characteristics from the optical image (S1180).
이때, 중계 장치는 하천 하폭에 따라 측정된 제21 하천 정보인 초분광 영상의 각 픽셀값과 미리 정의된 초분광 표준지표를 이용하여 하천에 대한 분광 특성을 추출할 수 있다.In this case, the relay device may extract the spectral characteristics of the river using each pixel value of the hyperspectral image, which is the 21st river information, measured according to the river width, and a predefined hyperspectral standard index.
또한, 중계 장치는 하천 하폭에 따라 측정된 제22 하천 정보인 광학 영상을 단일 이미지로 정합하고 하천 시설 DB를 활용하여 하천 시설에 대한 영상 특성을 추출할 수 있다.Also, the relay device may match the optical image, which is the 22nd river information measured according to the river width, into a single image, and extract image characteristics of the river facility by using the river facility DB.
따라서 중계 장치는 이렇게 추출된 분광 특성과 영상 특성을 이용하여 조사 대상 영역에 대한 하천 특성 정보를 산출할 수 있다(S1190). 여기서 하천 특성 정보는 분광 특성에 의해 산출된 수심, 수질, 부유사 등의 정보와 영상 특성에 의해 산출된 수심, 유속, 하천 시설 등의 정보를 포함할 수 있다.Accordingly, the relay device may calculate river characteristic information for the area to be investigated by using the spectral characteristics and image characteristics extracted in this way ( S1190 ). Here, the river characteristic information may include information such as water depth, water quality, and floating sand calculated by spectral characteristics and information such as water depth, flow velocity, and river facilities calculated by image characteristics.
실시예에서는 하천 시설 DB를 이용하는 경우를 일 예로 설명하고 있지만 반드시 이에 한정되지 않고 센서를 이용하여 하천 시설을 인식하여 DB화할 수도 있다.In the embodiment, the case of using the river facility DB is described as an example, but it is not necessarily limited thereto, and the river facility may be recognized and converted into a DB using a sensor.
도 12는 본 발명의 실시예에 따른 하천 시설 인식 과정을 나타내는 도면이고, 도 13은 도 12에 도시된 하천 시설 인식 원리를 설명하기 위한 도면이다.12 is a view showing a river facility recognition process according to an embodiment of the present invention, and FIG. 13 is a view for explaining the river facility recognition principle shown in FIG. 12 .
도 12를 참조하면, 본 발명의 실시예에 따른 이동 장치는 광학 카메라를 구동시켜(S1210) 조사 대상 영역의 광학 영상을 획득하고(S1211), 라이다를 구동시켜(S1220) 지형, 지물까지의 거리를 측정하여 거리 정보를 획득하고(S1221), 초분광 센서를 구동시켜(S1230) 조사 대상 영역의 초분광 영상을 획득할 수 있다(S1231).12, the mobile device according to an embodiment of the present invention drives an optical camera (S1210) to acquire an optical image of an area to be irradiated (S1211), and drives a lidar (S1220) to get to the topography and features Distance information is obtained by measuring the distance (S1221), and a hyperspectral sensor is driven (S1230) to obtain a hyperspectral image of the irradiation target area (S1231).
다음으로, 이동 장치는 획득된 광학 영상, 거리 정보, 초분광 영상을 중계 장치에 전송할 수 있다(S1212, S1222, S1232).Next, the mobile device may transmit the acquired optical image, distance information, and hyperspectral image to the relay device (S1212, S1222, S1232).
다음으로, 중계 장치는 광학 카메라를 통해 획득된 광학 영상을 기초로 조사 대상 영역 내 보, 제방, 호안과 같은 하천 시설을 인식할 수 있다(S1213).Next, the relay device may recognize a river facility such as a beam, embankment, and shoreline in the investigation target area based on the optical image acquired through the optical camera (S1213).
도 13을 참조하면, 중계 장치는 광학 영상으로부터 개체 즉, 하천 시설을 감지하기 위한 경계 라인을 추출하고(S1213-1), 미리 정해진 필터를 이용하여 경계 라인을 강조할 수 있다(S1213-2).Referring to FIG. 13 , the repeater may extract a boundary line for detecting an object, ie, a river facility, from the optical image (S1213-1), and emphasize the boundary line using a predetermined filter (S1213-2) .
중계 장치는 미리 구축된 이미지 라이브러리를 이용하여 경계 라인이 강조된 광학 영상으로부터 특징점을 추출하고(S1213-3), 추출된 특징점을 기초로 미리 구축된 데이터베이스 즉, 하천 시설 DB를 이용하여 하천 시설을 인식할 수 있다(S1213-4).The relay device extracts a feature point from the optical image in which the boundary line is emphasized using a pre-built image library (S1213-3), and recognizes the river facility using a database built in advance based on the extracted feature point, that is, the river facility DB. It can be done (S1213-4).
다음으로, 중계 장치는 라이다를 통해 측정된 거리 정보를 기초로 조사 대상 영역 내 하천 시설을 인식하고(S1223), 인식된 하천 시설의 형상과 광학 영상을 기초로 인식된 하천 시설의 형상이 일치하는지를 비교하여 그 비교한 결과로 하천 시설을 1차 검증할 수 있다(S1214).Next, the relay device recognizes the river facility in the investigation target area based on the distance information measured through the lidar (S1223), and the shape of the recognized river facility matches the shape of the recognized river facility based on the optical image It is possible to first verify the river facilities as a result of the comparison by comparing whether or not there is (S1214).
이때, 중계 장치는 라이다를 통해 측정된 거리 정보를 포인트 클라우드(point cloud)로 변환하여 변환된 포인트 클라우드를 이용하여 하천 시설을 인식할 수 있다.In this case, the relay device may convert distance information measured through the lidar into a point cloud and recognize the river facility using the converted point cloud.
또한, 중계 장치는 광학 영상을 기초로 인식된 하천 시설의 형상이 광학 영상을 기초로 인식된 하천 시설의 형상과 일치하는 경우 하천 시설로 1차 검증할 수 있다. 여기서 형상이 일치한다는 것은 소정 오차 범위 내에서 일치한다는 것을 의미한다.In addition, when the shape of the river facility recognized based on the optical image matches the shape of the river facility recognized based on the optical image, the relay device may first verify as the river facility. Here, the shape matching means matching within a predetermined error range.
다음으로, 중계 장치는 초분광 영상을 기초로 1차 검증된 하천 시설의 구성 재료 예컨대, 콘크리트를 확인하고(S1233), 확인된 구성 재료를 기초로 하천 시설로 2차 검증할 수 있다(S1215).Next, the relay device may check the first verified constituent material of the river facility, for example, concrete, based on the hyperspectral image (S1233), and may perform secondary verification with the river facility based on the confirmed constituent material (S1215) .
이때, 중계 장치는 초분광 영상으로부터 분광 특성을 추출하여 구성 재료를 확인할 수 있다.In this case, the relay device may extract the spectral characteristics from the hyperspectral image to identify the constituent materials.
또한, 중계 장치는 확인된 구성 재료가 1차 검증된 하천 시설의 미리 구축된 구성 재료와 일치하는지를 비교하여 그 비교한 결과로 하천 시설을 2차 검증할 수 있다.In addition, the relay device may compare whether the identified constituent materials match the pre-established constituent materials of the first verified river facility, and may perform secondary verification of the river facility as a result of the comparison.
다음으로, 중계 장치는 제공받은 하천 시설에 대한 정보를 기초로 하천 시설 DB를 갱신할 수 있다(S1216). 이때, 중계 장치는 제공 받은 하천 시설에 대한 정보가 하천 시설 DB에 존재하는 경우 하천 시설 DB를 갱신하거나 존재하지 않는 경우 추가할 수 있다.Next, the relay device may update the river facility DB based on the received information on the river facility (S1216). In this case, the relay device may update the river facility DB if the provided information on the river facility exists in the river facility DB, or may add it if it does not exist.
도 14는 본 발명의 실시예에 따른 하천을 관리하기 위한 방법을 나타내는 도면이다.14 is a diagram illustrating a method for managing a river according to an embodiment of the present invention.
도 14를 참조하면, 본 발명의 실시예에 따른 이동 장치는 하천 조사를 지시하는 이동 명령을 수신하면, 수신된 이동 명령에 따라 해당하는 조사 대상 영역의 위치로 이동할 수 있다(S1410).Referring to FIG. 14 , when the mobile device according to an embodiment of the present invention receives a movement command instructing river survey, it may move to a location of a corresponding survey target area according to the received movement command ( S1410 ).
다음으로, 이동 장치는 라이다를 구동시켜(S1420) 지형, 지물까지의 거리를 측정하고(S1330), 광학 카메라를 구동시켜(S1421) 조사 대상 영역의 광학 영상을 획득하고(S1331), 초분광 센서를 구동시켜(S1422) 조사 대상 영역의 초분광 영상을 획득할 수 있다(S1432).Next, the mobile device drives the lidar (S1420) to measure the terrain and the distance to the feature (S1330), and drives the optical camera (S1421) to obtain an optical image of the irradiation target area (S1331), hyperspectral By driving the sensor (S1422), it is possible to obtain a hyperspectral image of the area to be irradiated (S1432).
다음으로, 이동 장치는 거리 정보, 광학 영상, 초분광 영상을 중계 장치에 제공할 수 있다(S1440, S1441, S1442).Next, the mobile device may provide distance information, an optical image, and a hyperspectral image to the relay device (S1440, S1441, and S1442).
다음으로, 중계 장치는 거리 정보를 이용하여 하천 지형 정보를 산출하고(S1450), 광학 영상과 초분광 영상을 이용하여 하천 특성 정보를 산출할 수 있다(S1451).Next, the relay device may calculate river topography information using the distance information ( S1450 ), and may calculate river characteristic information using the optical image and hyperspectral image ( S1451 ).
다음으로, 중계 장치는 산출된 하천 지형 정보와 하천 특성 정보를 분석하여 조사 대상 영역에 대한 하천 정보 DB를 구축하고(S1460), 하천 지형 정보, 하천 특성 정보, 하천 정보 DB 중 적어도 일부를 선택적으로 통합 서버에 제공할 수 있다(S1470).Next, the relay device analyzes the calculated river topography information and river characteristic information to build a river information DB for the area to be investigated (S1460), and selectively selects at least a part of the river topography information, river characteristic information, and river information DB (S1460) It can be provided to the integration server (S1470).
도 15a 내지 도 15b는 중계 장치의 운영 여부에 따른 시스템 성능을 비교하는 도면이다.15A to 15B are diagrams comparing system performance according to whether a relay device is operated.
도 15a를 참조하면, 중계 장치를 운영하지 않고, 이동 장치와 통합 서버로 시스템이 구성되는 경우, 드론 및 임무 장비(라이다, 초분광 센서, 광학 카메라)의 자체 연산 성능 제한, 자료 용량 및 네트워크 속도 제한, 물리적 거리 제한으로 실시간 송수신이 어렵다.Referring to FIG. 15A , when a system is configured with a mobile device and an integrated server without operating a relay device, self-computational performance limitations of drones and mission equipment (lidar, hyperspectral sensor, optical camera), data capacity, and network Real-time transmission and reception are difficult due to speed limit and physical distance limit.
도 15b를 참조하면, 중계 장치를 운영하여, 이동 장치와 통합 서버로 시스템이 구성되는 경우, 이동 장치와 중계 장치 및 중계 장치와 통합 서버 간 실시간 송수신이 가능하고, 중계 장치가 자체적으로 하천 정보 영상 변환 및 분석, 하천 정보 DB 구축, 디지털트윈 모듈 적용, 하천 시설 DB 연계 필요 정보 송수신이 가능하게 된다.Referring to FIG. 15B , when a system is configured of a mobile device and an integrated server by operating a relay device, real-time transmission and reception between the mobile device and the relay device and between the relay device and the integrated server is possible, and the relay device has its own river information image Conversion and analysis, river information DB construction, digital twin module application, and river facility DB linkage necessary information transmission and reception are possible.
도 16은 본 발명의 실시예에 따른 임무 시나리오 도출 기법을 설명하기 위한 도면이다.16 is a diagram for explaining a mission scenario derivation technique according to an embodiment of the present invention.
도 16을 참조하면, 임무 시나리오는 하천 조사에 특화된 드론과 드론에 장착이 가능한 임무 장비 즉, 라이다, 초분광 센서, 광학 카메라를 활용해 가장 효율적인 하천 조사가 수행될 수 있도록 드론과 임무 장비를 운영하는 최적 방안을 제시할 수 있다.Referring to FIG. 16 , the mission scenario is a drone and mission equipment for the most efficient river investigation using a drone specialized for river investigation and mission equipment that can be mounted on the drone, that is, lidar, hyperspectral sensor, and optical camera. We can suggest the best way to operate.
본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field-programmable gate array) 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.The term '~ unit' used in this embodiment means software or hardware components such as field-programmable gate array (FPGA) or ASIC, and '~ unit' performs certain roles. However, '-part' is not limited to software or hardware. '~unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Thus, as an example, '~' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided in the components and '~ units' may be combined into a smaller number of components and '~ units' or further separated into additional components and '~ units'. In addition, components and '~ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiment of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention as described in the claims below. You will understand that it can be done.
[부호의 설명][Explanation of code]
100: 이동 장치100: mobile device
200: 중계 장치200: relay device
300: 통합 서버300: Integration Server
400: DB400: DB

Claims (10)

  1. 라이다, 초분광 센서가 장착되고, 제내지와 제외지를 포함한 하천 영역을 비행하면서 상기 라이다를 이용하여 거리 정보를 획득하고, 상기 초분광 센서를 이용하여 초분광 영상을 획득하는 이동 장치; 및a mobile device equipped with a lidar and hyperspectral sensor, acquiring distance information using the lidar while flying in a river area including jean and excluding regions, and acquiring a hyperspectral image using the hyperspectral sensor; and
    상기 이동 장치의 비행에 따라 상기 하천 영역을 따라 이동하면서, 상기 거리 정보와 상기 초분광 영상을 제공받아 분석한 결과로 상기 하천 영역에 대한 2차원 면형 하천 지형 정보를 산출하는 중계 장치를 포함하고,While moving along the river region according to the flight of the mobile device, a relay device that receives the distance information and the hyperspectral image and calculates two-dimensional planar river topography information for the river region as a result of analysis,
    상기 이동 장치는,The mobile device is
    상기 라이다의 파장이 다른 제1 레이저 신호와 제2 레이저 신호를 이용하여 거리 정보를 획득하되,The distance information is obtained using a first laser signal and a second laser signal having different wavelengths of the lidar,
    상기 제1 레이저 신호를 이용하여 하천 주변의 거리 정보를 획득하고, 상기 제2 레이저 신호를 이용하여 하천 바닥의 거리 정보를 획득하는, 하천 지형 측량 시스템.A river topography surveying system for obtaining distance information around a river using the first laser signal and obtaining distance information on a river bottom using the second laser signal.
  2. 제1항에 있어서,According to claim 1,
    상기 제1 레이저 신호는 근적외선(Near Infrared) 레이저 신호이고,The first laser signal is a near infrared (Near Infrared) laser signal,
    상기 제2 레이저 신호는 그린(green) 레이저 신호인, 하천 지형 측량 시스템.wherein the second laser signal is a green laser signal.
  3. 제1항에 있어서,According to claim 1,
    상기 중계 장치는,The relay device is
    상기 거리 정보를 이용하여 제1 하천 지형 정보를 산출하고,Calculating first river topography information using the distance information,
    상기 초분광 영상을 이용하여 제2 하천 지형 정보를 산출하고,Calculating second river topography information using the hyperspectral image,
    산출된 상기 제1 하천 지형 정보와 상기 제2 하천 지형 정보를 정합하는, 하천 지형 측량 시스템.and matching the calculated first river topography information with the second river topography information.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 중계 장치는,The relay device is
    상기 제1 하천 지형 정보로부터 제1 정합 기준을 추출하고,extracting a first matching criterion from the first river topography information,
    상기 제2 하천 지형 정보로부터 제2 정합 기준을 추출하고,extracting a second matching criterion from the second river topography information,
    추출된 상기 제1 정합 기준과 상기 제2 정합 기준이 서로 일치하도록 상기 제1 하천 지형 정보와 상기 제2 하천 지형 정보를 정합하는, 하천 지형 측량 시스템.and matching the first river topography information and the second river topography information so that the extracted first matching criteria and the second matching criteria coincide with each other.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 중계 장치는,The relay device is
    상기 제1 하천 지형 정보로부터 제1 하천 가장 자리를 추출하고, 상기 추출된 제1 하천 가장 자리로부터 상기 제1 정합 기준을 추출하고,extracting a first river edge from the first river topography information, and extracting the first matching criterion from the extracted first river edge;
    상기 제2 하천 지형 정보로부터 제2 하천 가장 자리를 추출하고, 상기 추출된 제2 하천 가장 자리로부터 상기 제2 정합 기준을 추출하는, 하천 지형 측량 시스템.and extracting a second stream edge from the second stream topography information, and extracting the second matching criterion from the extracted second stream edge.
  6. 라이다, 초분광 센서가 장착된 이동 장치가 제내지와 제외지를 포함한 하천 영역을 비행하면서 상기 라이다를 이용하여 거리 정보를 획득하고, 상기 초분광 센서를 이용하여 초분광 영상을 획득하는 단계; 및LiDAR, a mobile device equipped with a hyperspectral sensor acquiring distance information using the lidar while flying over a river region including the jean and excluding regions, and acquiring a hyperspectral image using the hyperspectral sensor; and
    중계 장치가 상기 이동 장치의 비행에 따라 상기 하천 영역을 따라 이동하면서, 상기 거리 정보와 상기 초분광 영상을 제공받아 분석한 결과로 상기 하천 영역에 대한 2차원 면형 하천 지형 정보를 산출하는 단계를 포함하고,The relay device receives and analyzes the distance information and the hyperspectral image while moving along the river region according to the flight of the mobile device, and calculating two-dimensional planar river topography information for the river region. do,
    상기 획득하는 단계에서는,In the acquiring step,
    상기 라이다의 파장이 다른 제1 레이저 신호와 제2 레이저 신호를 이용하여 거리 정보를 획득하되,The distance information is obtained using a first laser signal and a second laser signal having different wavelengths of the lidar,
    상기 제1 레이저 신호를 이용하여 하천 주변의 거리 정보를 획득하고, 상기 제2 레이저 신호를 이용하여 하천 바닥의 거리 정보를 획득하는, 하천 지형 측량 방법.A river topography surveying method for obtaining distance information around a river using the first laser signal and obtaining distance information on a river bottom using the second laser signal.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 제1 레이저 신호는 근적외선(Near Infrared) 레이저 신호이고,The first laser signal is a near infrared (Near Infrared) laser signal,
    상기 제2 레이저 신호는 그린(green) 레이저 신호인, 하천 지형 측량 방법.wherein the second laser signal is a green laser signal.
  8. 제6항에 있어서,7. The method of claim 6,
    상기 산출하는 단계에서는,In the calculating step,
    상기 거리 정보를 이용하여 제1 하천 지형 정보를 산출하고,Calculating first river topography information using the distance information,
    상기 초분광 영상을 이용하여 제2 하천 지형 정보를 산출하고,Calculating second river topography information using the hyperspectral image,
    산출된 상기 제1 하천 지형 정보와 상기 제2 하천 지형 정보를 정합하는, 하천 지형 측량 방법.and matching the calculated first river topography information with the second river topography information.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 산출하는 단계에서는,In the calculating step,
    상기 제1 하천 지형 정보로부터 제1 정합 기준을 추출하고,extracting a first matching criterion from the first river topography information,
    상기 제2 하천 지형 정보로부터 제2 정합 기준을 추출하고,extracting a second matching criterion from the second river topography information,
    추출된 상기 제1 정합 기준과 상기 제2 정합 기준이 서로 일치하도록 상기 제1 하천 지형 정보와 상기 제2 하천 지형 정보를 정합하는, 하천 지형 측량 방법.and matching the first river topography information and the second river topography information so that the extracted first matching criteria and the second matching criteria coincide with each other.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 산출하는 단계에서는,In the calculating step,
    상기 제1 하천 지형 정보로부터 제1 하천 가장 자리를 추출하고, 상기 추출된 제1 하천 가장 자리로부터 상기 제1 정합 기준을 추출하고,extracting a first river edge from the first river topography information, and extracting the first matching criterion from the extracted first river edge;
    상기 제2 하천 지형 정보로부터 제2 하천 가장 자리를 추출하고, 상기 추출된 제2 하천 가장 자리로부터 상기 제2 정합 기준을 추출하는, 하천 지형 측량 방법.and extracting a second river edge from the second river topography information, and extracting the second matching criterion from the extracted second river edge.
PCT/KR2020/018919 2020-10-30 2020-12-22 System for measuring river topography by using drone, and method therefor WO2022092436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0143010 2020-10-30
KR1020200143010A KR102297661B1 (en) 2020-10-30 2020-10-30 System for measuring river topography using drone and method thereof

Publications (1)

Publication Number Publication Date
WO2022092436A1 true WO2022092436A1 (en) 2022-05-05

Family

ID=77782633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018919 WO2022092436A1 (en) 2020-10-30 2020-12-22 System for measuring river topography by using drone, and method therefor

Country Status (2)

Country Link
KR (1) KR102297661B1 (en)
WO (1) WO2022092436A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390569B1 (en) 2021-10-14 2022-04-27 (주)지트 Geospatial information survey system using drone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863123B1 (en) * 2017-02-15 2018-06-01 한국건설기술연구원 System for mapping river water-bloom map using automatic driving unmanned air vehicle and unmanned floating body of moving type
JP2018176905A (en) * 2017-04-07 2018-11-15 鹿島建設株式会社 Underwater investigation system and underwater investigation method using unmanned flying object
KR20180131932A (en) * 2017-06-01 2018-12-11 충남대학교산학협력단 River topography information generation method using drone and geospatial information
KR102013802B1 (en) * 2019-01-30 2019-08-27 대한민국 System for Surveying Geospatial Information of River bottom using drone and Driving Method thereof
KR20200058721A (en) * 2018-11-20 2020-05-28 주식회사 공간정보 drone dectection system for measuring three dimension safety information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863123B1 (en) * 2017-02-15 2018-06-01 한국건설기술연구원 System for mapping river water-bloom map using automatic driving unmanned air vehicle and unmanned floating body of moving type
JP2018176905A (en) * 2017-04-07 2018-11-15 鹿島建設株式会社 Underwater investigation system and underwater investigation method using unmanned flying object
KR20180131932A (en) * 2017-06-01 2018-12-11 충남대학교산학협력단 River topography information generation method using drone and geospatial information
KR20200058721A (en) * 2018-11-20 2020-05-28 주식회사 공간정보 drone dectection system for measuring three dimension safety information
KR102013802B1 (en) * 2019-01-30 2019-08-27 대한민국 System for Surveying Geospatial Information of River bottom using drone and Driving Method thereof

Also Published As

Publication number Publication date
KR102297661B1 (en) 2021-09-06

Similar Documents

Publication Publication Date Title
WO2022092438A1 (en) System for managing river using drone and method therefor
WO2022092437A1 (en) System and method for recognizing river facilities using drone
WO2016153233A1 (en) Lidar device
WO2018139773A1 (en) Slam method and device robust to changes in wireless environment
WO2020004817A1 (en) Apparatus and method for detecting lane information, and computer-readable recording medium storing computer program programmed to execute same method
WO2022092436A1 (en) System for measuring river topography by using drone, and method therefor
WO2020101156A1 (en) Orthoimage-based geometric correction system for mobile platform having mounted sensor
WO2019039733A1 (en) Moving object and combined sensor using camera and lidar
WO2018230845A1 (en) Method for positioning on basis of vision information and robot implementing same
WO2018164426A1 (en) Method for detecting porphyry copper ore body by using hyperspectral imaging of malachite
US10954648B1 (en) Multi-sensor manhole survey
WO2020159076A1 (en) Landmark location estimation apparatus and method, and computer-readable recording medium storing computer program programmed to perform method
WO2020075954A1 (en) Positioning system and method using combination of results of multimodal sensor-based location recognition
CN110781757A (en) Airport pavement foreign matter identification and positioning method and system
WO2019212200A1 (en) Wireless positioning method and apparatus with improved position accuracy in various environments
WO2020189909A2 (en) System and method for implementing 3d-vr multi-sensor system-based road facility management solution
WO2021158062A1 (en) Position recognition method and position recognition system for vehicle
WO2017119545A1 (en) Method for safely guiding aircraft to airport stand using scanner equipped with 2d laser sensor and motor
WO2013141605A1 (en) System and method for aircraft type identification and docking guidance
WO2015005534A1 (en) Hybrid visual interval inducing device
WO2023022305A1 (en) Indoor positioning apparatus and method for pedestrians
WO2023128113A1 (en) Dangerous object information management server capable of estimating actual size of dangerous object on road in conjunction with information collection terminal mounted to vehicle, and method for operating same
RU2506536C2 (en) Method of subpixel control and tracking of remote object motion
KR102355769B1 (en) Method for construction of 3d digital twin by dron
WO2020013433A1 (en) High-accuracy and high-speed wireless positioning method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960052

Country of ref document: EP

Kind code of ref document: A1